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We examined the neutrino sector in E6 � SUð2ÞF supersymmetric grand unified theory with sponta-

neous CP violation. At first glance, the discrete symmetry, which is introduced in order to solve the

supersymmetric CP problem, constrains the allowed operators too strongly for the neutrino sector to be

consistent with the experimental data, i.e., the� neutrino becomes massless as commented in the previous

paper. We showed that this issue can be solved if some operators are taken into account. And we saw that

such operators do not play an important role in studying quark and charged lepton sectors. The predictions

on the neutrino masses and mixings are the same as the E6 models, which are consistent with various

experiments on the neutrino oscillations.
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I. INTRODUCTION

Weak scale supersymmetry (SUSY) is one of the most
promising candidates for physics beyond the standard
model (SM) [1]. The minimal supersymmetry extension
of the standard model (MSSM) has several attractive fea-
tures. It, for instance, provides a solution to the gauge
hierarchy problem and a dark matter candidate as the
lightest supersymmetric particle (LSP). Moreover, super-
symmetric grand unified theory (SUSY GUT) is strongly
motivated by the remarkable coincidence of three SM
gauge coupling constants around 1016 GeV.

Grand unified theory can also explain the origin of
hierarchical structures of masses and mixing angles in
the SM particles by simply assuming that the 10’s of
SUð5Þ induce stronger hierarchical Yukawa structure than
the �5’s. However, the SUSY GUT scenario is generically
suffering from various theoretical and phenomenological
difficulties. For instance,

(1) SUSY flavor problem: if generic soft SUSY break-
ing terms are introduced, flavor changing neutral
current (FCNC) processes exceeds the experimental
constraints [2].

(2) SUSY CP problem: if generic soft SUSY breaking
terms are introduced, CP violating observables such
as electric dipole moments exceeds the experimen-
tal constraints [2].

(3) � problem: supersymmetric Higgs mass � must be
the same order of the soft SUSY breaking scale
though it is a SUSY parameter.

(4) The doublet-triplet splitting (DTS) problem and
proton decay: there must be huge mass separation
between doublet Higgs (weak scale) and triplet
Higgs (above GUT scale) in order to make proton’s
lifetime longer than experimental limit. Moreover,

recent proton decay constraint suggests that triplet
Higgs mass should naively be larger than 1018 GeV,
but it generically spoils the success of the gauge
coupling unification.

(5) Unrealistic GUT relation: generically, unification of
quark and leptons in GUT tends to result in unreal-
istic Yukawa relations which are inconsistent with
the observed masses and mixings of quark and
leptons.

E6 unification is quite attractive because it can naturally
induce the feature that the 10’s of SUð5Þ induce stronger
hierarchical Yukawa structure than the �5’s, which plays an
important role in obtaining realistic Yukawa hierarchies in
SUð5Þ GUT. Moreover, if we introduce a family symmetry,
SUð3ÞF(SUð2ÞF), all three generation quark and leptons
can be unified into a single (two) multiplet(s), and after
breaking the family symmetry and the E6 symmetry,
realistic quark and lepton masses and mixings can be
obtained. Furthermore, the third generation 10 of SUð5Þ
can have different sfermion masses from the other sfer-
mion masses, because it is from the third generation 27
of E6. It is remarkable that such effective SUSY sfermion
mass spectrum [3] can satisfy the LHC constraints with
lighter stop, which is important to keep the naturalness in
SUSY models.
Unfortunately, such effective SUSY type sfermion mass

spectrum is generically suffering from the new type of
SUSY CP problem, in which chromo electric dipole mo-
ment (CEDM) of up quark becomes too large to satisfy the
experimental constraints. The 1–3 mixings of up-type
squark masses become too large and have a generically
Oð1Þ complex phase after diagonalizing the complex
Yukawa couplings if the stop mass is different from the
other two up-type squarks.
Recently, a scenario that solves this problem as well as

the old type of SUSY CP problem by introducing sponta-
neous CP violation has been proposed [4]. The essential
point is that the discrete symmetry, which is introduced in
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order to solve the old type of SUSY CP problem, leads
to real up-type Yukawa couplings, which can solve the
new type of SUSY CP problem and to complex down-
type Yukawa couplings which give Oð1Þ the Kobayashi-
Maskawa (KM) [5] phase. The model has remarkable
features, for example, the doublet-triplet splitting is
naturally realized by introducing the anomalous Uð1ÞA
gauge symmetry, predictive Yukawa matrices of up
quarks, down quarks and charged leptons are obtained
because of the reduced number of the Oð1Þ parameters,
smaller Cabibbo-Kobayashi-Maskawa (CKM) [6] matrix
element Vub � �4, where �� 0:22 is the Cabibbo mix-
ing, is obtained.

In this paper, we examine the neutrino sector in the
above model with the spontaneous CP violation, since
this has not been studied in detail in the previous paper.
At first glance, the discrete symmetry, which is introduced
in order to solve the SUSY CP problem, constrains the
allowed operators too strongly for the neutrino sector to be
consistent with the experimental data, i.e., the � neutrino
becomes massless as commented in the previous paper. We
will show that this issue on the neutrino sector can be
solved if some operators, which are not important in study-
ing quark and charged lepton sectors, are taken into ac-
count. And we clarify the reason why such operators play
an important role only in the neutrino sector. The predic-
tions on the neutrino masses and mixings are the same as
the E6 models, i.e., sin�12 � sin�23 � �0:5, sin�13 � �,
�m2

12=�m
2
23 � �2, etc., which are consistent with various

experiments on the neutrino oscillations. Since the opera-
tors are restricted by the discrete symmetry, the predictions
on theOð1Þ coefficients are expected. However, we are not
able to find any simple predictions between the Oð1Þ
coefficients because there are a lot of operators for the
right-handed neutrino masses.

As the result, we can obtain an attractive model in which
(1) realistic quark and lepton masses and mixings are

obtained,
(2) all the CP phases in the model, the KM phase, CP

phases in neutrino sector and CP phases in sfermion
sectors, are given from one phase which is obtained
by the spontaneous CP violation,

(3) as the result, SUSY CP problem is solved,
(4) the effective SUSY type sfermion mass spectrum is

predicted.
The paper proceeds as follows: in Sec. II, we briefly

review the basic features of E6 � SUð2ÞF �Uð1ÞA SUSY
GUT with spontaneous CP violation. In Sec. III, we cal-
culate neutrino masses and Maki-Nakagawa-Sakata
(MNS) [7] matrix explicitly, after specifying massless �5
modes. We see that a specific type of higher-dimensional
operators is essential for the realistic neutrino masses. We
also show that the above higher-dimensional operators
only affect the neutrino sector. The last section is devoted
to summary and discussion.

