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Simple SOð10Þ Higgs models with the adjoint representation triggering the grand unified symmetry

breaking, discarded long ago due to inherent tree-level tachyonic instabilities in the physically interesting

scenarios, have been recently brought back to life by quantum effects. In this work we focus on the variant

with 45H � 126H in the Higgs sector and show that there are several regions in the parameter space of this

model that can support stable unifying configurations with the B� L-breaking scale as high as 1014 GeV,

well above the previous generic estimates based on the minimal survival hypothesis. This admits for a

renormalizable implementation of the canonical seesaw and makes the simplest potentially realistic

scenario of this kind a good candidate for a minimal SOð10Þ grand unification. Last, but not least, this

setting is likely to be extensively testable at future large-volume facilities such as Hyper-Kamiokande.

DOI: 10.1103/PhysRevD.85.095014 PACS numbers: 12.10.�g, 12.60.Jv, 12.15.Ff

I. INTRODUCTION

For about the last 30 years, the simplest nonsupersym-
metric SOð10Þ gauge models with 45H � 16H or 45H �
126H in the Higgs sector have been widely considered
uninteresting for any realistic unified model building.
This was mainly due to the tachyonic instabilities in their
tree-level spectra popping up in all settings compatible
with the basic gauge-unification constraints [1–5], which,
in non-SUSY settings, generically favor intermediate-
energy thresholds. However, as it was shown recently in
[6,7], such instabilities are just artifacts of the tree-level
approximation. Hence, technically, quantum effects bring
this class of models back from oblivion.

On the other hand, dedicated renormalization group
studies such as [8–11] reveal that a successful unification
in this class of models typically requires the B�
L-breaking scale below 1012 GeV for the 45H � 16H vari-
ant and below 1010 GeV in the 45H � 126H case. Such
values, however, are disfavored by the neutrino oscillation
and cosmology data: (i) In the former case, h16Hi breaks
the B� L symmetry by one unit and, thus, the seesaw
requires a pair of h16Hi insertions. This can be minimally
implemented at the renormalizable level by, e.g., a variant
of the Witten’s radiative mechanism [12–14] or, giving up
renormalizability, by a d ¼ 5 operator. In either case the
‘‘effective’’ �ðB� LÞ ¼ 2 seesaw scale is further sup-
pressed with respect to the B� L-breaking scale and the

light neutrino masses are typically overshot by many
orders of magnitude. Moreover, the nonrenormalizable
nature of the seesaw in the d ¼ 5 case hinders the general
predictivity of this model. (ii) With 126H at play, the B� L
symmetry is broken by two units so the right-handed
neutrinos receive their masses at the tree level via the
renormalizable 16F16F126

�
H Yukawa interaction [15,16].

The upper limit on h126Hi quoted above then again pushes
the absolute scale of the light neutrino masses much above
the current limits.
Though unpleasant, this, however, does not constitute a

fundamental blow to the minimal non-SUSY SOð10Þ as an
extensive multiparameter fine-tuning in the seesaw for-
mula can still bring the light neutrino masses down to the
desired sub-eV domain. In this respect, the situation is very
different from that of the minimal supersymmetric (SUSY)
SOð10Þ grand unified theory (GUT) [17–25] where the
neutrino masses are typically undershot; indeed, the
rigidity of the Higgs potential in minimal SUSY Higgs
models enforces a population pseudo-Goldstone bosons
well below the GUT scale (MG) [20] whenever the
SOð10Þ ! SM breaking is not essentially one-step
[26,27], hence disturbing the nearly ideal unification
within the minimal supersymmetric standard model. A
nice solution of this conundrum based on split SUSY can
be found in [28].
In the same spirit, one should keep in mind that the key

upper bounds on the B� L scale identified in [8–11] are
derived under the strong assumption of the minimal-
survival hypothesis [29], i.e., that a minimal set of needed
intermediate thresholds cluster exactly at the relevant
symmetry-breaking scale. This, of course, does not need
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to be the case in general and as little as a single unexpected
multiplet in the bulk can open a room for B� L scales
much above the naive expectation, thus rendering the
gauge-coupling unification compatible with the neutrino
data for a reasonable price. In this respect, the non-SUSY
models with higher-dimensional Higgs representations
(such as 45H � 126H) featuring a number of free parame-
ters in the Higgs potential1 provide a lot of room for such a
serendipity. Moreover, given the renormalizable nature of
the seesaw in the 45H � 126H case, the Yukawa sector of
this kind of models is strongly constrained, which further
opens the door for their near future testability.

In this study we focus on the possible role of accidental
thresholds in the desert of the minimal SOð10ÞGUTs based
on the 45H � 126H Higgs sector. In particular, we calculate
the tree-level spectrum of the minimal Higgs model and the
leading universal radiative correction to the relevant Higgs
masses and ask ourselves (i) whether states with acciden-
tally small masses can pop up in some regions of the
parametric space without destabilizing the scalar potential
and (ii) whether the corresponding threshold effects can lift
the seesaw scale to the desired ballpark of 1013�14 GeV.

The work is organized as follows: In Sec. II we define
the 45H � 126H SOð10Þ Higgs model of interest and
calculate its tree-level spectrum,2 which reveals the ex-
pected tachyonic instabilities except for the phenomeno-
logically questionable SUð5Þ-like descents. In analogy to
the canonical example elaborated on in [6] we argue that
radiative corrections alleviate the issue and that stable
and potentially realistic standard model (SM) vacua are
accessible. To exemplify that, we calculate the leading
SOð10Þ-invariant radiative correction as a minimal
scalar-spectrum regulator. In Sec. III we study the possible
effects of various multiplets—if they happen to live in the
‘‘GUT desert’’—on the actual location of the B� L scale.
We identify two specific simple and consistent settings in
which all current phenomenological constraints from the
proton-decay searches and big bang nucleosynthesis are
compatible with the latest limits on the absolute neutrino
mass scale. A simple numerical scan over the parametric
space reveals extended domains supporting these solutions.
Remarkably enough, in both cases the extra threshold is
pinned to a relatively narrow mass window, which, in turn,
yields a rather specific prediction for the position of the
GUT scale and, hence, the d ¼ 6 proton-decay rate, well
within the reach of the future large-volume facilities such
as Hyper-Kamiokande (HK) [32].

With all this at hand, in Sec. IV wemake a case for a new
potentially realistic minimal renormalizable SOð10Þ GUT
based on the 45H � 126H � 10H Higgs sector. We com-
ment in brief on the prospects and strategies of a future
more detailed scrutiny of the scheme, paying particular
attention to the Yukawa-sector fits and the ultimate calcu-
lation of the proton-decay branching ratios in the fully
consistent settings. Then we conclude. Technical aspects
of the Higgs and gauge-boson spectrum calculation are
deferred to a set of Appendices.

II. THE 45–126 HIGGS MODEL

A. The tree-level scalar potential

The most general renormalizable scalar potential that
can be written with 45H and 126H at hand reads

V ¼ V45 þ V126 þ Vmix; (1)

where

V45 ¼ ��2

2
ð��Þ0 þ a0

4
ð��Þ0ð��Þ0 þ a2

4
ð��Þ2ð��Þ2;

(2)

V126¼��2

5!
ð���Þ0þ �0

ð5!Þ2 ð��
�Þ0ð���Þ0

þ �2

ð4!Þ2 ð��
�Þ2ð���Þ2þ �4

ð3!Þ2ð2!Þ2 ð��
�Þ4ð���Þ4

þ �0
4

ð3!Þ2 ð��
�Þ40 ð���Þ40 þ �2

ð4!Þ2 ð��Þ2ð��Þ2

þ ��
2

ð4!Þ2 ð�
���Þ2ð����Þ2; (3)

Vmix ¼ i�

4!
ð�Þ2ð���Þ2 þ �

2 � 5! ð��Þ0ð���Þ0

þ �4

4 � 3! ð��Þ4ð���Þ4 þ �0
4

3!
ð��Þ40 ð���Þ40

þ 	2

4!
ð��Þ2ð��Þ2 þ 	�

2

4!
ð��Þ2ð����Þ2: (4)

Here we have used the symbols � and � for the compo-
nents of 45H and 126H, respectively. The detailed break-
down of all the contractions (with the subscripts denoting
the number of open indices in the relevant brackets) is
given in Appendix A. Notice that all the couplings are real
but �2 and 	2.

B. The symmetry-breaking patterns

There are, in general, three SM singlets in the reducible
45H � 126H representation of SOð10Þ. Using BL �
ðB� LÞ=2 and labelling the field components with respect
to the 3c2L2R1BL (i.e., SUð3Þc � SUð2ÞL � SUð2ÞR �
Uð1ÞBL) algebra, the SM singlets reside in the (1, 1, 1, 0)
and (1, 1, 3, 0) submultiplets of 45H and in the ð1; 1; 3;þ1Þ
component of 126H. In what follows we shall denote

1Here the non-SUSY nature of the model is central—the SM-
vacuum manifold of the minimal SUSY GUT, as complicated as
it naively looks, is in reality very simple; indeed, it is parame-
trized by a single complex parameter [20].

2Though there exist detailed studies of the vacuum of the
54H � 126H Higgs model, cf. [30,31], a similar analysis for the
setting with 45H instead of 54H, to our best knowledge, has never
been done.
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hð1;1;1;0Þi�!BL; hð1;1;3;0Þi�!R; hð1;1;3;þ1Þi�
;

(5)

where !BL;R are real and 
 can be made real by a phase

redefinition of the 126H. Different vacuum expectation
value (VEV) configurations trigger the spontaneous break-
down of the SOð10Þ symmetry into several qualitatively
distinct subgroups. Namely, for 
 ¼ 0 one finds (in an
obvious notation)

!R¼0;!BL�0: 3c2L2R1BL; !R�0;!BL¼0: 4C2L1R;

!R�0;!BL�0: 3c2L1R1BL; !R¼�!BL�0: flipped501Z0 ;

!R¼!BL�0: standard51Z; (6)

with 51Z and 5
01Z0 standing for the two inequivalent embed-

dings of the SM hypercharge operator Y into SUð5Þ �
Uð1Þ � SOð10Þ usually called the ‘‘standard’’ and the
‘‘flipped’’ SUð5Þ scenarios [33,34], respectively. In the

standard case,Y ¼ Tð3Þ
R þ TBL belongs to theSUð5Þ algebra

and the orthogonal Cartan generator Z is given by Z ¼
�4Tð3Þ

R þ 6TBL. In the flipped (5
01Z0) case, the right-handed

isospin assignment of quarks and leptons is turned over so

that the flipped hypercharge generator reads Y0 ¼ �Tð3Þ
R þ

TBL. Accordingly, the additional Uð1ÞZ0 generator reads

Z0 ¼ 4Tð3Þ
R þ 6TBL (for further details see, e.g., Ref. [6]).

For 
 � 0 all the intermediate gauge symmetries (6) are
spontaneously broken down to the SM group, with the
exception of the last case, which maintains the SUð5Þ
subgroup unbroken and, hence, will not be considered
here. The decomposition of the 45H and 126H representa-
tions with respect to the all relevant intermediate symme-
tries (6) is detailed in Tables I and II.

C. The tree-level scalar spectrum

Adopting the convention in which the mass term in the
Lagrangian is written as 1

2 c
TM2c , where c ¼ ð�;��;�Þ

is a 297-dimensional vector, the scalar spectrum is ob-
tained readily by evaluating the relevant functional scalar
mass matrix of the schematic form

M2ð�;��;�Þ ¼
V�� V��� V��

V��� V���� V���

V�� V��� V��

0
BB@

1
CCA (7)

on the SM vacuum. The subscripts here denote the deriva-
tives of the scalar potential with respect to a specific set of
fields. Subsequently, this matrix is brought to a block-
diagonal form by a unitary transformation into the SM
basis.
The complete tree-level spectrum is given in

Appendix B. There are several features that can be seen
readily: (i) as anticipated in [6] there is again a pair
of pseudo-Goldstone bosons (cf. also comments in
Appendix B 4) entertaining very simple mass formulas:

M2ð1; 3; 0Þ ¼ �2a2ð!BL �!RÞð!BL þ 2!RÞ; (8)

M2ð8; 1; 0Þ ¼ �2a2ð!R �!BLÞð!R þ 2!BLÞ: (9)

These multiplets develop tachyonic masses whenever
!BL=!R is outside the ½�2;� 1

2	 interval. Hence, as such,
the tree-level Higgs spectrum is clearly unable to support
the physically interesting breaking patterns with either
!BL 
 !R or !R 
 !BL, thus avoiding the intermediate
flipped SUð5Þ0 �Uð1ÞZ0 stage. SUð5Þ intermediate stages,
!BL, !R 
 
, are disfavored as well.3

TABLE I. Decomposition of the adjoint representation 45 with respect to the various SOð10Þ subgroups. The definitions and
normalization of the Abelian charges are given in the text.

