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Quantum interference of helicity amplitudes provides a powerful tool for measuring the spins of new

particles. By looking at the azimuthal angular dependence of the differential cross section in the

production followed by decay of a new particle species, one can determine its spin by looking at the

various cosine modes. The heavy spin-2 Kaluza-Klein graviton provides a unique signature with a cosð4�Þ
mode. We study the feasibility of this approach to measuring the spin of the Kaluza-Klein graviton in the

Randall-Sundrum model at the LHC.
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I. INTRODUCTION

The LHC at CERN is expected to produce a wealth of
discoveries by probing the TeV scale for the first time.
Apart from finally accessing the electroweak symmetry
breaking scale and thus potentially discovering the elusive
Higgs boson, we expect to see new physics that resolves
the hierarchy/naturalness problem [1–4] and perhaps pro-
vides an insight into the nature of dark matter. One exciting
possible solution to the hierarchy problem is the existence
of warped extra dimensions [5,6] which allows for TeV
scale gravitational interactions. There are many variations
of the basic theory [7] but one common feature that
they share is the existence of heavy Kaluza-Klein (KK)
gravitons.

For the purpose of this paper, we will consider a
Randall-Sundrum model with 3þ 1-dimensional space-
time with one additional warped extra dimension (RS1).
The standard model fields are confined to a 3þ
1-dimensional TeV brane and the graviton propagates
freely in the 4þ 1-dimensional bulk. Quantization of the
graviton wave function in the extra dimension, with
boundaries between the TeV brane and a Planck brane,
leads to various modes which appear as heavy spin-2 fields
in the 3þ 1-dimensional effective theory on the TeV brane.

One of the challenges at the LHC will be to determine
the spins of newly discovered particles in order to distin-
guish various theoretical models. The KK graviton pro-
vides a unique signature of gravitational physics at the TeV
scale by virtue of its spin-2 nature. Thus, it becomes crucial
to have techniques to identify its spin. So far, the technique
proposed to measure KK-graviton spin at the LHC relies
on resonant graviton production followed by decay into a
lepton pair [8–14]. By looking at the polar angular depen-
dence of the leptons relative to the beam axis, one sees a
quartic behavior of the differential cross section.

d�

d cos�
¼ Acos4�þ Bcos2�þ C: (1)

For additional spin measurement techniques, including
searches involving different final states, see [15].
Recently, a new technique for measuring spin based on

ideas similar to [16] has been proposed. One can look at
quantum interference of helicity states in the azimuthal
angular dependence of particle decays to study their spin in
a model-independent way [17,18]. The goal of this paper is
to apply this technique to study the KK-graviton spin and
look at its feasibility at the LHC.

II. MODEL PARAMETERS

The interaction between the massive KK gravitons and
the standard model fields in the four-dimensional effective
theory is given by the Lagrangian [19,20]

L int ¼ � 1

�

X
n

GðnÞ��T ��: (2)

Here, GðnÞ�� represents the nth KK-graviton mode.T �� is

the stress-energy tensor of the standard model (SM)
Lagrangian given by

T �� ¼ ����LSM þ 2
�LSM

�g��

��������g��¼���

: (3)

� is the coupling given by

� ¼ e�krc� �Mpl; (4)

where k is of the order of the Planck scale, rc is the

compactification radius of the extra dimension, and �Mpl �
Mpl=

ffiffiffiffiffiffiffi
8�

p
is the reduced Planck scale. Note the absence of

KK parity which allows the heavy graviton modes to decay
into purely standard model particles.
The mass of the nth KK graviton is given by

mn ¼ xn�
k
�Mpl

; (5)

where xn are the nth zeros of the J1 Bessel function. While
studying the properties of the n ¼ 1 KK graviton, we can
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thus regard this theory as being dependent on only two
parameters � and k or equivalently the dimensionless
coupling c � k

�Mpl
and m1, the mass of the KK graviton of

interest.
Naturalness constraints require � less than about

10 TeV. In order for an effective field theory description
of gravity to be valid, we require that the five-dimensional
curvature bound, jR5j<M2