II. BASIC FEATURES OF E6 � SUð2ÞF � Uð1ÞA
SUSY GUT WITH SPONTANEOUS CP VIOLATION

A. E6 unification and SUð2ÞF family symmetry

First of all, 27 is the fundamental representation for the
E6 group. In terms of E6 � SOð10Þ �Uð1ÞV0 (and
[SOð10Þ � SUð5Þ �Uð1ÞV]) it is decomposed as

27¼161½101þ �5�3þ15�þ10�2½5�2þ �502�þ104½100�; (1)

where acutes are used to distinguish different �5ð1Þ’s. Note
that each 27 contains two �5’s (and 1’s) of SUð5Þ. This
nature is essential for realizing different Yukawa structures
of up-type quarks, down-type quarks, charged leptons, and
neutrinos from a single hierarchical structure of an E6

invariant Yukawa couplings [8–10].
In order to break the E6 gauge group into the SM gauge

group GSM, we introduce three types of Higgs fields. The
first one is the 27 representation Higgs H. We also intro-

duce the 27 representation Higgs �H in order to satisfy the
D-flatness condition of the E6 gauge interaction. H, �H
obtain vacuum expectation values (VEVs)

hHi ¼ h1Hi � 0; (2)

and they break E6 into SOð10Þ. The second one is an
adjoint Higgs A, which belongs to the 78 representation.
It gets Dimopoulos-Wilczek (DW) [11] VEV proportional
to Uð1ÞB-L direction

hAi ¼ h45Ai / Uð1ÞB-L; (3)

and it breaks SOð10Þ into SUð3ÞC � SUð2ÞL � SUð2ÞR �
Uð1ÞB�L. The third type include C and �C, and they are also

27 and 27 representations. They acquire VEVs

hCi ¼ h16C½3 1C�i � 0; (4)

and they break SUð3ÞC � SUð2ÞL � SUð2ÞR �Uð1ÞB-L
into GSM. The superpotential which gives superheavy
masses for (5, �5) and (5, �50) pairs is

W ¼ YH
ij�i�jH þ YC

ij�i�jC; (5)

where �iði ¼ 1; 2; 3Þ are matter fields in family i. After H
andC acquire VEVs, 3 degrees of freedom among �5i and �50i
get superheavy masses, while the remaining three are
massless at the GUT scale. We assume the Yukawa hier-
archies

YH
ij � YC

ij �
�6 �5 �3

�5 �4 �2

�3 �2 1

0
B@

1
CA (6)

and ratio of two VEVs

hCi
hHi � �0:5 (7)
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up to Oð1Þ coefficients. These assumption can be realized
proper charge assignment of anomalous Uð1ÞA symmetry
and the breaking effect of the SUð2ÞF family symmetry,
which we explain later, respectively.1 Under these assump-
tions, three massless modes are mainly (�51, �5

0
1,

�52). Note
that third generation does not appear at the leading order.
So we end up following different Yukawa hierarchies

Yd �
�6 �5 �3

�5 �4 �2

�4 �2 1

0
BB@

1
CCA;

Yd � YT
e �

�6 �5:5 �5

�5 �4:5 �4

�3 �2:5 �2

0
BB@

1
CCA;

M� � �n

�7 �6:5 �6

�6:5 �6 �5:5

�6 �5:5 �5

0
BB@

1
CCA hHui2

h �Hi2 �;

(8)

when the MSSM Higgses Hu and Hd are included in 10H
and 16C. Here n is a number, and we used the relation
h �Ci=h �Hi � �0:5.

In order to realize the Yukawa hierarchy between the
Oð1Þ top quark and the other quarks naturally, we employ
the SUð2ÞF family gauge symmetry. We treat first two
generation fields as the doublet �aða ¼ 1; 2Þ, whereas
the third generation fields �3 and all Higgs fields are
treated as singlets under SUð2ÞF. Here the index a can be
raised or lowered by the antisymmetric symbols �ab and
�ab. We also introduce flavon fields Fa and �Fa, which are
singlets under E6 and doublet and antidoublet under
SUð2ÞF, respectively. VEVs of Fa and �Fa break SUð2ÞF,
then this effect generates the hierarchical Yukawa structure
in (6). Since massless �5’s do not contain the third genera-
tion at the leading order in E6 GUT, both left-handed and
right-handed components of the top quark belong to the
SUð2ÞF singlet, while all other quarks and charged leptons
are (partially or completely) SUð2ÞF doublets.

SUð2ÞF family symmetry is also useful for solving the
SUSY FCNC problem. Suppose that the soft SUSY break-
ing terms are mediated to the visible sector above the scale
where E6 and SUð2ÞF symmetries are respected, such as in
gravity mediation. Then the symmetry guarantees sfermion
masses which degenerate at the leading order except for
103 [10]:

~m2
10 ¼

m2
0 0 0

0 m2
0 0

0 0 m2
3

0
BB@

1
CCA; ~m2

�5
¼

m2
0 0 0

0 m2
0 0

0 0 m2
0

0
BB@

1
CCA; (9)

where ~m10 and ~m�5 are squared sfermion mass matrices at
the GUT scale in the 10 and �5 fields of SUð5Þ, respectively.
For sfermions in 10, FCNC observables provide stringent
constraints mainly on the first two generations, while con-
straints for �5’s are stringent for all three generations. This is
because the mixing angles of the 10 fields are small, while
those of the �5 fields are large. Therefore, in this model,
FCNC constraints can be evaded by raisingm0.

2 Moreover,
the weak scale is not destabilized as long as m3 is around
the weak scale. So this type of sfermion masses (‘‘ effective
SUSY’’ or ‘‘modified universality’’) [10,13–16] solves the
SUSY FCNC problem without spoiling naturalness. We
also comment that LHC constraints to this type of sfermion
masses are much weaker than to the constrained MSSM
type of sfermion masses [17].
Unfortunately, there is a tension between these modified

universal sfermion masses and complex Yukawa cou-
plings, which are important to obtain the nonvanishing
KM phase. In the basis in which Yukawa matrices are
diagonal, sfermion mass matrices become

�10 � Vy
10 ~m

2
10V10 � ~m2

10 þ ðm2
3 �m2

0Þ
�6 �5 �3

�5 �4 �2

�3 �2 1

0
BB@

1
CCA;

��5 � Vy
�5
~m2
�5
V�5 ¼ ~m2

�5
; (10)

where V10 and V�5 are the diagonalizing unitary matrices for
the 10 and �5 fields of SUð5Þ, respectively, and we take the
CKM like matrix as V10. Since the mass insertion matrices
�10 � �10=m

2
0 do not vanish in the limit m0 ! 1, the

CEDM of up quark from this SUSY contribution is not
decoupled. The constraints for these parameters by mer-
cury (neutron) become [15,18–20]

Im ½ð�uLÞ13ð�uRÞ31� � 3� 10�7ð9� 10�7Þ
�

m3

500 GeV

�
2
;

(11)

which are much smaller than the prediction �6 � 10�4.
This is a serious problem on the ‘‘effective SUSY’’ or
‘‘modified universality,’’ which we call the new type of
SUSY CP problem.