4C2L2R 4C2L1R 3c2L2R1BL 3c2L1R1BL 3c2L1Y 51Z 501Z0

(1, 1, 3) ð1; 1;þ1Þ (1, 1, 3, 0) ð1; 1;þ1; 0Þ ð1; 1;þ1Þ ð10;�4Þ ð10;þ4Þ
(1, 1, 0) (1, 1, 0, 0) (1, 1, 0) (1, 0) (1, 0)

ð1; 1;�1Þ ð1; 1;�1; 0Þ ð1; 1;�1Þ ð10;þ4Þ ð10;�4Þ
(1, 3, 1) (1, 3, 0) (1, 3, 1, 0) (1, 3, 0, 0) (1, 3, 0) (24, 0) (24, 0)

(6, 2, 2) ð6; 2;þ 1
2Þ ð3; 2; 2;� 1

3Þ ð3; 2;þ 1
2 ;� 1

3Þ ð3; 2; 16Þ ð10;�4Þ (24, 0)

ð6; 2;� 1
2Þ ð3; 2;� 1

2 ;� 1
3Þ ð3; 2;� 5

6Þ (24, 0) ð10;�4Þ
ð�3; 2; 2;þ 1

3Þ ð�3; 2;þ 1
2 ;þ 1

3Þ ð�3; 2;þ 5
6Þ (24, 0) ð10;þ4Þ

ð�3; 2;� 1
2 ;þ 1

3Þ ð�3; 2;� 1
6Þ ð10;þ4Þ (24, 0)

(15, 1, 1) (15, 1, 0) (1, 1, 1, 0) (1, 1, 0, 0) (1, 1, 0) (24, 0) (24, 0)

ð3; 1; 1;þ 2
3Þ ð3; 1; 0;þ 2

3Þ ð3; 1;þ 2
3Þ ð10;þ4Þ ð10;þ4Þ

ð�3; 1; 1;� 2
3Þ ð�3; 1; 0;� 2

3Þ ð�3; 1;� 2
3Þ ð10;�4Þ ð10;�4Þ

(8, 1, 1, 0) (8, 1, 0, 0) (8, 1, 0) (24, 0) (24, 0)

3Recently, there were several attempts to reconcile the sim-
plest non-SUSY SUð5Þ scenarios with the gauge unification by
means of intermediate-scale thresholds, see, e.g., [35–41] and
references therein. Though possible in principle, we shall not
consider the SUð5Þ option here because there is virtually no
room for such an intermediate stage below the SOð10Þ-breaking
scale in the model of our interest. Moreover, these settings
generically rely on several multiplets pushed into the desert.
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(ii) In this respect, it is worth looking at formulas (8) and
(9) in more detail. For instance, as in the 45H � 16H
case [6], there are no contributions there from the
B� L-breaking VEV 
, although the number of available

contractions of the type ð�2Þð��ð�ÞÞ is larger here. This
can be understood as follows: regardless of how the indices

of the ��ð�Þ bilinears are contracted, the resulting tensor
never breaks the SUð5Þ symmetry. Since both�’s couple to
both �’s in the same manner, one can always view the
contraction with the pair of adjoints (�’s) as a quadratic
covariant-derivative-like term for the fields with the SM
gluon and SUð2ÞL-gauge quantum numbers. These fields,
however, remain massless at the SUð5Þ level.

However, as shown in [6], this is no longer the case at the
quantum level, where all the tree-level forbidden couplings
do indeed enter the relevant mass formulas and thus open
the room for the physically interesting settings with !BL

very different from !R.

D. Leading one-loop corrections

Unlike in the 45H � 16H case the full-fledged effective
potential calculation of the one-loop scalar spectrum in the
45H � 126H model is very difficult due to the enormous
complexity of the contractions involving 126H so we shall
not attempt it here. However, the radiative corrections are
really important only for the pseudo-Goldstone bosons

associated with accidental global symmetries, cf. [6] and
Appendix B 4; thus, one can get a good grip on the one-
loop spectrum even without the full effective potential
analysis. Moreover, some of the results obtained for the
45H � 16H setting in [6] can be readily adopted to the
current case; in particular, the one-loop gauge-induced
corrections to the masses of the scalars residing solely in
45H [such as (8, 1, 0) and (1, 3, 0)] are identical to those
obtained in [6], cf. formulas (D1)–(D2) therein. This,
however, is not the case for the contribution of scalars,
which span over the components of 126H. Accordingly, the
one-loop scalar-induced contributions to the tree-level sca-
lar masses should be calculated from scratch. Needless to
say, this is a formidable task if it is to be performed in full
generality.
Thus, in what follows, we shall focus only on the most

universal scalar one-loop correction, namely, the leading
nonlogarithmic SOð10Þ-invariant �2-proportional term,
which, as we argue, can be fully accounted for by a simple
diagrammatic calculation. Since it yields a positive correc-
tion to all the scalar masses, it should already be enough to
regularize the salient tachyonic instabilities of the tree-
level scalar spectrum and, perhaps, open new regions in
the parametric space where stable unifying configurations
with phenomenologically favorable intermediate scales
could be supported. Moreover, since also the other leading
nonlogarithmic corrections (i.e., those coming from the

TABLE II. Same as in Table I for the 126 representation.

4C2L2R 4C2L1R 3c2L2R1BL 3c2L1R1BL 3c2L1Y 51Z 501Z0

(6, 1, 1) (6, 1, 0) ð�3; 1; 1;þ 1
3Þ ð�3; 1; 0;þ 1

3Þ ð�3; 1;þ 1
3Þ ð�5;þ2Þ ð�5;þ2Þ

ð3; 1; 1;� 1
3Þ ð3; 1; 0;� 1

3Þ ð3; 1;� 1
3Þ ð45;�2Þ ð45;�2Þ

(10, 3, 1) (10, 3, 0) ð1; 3; 1;�1Þ ð1; 3; 0;�1Þ ð1; 3;�1Þ ð15;�6Þ ð15;�6Þ
ð3; 3; 1;� 1

3Þ ð3; 3; 0;� 1
3Þ ð3; 3;� 1

3Þ ð45;�2Þ ð45;�2Þ
ð6; 3; 1;þ 1

3Þ ð6; 3; 0;þ 1
3Þ ð6; 3;þ 1

3Þ ð50;þ2Þ ð50;þ2Þ
ð10; 1; 3Þ ð10; 1;�1Þ ð1; 1; 3;þ1Þ ð1; 1;�1;þ1Þ (1, 1, 0) ð1;þ10Þ ð50;þ2Þ

ð10; 1; 0Þ ð1; 1; 0;þ1Þ ð1; 1;þ1Þ ð10;þ6Þ ð10;þ6Þ
ð10; 1;þ1Þ ð1; 1;þ1;þ1Þ ð1; 1;þ2Þ ð50;þ2Þ ð1;þ10Þ

ð�3; 1; 3;þ 1
3Þ ð�3; 1;�1;þ 1

3Þ ð�3; 1;� 2
3Þ ð10;þ6Þ ð45;�2Þ

ð�3; 1; 0;þ 1
3Þ ð�3; 1;þ 1

3Þ ð50;þ2Þ ð50;þ2Þ
ð�3; 1;þ1;þ 1

3Þ ð�3; 1;þ 4
3Þ ð45;�2Þ ð10;þ6Þ

ð�6; 1; 3;� 1
3Þ ð�6; 1;�1;� 1

3Þ ð�6; 1;� 4
3Þ ð50;þ2Þ ð15;�6Þ

ð�6; 1; 0;� 1
3Þ ð�6; 1;� 1

3Þ ð45;�2Þ ð45;�2Þ
ð�6; 1;þ1;� 1

3Þ ð�6; 1;þ 2
3Þ ð15;�6Þ ð50;þ2Þ

(15, 2, 2) ð15; 2;� 1
2Þ (1, 2, 2, 0) ð1; 2;� 1

2 ; 0Þ ð1; 2;� 1
2Þ ð�5;þ2Þ ð45;�2Þ

ð15; 2;þ 1
2Þ ð1; 2;þ 1

2 ; 0Þ ð1; 2;þ 1
2Þ ð45;�2Þ ð�5;þ2Þ

ð�3; 2; 2;� 2
3Þ ð�3; 2;� 1

2 ;� 2
3Þ ð�3; 2;� 7

6Þ ð45;�2Þ ð15;�6Þ
ð�3; 2;þ 1

2 ;� 2
3Þ ð�3; 2;� 1

6Þ ð15;�6Þ ð45;�2Þ
ð3; 2; 2;þ 2

3Þ ð3; 2;þ 1
2 ;þ 2

3Þ ð3; 2;þ 7
6Þ ð50;þ2Þ ð10;þ6Þ

ð3; 2;� 1
2 ;þ 2

3Þ ð3; 2;þ 1
6Þ ð10;þ6Þ ð50;þ2Þ

(8, 2, 2, 0) ð8; 2;� 1
2 ; 0Þ ð8; 2;� 1

2Þ ð50;þ2Þ ð45;�2Þ
ð8; 2;þ 1

2 ; 0Þ ð8; 2;þ 1
2Þ ð45;�2Þ ð50;þ2Þ
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gauge and the remaining scalar loops) are typically posi-
tive, including just the SOð10Þ invariant piece can be
viewed as a minimalistic attempt to stabilize the tachyons.
In view of this, a detailed calculation of all one-loop
corrections to the scalar spectrum in this framework is
not even necessary and will be left to a dedicated future
study.

Since the leading scalar-loop-induced nonlogarithmic
corrections in the scalar sector come from tadpoles [42],
it is easy to see that the only source of a �2-proportional
nonlog term is associated with the renormalization of the
stationarity conditions. Diagrammatically, it corresponds
to a special cluster of one-loop graphs contributing to the
one-point function of 45H of the kind

Given the SOð10Þ structure of the relevant �-vertex,
namely,

V45–126 3 i�

4!
�ij�klmni�

�
klmnj (11)

the universal mass shift due to this class of graphs reads4

�M2
1-loop��2

¼ 35�2

32�2
þ logs; (12)

where the symbol ‘‘logs’’ denotes all the logarithmic cor-
rections that are minimized at the GUT scale.

III. UNIFICATION IN THE 45–126 MODEL

With this information at hand, in this section we can
finally address the question of our main interest, namely,
whether accidentally light scalar multiplets in the SM
desert could possibly open the door to a consistent gauge
unification with a B� L scale well above the unpleasant
upper limit of about 1010 GeV obtained in [11] under the
assumption of minimal survival.

Since the scalar masses are expressed as functions of the
microscopic parameters entering the scalar potential (1),
pushing a specific multiplet into the desert amounts to
imposing an extra algebraic constraint on the parameter
space of the model, i.e., it cuts out a region close to the
relevant zero-mass hypersurface. The rest of the spectrum
then must be evaluated around this hypersurface, which,
however, brings in a high level of nonlinearity. Thus, in
what follows, we shall mainly stick to numerical methods
to simulate the heavy scalar and vector-boson spectra in

order to single out the regions of the parametric space that
can support viable gauge unification patterns.

A. Consistency

Besides gauge unification, there are other basic aspects
of an overall consistency of potentially realistic settings
that will be of our concern here, namely, the stability of the
physical vacuum (i.e., the absence of tachyons) and the
position of the unification scale5, which governs the d ¼ 6
proton decay. Moreover, with potentially very light colored
states in the desert, d > 6 proton decay as well as possible
big bang nucleosynthesis (BBN) issues should be also
considered.

1. Vacuum stability

As stated before, from now on we shall stick to the
‘‘minimally regularized’’ form of the scalar spectrum,
i.e., we shall use the tree-level formulas of Appendix B 2
augmented with the leading SOð10Þ-invariant nonlogarith-
mic one-loop correction (12).
For each physical point in the parametric space, the mass

squares of all propagating scalars should be positive. This,
as we shall see, is indeed a very restrictive constraint,
which already disqualifies some of the potentially interest-
ing multiplets, see Sec. III B 1. It is perhaps worth men-
tioning that with one such a stable vacuum at hand one can
generate a continuum of other stable vacua by rescaling all
the dimensionful parameters entering the mass formulas by
a common factor. This invariance will be used later on for a
simple optimization of the one-loop unification patterns,
cf. Sec. III B 2. Moreover, it is easy to understand that, as
long as only the scalar mass squares are concerned, further
degeneracies in the parametric space of the model can be
identified; among these perhaps the most prominent is the
absence of the phase of 	2 from the tree-level mass formula
and the irrelevance of the overall sign of the mass parame-
ters at play (i.e., all that matters are just relative signs).

2. Proton lifetime limits

a. d ¼ 6 proton decay

We shall impose the latest (2011) Super-Kamiokande
(SK) limit on the proton lifetime (for the eþ�0 channel) [43]

�ðp ! eþ�0ÞSK;2011 > 8:2� 1033 years; (13)

and, whenever appropriate, comment on the changes in the
results for a couple of assumed future sensitivity limits,
namely, those quoted in [32] thatHyper-Kamiokande should
reach by 2025 and 2040, respectively

4Let us just mention that the same technique applied to the
45H � 16H case yields the uniform mass shift of �2=4�2, which
is indeed consistent with the results of the effective potential
calculation [6].