5, is satisfied, where M5 is the

five-dimensional Planck scale. By looking at the various
theoretical and experimental constraints on the model pa-
rameters [9] (Fig. 1), we expect c to lie roughly between
0.01 (weakly coupled) and 0.1 (strongly coupled). We
consider m1 in the range of 750 GeV–2 TeV. The decay
width of the graviton to standard model particles can be
evaluated by using the expressions given in [10,20,21]. In
the limit that decay particle masses can be neglected, the
decay width of the graviton is given by

�n ¼ 	mnðxncÞ2; (6)

where 	 is a constant depending upon the number of open
decay channels. If one assumes decay to only standard
model particles, the ratio �1:m1 is found to be 1.37% for
c ¼ 0:1 (assuming a Higgs mass of 120 GeV and decay
into standard model particles only). This value is in dis-
agreement with the value 1.43% cited in the literature [22].

III. USING AZIMUTHAL ANGULAR
DEPENDENCE TO MEASURE SPIN

To determine the spin of a particle X, we consider the
production process Aþ B ! Xþ Y where X further de-
cays to Mþ N. Here, A and B refer to beam particles or
partons, X is the parent particle whose spin we wish to

measure.M and N are the daughter particles that X decays
into.
This gives us two planes to consider, namely, the pro-

duction plane (defined by the beam direction and the parent
momentum) and the decay plane (defined by the parent
momentum and either daughter) (Fig. 2).
Now, consider the daughterM with momentum ~pM. The

angle it makes with the parent momentum ~pX is defined to
be �. Projecting out the component of ~pM parallel to ~pX

and looking at the angle between the residual vector and
the production plane, we define an angle �. Thus, �
describes azimuthal rotations of the vector ~pM in the x–y
plane with ~pX taken to be the z axis. From the figure, it is
clear that equivalently � can be defined as the angle
between the production plane and the decay plane. More
explicitly, we define the two vectors,

~p prod ¼ ~pA � ~pX (7)

and

~p decay ¼ ~pX � ~pM: (8)

Then,

cos� ¼ p̂prod � p̂decay: (9)

Here, p̂ denotes the normalized vectors.
In the limit of the narrow width approximation, the

amplitude can be split into Mprod and Mdecay.

M prod ¼ hX; YjT prodjA; Bi; (10)

M decayð�Þ ¼ hM;N;�jT decayjXi; (11)

where we have explicitly shown the � dependence of the
final state and decay amplitude. We also have

M decayð�Þ ¼ hM;Nð� ¼ 0ÞjeþiJz�T decayjXi; (12)

where Jz generates rotations about the ~pX direction. We
can now think of the rotation operator as acting on the
interaction T matrix plus ket, rather than on the bra.
Assuming T decay is rotationally invariant, we only need

to consider rotations of the particle X about its own
momentum axis. In this case,

FIG. 1 (color online). Experimental and theoretical constraints
on the KK-graviton parameters in the c–m1 plane. Red curves
show experimental constraints and blue curves show theoretical
constraints. The green shaded region shows the allowed parame-
ter space.

FIG. 2. Production and decay planes of the process Aþ B !
Xþ Y ! Mþ N. The angle � is defined as the azimuthal angle
between ~pX and ~pM or equivalently the angle between the
production and decay planes.
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Jz ¼ ~J � p̂ ¼ ð~sþ ~r� ~pÞ � p̂ ¼ ~s � p̂ ¼ h: (13)

Thus, rotations about the momentum axis of a given
helicity state, h for X only produce a phase eþih�. So,

M decayð�Þ ¼ eþih�Mdecayð� ¼ 0Þ: (14)

Thus, allowing for production over all possible helicity
states of X we must sum coherently over all possible
amplitudes, and so, the differential cross section takes the
form

d�

d�
/
��������
X
h

Mprode
þih�Mdecayð� ¼ 0Þ

��������
2

: (15)

Here, h runs from�s toþswhere X has spin s. From this,
it is clear that, if we look at the differential distribution
d�=d�, interference between various helicity states is
responsible for a nontrivial � dependence,

d�

d�
¼ A0 þ A1 cosð�Þ þ A2 cosð2�Þ þ . . .