B. Anomalous Uð1ÞA symmetry

An anomalous Uð1ÞA symmetry [21,22] is introduced in
order to solve the doublet-triplet splitting problem and �
problem, and to provide the origin of the hierarchical
Yukawa structures [23]. This is a gauge symmetry whose
anomalies are canceled by the Green-Schwarz mechanism
[24]. The theory possesses the Fayet-Iliopoulos term �2,
and we assume its magnitude as � ¼ ��. Here � is the
cutoff scale of the theory and we set � ¼ 1. Let us denote

1Strictly speaking, (7) is not true in the Uð1ÞA framework. The
correct relation is �chCi=�hhHi � �0:5, where c and h are Uð1ÞA
charges of C and H, respectively.

2There is upper limit of m0 comes from charge and color
breaking effect. For detail discussion, see [12].
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the gauge symmetries of the theory except forUð1ÞA asGa.
Consider a theory consisting of all the Ga and Uð1ÞA
invariant terms, including nonrenormalizable operators.
Then it is shown in [23] that the theory has a supersym-
metric vacuum where all the fields that are negatively
charged under Uð1ÞA get VEVs in the following way: 3

hZþ
i i ¼ 0 ðzþi > 0Þ hZ�

i i ���zi ðz�i < 0Þ: (12)

Here Zi is Ga singlet field whose Uð1ÞA charge is zi. This
argument can be extended to the case where Zi is compos-
ite operator that is made by Ga nonsinglet fields. For

example, in the Z� ¼ �XX case, h �XXi � ��ðxþ �xÞ leads to

jhXij ¼ jh �Xij � ��ðxþ �xÞ=2, once the D-flatness condition of
Ga is taken account. Note that the above results can be
obtained under the natural assumption that all the interac-
tions, which are allowed by the symmetry of the theory, are
introduced with Oð1Þ coefficients.

It is important to mention that a term whose total Uð1ÞA
charge is negative does not appear at the Uð1ÞA breaking
vacuum. The reason is that this type of term should origi-
nally be accompanied by at least one positively charged
field but its VEV is always vanishing according to (12)
[SUSY-zero mechanism] [23,25]. A Uð1ÞA symmetry and
its specific SUSY vacuum are applied in several aspects of
phenomenological model building. For example, an appro-
priate Uð1ÞA charge assignment for the Higgs sector can
ensure theDTS via theDWmechanism [23], and the SUSY-
zeromechanism can be applied to solve the� problem [26].

For the following arguments, we will briefly review the
points on the solution for the � problem. Since the MSSM
Higgses, Hu and Hd, have negative Uð1ÞA charges, the
mass term is forbidden by the SUSY-zero mechanism.
With the positively charged singlet field S, the term
SHuHd can be allowed, but hSi ¼ 0 in the SUSY limit.
However, if SUSY is broken at the weak scale �W , the
VEVof S becomes nonvanishing and the order of the weak
scale. This results in the SUSY Higgs mass with Oð�WÞ.
The b parameter also becomes the weak scale.

C. Spontaneous CP violation and discrete symmetry

As we have seen, one of the attractive features of the
E6 � SUð2ÞF SUSY GUT is the modified universal sfer-
mion mass (9), which evades FCNC constraints while
maintaining naturalness. However, such type of mass spec-
trum is generically suffering from the CEDM constraint of
the up quark [20]. Fortunately, we can evade this constraint
by introducing a spontaneous CP violation (SCPV)
[27,28]. By using SCPV, we can realize the real up-type
Yukawa couplings together with the KM phase.

Let us introduce the E6 � SUð2ÞF singlet field Sðs > 0Þ.
Then we obtain the following superpotential made of
flavon fields Fa; �F

a and S:

W ¼ �sS

�Xnf
n¼0

cn�
ðfþ �fÞnð �FFÞn

�
: (13)

Here cn are real Oð1Þ coefficients and nf is the number

where the SUSY-zero mechanism truncates the sum. When
nf � 2, the F-flatness condition with respect to S leads to

complex VEV h �FFi and then CP symmetry can be sponta-
neously broken. Using SUð2ÞF gauge symmetry and its
D-flatness condition, we can take the case where only
hFi is complex without loss of generality:

hFai � 0
ei���ðfþ �fÞ=2

� �
; h �Fai � 0

��ðfþ �fÞ=2
� �

: (14)

Unfortunately, the SCPV affects � generation in the
Uð1ÞA framework and leads to an unwanted outcome [4]

Arg ½�b	� ¼ Oð1Þ; (15)

if S �FF exists. This rephasing invariant phase induces
electric dipole moments of quarks and leptons, and give
rise to the SUSY CP problem again. In order to evade such
unwanted relation, we introduce an additional discrete
symmetry Z6, which forbids S �FF. Then we can avoid
this old type of SUSY CP problem. Moreover, this sym-
metry results in the real up-type Yukawa matrix, which
solves the new type of SUSY CP problem, i.e., the diago-
nalizing unitary matrices become real and therefore the
mass insertion matrices for the up-type quark become real,
if the MSSM Higgs Hu is included in 10H. This symmetry
constrains the model and reduces the number of Oð1Þ
parameters. As a by-product, the up-quark Yukawa cou-
pling yu and the CKMmatrix element Vub become closer to
experimental values yu � �8, Vub � �4 than the expecta-
tion of E6 GUT yu � �6, Vub � �3 [4].
It is also reported in [4] that the discrete symmetry

makes one of the neutrinos massless. This result seems to
be unrealistic, but we will show that this issue can be
solved by introducing some operators, which have not
been considered in the previous paper.

III. CALCULATION OF NEUTRINO MASS AND
MNS MATRIX

A. Field contents and Yukawa couplings

First, we summarize the field content of the model and
its representations under the E6, SUð2ÞF, Uð1ÞA and Z6

symmetries.
We introduce the following fields, which are listed in

Table I. All matter fields � belong to 27 representation
of E6. We make its first two generations as a doublet
�aða ¼ 1; 2Þ and the third generation as a singlet �3 of
the SUð2ÞF, respectively. The SUð2ÞF and CP are simul-
taneously broken by the VEVs of the flavon fields Fa and

3From now on, each superfield is denoted by an uppercase
letter, whereas the corresponding lowercase letter indicates an
associated Uð1ÞA charge. The consistency of (12) requires the
number of positively charged fields to be larger than that of
negatively charged fields by one.