5The GUT scale is conventionally defined as the mass scale of
the gauge bosons associated with the breakdown of SOð10Þ to
either 3c2L2R1BL or 4C2L1R intermediate symmetries, i.e., those
transforming, for instance, as ð3; 2;� 5

6Þ � ð�3; 2;þ 5
6Þ under the

SM gauge group.
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�ðp ! eþ�0ÞHK;2025 > 9� 1034 years; (14)

�ðp ! eþ�0ÞHK;2040 > 2� 1035 years: (15)

These translate to the following (raw) formula for the
compatibility regions in theMG � ��1

G plane:

�
��1
G

45

�
102ðnG�15Þ > 11:8; 39:0; 58:1; (16)

where nG � log10ðMG=GeVÞ and the three values on the
right-hand side correspond to the three lifetime limits in
Eqs. (13)–(15), respectively. In the relevant figures, the
regions of the parametric space where the three constraints
(16) are fulfilled will be, consecutively, depicted by light
gray, dark gray and black.

One should also check that lowering a specific multiplet
into the GUT desert does not bring any of the proton-
dangerous colored scalar triplets too much below some
1014 GeV; although the detailed structure of the scalar
d ¼ 6 proton-decay amplitude is typically suppressed by
small Yukawa couplings, this is not always the case and a
colored triplet well below this limit can be dangerous.
Since we do not consider the details of the Yukawa sector
here, we shall adopt a conservative limit like the one
quoted above. Remarkably enough, this constraint turns
out to be rather weak and in a vast majority of the cases
where (16) are obeyed the scalar triplets are safe.

b. d > 6 proton decay

Under the ‘‘big desert’’ hypothesis the d ¼ 6 proton-
decay operators conserve B� L up toMW=MG corrections
[44,45].6 However, this picture does not need to hold any-
more if we consider new structures at intermediate scales
well below MG and d > 6 proton decaying operators (such
as those conserving Bþ L at the d ¼ 7 level, cf. [46,47])
should be inspected. A ‘‘canonical’’ example here is the
situation when the ð3; 2;þ 1

6Þ scalar approaches the weak

scale; the relevant Bþ L-conserving proton-decay ampli-
tude7 can then easily clashwith the experimental limits [38].

3. BBN and the lifetime of light colored BSM multiplets

Light colored thresholds can be also troublesome for
BBN. This has to do with the requirement that any colored
state other than the SM fields must decay with a lifetime
shorter than about 1 s, in order to preserve the classical
predictions of the light elements’ abundances [43]. From
this perspective, renormalizable Yukawa couplings of such

light scalars to the SM matter fields are welcome as the
relevant decay widths are typically large enough to be safe.

B. Running with extra thresholds in the desert

For the sake of simplicity, in what follows we shall
entirely stick to the casewith a single extra SM submultiplet
of 45H � 126H in the desert. This not only lowers the num-
ber of fine-tunings to the minimum, but also admits for a
systematic classification of the possible threshold effects.

1. Identifying the most suitable thresholds

(i) The stability requirements of Sec. III A 1 disfavor a
light ð3; 3;� 1

3Þ multiplet as there are no suitable

stable vacua supporting this configuration, even if
the leading universal one-loop correction (11) is
taken into account.8

(ii) There is a good reason to disfavor all multiplets
whose effect on the hypercharge coupling evolution
is much larger than the effect on the SUð2ÞL cou-
pling: Recall that the upper limit on B� L emerges
from the need to delay the ‘‘premature’’ SM uni-
fication of the Uð1ÞY and SUð2ÞL couplings by low-
ering enough the B� L scale. An extra state in the
desert, which would act against this rule of thumb,
would further strengthen the demands imposed on
the B� L scale, thus further lowering the relevant
upper bound. On the other hand, such states are
almost never brought down alone, as the relevant
fine-tuning also lowers the states occupying the
same larger-symmetry multiplets to the respective
symmetry-breaking scale; however, such intermedi-
ate scales in the settings of our interest should not be
far from MG so the effects of these extra compo-
nents are typically subleading. Hence, multiplets
like ð1; 1;þ1Þ, ð1; 1;þ2Þ, ð�3; 1;� 2

3Þ, ð�3; 1;þ 4
3Þ,

ð�6; 1;� 4
3Þ, ð�6; 1;� 1

3Þ, ð�6; 1;þ 2
3Þ and ð3; 2;þ 7

6Þ are

not fit for our purposes. On the same footing, the
individual effect of an additional ð1; 2;þ 1

2Þ is too

weak to make much difference even if it is pushed
down to the electroweak scale.

(iii) We discard also the ð1; 3;�1Þ component of 126H
because it is the type-II seesaw triplet—indeed, a
very light triplet would require an extra fine-tuning
of the effective SUð2ÞL-triplet-doublet-doublet
coupling otherwise the absolute neutrino mass
scale would be overshot by many orders of
magnitude.

Thus, from now on we shall entirely focus on the pos-
sible threshold effects due to the remaining SM multiplets

6In the SOð10Þ models these operators are usually induced by
the scalar triplets transforming as ð3; 1;� 1

3Þ � ð�3; 1;þ 1
3Þ and the

ð3; 2;� 5
6Þ � ð�3; 2;þ 5

6Þ � ð3; 2;þ 1
6Þ � ð�3; 2;� 1

6Þ gauge bosons.
7In the current SOð10Þ model the relevant effective operator is

traced back to the 1264H quartic coupling and the 16F16F126
�
H

Yukawa interaction.

8Strictly speaking, this is not entirely decisive as the other one-
loop corrections we are not considering here may open more
room for such a setting.
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pushed into the GUT desert, namely, the (1, 3, 0) submul-
tiplet of 45H, a pair of ð3; 2;þ 1

6Þ mixed multiplets, the

ð6; 3;þ 1
3Þ of 126H and the pair of ð8; 2;þ 1

2Þ in 126H.

2. Technical details of the renormalization group
equation (RGE) analysis

On the technical side, we shall always work in the
effective SM picture where all the beyond-SM scalar
and vector bosons are classified by their 3c2L1Y quantum
numbers; hence, conveniently, we will be always using
the three SM effective couplings irrespective of the
actual number of simple gauge factors that can be identi-
fied at any given energy scale. Needless to say, this is
a mere convention provided that the matching to the
full theory (especially at higher orders) is performed
consistently.

Given the tachyonic nature of the tree-level spectrum in
the settings of our interest, a pure one-loop RGE analysis is
meaningless; in principle, the simplest fully consistent
approach would be, of course, a two-loop running based
on a complete one-loop information about the scalar and
gauge spectra.

This, however, is extremely demanding in full generality
because even the very analytic minimization of the relevant
one-loop effective potential in the 45H � 126H case is
virtually intractable (note that, in this respect, the qualita-
tive difference between the 45H � 16H and 45H � 126H
cases is paramount).

Thus, we shall rather perform a qualitative one-
loop RGE analysis based on the ‘‘minimally regularized’’
scalar spectrum (see Secs. II D and III A 1) which,
however, should9 account for all the salient features of
the complete picture. In other words, we work in the
approximation in which the full one-loop approach to
the gauge-coupling evolution is refined by the key two-
loop effects.

Technically, the calculations are performed in three
stages along the following lines: First, we randomly scan
over the parametric space of the model assuming the
desired multiplet to be close to the electroweak scale and
calculate the scalar spectrum for each such point. For those
points for which the vacuum turns out to be stable, we
adjust the overall scale of the dimensionful parameters!R,
!BL, 
 and � and the position of the light threshold in such
a way that a consistent unification is obtained. Note that, in
many cases, this can be done even analytically—at one
loop, both such changes inflict essentially linear shifts in
the values of the three gauge couplings evaluated above the

highest threshold10 so the optimization of the unification
pattern amounts to a solution of a linear system. Finally, we
check the full consistency of the resulting pattern with the
proton decay and BBN limits specified in Sec. III A and see
whether the threshold effects can lift the B� L scale into
the seesaw- favored domain of 1013�14 GeV.
Given that, one can identify the following main

sources of uncertainties plaguing the precision of the de-
rived electroweak-scale values of the gauge couplings:
(i) Sticking to the one-loop beta-functions we commit an
error of the size of a typical two-loop effect.11 Assuming
the usual size of such an uncertainty as observed, e.g., in
[11] one can expect a reduction of the tree-level prediction
of MG by roughly a factor of 2. (ii) We do not re-input the
derived values of the gauge couplings back into the gauge-
boson mass formulas and reiterate the code; for the sake of
simplicity, we rather use a ‘‘typical’’ gauge coupling cor-
responding to ��1

G around 40 for all heavy gauge-boson

masses. The error due to this is of the order of
log½g2true=g2assumed	=16�2, which, however, is entirely neg-

ligible. (iii) We treat the fine-tuning in the ð1; 2;þ 1
2Þ sector

in a simplified manner: since one eigenstate of the
ð1; 2;þ 1

2Þ system is implicitly assumed to be fine-tuned

to the electroweak scale to act as the usual SMHiggs boson
only the heavier eigenstate of the doublet mass matrix
should be included in the heavy-spectrum analysis. On
the other hand, it does not make sense to perform such a
fine-tuning with just 45H � 126H at play as it would,
artificially, bring in an extra constraint on the parametric
space, which would be, however, absent in any realistic
model including, e.g., an extra 10H in the Higgs sector.
For the sake of this qualitative analysis, we decided to
resolve this dichotomy by mimicking the effect of the
(unidentified) heavy doublet by averaging12 over the ef-
fects of the two massive eigenstates of the doublet mass
matrix (B9). Note also that the effect of a possible extra
10H in the full-fledged models (like those discussed later in
Sec. IV) is expected to be small because the extra degrees
of freedom would typically cluster around the GUT scale
and, amounting to a full irreducible SOð10Þ representation,
they would affect the GUT-scale position only marginally.

9This expectation is based on the simple fact (see for instance
[6]) that the tachyons, which can be identified with pseudo-
Goldstone modes of accidental global symmetries of the scalar
potential restored in certain corners of the parametric space, are
the only states whose mass squares are really prone to radiative
corrections.

10Concerning the latter, i.e., the shift in the mass of the acciden-
tally light multiplet, as long as it is well below the next-to-lightest
threshold it can slide essentially freelywithout affecting the heavy
part of the spectrum at all, because all such configurations fall into
a very small patch of the parametric space. This, however, does not
need to be the case when the light threshold approaches the rest of
the heavy spectrum; then one should pay attention to the numerical
stability of the adopted method.
11More precisely, here we refer to the typical scale of the two-
loop corrections in ‘‘regular’’ settings, i.e., those in which one
does not encounter tachyonic instabilities and a one-loop analy-
sis would be perfectly self-consistent.
12Note that this way one implicitly retains the desired slope
(bi ¼ �37=3) for all three effective SM couplings above the
scale of the heaviest component of the scalar spectrum.
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Last, but not least, an extra 10H at play does not contain
a new candidate for a suitable low-scale threshold so, in
this respect, the classification given in Sec. III B 1 is not
affected.

C. Results

Let us begin with a short comment on the first two
options identified in Sec. III B 1, namely, a light (1, 3, 0)
and/or a light component of the ð3; 2;þ 1

6Þ scalar pair.

Although in both cases one can find regions of the para-
metric space supporting such light multiplets in the desert,
the predicted position of the GUT scale is always at least an
order of magnitude below the current Super-K limit
(cf. Sec. III A 2) and, hence, the d ¼ 6 proton decay con-
straints are always badly violated. Thus, none of these two
cases turns out to be interesting.

However, as we argue below, in the remaining cases,
namely, with either ð6; 3;þ 1

3Þ or ð8; 2;þ 1
2Þ in the desert,

fully consistent solutions do exist. Moreover, in both these
settings, the upper limit on the B� L scale is pushed up by
several orders of magnitude with respect to the naive
estimate based on the extended survival hypothesis [11],
thus opening a room for a natural implementation of the
renormalizable seesaw in this class of SOð10Þ GUTs.

1. Consistent setting 1: light ð6;3;þ 1
3 Þ

a. Stable vacua with a light ð6; 3;þ 1
3Þ

Let us first quote the results of a dedicated numerical
scan of the parametric space aiming at the identification of
the stable vacua supporting an accidentally light ð6; 3;þ 1

3Þ.
Confining all the dimensionless couplings into the
conservative ½�1;þ1	 range stable vacua are confined in
the domain !BL > 0, �0

4 < 0, �4 > 0, a0 >�0:1 and

j	2j< 0:6.

b. One-loop unification with a light ð6; 3;þ 1
3Þ

Sample regions of the parametric space that support
a consistent scalar spectrum and, at the same time, pro-
vide a viable gauge-coupling unification, are depicted
in Figs. 1–3. It is worth noticing that: (i) In the fully
consistent settings, ð6; 3;þ 1

3Þ is pinned down to a relatively
narrow region around 1011 GeV, cf. Fig. 1. (ii) For all
consistent configurations, we find j!Rj 
 !BL, so these
settings generally prefer an intermediate 3c2L2R1BL stage,
cf. Fig. 2. (iii) There is just a little room left if the current
Super-K limits get improved considerably in future, see
Fig. 1. Moreover, since the two-loop effects tend to further
lower the GUT scale with respect to the one-loop estimates
(even as much as half an order of magnitude) [11], this
class of scenarios may be ultimately testable at HK.
(iv) Finally, the actual upper limit on the B� L scale is
stretched to almost 1015 GeV and it slowly decreases for
stronger proton-decay limits, cf. Fig. 3.

However, one should be more careful here because these
results can be biased by the stability of the numerical
approach we are using, cf. Sec. III B 2. Namely, the system
of equations implementing the unification constraints can
be efficiently solved for the position of ð6; 3;þ 1

3Þ and for

FIG. 1. Mð6; 3;þ 1
3Þ �!BL correlation in the case of a light

ð6; 3;þ 1
3Þ multiplet in the desert. Various levels of gray corre-

spond to domains accessible for different GUT-scale limits,
cf. Sec. III A 2. Mð6; 3;þ 1

3Þ can vary only over a couple of

orders of magnitude (for the current SK limit) and the range is
likely to shrink considerably in future.

FIG. 2. j!Rj �!BL correlation in the case of a light ð6; 3;þ 1
3Þ

multiplet in the desert. The color code is the same as before,
cf. Sec. III A 2. In all of the allowed region j!Rj 
 !BL so this
setting prefers an intermediate 3c2L2R1BL stage.

FIG. 3. j!Rj � j
j correlation in the case of a light ð6; 3;þ 1
3Þ

multiplet in the desert. The color code is the same as before,
cf. Sec. III A 2. B� L as high as almost 1015 GeV can be reached
for the current SK limit, with the best Hyper-Kamiokande sensi-
tivity limit the maximum lowers to few� 1014 GeV.
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the overall shift of the spectrum if and only if ð6; 3;þ 1
3Þ is

considerably lighter than the next-to-lightest threshold at
play (typically a gauge boson associated with the 2R1BL !
1Y breaking); otherwise it becomes highly nonlinear and,
hence, difficult to handle. However, as one can see in
Fig.. 4, for the estimate of the upper limit on 
 this issue
is less important because some of the couplings (namely,
�4 and �

0
4) turn nonperturbative yet before this issue really

occurs. Moreover, the shape of the new upper limit on the
B� L scale is such that one is likely to miss solutions in
the lower-B� L regime, which is not of the utmost im-
portance here.

c. A specific example with a light ð6; 3;þ 1
3Þ

The effective SM gauge-coupling evolution with a light
ð6; 3;þ 1

3Þ is exemplified in Fig. 5 where the values of the

input parameters as specified in the left row of Table III
have been used and � is calculated so that the desired
Mð6; 3;þ 1

3Þ ¼ 5:57� 1011 GeV is obtained. Note that

the small j	2j region turns out to be preferred for larger
values of j
j and that we have chosen a solution with
relatively small j�4j and �0

4 just to optically improve the
expected ‘‘clustering’’ of the ð3; 2;þ 7

6Þ and ð3; 2;þ 1
6Þ

multiplets at around 1015 GeV (cf. Fig. 5), due to their
common origin within ð3; 2; 2;þ 2

3Þ of 3c2L2R1BL. A more

detailed information about the relevant bosonic spectrum
underlying the gauge unification in this setting is given in
Table IV.

2. Consistent setting 2: light ð8; 2;þ 1
2 Þ

a. Stable vacua with a light ð8; 2;þ 1
2Þ

Turning our attention to the remaining option of a light
ð8; 2;þ 1

2Þ in the desert, it is possible to show that (for all

dimensionless couplings smaller than 1 in absolute value)
there are always tachyons in the scalar spectrum outside
the following domain: j!BLj< j!Rj, �0

4 < 0, a0 >�0:05,
j	2j< 0:6, j	2j<�0:8�0

4. Moreover, only one of the
eigenstates of the mass matrix (B11) can be consistently
lowered.

b. One-loop unification with a light ð8; 2;þ 1
2Þ

Sample regions of the parametric space that support a
consistent scalar spectrum and, at the same time, provide
a viable gauge-coupling unification, are depicted in
Figs. 6–8. Note, in particular, that: (i) In the fully consistent
settings, ð8; 2;þ 1

2Þ is narrowed down to the lower part of

the desert (it is always below 1010 GeV) and even more so

FIG. 4. Correlation between the mass of the ð6; 3;þ 1
3Þ thresh-

old and the allowed B� L scale 
. There are two basic stability
issues that bias the estimate of the span of the allowed domains:
first, there is the technical requirement we impose on the
hierarchy between the lightest and next-to-lightest thresholds,
i.e., ð6; 3;þ 1

3Þ and the gauge sector associated with the

3c2L2R1BL breaking, which cuts the parametric space from
below right; for large 
’s this, however, becomes irrelevant
because some of the couplings (namely, �4 and �0

4) become

nonperturbative yet before such a numerical instability can affect
the relevant upper bound.

FIG. 5. Unification of the effective SM gauge couplings in a
sample setting with a light ð6; 3;þ 1

3Þ multiplet (here at around

5:6� 1011 GeV, cf. Sec. III C 1 c) with the shaded area magni-
fied on the lower panel. The short 3c2L2R1BL stage is clearly
visible here. The small circles indicate the positions of various
thresholds (for details, see Table IV) inflicting changes in the
three curves’ slopes. The almost vertical solid and dashed lines
correspond to the current and future proton-decay limits,
cf. Sec. III A 2. The displayed setting is compatible (at one
loop) with the current SK limit, but it can be refuted by the
Hyper-Kamiokande. The dotted vertical line indicates the posi-
tion of the B� L scale.
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if proton-lifetime limits get improved in the near future,
cf. Fig. 6. Nevertheless, the allowed domain for the light
threshold is much wider than in the previous case, see
Fig. 1; hence, this scenario is likely to be more robust to
the changes inflicted by two-loop effects. In the extreme
case this class of models requires ð8; 2;þ 1

2Þ close to the

EW scale with possibly interesting collider effects. (ii) For
all consistent configurations we find j!BLj 
 j!Rj so
these settings generally prefer an intermediate 4C2L1R
stage, cf. Fig. 7. (iii) The upper limit on the B� L scale
is pushed to about 1014 GeV and, unlike in the previous
case, it is rather insensitive to possible future improve-
ments of the proton lifetime limits, cf. Fig. 8.

Note also that there is no problem with the numerical
stability here, cf. Sec. III B 2, because the gap between
the mass of ð8; 2;þ 1

2Þ and the next-to-lightest threshold

preferred by the unification constraints is huge.

c. A specific example with a light ð8; 2;þ 1
2Þ

The effective SM gauge-coupling evolution with a light
ð8; 2;þ 1

2Þ is exemplified in Fig. 9 where the values of the

input parameters as specified in the right column of Table III
have been used and � is fixed so that Mð8; 2;þ 1

2Þ ¼ 2:3�
104 GeV. Note that the small j	2j region turns out to be
preferred for larger values of j
j and we have chosen
smaller j�4j and �0

4 just to optically improve the expected

clustering of the remnant of the ð15; 2;þ 1
2Þ multiplet of

4C2L1R [where the light ð8; 2;þ 1
2Þ comes from] at around

3� 1014 GeV, cf. Fig. 9. A more detailed information
about the relevant bosonic spectrum underlying the gauge
unification in this setting is given in Table V.

TABLE III. Parameters underpinning the two sample settings
with a light ð6; 3;þ 1

3Þ (left) and a light ð8; 2;þ 1
2Þ (right), re-

spectively. The value of the � parameter can be obtained from the
requirement that the relevant light threshold has the mass speci-
fied in the last row.

light ð6; 3;þ 1
3Þ light ð8; 2;þ 1

2Þ
parameter value value

!R [GeV] �2:92� 1013 �1:46� 1016

!BL [GeV] 8:65� 1015 �4:04� 1012


 [GeV] �1:46� 1014 �3:23� 1013

a0 0.50 0.50

� 0.55 0.47

�4 0.61 0.60

�0
4 �0:41 �0:34

	2 �0:12 �0:01
�0 0.95 �0:86
�2 0.34 �0:14
�4 �0:07 �0:04
�0
4 �0:15 �0:07

MðthresholdÞ [GeV] 5:57� 1011 2:3� 104

TABLE IV. A sample spectrum featuring a light ð6; 3;þ 1
3Þ

threshold. The relevant scalar potential parameters are given in
the left column of Table III. �b321 indicates the shift in the one-
loop beta-function. The light threshold and the vector bosons
defining the GUT scale are in boldface.

multiplet type eigenstate �b321 mass [GeV]

ð6; 3;þ 1
3
Þ CS 1 ð5

2
; 4; 2

5
Þ 5:6� 1011

ð1; 1;�1Þ VB 1 ð0; 0;� 11
5 Þ 1:3� 1014

ð1; 1;þ1Þ VB 1 ð0; 0;� 11
5 Þ 1:3� 1014

ð1; 1;þ1Þ GB 1 ð0; 0; 15Þ 1:3� 1014

(1, 1, 0) VB 1 (0, 0, 0) 2:8� 1014

(1, 1, 0) GB 1 (0, 0, 0) 2:8� 1014

(8, 1, 0) RS 1 ð12 ; 0; 0Þ 7:7� 1014

ð3; 2;þ 1
6Þ CS 2 ð13 ; 12 ; 1

30Þ 1:1� 1015

ð3; 2;þ 7
6Þ CS 1 ð13 ; 12 ; 4930Þ 1:2� 1015

(1, 1, 0) RS 2 (0, 0, 0) 4:3� 1015

ð1; 1;þ2Þ CS 1 ð0; 0; 4
5
Þ 4:5� 1015

ð�3; 2;� 1
6Þ VB 1 ð� 11

3 ;� 11
2 ;� 11

30Þ 5:2� 1015

ð3; 2;þ 1
6Þ VB 1 ð� 11

3 ;� 11
2 ;� 11

30Þ 5:2� 1015

ð3; 2;þ 1
6Þ GB 1 ð13 ; 12 ; 1

30Þ 5:2� 1015

ð�3; 2;þ 5
6
Þ VB 1 ð� 11

3
;� 11

2
;� 55

6
Þ 5:2� 1015

ð3; 2;� 5
6
Þ VB 1 ð� 11

3
;� 11

2
;� 55

6
Þ 5:2� 1015

ð3; 2;� 5
6Þ GB 1 ð13 ; 12 ; 56Þ 5:2� 1015

ð1; 1;þ1Þ CS 2 ð0; 0; 15Þ 5:6� 1015

(1, 1, 0) RS 3 (0, 0, 0) 5:7� 1015

(1, 3, 0) RS 1 ð0; 1
3
; 0Þ 6:1� 1015

ð�3; 1;þ 1
3
Þ CS 1 ð1

6
; 0; 1

15
Þ 6:4� 1015

ð8; 2;þ 1
2Þ CS 1 ð2; 43 ; 45Þ 9:3� 1015

ð�3; 1;þ 4
3Þ CS 1 ð16 ; 0; 1615Þ 9:6� 1015

ð�3; 1;þ 1
3Þ CS 2 ð16 ; 0; 1

15Þ 9:6� 1015

ð�3; 1;� 2
3
Þ CS 2 ð1

6
; 0; 4

15
Þ 9:6� 1015

ð�3; 1;� 2
3
Þ VB 1 ð� 11

6
; 0;� 44

15
Þ 1:0� 1016

ð3; 1;þ 2
3
Þ VB 1 ð� 11

6
; 0;� 44

15
Þ 1:0� 1016

ð�3; 1;� 2
3Þ GB 1 ð16 ; 0; 4

15Þ 1:0� 1016

ð8; 2;þ 1
2Þ CS 2 ð2; 43 ; 45Þ 1:1� 1016

ð�6; 1;þ 2
3
Þ CS 1 ð5

6
; 0; 8

15
Þ 1:5� 1016

ð1; 2;þ 1
2
Þ RS 1 ð0; 1

12
; 1
20
Þ 1:5� 1016

ð�6; 1;� 1
3
Þ CS 1 ð5

6
; 0; 2

15
Þ 1:5� 1016

ð�6; 1;� 4
3Þ CS 1 ð56 ; 0; 3215Þ 1:5� 1016

ð1; 2;þ 1
2Þ RS 2 ð0; 1

12 ;
1
20Þ 1:6� 1016

ð�3; 1;þ 1
3Þ CS 3 ð16 ; 0; 1

15Þ 1:7� 1016

ð3; 3;� 1
3
Þ CS 1 ð1

2
; 2; 1

5
Þ 1:8� 1016

ð3; 2;þ 1
6
Þ CS 3 ð1

3
; 1
2
; 1
30
Þ 2:1� 1016

ð3; 2;þ 7
6Þ CS 2 ð13 ; 12 ; 4930Þ 2:1� 1016

ð1; 3;�1Þ CS 1 ð0; 23 ; 35Þ 2:6� 1016

(1, 1, 0) RS 4 (0, 0, 0) 3:0� 1016
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3. Further remarks

It is perhaps interesting to note that neither ð6; 3;þ 1
3Þ nor

ð8; 2;þ 1
2Þ, even if pushed well below the GUT scale, are

any way problematic for either BBN or d > 6 proton
decay, cf. Secs. III A 2 b and III A 3. As for the former,
their direct coupling to quarks and leptons (by means of the
16F16F126

�
H SOð10Þ Yukawa interaction) makes both of

them decay fast enough via a simple tree-level diagram.
Similarly, neither ð6; 3;þ 1

3Þ nor ð8; 2;þ 1
2Þ can mediate the

effective d ¼ 7 (Bþ L-conserving) proton decay.