NOBUHIRO MAEKAWA AND KENICHI TAKAYAMA PHYSICAL REVIEW D 85, 095015 (2012)

095015-4



�Fa. All the other fields are singlets under SUð2ÞF.4 H is the
field whose VEV h1Hi � 0 breaks E6 into SOð10Þ, and �H is
introduced to maintain the D-flatness condition. The VEV
of A breaks SOð10Þ into SUð3ÞC � SUð2ÞL � SUð2ÞR �
Uð1ÞB-L. C is the field whose VEV breaks SUð3ÞC�
SUð2ÞL�SUð2ÞR�Uð1ÞB-L into GSM, and �C is also intro-
duced to maintain the corresponding D-flatness condition.
Basically, the F-flatness conditions of the positively
charged fields, A0, C0, �C0 etc., determine the VEVs of the
negatively charged fields. For example, the F-flatness con-
ditions with respect to A0 make A acquire DW-type VEVs
for the SOð10Þ adjoint component to solve the DTS prob-
lem. The alignment between the VEVs of A and C, �C are
realized and at the same time, the pseudo Nambu-
Goldstone modes become heavy [29]. In Table I, Uð1ÞA
charges are assigned so that the DTS and appropriate
Yukawa hierarchies are realized. Also, Z6 charges are
determined so that the SUSY CP problem is evaded.

S, S0, and S00 are introduced to realize the SCPV and �
generation. The relevant superpotential are

WS ¼ �sSþ �sþ3z2SZ3
2 þ �sþ3hSH3; (16)

WS0 ¼�s0þz2S0Z2þ�s0þ �cþcS0 �CCþ�s0þ2 �fþ2fS0ð �FFÞ2; (17)

WS00 ¼ �s00þz2S00Z2 þ �s00þ �cþcS00 �CC: (18)

First, we obtain the VEV hZ2i from the F-flatness condition
ofWSwith respect toS. Since the one of the three solutions is
real, we assume hZ2i is real. Second, the F-flatness condition
ofWS00 determines the real VEV h �CCi.5 Third, the F-flatness
condition ofWS0 leads the complexVEV h �FFi, whichbreaks
theSUð2ÞF andCP spontaneously.Note that the operatorH3

gives the SM Higgs mass after developing the VEVof H if
the SM Higgses are included in 10H. Then, after breaking
SUSY, WS generates the � and b terms. Since H3 does not
couple to S0 and S00, � and b are real.
Let us examine the mass matrices of quarks and leptons

in this model. Under the charge assignment of Table I, the
following interactions between matter and Higgs fields are
allowed:

YH:

0 d�aðA; Z3; �HHÞ�a 0

d�aðA; Z3; �HHÞ�a c�2ðc aþ �fÞ �Fa�a
�Fb�b b�c aþc 3þ �f �Fa�a�3

0 b�c aþc 3þ �f�3
�Fa�a a�2c 3�3�3

0
BB@

1
CCA�hH; (19)

YC:

0 f0�2c aþfþ �fFa�a
�Fb�b g0�c aþc 3þfFa�a�3

f0�2c aþfþ �f �Fa�aF
b�b 0 0

g0�c aþc 3þf�3F
a�a 0 0

0
BB@

1
CCA�cC: (20)

Here we explicitly write in all Oð1Þ coefficients, a, b, c, d,
f0, and g0. Note that all the Oð1Þ coefficients are assumed
to be real because of the original CP symmetry.

In (19), the structure of the (1, 2) and (2, 1) elements is a
little bit complicate, so we should consider this point care-
fully. �aðA; Z3; �HHÞ�a consist of several types of terms.

Clearly, some additional field(s) for the (1, 2) and (2, 1)
elements are needed because �a�a ¼ �ab�a�b ¼ 0,
where �12 ¼ ��21 ¼ 1, �11 ¼ �22 ¼ 0. The negatively
Uð1ÞA charged fields which can have nonvanishing VEVs

TABLE I. Field contents and charge assignment under E6 � SUð2ÞF �Uð1ÞA � Z6.

�a �3 Fa
�Fa H �H C �C C0 �C0

E6 27 27 1 1 27 27 27 27 27 27
SUð2ÞF 2 1 2 �2 1 1 1 1 1 1
Uð1ÞA 4 3

2 � 3
2 � 5

2 �3 1 �4 �1 7 9

Z6 0 0 1 0 0 0 5 3 3 3

A A0 Z0 Z2 Z3 Z4 S S0 S00

E6 78 78 1 1 1 1 1 1 1
SUð2ÞF 1 1 1 1 1 1 1 1 1
Uð1ÞA �1 5 �1 �3 �2 �5 9 8 5

Z6 3 3 0 2 3 4 0 4 4

5We must forbid the term Sð0Þ �FF �CC, which lead the complex
VEV h �CCi. If we can choose the basis in which hCi is real and
h �Ci has an opposite phase to hFi, the up-type Yukawa can keep
real. However, it changes the phase of the down-type Yukawa
into removable, and the KM phase cannot be realized.

4To cancel the Witten’s anomaly, an odd number of additional
doublets of SUð2ÞF are required.
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can be a candidate for the additional fields. There are two
possibilities. One is using the adjoint Higgs A: �aAZ3�a,
�aA2�a, etc. Since the VEV of A breaks SOð10Þ into
SUð3ÞC � SUð2ÞL � SUð2ÞR �Uð1ÞB-L, the contributions
of these terms are different for the different components
of �a under SUð3ÞC � SUð2ÞL � SUð2ÞR �Uð1ÞB-L.
Because the VEV of A is proportional to the B-L charge,
there is no contribution for the field which has vanishing
B-L charge. The other possibility, which has not been
considered in the previous paper, is using �HH:
�a �HH�a, etc. Since the VEV of H breaks E6 into
SOð10Þ, it is useful to write down the contributions with
the representations of SOð10Þ. For example, �ab10�a

1�b

and �ab16�a
10�b

. Note that the terms �ab10�a
10�b

and

�ab16�a
16�b

are vanishing and give no contribution. Here

we use a conventions for the component fields of SOð10Þ of
a field X as

X ¼ 27X ¼ 16X þ 10X þ 10X; (21)

16 X ¼ QX þUX þ EX þDX þ LX þ NX; (22)

10 X ¼ HC
X þ ðHuÞX þ �HC

X þ ðHdÞX: (23)

Then, we can write down the concrete components of the
interactions �aðA; Z3; �HHÞ�a as

d�ahðA;Z3; �HHÞi�aH3d5�
5�abHC

�a

�HC
�b
10H;

�1
2dq�

5�abQ�a
U�b

ðHuÞH; �1
2dq�

5�abQ�a
D�b

ðHdÞH;
�3

2dl�
5�abL�a

E�b
ðHdÞH; h�5�abL�a

N�b
ðHuÞH; (24)

where d5, dq, dl, h are the Oð1Þ coefficients that are

different from each other generically. As we will discuss
later, the h term is very important for neutrino masses.