IV. THE MINIMAL SOð10Þ GUT REVIVED

The previous analysis reveals several regions of the
parametric space of the non-SUSY SOð10Þ Higgs model
based on the reducible representation 45H � 126H that can
consistently support SOð10Þ ! SM symmetry-breaking
chains compatible with the electroweak data and the cur-
rent proton-decay limits and, simultaneously, admit for a
large-enough B� L-breaking scale for a natural imple-
mentation of a renormalizable seesaw. Hence, this simple

FIG. 6. Mð8; 2;þ 1
2Þ � j!Rj correlation in the case of a light

ð8; 2;þ 1
2Þ multiplet in the desert. The color code is the same as

before, cf. Sec. III A 2.Mð8; 2;þ 1
2Þ can vary over many orders of

magnitude in the lower part of the desert, and it is pushed down
for increasing proton lifetime.

FIG. 7. j!BLj � j!Rj correlation in the case of a light
ð8; 2;þ 1

2Þ multiplet in the desert. Various levels of gray corre-

spond to domains accessible for different GUT-scale limits,
cf. Sec. III A 2. In the whole allowed region j!BLj 
 !R so
this setting always exhibits an intermediate 4C2L1R stage.

FIG. 8. An interesting j!BLj � j
j correlation in the case of a
light ð8; 2;þ 1

2Þmultiplet in the desert. The color code is the same

as before, cf. Sec. III A 2. B� L as high as 1014 GeV can be
reached and, remarkably enough, unlike in the ð6; 3;þ 1

3Þ case the
maximum reach is insensitive to the proton-lifetime limit.

FIG. 9. The same as in Fig. 5, here with a light ð8; 2;þ 1
2Þ

multiplet (at around 2:3� 104 GeV, cf. Sec. III C 2 c) instead of
ð6; 3;þ 1

3Þ; for details of the spectrum see Table V. The short

4C2L1R stage as well as the ‘‘fake unification’’ feature is clearly
visible here. The displayed setting is compatible (at one loop)
with the current SK as well as possible future Hyper-
Kamiokande limits.
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Higgs model is ready to be upgraded to a full-featured,
potentially realistic and predictive SOð10Þ GUT.
In doing so, the central question to be addressed before

approaching any of the ultimate goals of such a programme
(e.g., a detailed prediction of the proton lifetime and the
relevant branching ratios) is the structure of the Yukawa
sector.

A. Yukawa sector of the minimal SOð10Þ GUTs

It is easy to see that the Higgs model containing just 45H
and 126H cannot, at renormalizable level, support a viable
Yukawa sector as there is only one contraction available in
such a case, namely, 16Ff

12616F126
�
H. Hence, the flavor

structure is entirely governed by a single (symmetric)
matrix of Yukawa couplings f126 and no mixing nor fea-
tured fermionic spectra can be generated.
The minimal potentially realistic extension of the 45H �

126H setting amounts to adding an extra 10- or 120-
dimensional representation, which can smear the degener-
acy of the effective Yukawa matrices across different
fermionic species; for a more detailed discussion see, e.g.,
[15] or, more recently, [16]. In this respect, it is interesting
to quote, namely, the results of the new numerical analysis
[48] attempting to fit the SM flavor structure onto the
effective mass matrices emerging in both the 126H � 10H
as well as the 126H � 120H cases: Interestingly, the former
option is strongly preferred and, moreover, successful fits
require a dominance of the type-I seesaw contribution.13

However, as interesting as these results are, they are still not
entirelydecisive as there arevarious sources of uncertainties14

that have not been taken into account in [48].
Nevertheless, the Higgs sector based on 45H � 10H �

126H is clearly the first choice; not only does it have a
better chance to be compatible with the fermionic data, but
the addition of an extra 10H rather than a larger multiplet
like 120H only minimally disturbs the results obtained in
the previous parts, see also the comments in Sec. III B 2.
For the sake of completeness, let us reiterate the Yukawa-

sector sum rules relevant to this setting. In full generality,
one can write a renormalizable Lagrangian density15

L 3 16Fðf101 10H þ f102 10�H þ f126126�HÞ16F þ H:c:; (17)

TABLE V. The same as in Table IV but for the case discussed
in Sec. III C 2 c featuring a light ð8; 2;þ 1

2Þ threshold. The rele-

vant scalar potential parameters are given in the right column of
Table III. Notice that, as required by consistency, in both cases
bSM þP

�b321 ¼ ð� 37
3 ;� 37

3 ;� 37
3 Þ.

multiplet type eigenstate �b321 mass [GeV]

ð8; 2;þ 1
2Þ CS 1 ð2; 43 ; 45Þ 2:3� 104

ð�3; 1;� 2
3Þ VB 1 ð� 11

6 ; 0;� 44
15Þ 2:8� 1013

ð3; 1;þ 2
3
Þ VB 1 ð� 11

6
; 0;� 44

15
Þ 2:8� 1013

ð�3; 1;� 2
3
Þ GB 1 ð1

6
; 0; 4

15
Þ 2:8� 1013

(1, 1, 0) VB 1 (0, 0, 0) 6:1� 1013

(1, 1, 0) GB 1 (0, 0, 0) 6:1� 1013

ð3; 2;þ 7
6Þ CS 1 ð13 ; 12 ; 4930Þ 2:6� 1014

ð3; 2;þ 1
6
Þ CS 3 ð1

3
; 1
2
; 1
30
Þ 2:8� 1014

ð1; 2;þ 1
2
Þ RS 1 ð0; 1

12
; 1
20
Þ 3:3� 1014

(1, 1, 0) RS 2 (0, 0, 0) 2:2� 1015

ð�3; 1;� 2
3Þ CS 2 ð16 ; 0; 4

15Þ 2:3� 1015

ð6; 3;þ 1
3Þ CS 1 ð52 ; 4; 25Þ 2:3� 1015

ð3; 3;� 1
3
Þ CS 1 ð1

2
; 2; 1

5
Þ 2:3� 1015

ð1; 3;�1Þ CS 1 ð0; 2
3
; 3
5
Þ 2:3� 1015

ð�6; 1;� 4
3Þ CS 1 ð56 ; 0; 3215Þ 3:2� 1015

(1, 1, 0) RS 3 (0, 0, 0) 3:3� 1015

(8, 1, 0) RS 1 ð12 ; 0; 0Þ 4:6� 1015

(1, 3, 0) RS 1 ð0; 1
3
; 0Þ 6:1� 1015

ð�3; 2;þ 5
6
Þ VB 1 ð� 11

3
;� 11

2
;� 55

6
Þ 8:7� 1015

ð3; 2;� 5
6Þ VB 1 ð� 11

3 ;� 11
2 ;� 55

6 Þ 8:7� 1015

ð3; 2;� 5
6Þ GB 1 ð13 ; 12 ; 56Þ 8:7� 1015

ð�3; 2;� 1
6Þ VB 1 ð� 11

3 ;� 11
2 ;� 11

30Þ 8:7� 1015

ð3; 2;þ 1
6
Þ VB 1 ð� 11

3
;� 11

2
;� 11

30
Þ 8:7� 1015

ð3; 2;þ 1
6
Þ GB 1 ð1

3
; 1
2
; 1
30
Þ 8:7� 1015

ð�3; 1;þ 1
3Þ CS 1 ð16 ; 0; 1

15Þ 1:1� 1016

ð�3; 1;þ 1
3Þ CS 2 ð16 ; 0; 1

15Þ 1:2� 1016

ð1; 1;þ1Þ CS 2 ð0; 0; 15Þ 1:6� 1016

ð�3; 1;þ 1
3
Þ CS 3 ð1

6
; 0; 1

15
Þ 1:6� 1016

ð�6; 1;� 1
3
Þ CS 1 ð5

6
; 0; 2

15
Þ 1:6� 1016

ð3; 2;þ 7
6
Þ CS 2 ð1

3
; 1
2
; 49
30
Þ 1:7� 1016

ð1; 2;þ 1
2Þ RS 2 ð0; 1

12 ;
1
20Þ 1:7� 1016

ð8; 2;þ 1
2Þ CS 2 ð2; 43 ; 45Þ 1:7� 1016

ð3; 2;þ 1
6
Þ CS 2 ð1

3
; 1
2
; 1
30
Þ 1:7� 1016

ð1; 1;�1Þ VB 1 ð0; 0;� 11
5
Þ 1:7� 1016

ð1; 1;þ1Þ VB 1 ð0; 0;� 11
5
Þ 1:7� 1016

ð1; 1;þ1Þ GB 1 ð0; 0; 15Þ 1:7� 1016

ð1; 1;þ2Þ CS 1 ð0; 0; 45Þ 2:4� 1016

ð�3; 1;þ 4
3Þ CS 1 ð16 ; 0; 1615Þ 2:4� 1016

ð�6; 1;þ 2
3
Þ CS 1 ð5

6
; 0; 8

15
Þ 2:4� 1016

(1, 1, 0) RS 4 (0, 0, 0) 4:1� 1016

13This feature is closely related to the need to avoid the b-�
Yukawa unification in the non-SUSY settings, which, however,
is generically favored by type-II seesaw.
14In particular: (i) the weights of the SM-doublet VEVs enter-
ing the relevant sum rules, cf. Equations (18), were taken
uncorrelated, (ii) the running fermionic masses were extrapo-
lated to the GUT-scale vicinity under the bold assumption of no
thresholds in the desert and (iii) higher order corrections to the
relevant sum rules inherent to non-SUSY settings were not taken
into account.
15Note that 10� of SOð10Þ is equivalent (in the representation
sense) to 10, so both 16210 and 16210� are allowed in non-SUSY
scenarios.
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which is parametrized by three complex symmetric matri-
ces f101;2 and f

126. It leads to the following general tree-level

formulas for the effective SM quark and lepton mass
matrices16

Mu ¼ Y10
1 v10

u þ Y10
2 v10�

d þ Y126v126
u ;

Md ¼ Y10
1 v10

d þ Y10
2 v10�

u þ Y126v126
d ;

M‘ ¼ Y10
1 v10

d þ Y10
2 v10�

u � 3Y126v126
d ;

MD
� ¼ Y10

1 v10
u þ Y10

2 v10�
d � 3Y126v126

u ;

MM;I
� ¼ cIY126
; MM;II

� ¼ cIIY126w126;

(18)

where Y10
1;2 and Y126 are proportional to the corresponding

f-matrices in (17), the subscripts D andM denote the Dirac
andMajorana segments of the neutrinomassmatrix and cI;II

(for type-I and type-II seesaw, respectively) combine vari-
ous extra numerical factors such as the relevant Clebsch-
Gordan coefficients. Let us note that, unlike in SUSY, here
the 10H of SOð10Þ can be populated by real components [5],
which would further reduce the number of independent
couplings—indeed, in such a case, the second term in (17)
would be just a repetition of the first one. However, this
setting is pathological as it leads to a GUT-scale near-
equality of the b- and t-quark masses, cf. [16].

It should be stressed that, in the full model, the
projections of the SM Higgs VEVs onto the indicated
components of the relevant SOð10Þ multiplets v10

u ¼
hð1; 2;þ 1

2Þ10i, v10
d ¼ hð1; 2;� 1

2Þ10i, v126
u ¼ hð1; 2;þ 1

2Þ126� i
and v126

d ¼ hð1; 2;� 1
2Þ126� i as well as the VEVof the type-

II SUð2ÞL triplet w126 ¼ hð1; 3;þ1Þ126� i are calculable
functions of the parameters entering the scalar potential.
Note also that, in full generality, the formulas (18) corre-
spond to the two-Higgs-doublet realization of the SM
Higgs sector; assuming that only one of the doublets
survives down to the electroweak scale [i.e., implementing
a single fine-tuning in the relevant generalization of the
mass matrix (B9)], one should further assume either17

v10
u ¼ v126

u ¼ 0 or v10
d ¼ v126

d ¼ 0.
In connection to this, one should mention a couple of

other interesting features inherent to the models with
45H that have no counterpart in many other settings
including the popular variant with the GUT symmetry
broken by 54H [30,31,49]: (i) First, in the former case, a
significant admixture of both the 10H and 126H compo-
nents within the SM Higgs doublet, which turns out to
be essential for realistic fits of the Yukawa system (18)
to the quark and lepton data, is naturally obtained via the

direct mixing term 10H126
�
H45H45H. In the latter case,

however, there is no such a term and the mixing is
governed, namely, by the 10H126

�
H126H126H contrac-

tion, which, however, yields and extra suppression of
the order of M2

B�L=M
2
G. (ii) Second, the settings in

which the GUT symmetry is broken by the VEVs of
45H generally feature an almost-automatic suppression of
the type-II seesaw, which, as mentioned previously, is
not only welcome due to the generic GUT-scale non-
equality of the b and � Yukawas in non-SUSY settings
[50], but it seems to be even crucial for successful
Yukawa fits, cf. [48]. Indeed, on general grounds, one
expects that in theories in which the D-parity18 is broken
before the SUð2ÞR symmetry, the type-II contribution to
the light neutrino masses is naturally suppressed by a
factor of M2

B�L=M
2
G with respect to the type-I term [55].

Again, this is not the case in models based on the
54H where the D-parity is preserved down to the
SUð2ÞR-breaking scale and, thus, no extra suppression
of type-II seesaw occurs.

B. Predictivity and testability

Concerning the predictivity of the renormalizable model
based on 45H � 10H � 126H in the Higgs sector, there are
several aspects worth a comment here.
(i) Yukawa-sector complexity: There are in general

three independent complex symmetric matrices
entering the effective sum rules (18), to be compared
to just two such structures encountered in, e.g.,
the minimal potentially realistic Yukawa sector in
supersymmetry [17]. This, however, does not neces-
sarily imply a loss of predictivity in the Yukawa
sector: First, the weights of the SM VEVs entering
Eqs. (18) are, in general, more strongly correlated
here than in the minimal SUSY case (cf. [20]) be-
cause here the doublet mass matrix (B9) is lower-
dimensional. Second, with only one doublet pushed
down to the electroweak scale, the system (18) is
simplified and the correlations among different spe-
cies become much tighter. This is also well-reflected
by the preliminary results of a dedicated numerical
analysis [56].

(ii) Vacuum stability: Unlike in the (global) SUSY case
where the positivity of the scalar mass squares is
automatic in any SUSY-preserving vacuum, the
consistency requirements here narrow the poten-
tially interesting domains of the parametric space

16Let us remind the reader that a good grip on the Yukawa
couplings is also necessary for a reliable account of the d ¼ 6
proton-decay amplitudes because they depend on the matrix
elements of the unitary transformation bringing the quarks and
leptons from the current to the mass basis.
17Actually, only the former option has a chance to work in
practice because the latter immediately implies an apparently
wrong relation Md ¼ M‘ so we discard it.

18D-parity is a discrete symmetry acting as a charge conjuga-
tion in the left-right symmetric context [51,52], and, as such, it
plays the role of a left-right symmetry (enforcing, for instance,
equal SUð2ÞL and SUð2ÞR gauge couplings). As a part of the
SOð10Þ algebra, it is a good symmetry until it gets broken
by either a D-odd singlet in 45H (or 210H) or by any
SUð2ÞR-breaking VEV, thus allowing for a left-right asymmetric
scalar spectrum [53,54].
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down to just few small patches (for instance those
identified in Sec. III). On the other hand, given the
higher number of contractions available in the non-
SUSY case even at the renormalizable level (to be
compared to just several such terms entering the
Higgs superpotential in SUSY) the set of SM-like
vacua is clearly higher-dimensional (see the number
of parameters in Table III versus a single complex
parameter in SUSY, cf. [20]).

(iii) Radiative corrections: Unlike many popular SUSY
SOð10Þ variants, cf. [19,57] the model under con-
sideration is asymptotically free (with b ¼ �12) so
it remains weakly coupled up to the Planck scale.
On the other hand, its radiative structure is much
more involved than that of the simplest SUSY
scenarios and consistent calculations are techni-
cally much more demanding. In this respect, let
us reiterate that the nature of the problem calls
for a two-loop RGE analysis based on a detailed
knowledge of the one-loop spectrum and in this
work we have just performed the first steps in that
direction.

Hence, without a detailed analysis it is rather difficult to
assess the predictive power of the model under considera-
tion. Nevertheless, even the first results obtained in Sec. III
indicate that the up-coming large-volume experiments
such as HK can impose very strong cuts to its (already
rather constrained) parametric space, possibly covering the
entire remaining volume.

Sometimes, it is suggested to further enhance the
Yukawa-sector predictivity of the non-SUSY models by
imposing an extra global Uð1Þ symmetry of the Peccei-
Quinn (PQ) type [58,59], which, if it transforms 10H
nontrivially, forbids one of the f101;2 couplings in the

Lagrangian (17). Since, in that case, also 126H would
have to be PQ-charged, such a symmetry would be
broken at the same scale as Uð1ÞB�L, thus linking the
PQ-symmetry-breaking scale to the neutrino masses. In
this respect, it is very interesting that a seesaw scale in
the preferred 1013�14 GeV ballpark is indeed very close
to the 109�12 GeV PQ-symmetry-breaking window fa-
vored by astrophysics and cosmology (see, e.g., [60])
and there are several attempts in the literature to con-
struct a viable unified model along these lines (see, e.g.,
[61], or more recently [16]). On the other hand, since
h126Hi cannot break the rank of SOð10Þ �Uð1ÞPQ by

more than a single unit, a global linear combination of
Uð1ÞPQ, Uð1ÞR and Uð1ÞB�L survives down to the elec-

troweak scale and only there does it finally get broken
by the electroweak doublet(s); this, however, is unac-
ceptable as the EW-scale PQ-symmetry breaking gives
rise to an easily visible axion [62,63]. Thus, a consistent
implementation of this interesting scheme calls for a
further complication of the Higgs sector, which we shall
not entertain here.

V. CONCLUSIONS AND OUTLOOK

In this work we have been concerned with a class of
simple renormalizable SOð10Þ Higgs models in which the
first stage of symmetry breaking is triggered by the
45-dimensional adjoint Higgs representation. These set-
tings, discarded long ago due to inherent tree-level ta-
chyonic instabilities developing in most of the physically
interesting scenarios, have been recently shown to be
revived by quantum effects. However, many important
aspects of these scenarios, such as, for instance, the al-
lowed ranges for the unification as well as various inter-
mediate scales, as important as these are for any realistic
model building, were never studied in sufficient detail to
allow for a qualified assessment of their physical relevance.
Focusing on the variant with 45H � 126H in the Higgs

sector, we worked out the complete tree-level spectrum
and, with so much extra information at hand, performed a
simple analysis of the gauge-unification patterns. Unlike
the previous studies, based on the minimal-survival hy-
pothesis, that show a no-go for scenarios with the B� L
scale above 1010 GeV [11], we found several domains
in the parametric space of these models that can support
a consistent gauge unification with B� L as high as
1014 GeV without encountering any tachyonic instabilities
or proton-lifetime issues. The key to this unexpected
behavior is an accidentally light threshold in the desert,
which affects the gauge-unification picture in a suitable
way. We identified two distinct classes of such viable
solutions: in the first case, an intermediate-scale multiplet
transforming as ð6; 3;þ 1

3Þ of the SM supports SOð10Þ !
SM descents featuring a short SUð3Þc � SUð2ÞL �
SUð2ÞR �Uð1ÞB�L intermediate-symmetry stage, while
the second option including a relatively light ð8; 2;þ 1

2Þ
supports SOð10Þ breaking chains passing through the
SUð4ÞC � SUð2ÞL �Uð1ÞR intermediate symmetry.
Remarkably enough, in all the cases of interest, the uni-
fication scale turns out to be rather close to the current
Super-Kamiokande proton-lifetime lower bound.
This, however, opens up an intriguing possibility to

construct a simple, renormalizable, and testable SOð10Þ
GUTwith 45H � 126H � 10H in the Higgs sector, which, in
view of the recent failure of the simplest supersymmetric
SOð10Þ model [26,27], can even be viewed as the new
minimal potentially realistic SOð10Þ GUT.
Nevertheless, this study provides only the first glimpse

of the ultimate viability of such a framework and there is
much more still to be done. Let us reiterate that simple non-
SUSY models suffering from significant tree-level vacuum
instabilities generically call for a refined two-loop RGE
approach (assuming one-loop scalar spectrum) because
only in such a case are the tachyons really under control.
In this respect, the results of the current analysis, taking
into account only the minimal set of radiative corrections
necessary for the scalar-spectrum regularization, can quan-
titatively (though not qualitatively) differ from those to be
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obtained in a future full one-loop effective potential
analysis.

Remarkably enough, extrapolating the relative size and
direction of the two-loop effects observed in [11] to the
current scheme, the chances for its ultimate testability at
future experiments look rather promising. Indeed, any
further significant decrease of the maximum allowed uni-
fication scale due to two-loop effects would allow the up-
coming large-volume facilities such as Hyper-Kamiokande
to scan over the full physically interesting domain in the
parametric space of this class of models.
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APPENDIX A: DETAILS OF THE
SCALAR POTENTIAL

The 2-index and 5-index completely antisymmetric ten-
sors of SOð10Þ are labeled, respectively, as �ij and �ijklm.

Given the dual map

~� ijklm ¼ � i

5!
�ijklmnopqr�nopqr; (A1)

we can define the self-dual and the anti-self-dual irreduc-
ible components of �ijklm as

�ijklm ¼ 1ffiffiffi
2

p ð�ijklm þ ~�ijklmÞ; (A2)

��
ijklm ¼ 1ffiffiffi

2
p ð�ijklm � ~�ijklmÞ: (A3)

Then the relevant contractions in the scalar potential
of Eq. (1) are given by

ð��Þ0 � �ij�ij; ð���Þ0 � �ijklm�
�
ijklm (A4)

ð��Þ0ð��Þ0 ��ij�ij�kl�kl

ð��Þ2ð��Þ2 ��ij�ik�lj�lk
(A5)

ð���Þ0ð���Þ0 � �ijklm�
�
ijklm�nopqr�

�
nopqr ð���Þ2ð���Þ2 � �ijklm�

�
ijkln�opqrm�

�
opqrn

ð���Þ4ð���Þ4 � �ijklm�
�
ijkno�pqrlm�

�
pqrno ð���Þ40 ð���Þ40 � �ijklm�

�
ijkno�pqrln�

�
pqrmo

ð��Þ2ð��Þ2 � �ijklm�ijkln�opqrm�opqrn ð����Þ2ð����Þ2 � ��
ijklm�

�
ijkln�

�
opqrm�

�
opqrn

(A6)

ð�Þ2ð���Þ2��ij�klmni�
�
klmnj ð��Þ0ð���Þ0��ij�ij�klmno�

�
klmno ð��Þ4ð���Þ4��ij�kl�mnoij�

�
mnokl

ð��Þ40 ð���Þ40 ��ij�kl�mnoik�
�
mnojl ð��Þ2ð��Þ2��ij�ik�lmnoj�lmnok ð��Þ2ð����Þ2��ij�ik�

�
lmnoj�

�
lmnok:

(A7)

We have checked that this constitutes a complete set of SOð10Þ invariants for the 45–126 system at the renormalizable
level.

APPENDIX B: THE SCALAR SPECTRUM (45H � 126H)

1. Vacuum manifold and stationarity conditions

The scalar potential Eq. (1) evaluated on the SM vacuum parametrized by !BL, !R and 
, cf. Equation (5), reads

hVi¼��2ð3!2
BLþ2!2

RÞþa0ð12!2
R!

2
BLþ9!4

BLþ4!4
RÞþ

a2
2
ð3!4

BLþ2!4
RÞ�2�2j
j2þ4�0j
j4þ2�ð3!BLþ2!RÞj
j2

þ2�ð3!2
BLþ2!2

RÞj
j2�4�0
4ð6!R!BLþ3!2

BLþ!2
RÞj
j2: (B1)

It is perhaps worth noting that not all couplings in expres-
sions (2)–(4) are present here; the reason is the absence of
suitable terms quartic in the available VEVs in some of the
contractions. As an example, consider�2, the coefficient of
the 1264H contraction in Eq. (3), which enters neither the
vacuum manifold nor the stationary conditions or the
tree-level spectrum. This can be understood by looking

at the decomposition of the relevant invariant under
SUð5Þ �Uð1ÞZ, which never contains more than a single
submultiplet ð1;þ10Þ that is the only component of 126H
that can receive a SM-preserving VEV (recall that h126Hi
preserves SUð5Þ). Indeed, one has at best 1264H �
ð1;þ10Þð15;�6Þð15;�6Þð50;þ2Þ, i.e., three derivatives
are needed in order for �2 to enter anywhere. A similar
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reasoning can be applied to the other couplings, hence fully
justifying their presence/absence within all the relevant
structures. However, most of such couplings (e.g., �2, �4

etc.) reappear in the tree-level broken-phase mass matrices

and, ultimately, all of them appear at the full one-loop
effective potential level.
The corresponding stationary equations can be conven-

iently rewritten as

1

6ð!BL �!RÞ
�
@hVi
@!BL

� 3

2

@hVi
@!R

�
¼ ��2 þ a0ð6!2

BL þ 4!2
RÞ þ a2ð!R!BL þ!2

BL þ!2
RÞ þ 2�j
j2 þ 2�0

4j
j2; (B2)

1

4ð!BL �!RÞ
�
2

3
!R

@hVi
@!BL

�!BL

@hVi
@!R

�
¼ a2!R!BLð!BL þ!RÞ � �j
j2 þ 2�0

4ð3!BL þ 2!RÞj
j2; (B3)

@hVi
@


¼ 2
�½��2 þ 4�0j
j2 þ �ð3!BL þ 2!RÞ þ �ð3!2
BL þ 2!2

RÞ � 2�0
4ð6!R!BL þ 3!2

BL þ!2
RÞ	; (B4)

which hold away from the standard SUð5Þ �Uð1ÞZ
vacuum (!BL ¼ !R).