B. Massless modes

Once we write down the Yukawa couplings, we can
calculate the massless combinations of �5i and �50i. We
mainly follow the procedure given in [30]. First, we fix
Oð1Þ coefficient of two VEVs:

�chCi
�hhHi � x�0:5; (25)

where x is a realOð1Þ coefficient. Then, after the Higgs and
flavon fields acquire VEVs, (19) and (20) induce following
mass matrix for 5i and (�50i, �5i):

0 	d5�
5 0 0 fei��5:5 gei��3:5

�	d5�
5 c�4 b�2 fei��5:5 0 0

0 b�2 a gei��3:5 0 0

0
BB@

1
CCA

�ðM1M2Þ: (26)

Here, we reparametrize Oð1Þ coefficients as f � xf0 and
g � xg0. Each power of � is determined by the correspond-
ing Uð1ÞA charge. It is important to note that 	 ¼ 1 for the

colored Higgs components (HC, �H
�C) of 5 and �50, and

	 ¼ 0 for the doublet Higgs components (Hu, Hd) of
those, since the (1, 2) and (2, 1) elements of (26) originate
from the B-L conserving VEVof A.
In order to find the massless combinations, let us diago-

nalize the 3� 6 matrix (26) as follows:

VyðM1M2Þ
UH

10 U0
10

UH
16 U0

16

 !
¼ ðMdiag

H 0Þ: (27)

Here V is a 3� 3 unitary matrix and

U � UH
10 U0

10

UH
16 U0

16

 !
(28)

is a 6� 6 unitary matrix, and they rotate 5i and (�50i, �5i)
(i ¼ 1, 2, 3) into their mass eigenstates, respectively. Our
task is finding matrices U0

10 and U0
16 which are related by

M1U
0
10 þM2U

0
16 ¼ 0: (29)

According to the calculation in Appendix A, they become

U0
10 ¼

� a	d5ðbg�afÞ
ðac�b2Þ2 �2:5ei� 1 Oð�5:5Þ
bg�af
ac�b2

�1:5ei� a	d5
ac�b2

� Oð�4:5Þ
�
�
g
a þ b

a
bg�af
ac�b2

�
�3:5ei� � b	d5

ac�b2
�3 Oð�6:5Þ

0
BBBBB@

1
CCCCCA;

(30)

U0
16 ¼

1 0 0

Oð�6Þ 0 1

� bg�af
ac�b2

	d5
g �3 � 	d2

5

ac�b2
a
g �

2:5e�i� � f
g �

2

0
BBB@

1
CCCA:

(31)

The calculation is taken at the leading order, but
ðU0

10Þ13;23;33 and ðU0
16Þ21 are calculated at the next-leading

order because the corresponding leading terms are can-
celled. Therefore, the massless modes of �5 can be
written as

�50i � ðU0y
10 Þij �50j þ ðU0y

16 Þij �5j ¼
�51 þ 
 
 

�501 þ 
 
 

�52 þ 
 
 


0
BB@

1
CCA: (32)

In order to calculate neutrino mass, we should also
specify the MSSM Higgs doublets Hu and Hd. They are
the combinations which remain massless at the GUT scale.
According to the Appendix A in [4], they are

Hu � 5H (33)

Hd � �50H þ 
He
�i��0:5 �5C: (34)
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Here 
H is a real Oð1Þ coefficient and the phase e�i�

comes from VEVs of the F and Z4.
6 As mentioned in

[4], the second term in (34) is important to ensure the
KM phase and make all charged leptons massive.

C. Neutrino mass

Now we calculate neutrino masses in our model. In this
subsection we explicitly write the cutoff scale �. First, we
compute the Dirac neutrino mass matrix. Since we have
6 right-handed neutrino, 1i and 10i, from the interactions
10i1

0
j10H and 16i16j10H, the 3� 6Dirac neutrino Yukawa

matrix Y�D
is given by

Y�D ¼ ðY�D1
0Y�D1Þ ¼ ðU0T

10 ðYH
10 ÞTU0T

16 ðYH
1 ÞTÞ; (35)

where

YH
10 ¼

0 h�5 0

�h�5 c�4 b�2

0 b�2 a

0
BB@

1
CCA;

YH
1 ¼

0 � 3
2 dl�

5 0

3
2 dl�

5 c�4 b�2

0 b�2 a

0
BB@

1
CCA:

(36)

It is also important that 	 ¼ 0 in the mixing matrices (30)
and (31). Using these facts, we can express the Dirac mass
as follows:

Y�D
¼

h bg�af
ac�b2

�6:5ei� �f�5:5ei� �g�3:5ei� 0 � 3
2 dl�

5 0

0 �h�5 0 0 0 0

0 0 0 3
2dl�

5

�
c� bf

g

�
�4 bg�af

g �2

0
BB@

1
CCA: (37)

Note that the second generation would be massless without h. The contribution from the term�a �HH�aH is essential for
obtaining the realistic neutrino sector.

Second, we introduce the 6� 6 Majorana right-handed neutrino mass matrix. Since each 27 has two 1’s, the Majorana
mass has following three types of contribution:

W ¼ ðY1010 Þij
�

�i�j
�H �HþðY101Þij

�
�i�j

�H �CþðY11Þij
�

�i�j
�C �C

! ðY1010 Þij
�

10i10jh10�Hih10�Hi þ
ðY101Þij
�

10i10jh10�Hih1 �Ci þ
ðY11Þij
�

1i1jh1 �Cih1 �Ci: (38)

Then the Majorana mass term is 6� 6 matrix

ð10i1iÞðYNc
R
Þij 10i

1j

� � h �Hi2
�

; YNR
¼ Y1010 Y101

YT
101 Y11

� �
: (39)

Here, we parametrize Y�1
NR

with Oð1Þ coefficients as

Y�1
NR

¼

N11�
�13 N12�

�12 N13�
�10 N14�

�12:5 N15�
�11:5 N16�

�9:5

N12�
�12 N22�

�11 N23�
�9 N24�

�11:5 N25�
�10:5 N26�

�8:5

N13�
�10 N23�

�9 N33�
�7 N34�

�9:5 N35�
�8:5 N36�

�6:5

N14�
�12:5 N24�

�11:5 N34�
�9:5 N44�

�12 N45�
�11 N46�

�9

N15�
�11:5 N25�

�10:5 N35�
�8:5 N45�

�11 N55�
�10 N56�

�8

N16�
�9:5 N26�

�8:5 N36�
�6:5 N46�

�9 N56�
�8 N66�

�6

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (40)

where Nij are Oð1Þ complex parameters.
Finally, we can calculate the neutrino mass using the seesaw mechanism. The result is