2. Tree-level scalar spectrum in the SM limit

Let us label the scalar states with respect to the SUð3Þc �
SUð2ÞL �Uð1ÞY algebra. Applying first the stationary con-
ditions in Eq. (B2) and (B4) one finds:

a. States with components in 45H only

Besides the classical pair of the would-be tachyons with
mass formulas

M2ð1; 3; 0Þ ¼ �2a2ð!BL �!RÞð!BL þ 2!RÞ; (B5)

M2ð8; 1; 0Þ ¼ �2a2ð!R �!BLÞð!R þ 2!BLÞ; (B6)

in this sector one can identify 12 Goldstone boson modes
with

M2

�
3; 2;� 5

6

�
¼ 0: (B7)

The remaining components of 45H mix with those in 126H
and will be discussed below.

b. States with components in 126H only

Starting with pure states with components in 126H one
has:

M2ð1; 1;þ2Þ ¼ 2ð4�2 þ 3�4 þ 16�0
4Þj
j2 � 4!Rð�� 6�0

4!BLÞ;
M2ð1; 3;�1Þ ¼ 8ð2�2 þ 3�4 þ 2�0

4Þj
j2 � 2ð3!BL þ!RÞð�� 2�0
4!RÞ;

M2

�
�3; 1;þ4

3

�
¼ 4ð3�2 þ 3�4 þ 4�0

4Þj
j2 þ 2ð!BLð4�0
4ð!BL þ 2!RÞ þ �4!BLÞ � �ð!BL þ 2!RÞÞ;

M2

�
3; 3;�1

3

�
¼ 4ð3�2 þ 3�4 þ 4�0

4Þj
j2 � 2�ð2!BL þ!RÞ þ 2�4!
2
BL þ 4�0

4ð3!R!BL þ 2!2
BL þ!2

RÞ;

M2

�
6; 3;þ1

3

�
¼ 2ð4�2 þ 3�4 þ 16�0

4Þj
j2 þ 2ð!BL þ!RÞð2�0
4ð2!BL þ!RÞ � �Þ;

M2

�
�6; 1;�4

3

�
¼ 2ð4�2 þ 3�4 þ 16�0

4Þj
j2 þ 4!BLð2�0
4ð!BL þ 2!RÞ � �Þ;

M2

�
�6; 1;�1

3

�
¼ 4ð3�2 þ 3�4 þ 4�0

4Þj
j2 � 2�ð2!BL þ!RÞ þ 2�4!
2
R þ 4�0

4ð3!R!BL þ 2!2
BL þ!2

RÞ;

M2

�
�6; 1;þ2

3

�
¼ 8ð2�2 þ 3�4 þ 2�0

4Þj
j2 � 4ð!BL þ!RÞð�� 2�0
4!BLÞ;

(B8)

while those developing higher-dimensional mass matrices
are:

M2

�
1; 2;þ1

2

�
¼ eA11 eA12

eA21 eA22

 !
; (B9)

M2

�
3; 2;þ7

6

�
¼ eB11 eB12

eB21 eB22

 !
; (B10)

M2

�
8; 2;þ1

2

�
¼ eC11 eC12

eC21 eC22

� �
; (B11)

M2

�
�3; 1;þ1

2

�
¼

eD11 eD12 eD13

eD21 eD22 eD23

eD31 eD32 eD33

0
BB@

1
CCA; (B12)
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where

eA11 ¼ 4ð3�2 þ 3�4 þ 4�0
4Þj
j2 � 3�ð!BL þ!RÞ þ �4

2
ð�4!R!BL þ 7!2

BL þ!2
RÞ þ 3�0

4ð4!R!BL þ!2
RÞ;

eA22 ¼ 2ð4�2 þ 3�4 þ 4�0
4j
j2 � �ð3!BL!RÞ þ �4

2
ð4!R!BL þ 7!2

BL þ!2
RÞ þ 3�0

4ð4!R!BL þ 3!2
BL þ!2

RÞ;
eA12 ¼ eA�21 ¼ 2	�

2ð!2
R �!2

BLÞ;
eB11 ¼ 2ð4�2 þ 3�4 þ 16�0

4Þj
j2 � �ð!BL þ 3!RÞ þ �4

2
ð!BL �!RÞ2 þ �0

4ð16!R!BL þ 5!2
BL þ 3!2

RÞ;
eB22 ¼ 4ð3�2 þ 3�4 þ 4�0

4Þj
j2 � �ð5!BL þ!RÞ2 þ �0
4ð16!R!BL þ 5!2

BL þ 3!2
RÞ;

eB12 ¼ eB�21 ¼ 2	�
2ð!2

R �!2
BLÞ;

eC11 ¼ 4ð3�2 þ 3�4 þ 4�0
4Þj
j2 þ 1

2ð!BL þ!RÞð6�0
4ð3!BL þ!RÞ þ �4ð!BL þ!RÞ � 6�Þ;

eC22 ¼ 2ð4�2 þ 3�4 þ 16�0
4Þj
j2 � �ð3!BL þ!RÞ þ �4

2
ð!BL �!RÞ2 þ 3�0

4ð4!R!BL þ 3!2
BL þ!2

RÞ;
eC12 ¼ eC�21 ¼ 2��

2ð!2
R �!2

BLÞ;
are the elements of the 2� 2 matrices (B9)–(B11) spanned, respectively, on the following bases (listing only the
column basis vectors; the rows are just their conjugates): fð1; 2;�1

2Þ�� ; ð1; 2;� 1
2Þ�g, fð�3; 2;�7

6Þ�� ; ð�3; 2� 7
6Þ�g, and

fð8; 2;�1
2Þ�� ; ð8; 2;� 1

2Þ�g. Similarly,

eD11 ¼ 2ð4�2 þ 3�4 þ 8�0
4j
j2 � 2�ð!BL þ!RÞ þ �4ð!2

BL þ!2
RÞ þ 4�0

4ð3!R!BL þ 2!2
BL þ!2

RÞ;

eD22 ¼ 4ð3�2 þ 3�4 þ 4�0
4Þj
j2 � 2�ð2!BL þ!RÞ þ �4ð!2

BL þ!2
RÞ þ 4�0

4ð3!R!BL þ 2!2
BL þ!2

RÞ;

eD33 ¼ 2ð4�2 þ 3�4Þj
j2 þ 2ð2�0
4ð3!R!BL þ 2!2

BL þ!2
RÞ þ �4ð!2

BL þ!2
RÞ � �ð!BL þ!RÞÞ;

eD12 ¼ eD�
21 ¼ 4	2ð!2

BL �!2
RÞ;

eD13 ¼ eD�
31 ¼ 2

ffiffiffi
2

p ð�8�0
4j
j2 þ �4!R!BLÞ;

eD23 ¼ eD�
32 ¼ 0

are the elements of the 3� 3 mass matrix (B12) spanned over fð3; 1;�1
3Þ1��; ð3; 1;�1

3Þ1�; ð3; 1;�1
3Þ3��g. For potentially

ambiguous cases we use superscripts to indicate the SUð2ÞR origin of the relevant components.

c. Mixed states with components in both 45H and 126H

Finally, the remaining components of 126H that mix with those in 45H are listed below.

M2ð1; 1;þ1Þ ¼ 2ð�a2!BLð!BL þ!RÞ þ ð�4 � 2�0
4Þj
j2Þ 2ð2�0

4ð3!BL þ!RÞ þ �4!R � �Þ
�
2ð2�0

4ð3!BL þ!RÞ þ �4!R � �Þ
 2!Rð2�0
4ð3!BL þ!RÞ þ �4!R � �Þ

� �
; (B13)

M2

�
�3; 1;�2

3

�
¼ 2ð�a2!Rð!BL þ!RÞ þ ð�4 � 2�0

4Þj
j2Þ �2ð4�0
4ð!BL þ!RÞ þ �4!BL � �Þ


�2ð4�0
4ð!BL þ!RÞ þ �4!BL � �Þ
� 2!BLð4�0

4ð!BL þ!RÞ þ �4!BL � �Þ

 !
; (B14)

M2

�
3; 2;þ1

6

�
¼

eE11 eE12 eE13

eE21 eE22 eE23

eE31 eE32 eE33

0
BB@

1
CCA; (B15)

M2ð1; 1; 0Þ ¼

eF11 eF12 eF13 eF14

eF21 eF22 eF23 eF24

eF31 eF32 eF33 eF34

eF41 eF42 eF43 eF44

0
BBBBB@

1
CCCCCA; (B16)
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where

eE11 ¼ 2ð�2a2!BL!R þ ð�0
4Þj
j2Þ;

eE22 ¼ 2ð!BL þ!RÞð2�0
4ð5!2

BL þ 3!RÞ þ �4ð!BL þ!RÞ � 2�Þ;

eE23 ¼ 8ð2�2 þ 3�4 þ 2�0
4Þj
j2 � �ð5!BL þ 3!RÞ þ �4

2 ð!BL �!RÞ2 þ �0
4ð8!R!BL þ 5!2

BL þ 3!2
RÞ;

eE12 ¼ eE�21 ¼ ð2�0
4ð5!BL þ 3!RÞ þ �4ð!BL þ!RÞ � 2�Þ
�;

eE13 ¼ eE�31 ¼ 4	2ð!R �!BLÞ
�;

eE23 ¼ eE�32 ¼ 2	ð!2
R �!2

BLÞ;
and

eF11 ¼ 2ð12a0!2
BL þ a2ð!BL �!RÞð2!BL þ!RÞ � 6�0

4j
j2Þ;
eF22 ¼ 2ð8a0!2

R � a2ð!BL �!RÞð!BL þ 2!RÞ � 4�0
4j
j2Þ;

eF33 ¼ 4�0j
j2;
eF44 ¼ 4�0j
j2;

eF12 ¼ eF�21 ¼ 4
ffiffiffi
6

p ð2a0!BL!R � �0
4j
j2Þ;

eF13 ¼ eF31 ¼
ffiffiffi
6

p ð�þ 2a!BL � 4�0
4ð!BL þ!RÞÞ
;

eF14 ¼ eF41 ¼
ffiffiffi
6

p ð�þ 2a!BL � 4�0
4ð!BL þ!RÞÞ
�;

eF23 ¼ eF�32 ¼ 2ð�þ 2a!R � 2�0
4ð3!BL þ!RÞÞ
;

eF24 ¼ eF�42 ¼ 2ð�þ 2a!R � 2�0
4ð3!BL þ!RÞÞ
�;

eF34 ¼ eF�43 ¼ 4�0

�2:

Here the relevant bases are: fð�3; 1;� 2
3Þ�; ð�3; 1;� 2

3Þ�� g and fð�3; 2;� 1
6Þ�; ð�3; 2;� 1

6Þ�� ; ð�3; 2;� 1
6Þ�g for the colored triplets

and fð1; 1;�1Þ�; ð1; 1;�1Þ�� g and fð1; 1; 0Þ15� ; ð1; 1; 0Þ1�; ð1; 1; 0Þ�� ; ð1; 1; 0Þ�g for the singlets. Wherever ambiguous, the
superscripts denote the SUð4ÞC origin of the relevant components.

Finally, implementing the remaining stationary condition in Eq. (B3) (substituting for a2) one obtains

Rank M2ð1; 1;þ1Þ ¼ 1; RankM2

�
3; 1;þ2

3

�
¼ 1; RankM2

�
3; 2;þ1

6

�
¼ 2; RankM2ð1; 1; 0Þ ¼ 3: (B17)

Together with M2ð3; 2;� 5
6Þ ¼ 0, cf. Equation (B7), we account for exactly 33 would-be Goldstone bosons corresponding

to the coset SOð10Þ=SUð3Þc � SUð2ÞL �Uð1ÞY .
3. Basic consistency checks

In order to crosscheck the results given above, we shall now study the scalar spectrum of Appendix B 2 in three
physically interesting limits. In each case one should observe a proper reclustering of the SM multiplets according to the
enhanced symmetry as well as extra would-be Goldstones.

a. The flipped 501Z0 limit, !R ¼ �!BL � 0 and � ¼ 0

Labelling the scalar states according to the flipped 501Z0 algebra, cf. Table I, the 45H components cluster as follows

M2ð24; 0Þ ¼ 4a2!
2; M2ð10;�4Þ ¼ 0; M2ð1; 0Þ ¼ 4ð10a0 þ a2Þ!2: (B18)

Similarly, for the 126H components we get

BERTOLINI, DI LUZIO, AND MALINSKÝ PHYSICAL REVIEW D 85, 095014 (2012)

095014-18



M2ð1;þ10Þ ¼ ��2 þ 5ðð�� 4�0
4Þ!� �Þ!; M2ð�5;þ2Þ ¼ ��2 þ ðð5�þ 6�4 þ 4�0

4Þ!� �Þ!;

M2ð10;þ6Þ ¼ ��2 þ ðð5�þ 2�4 � 4�0
4Þ!� 3�Þ!; M2ð15;�6Þ ¼ ��2 þ ðð5�� 4�0

4Þ!þ 3�Þ!;

M2ð45;�2Þ ¼ ��2 þ ðð5�þ 2�4 þ 4�0
4Þ!þ �Þ!; M2ð50;þ2Þ ¼ ��2 þ ðð5�þ 4�0

4Þ!� �Þ!:

(B19)

As expected, there are 45� 25 ¼ 20 WGBs.

b. The 3c2L2R1BL limit, !BL � 0, !R ¼ 0 and � ¼ 0

Labelling the scalar states according to the 3c2L2R1BL algebra, the 45H components cluster as follows:

M2ð1; 3; 1; 0Þ ¼ �2a2!
2
BL; M2ð1; 1; 3; 0Þ ¼ �2a2!