M� � Y�

hHui2
�

; Y� ¼ Y�D
Y�1
NR

YT
�D

¼
y11�

�1 y12�
�1:5 y13�

�2

y12�
�1:5 y22�

�2 y23�
�2:5

y13�
�2 y23�

�2:5 y33�
�3

0
B@

1
CA; (41)

where yij are complicate combinations of Oð1Þ coefficient:

6If we choose z2 ¼ �1 (or z2 ¼ �2), then the term �C0Z5
2C (or �C0Z2

2C) changes the phase in (34) into arbitrary. For a detailed
discussion of the Higgs sector, see Appendix A in [4].
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y11 ¼ N11

�
h
bg� af

ac� b2

�
2
e2i� þ N22f

2e2i� þ N33g
2e2i� þ N55

�
� 3

2
dl

�
2 � 2N12fh

bg� af

ac� b2
e2i� � 2N13gh

bg� af

ac� b2
e2i�

� 2N15h

�
� 3

2
dl

�
bg� af

ac� b2
þ 2N23fge

2i� � 2N25f

�
� 3

2
dl

�
ei� � 2N35g

�
� 3

2
dl

�
ei�; (42)

y12 ¼ �h

�
N12h

bg� af

ac� b2
ei� � N22fe

i� � N23ge
i� þ N25

�
� 3

2
dl

��
; (43)

y13 ¼ h
bg� af

ac� b2
ei�
�
N14

�
3

2
dl

�
þ N15

�
ac� b2

a
þ bg� af

b

b

a

�
þ N16

bg� af

g

�
� fei�

�
N24

�
3

2
dl

�

þ N25

�
ac� b2

a
þ bg� af

b

b

a

�
þ N26

bg� af

g

�
� gei�

�
N34

�
3

2
dl

�
þ N35

�
ac� b2

a
þ bg� af

b

b

a

�

þ N36

bg� af

g

�
� 3

2
dl

�
N45

�
3

2
dl

�
þ N55

�
ac� b2

a
þ bg� af

b

b

a

�
þ N56

bg� af

g

�
; (44)

y22 ¼ h2N22; (45)

y23 ¼ �h

�
N24

�
3

2
dl

�
þ N25

�
ac� b2

a
þ bg� af

b

b

a

�
þ N26

bg� af

g

�
; (46)

y33 ¼ N44

�
3

2
dl

�
2 þ N55

�
ac� b2

a
þ bg� af

b

b

a

�
2 þ 2N46

�
3

2
dl

�
bg� af

g
þ 2N56

bg� af

g

�
ac� b2

a
þ bg� af

b

b

a

�
:

(47)

These masses give �m2
12=�m

2
23 � �2 ¼ 4:8� 10�2, which is consistent with the experimental facts �m2

12=�m
2
23 ’

3:1� 10�2 [31] up to the combination of Oð1Þ coefficients.

D. MNS matrix

We can also calculate the MNS matrix in our model. First, the charged lepton Yukawa matrix is given [4] as

Ye ¼

�
bg�af
ac�b2

�
f0 þ bg0

a

�
� gg0

a

�

He

2i��6 3
2dl�

5 0

0 
Hf
0ei��4:5 
Hg

0ei��2:5

� 3
2dl�

5

�
ac�b2

a þ bg�af
g

b
a

�
�4 bg�af

g �2

0
BBBBB@

1
CCCCCA: (48)

Then we can calculate the MNS matrix. Following the diagonal procedure given in [32], it is computed, at the leading
order,

VMNS ¼
1 v12�

0:5 v13�

�v	
12�

0:5 1 v23�
0:5

ðv	
12v

	
23 � v	

13Þ� �v	
23�

0:5 1

0
BB@

1
CCA; (49)

where v12, v13, and v23 are written as

v12 ¼
3
2dl

H

1

1� gg0 bfþc
bg�af

� y12y33 � y13y23
y22y33 � y223

; (50)

v13 ¼ � y13
y33

� v	
23

y12y33 � y13y23
y22y33 � y223

; (51)

v23 ¼ 
Hgg
0

bg� af
� y23

y33
: (52)
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This result can be compared with experimental values.
The model says tan�12 ¼ V12=V11 � �0:5 ¼ 0:47,
tan�23 ¼ V23=V33 � �0:5 ¼ 0:47 up to the combination of
Oð1Þ coefficients. These are consistent with experiment
tan�12 ’ 0:68, tan�23 � 0:747 [31]. It is also interesting
that recent T2K result [33] 0:087< sin�13 < 0:275 (as-
suming �CP ¼ 0) supports our result sin�13 ¼ jV13j �
� ¼ 0:22, up to the combination of Oð1Þ coefficients.

E. The role of the � �HH�H terms

As we have seen, the terms �a �HH�aH played an
important role for the nonvanishing second generation
neutrino mass. Here we show that these types of higher-
dimensional operators do not affect other structures of this
model, for example, the quark masses and charged lepton
masses.

First, we classify the SOð10Þ invariant Yukawa interac-
tion derived from the E6 invariant Yukawa term�i�jH (or

�i�jC):

27i27j27H;C ¼ 16i16j10H;C þ 10i10j1H;C þ 16i10j16H;C

þ 10i1j10H;C: (53)

Note that these terms have common Oð1Þ coefficients, and
all terms are symmetric between i and j, although at the
SOð10Þ level, the coefficients of the terms 16i10j16H;C and

10i1j10H;C do not have to be taken as symmetric.

This property changes if we include higher-dimensional
operators like�i

�HH�jH or�i
�HH�jC. Each term in the

right-hand side of (53) receives extra contribution, which
generically differs from each other. Therefore, they cannot
have common Oð1Þ coefficients, and the number of pa-
rameters increases.

Fortunately, in our model, only the (1, 2) and (2, 1)
elements of YH have room for including �HH, and in the
other Yukawa elements, SUSY zero forbids such higher-
dimensional operators. Since these elements are antisym-
metric due to SUð2ÞF, the extra contributions 16i16j10H
and 10i10j1H vanish. Therefore, the higher-dimensional

operator including �HH only affects the Dirac neutrino
mass through 10i1j10H, while the quark sector and charged

lepton sector is unchanged.
According to the previous paper [4], the model has

characteristic predictions Vub � �4 and Vcbyb ¼ yc at the
GUT scale. We will show in Appendix B that these pre-
dictions are not spoiled even if the model generically
contains such higher-dimensional operators. Sufficient
conditions for these predictions are hAi / QB-L and the
(2, 2), (2, 3), (3, 2), and (3, 3) components of YC are
vanishing. Such conditions are satisfied in more general
E6 GUTs with family symmetry. The former condition
should be satisfied to solve the doublet-triplet splitting
problem, and the latter can be satisfied by the SUSY-zero
mechanism if the anomalous Uð1ÞA charge of C is smaller
than that of H. The discrete symmetry for solving the

SUSY CP problem is not necessary. Therefore, these two
predictions are rather general ones. The first prediction
Vub � �4 has been tested by B-factory experiments, and
the second prediction Vcbyb ¼ yc can be tested in future
experiments by measuring the tan
 � hHui=hHdi.

IV. SUMMARYAND DISCUSSION

In this paper we conducted a detail calculation of the
neutrino sector in the E6 � SUð2ÞF SUSY GUTwith spon-
taneous CP violation. Originally, the E6 GUT could ex-
plain the realistic neutrino sector as well as quark and
charged lepton sector. However, the previous paper re-
ported the problem of the neutrino mass because of the
new discrete symmetry, which is introduced in order to
solve the SUSY CP problem. We computed the neutrino
masses and the MNS matrix explicitly and found that the
term like �i

�HH�jH, which were not considered in the

previous paper, is important to make the second generation
massive. These higher-dimensional operators only contrib-
ute in the neutrino sector, so the structures of quarks and
charged leptons, which were calculated in the previous
paper, are kept valid.
Our result reproduces the experimental value well.

�m2
12=�m

2
23, tan�12, tan�23, and sin�13 are all consistent

with experimental values up to the combination of Oð1Þ
coefficients. Combining the previous paper and our result,
the concrete model reproducing realistic masses and mix-
ings for all the SM fermions is constructed. Note that even
if the model has the ‘‘modified universal sfermion mass
spectrum,’’ we have no SUSY CP problem.
In this model, because of the strong constraint of the

Yukawa structure, there are characteristic predictions
Vub � �4 and Vcbyb ¼ yc at the GUT scale [4]. These
predictions are valid even if we generically include the
higher-dimensional operators�i

�HH�jH and�i
�HH�jC.

Unfortunately, we could not obtain any characteristic pre-
diction in the neutrino sector because of the huge number
of parameters in the Majorana neutrino mass terms.
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APPENDIX A: DIAGONALIZATION PROCEDURE
OF THE SUPERHEAVY YUKAWA MATRIX

In this appendix, we derive the expression for the two
matrices U0

10 (30) and U0
16 (31) which describe the mass-

less �50i as the combination of �5i and �50i as (32). All calcu-
lations are performed at the leading order.
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First, we show the strategy of finding U which diago-
nalizes the superheavy Yukawa matrix as (27). In the
following, we assume that M1 has rank 3, and therefore
we have an inverse matrixM�1

1 . Then we calculateM�1
1 M2

and parametrize it as

M�1
1 M2 � C �

c11�
0:5 c12�

�0:5 c13�
�2:5

c21�
1:5 c22�

0:5 c23�
�1:5

c31�
3:5 c32�

2:5 c33�
0:5

0
BB@

1
CCA: (A1)

Here cij is the combination of Oð1Þ coefficients. After

expressing U0
10 and U0

16 in terms of cij, we will substitute

concrete parameters in them. Then we rotate
M�1

1 ðM1M2Þ ¼ ð13�3CÞ as
ð13�3CÞU0 ¼ ðC003�3Þ; (A2)

where U0 is a 6� 6 unitary matrix

U0 � U1 U3

U2 U4

� �
(A3)

and C0 is a 3� 3 matrix. If we find unitary matrices V and
V0 which diagonalize M1C

0 as

VyM1C
0V 0 ¼ M

diag
H ; (A4)

then we can express the matrix U as

U � UH
10 U0

10

UH
16 U0

16

 !
¼ U0 V0 0

0 T

 !
¼ U1V

0 U3T

U2V
0 U4T

 !
:

(A5)

Here T is a unitary matrix which corresponds to the
degree of freedom of the rotation for the three 0’s keeping
with (27).
Since we are only interested inU0

10 andU
0
16 in this paper,

our task is to find the matrix U0. After tedious calculation,
we can find C0 and U0 as

ð13�3CÞU0 ¼
c31�

�2:5 0 0 0 0 0
c32�

�1:5 1 0 0 0 0

c33�
0:5

�
c22 � c12c23

c13

��
c32 � c12c33

c13

�
�3 1 0 0 0

0
BB@

1
CCA; (A6)

U0¼

1
c13
�2:5 �c23

c13
� �c33

c13
�3 c23

c13

�
c21�c11c23

c13

�
�2:5 1 0

0 1 �
�
c22�c12c23

c13

�
ðc32�Þ�3 �

�
c21�c11c23

c13

�
�1:5 c23

c13
� �

�
c22�c12c23

c13

�
�0:5

0 0 1 �
�
c31�c11c33

c13

�
�3:5 c33

c13
�3 �

�
c32�c12c33

c13

�
�2:5

c11
c13
�3

�
c21�c11c23

c13

�
�1:5

�
c31�c11c33

c13

�
�3:5 1 0 0

c12
c13
�2

�
c22�c12c23

c13

�
�0:5

�
c32�c12c33

c13

�
�2:5 �

�
c21�c11c23

c13

�
c23
c13

�
c22�c12c23

c13

�
�1:5 1

�
�
c22�c12c23

c13

�
�2

1 �c12
c13

�
c22�c12c23

c13

�
�2:5 �c12

c13

�
c32�c12c33

c13

�
�4:5 �c11

c13
�3 � 1

c13
�2:5 �c12

c13
�2

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(A7)

We choose a basis which ðU0
16Þ12, ðU0

16Þ13 and ðU0
16Þ22 are zero by the rotation

T ¼

1 0 0

0 1 c23
c13

�
c22 � c12c23

c13

�
�1:5

0 � c23
c13

�
c22 � c12c23

c13

�
�1:5 1

0
BBBBBB@

1
CCCCCCA: (A8)

After that, we can get U0
10 and U0

16 in terms of cij as
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U0
10¼

c23
c13

�
c21�c11c23

c13

�
�2:5 1 c23

c13

�
c22�c12c23

c13

�
�1:5

�
�
c21�c11c23

c13

�
�1:5 c23

c13
� �

�
c22�c12c23

c13

�
�0:5

�
�
c31�c11c33

c13

�
�3:5 �c33

c13
�3

�
c32�c12c33

c13

�
�2:5

0
BBBBBBBBB@

1
CCCCCCCCCA
;

(A9)

U0
16¼

1 0 0

�
�
c21�c11c23

c13

��
c22�c12c23

c13

�
�2 0 1

�c11
c13
�3 � 1

c13
�2:5 �c12

c13
�2

0
BBBB@

1
CCCCA:

(A10)

We can check these matrices satisfy the relation (29) at the
leading order. Finally, we obtain (30) and (31) by substitut-
ing the concrete expressions in cij:

c11¼bg�af

a	d5
; c12¼ac�b2

	d25

f

a
; c13¼ac�b2

	d25

g

a

(A11)

c21 ¼ 0; c22 ¼ f

	d5
; c23 ¼ g

	d5
(A12)

c31 ¼ g

a
; c32 ¼ � bf

a	d5
; c33 ¼ � bg

a	d5
: (A13)

APPENDIX B: THE CONDITION OF
THE PREDICTIONS

In Sec. III, we obtained the realistic neutrino sector by
introducing the higher-dimensional operator �a �HH�aH,
and saw that such operators cannot be written in other
elements of YH and YC because of the SUSY-zero mecha-
nism. In this appendix, we will clarify the conditions of the
characteristic predictions Vub � �4 and Vcbyb ¼ yc, and
show that the conditions can be satisfied even if we generi-
cally include the higher-dimensional operators�i

�HH�jH

and �i
�HH�jC.