2
BL; M2ð8; 1; 1; 0Þ ¼ 4a2!

2
BL;

M2
�
3; 2; 2;�1

3

�
¼ 0;M2

�
�3; 1; 1;�2

3

�
¼ 0; M2ð1; 1; 1; 0Þ ¼ 4ð6a0 þ a2Þ!2

BL: (B20)

Analogously, for the 126H components we get

M2ð1; 3; 1;�1Þ ¼ ��2 þ 3ðð�� 2�0
4Þ!BL � �Þ!BL; M2ð1; 1; 3;þ1Þ ¼ ��2 þ 3ðð�� 2�0

4Þ!BL þ �Þ!BL;

M2

�
3; 3; 1;�1

3

�
¼ ��2 þ ðð3�þ 2ð�4 þ �0

4ÞÞ!BL � �Þ!BL;

M2

�
�3; 1; 3;þ1

3

�
¼ ��2 þ ðð3�þ 2ð�4 þ �0

4ÞÞ!BL þ �Þ!BL; M2

�
6; 3; 1;þ1

3

�
¼ ��2 þ ðð3�þ 2�0

4Þ!BL þ �Þ!BL;

M2

�
�6; 1; 3;�1

3

�
¼ ��2 þ ðð3�þ 2�0

4Þ!BL � �Þ!BL; (B21)

M2ð1; 2; 2; 0Þ ¼ ��2 þ 1
2 ð6�þ 7�4 þ 6�0

4Þ!2
BL �2	2!

2
BL

�2	�
2!

2
BL ��2 þ 1

2 ð6�þ 7�4 þ 6�0
4Þ!2

BL

 !
; (B22)

M2ð8; 2; 2; 0Þ ¼ ��2 þ 1
2 ð6�þ �4 þ 6�0

4Þ!2
BL �2	2!

2
BL

�2	�
2!

2
BL ��2 þ 1

2 ð6�þ �4 þ 6�0
4Þ!2

BL

 !
; (B23)

M2

�
�3; 1; 1;þ1

3

�
¼ ��2 þ ðð3�þ �4 þ 2�0

4Þ!BL þ �Þ!BL 4	2!
2
BL

4	�
2!

2
BL ��2 þ ðð3�þ �4 þ 2�0

4Þ!BL � �Þ!BL

 !
; (B24)

M2

�
3; 2; 2;þ2

3

�
¼ ��2 þ 1

2 ðð6�þ �4 � 2�0
4Þ!BL þ 4�Þ!BL �2	2!

2
BL

�2	�
2!

2
BL ��2 þ 1

2 ðð6�þ �4 � 2�0
4Þ!BL � 4�Þ!BL

 !
; (B25)

where the matrices above are spanned over fð3; 1; 1;� 1
3Þ�� ; ð3; 1; 1;� 1

3Þ�g; fð�3; 2; 2;� 2
3Þ�� ; ð�3; 2; 2;� 2

3Þ�g,fð1; 2; 2; 0Þ�� ; ð1; 2; 2; 0Þ�g and fð8; 2; 2; 0Þ�� ; ð8; 2; 2; 0Þ�g. As expected, there are 45� 15 ¼ 30 WGBs in the spectrum.
It is worth noting that (1, 3, 1, 0) and (1, 1, 3, 0) remain degenerate, which is due to the fact that for!R ¼ 0 theD-parity

is conserved by even !BL powers. On the contrary, in the 126H components the D-parity is broken by the � term that is
linear in !BL.

c. The 4C2L1R limit, !R � 0, !BL ¼ 0 and � ¼ 0

Again, as anticipated, the clustering of the scalar spectrum in the 4C2L1R limit follows the decomposition rule listed in
Table I:

M2ð15; 1; 0Þ ¼ �2a2!
2
R; M2ð1; 3; 0Þ ¼ 4a2!

2
R; M2

�
6; 2;þ1

2

�
¼ 0; M2ð1; 1;þ1Þ ¼ 0;

M2ð1; 1; 0Þ ¼ 4ð4a0 þ a2Þ!2
R;

(B26)

M2ð10; 3; 0Þ ¼ ��2 þ 2ð�þ �0
4Þ!2

R; M2ð10; 1;�1Þ ¼ ��2 þ 2ðð�� �0
4Þ!R þ �Þ!R;

M2ð10; 1; 0Þ ¼ ��2 þ 2ð�þ �4 þ �0
4Þ!2

R; M2ð10; 1;þ1Þ ¼ ��2 þ 2ðð�� �0
4Þ!R � �Þ!R;

(B27)
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M2ð6; 1; 0Þ ¼ ��2 þ ð2�þ �4 þ 2�0
4Þ!2

R �4	2!
2
R

�4	�
2!

2
R ��2 þ ð2�þ �4 þ 2�0

4Þ!2
R

� �
; (B28)

M2

�
15; 2;þ1

2

�
¼ ��2 þ 1

2ðð4�þ �4 þ 2�0
4Þ!R � 2�Þ!R 2	2!

2
R

2	�
2!

2
R ��2 þ 1

2ðð4�þ �4 þ 2�0
4Þ!R þ 2�Þ!R

 !
: (B29)

The mass matrices above are defined on the bases
fð6; 1; 0Þ�� ; ð6; 1; 0Þ�g and fð15; 2;� 1

2Þ�� ; ð15; 2;þ 1
2Þ�g, re-

spectively. As expected, there are in total 45� 19 ¼ 26
WGBs.

4. Few remarks on global symmetries

It is illuminating to look at the global symmetries of the
scalar potential when only the moduli of 45H and 126H
appear in the scalar potential. In such a case, (i.e., with
a2 ¼ �2 ¼ �4 ¼ �0

4 ¼ �2 ¼ � ¼ �4 ¼ �0
4 ¼ 	2 ¼ 0),

the global symmetry of V0 in Eq. (1) is Oð45Þ �Oð252Þ.
This symmetry is spontaneously broken into Oð44Þ �
Oð251Þ by the 45H and 126H VEVs yielding 44þ 251 ¼
295 Goldstones in the scalar spectrum. Since, at the same
time, the gauge SOð10Þ symmetry is broken to the SM
gauge group, 45� 12 ¼ 33 would-be Goldstone bosons
are ‘‘eaten’’ by the gauge fields associated with the
SOð10Þ=SM coset and drop from the scalar spectrum,
295� 33 ¼ 262 PGB remain. Their masses are generally
expected to receive contributions from the explicitly break-
ing terms a2, �2, �4, �

0
4, �2, �, �4, �

0
4 and 	2. A detailed

inspection of the mass matrices in Eqs. (B5)–(B16), in-
deed, reveals the total of 262 massless degrees of freedom.

In this respect, let us emphasize that the (1, 3, 0) and (8,
1, 0) components of 45H of our central interest in Sec. II C
belong to this category but, for various reasons, they re-
ceive just the a2-proportional mass contribution at the tree
level while the other couplings enter the relevant mass
formulas only via loops.

APPENDIX C: THE TREE-LEVEL
GAUGE-BOSON SPECTRUM

Let us start with the scalar kinetic terms19

1

4
ðD��Þ�abðD��Þab and

1

2 �5!ðD��Þ�abcdeðD��Þabcde;
(C1)

where the covariant derivatives are given by

ðD��Þab ¼ @��ab � i
1

2
gðA�Þij½�ij; �	ab (C2)

and

ðD��Þabcde¼@��abcde� i
1

2
gðA�Þij½ð�ijÞaa0�a0bcde

þð�ijÞbb0�ab0cdeþð�ijÞcc0�abc0de

þð�ijÞdd0�abcd0eþð�ijÞee0�abcde0 	; (C3)

respectively, and �ij (i; j ¼ 1; . . . ; 10) are the SOð10Þ gen-
erators in the fundamental representation

ð�ijÞab ¼ �ið
ai
bj � 
aj
biÞ: (C4)

One finds the following expressions for the field dependent
mass matrices of the gauge bosons

M 2
Að�ÞðijÞðklÞ ¼ g2

2
Tr½�ðijÞ; �	½�ðklÞ; �	 (C5)

for the contribution from the VEVs in the 45H, and

M 2
Að�;��ÞðijÞðklÞ ¼� g2

2 �5!½ð�ðijÞÞaa0�
�
a0bcdeþð�ðijÞÞbb0��

ab0cdeþð�ðijÞÞcc0��
abc0deþð�ðijÞÞdd0��

abcd0eþð�ðijÞÞee0��
abcde0 	

�½ð�ðklÞÞaa00�a00bcdeþð�ðklÞÞbb00�ab00cdeþð�ðklÞÞcc00�abc00deþð�ðklÞÞdd00�abcd00eþð�ðklÞÞee00�abcde00 	þc:c:;

for that of the VEV in 126H, where (ij), (kl) stand for ordered pairs of indices.

1. Contributions to gauge bosons’ masses from 45H

Evaluating Eq. (C5), one obtains

M2
Að1; 1;þ1Þ ¼ 4g2!2

R; M2
A

�
�3; 1;�2

3

�
¼ 4g2!2

BL; M2
A

�
3; 2;�5

6

�
¼ g2ð!R �!BLÞ2;

M2
A

�
3; 2;þ 1

6

�
¼ g2ð!R þ!BLÞ2; (C6)

19Notice that ��
abcde�abcde ¼ �abcde�abcde, where � and �� are defined, respectively, in Eqs. (A2) and (A3).
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while, as expected, there are no contributions of h45Hi toM2
Að1; 3; 0Þ,M2

Að8; 1; 0Þ andM2
Að1; 1; 0Þ. Note that, in the limits

of the standard 51Z (!R ¼ !BL), flipped 501Z0 (!R ¼ �!BL), 3c2L2R1BL (!R ¼ 0) and 4C2L1R (!BL ¼ 0) vacua, there
are 25, 25, 15 and 19 massless gauge bosons, respectively.

2. Contributions to gauge bosons’ masses from 126H

Besides M2
Að1; 3; 0Þ, M2

Að8; 1; 0Þ and M2
Að3; 2;� 5

6Þ, which receive no contributions from h126Hi one has

M 2
Að1;1;þ1Þ¼ 2g2j
j2; M2

A

�
�3;1;�2

3

�
¼ 2g2j
j2; M2

A

�
3;2;þ1

6

�
¼ 2g2j
j2; M2

Að1;1;0Þ¼ 6 2
ffiffiffi
6

p
2
ffiffiffi
6

p
4

� �
g2j
j2:

Here the SM singlet matrix is defined on the pair of singlets
from 15 and 1 of SUð4ÞC, respectively. One has

DetM2
Að1; 1; 0Þ ¼ 0; (C7)

TrM2
Að1; 1; 0Þ ¼ 10g2j
j2; (C8)

and, as expected, there is a massless state in the singlet
sector. The number of vanishing entries corresponds
to the dimension of the SUð5Þ algebra preserved by the
126H VEV 
. Summing together the 45H and 126H
contributions, one ends up with 12 massless vector
bosons of the unbroken SUð3Þc � SUð2ÞL �Uð1ÞY gauge
symmetry.

APPENDIX D: SAMPLE SPECTRA

The details of the bosonic spectrum for the sample
settings described in Secs. III C 1 c and III C 2 c are given
in Tables IV and V, respectively. The symbols RS, CS and
VB denote, consecutively, real scalars, complex scalars
and vector bosons. Notice that a double counting in the
SUð2ÞL doublet sector is, conveniently, avoided by treating
both ð1; 2;þ 1

2Þ’s as real scalars; for further details see

Sec. III B 2.
Note also that since we are working in the Feynman

gauge, the Goldstones affect the b-coefficients at the mass
scales of the corresponding vector bosons (recall the
Feynman-gauge pole structure of the Goldstone boson
propagators); hence, the Goldstone bosons (GB) are
displayed along with the relevant gauge fields in
Tables IV and V.
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