In order to see the essence of the predictions, let us
choose the basis where the up-type Yukawa matrix Yu is
diagonal. In this basis, Vub is simply written only by the
down-type Yukawa matrix as Vub � ðYdÞ13=ðYdÞ33. The
relation Vcbyb ¼ yc is also simplified as ðYdÞ23 ¼ ðYuÞ22.
Therefore, we focus on the quantities ðYdÞ13 and ðYdÞ23.

Let us determine the third generation of the massless �5
combination �503, which is mainly �52, in this basis. Since we
can choose the basis where �503 does not contain

�51 and �501,
we parametrize

�5 0
3 �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j	j2 þ j
j2 þ j�j2p ð�52 þ 	�502 þ 
�503 þ ��53Þ:

(B1)

As we saw in Sec. III B, the massless modes are determined
by diagonalizing the 3� 6 mass matrix ðM1M2Þ. Both Yu

and M1 is obtained from YH, but here we consider general
case where these two matrices cannot be diagonalized
simultaneously. In this case, M1 is the form

M1 �
1 � �3

� 1 �2

�3 �2 1

0
BB@

1
CCA

�6 �5 �3

�5 �4 �2

�3 �2 1

0
BB@

1
CCA

1 � �3

� 1 �2

�3 �2 1

0
BB@

1
CCA

�
�6 �5 �3

�5 �4 �2

�3 �2 1

0
BB@

1
CCA: (B2)

On the other hand, M2 is obtained from YC. Again, we
consider general case

M2 ��0:5

1 � �3

� 1 �2

�3 �2 1

0
BB@

1
CCA

�6 �5 �3

�5 �4 �2

�3 �2 1

0
BB@

1
CCA

1 � �3

� 1 �2

�3 �2 1

0
BB@

1
CCA

�
�6:5 �5:5 �3:5

�5:5 �4:5 �2:5

�3:5 �2:5 �0:5

0
BB@

1
CCA: (B3)

Then we can obtain the massless combination of �503 by

solving

ðM1M2Þ

0
	


0
1
�

0
BBBBBBBB@

1
CCCCCCCCA
¼ 0: (B4)

The solution becomes generically

	� �0:5; 
� �2;5; �� �2: (B5)

Let us evaluate ðYdÞ13 and ðYdÞ23 to obtain the conditions
for Vub � �4 and Vcbyb ¼ yc. The down-type Yukawa
matrix Yd consists of two types of interaction: one is the
interaction between 10 and �5 via YH

down, the other is be-

tween 10 and �50 via �0:5YC. Here we denote the matrix YH

appearing in the down-type quark Yukawa matrix as YH
down.

YC is written in this basis as

NEUTRINO PROPERTIES IN E6 � SUð2ÞF . . . PHYSICAL REVIEW D 85, 095015 (2012)

095015-11



YC �
1 � �3

� 1 �2

�3 �2 1

0
BB@

1
CCA

�5 �4 �2

�4 �3 �

�2 � ��1

0
BB@

1
CCA

1 � �3

� 1 �2

�3 �2 1

0
BB@

1
CCA

�
�5 �4 �2

�4 �3 �

�2 � ��1

0
BB@

1
CCA: (B6)

For example, the leading contributions for ðYdÞ13 are
ðYH

downÞ12, �ðYH
downÞ13, 	�0:5ðYCÞ12, and 
�0:5ðYCÞ13. They

are of order �5, and therefore Vub becomesOð�3Þ. In order
to obtain Vub � �4, all the leading contributions must
vanish. The first two contributions vanish if hAi is propor-
tional toQB-L, which plays an important role in solving the
doublet-triplet splitting problem. This is because YH

down is

the same as Yu and therefore the off-diagonal elements of
YH
down are vanishing in the basis in which Yu is diagonal.

Another important point is that the Uð1ÞA charge of C is
smaller than that of H by 1. This nature forbids the (2, 2),
(2, 3), (3, 2) and (3, 3) elements (before rotating the basis)
of YC by the SUSY-zero mechanism.7 Therefore, after
rotating, YC becomes

YC �
1 � �3

� 1 �2

�3 �2 1

0
BB@

1
CCA

0 �4 �2

�4 0 0

�2 0 0

0
BB@

1
CCA

1 � �3

� 1 �2

�3 �2 1

0
BB@

1
CCA

�
�5 �4 �2

�4 �5 �3

�2 �3 �5

0
BB@

1
CCA: (B7)

This changes the determination of massless �503 composition

(B5) into

	� �2:5; 
� �4;5; �� �2; (B8)

so the terms containing 	 and 
 become smaller. The
above two points are the essential points for Vub ¼ 0 at
the leading order.
Next, we see ðYdÞ23. The main contributions are from

�ðYH
downÞ23, ðYH

downÞ22, 	�0:5ðYCÞ22, and 
�0:5ðYCÞ23, but
the first contribution is vanishing if hAi is proportional to
QB�L.

8 The second term is nothing but ðYuÞ22, so the
relation Vcbyb ¼ yc is realized when 	 and 
 become
smaller due to the SUSY-zero mechanism as noted above.
How does above discussion changed if we generically

include the higher-dimensional operators �i
�HH�jH and

�i
�HH�jH? First, Yu and YH

down are derived from same

expression 16i16j10H at the SOð10Þ level, therefore simul-

taneous diagonalizability of Yu and Y
H
down is not affected by

the higher-dimensional operators. Second, the form of YC

with the SUSY-zero mechanism (B7) does not change
because adding �HH ( �hþ h < 0) cannot revive the terms
which were forbidden by the SUSY-zero mechanism.
Therefore, the characteristic predictions Vub � �4 and
Vcbyb ¼ yc are affected whether or not we include such
higher-dimensional operators.
What becomes obvious in this appendix is that the con-

ditions for Vub � �4 and Vcbyb ¼ yc can be satisfied in the
more general E6 GUTs with family symmetry. The discrete
symmetry for solving the SUSY CP problem is not neces-
sary. One prediction Vub � �4 has been already tested by
theB-factory experiments. The other predictionVcbyb ¼ yc
at the GUT scale means that comparably small tan
 �
hHui=hHdi, which can be tested in future experiments.
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