þ A2s cosð2s�Þ: (16)

Note the absence of sinðn�Þ modes, which would be
present in the case of CP-violating processes.

The standard model has no particles with spin greater
than 1 and so the largest mode from the standard model
would only be cosð2�Þ, corresponding to X being a gauge
boson. We can now see the unique signature that the KK
graviton will produce, namely, a cosð4�Þ mode.

Also, we note that this result is valid in any reference
frame but the size of the coefficients Ai will be different in
different reference frames. To maximize this unique sig-
nature for the KK graviton, we need to choose a reference
frame in which A4=A0 has a large value.

IV. SIGNAL AND BACKGROUND

We assume that the mass of the graviton will be well
measured using resonant graviton production through the
process pp ! G ! lþl� [8,9].

The process we are considering is pp ! Gþ jet fol-
lowed by G ! lþl� where l are muons or electrons. The
dominant parton level subprocess comes from gg ! Gg
with subdominant qð �qÞg ! Gqð �qÞ and the crossed channel
q �q ! Gg. Here, G represents the graviton, g represents
gluons, and q represents the various quarks.

The standard model background comes from the subdo-
minant channels with G replaced by an off-shell Z, 
. This
is the exact analog of Drell-Yan background in resonant
graviton production. Cutting on the invariant mass of the
lepton pair in a mass window around the graviton mass gets
rid of most of the background. The standard model back-
ground consists of spin-1 states and cannot give any con-
tribution to A4. At most, it can affect the value of A0 and
dilute the value of A4=A0.

V. CALCULATING THE DIFFERENTIAL
CROSS SECTION

A. Zero-rapidity frame

The dileptonþ jet events that we are looking for are fully
reconstructible at the LHC. The key reason for this is that
we have a signature with no missing energy momentum
which in turn is a direct consequence of the absence of KK
parity. The graviton 4-momenta should have minor errors
compared to the jet reconstruction since it is reconstructed
from the dilepton 4-momenta. As previously mentioned,
the size of the nonzero coefficients Ai are frame dependent
and so we must choose a frame in which the normalized
coefficient S4 � jA4=A0j is large. It was found that in the
center-of-mass frame of the partonic processes, S4 was
larger than in the lab frame. However, transforming from
the lab frame to the center-of-mass frame would have an
error dependent on the error of the jet reconstruction. To
avoid this error and still make an improvement in the signal,
we studied S4 in the zero-rapidity frame of the graviton, i.e.
the frame where the graviton is purely transverse to the
beam axis (Fig. 3). The reason for this is the boost factor can
be calculated from just the graviton momentum in the lab
frame which is well reconstructed from the leptons.

B. Cuts

The first set of cuts used included a pseudorapidity
(j�j< 2:5) cut and pT > 20 GeV cut for the jet. The
second set of cuts was a mass-window cut on the invariant
mass distribution of the lepton pair. This gets rid of a large
portion of the standard model background. The size of the
window was determined by detector resolution at ATLAS
[23,24] for an eþe� pair. The third set of cuts involved
rapidity cuts (j�j< 2:6) on each of the leptons with a
requirement that pT > 10 GeV for either one of the leptons

and pT > 20 GeV for the other. An isolation cut, �r �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið��Þ2 þ��2
p

> 0:7, was imposed between the lepton
and the jet. However, the third set of cuts affects the
angular distribution of the leptons and can create false
cosine modes in the differential distribution.
To solve this problem, one imposes ‘‘rotationally invari-

ant cuts,’’ first introduced in [25]. Thus, it is not sufficient
for the observed lepton to simply pass these cuts, the
leptons are rotated around the graviton momentum axis
in small increments, and at each step it is checked that the
lepton passes the cuts. The added complication is that the

FIG. 3. Boost from center-of-mass or laboratory frame to the
zero-rapidity frame.
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rotations must be made in the zero-rapidity frame to pre-
serve rotational invariance in that frame (Fig. 4). So, the
procedure is as follows:

(1) First, reconstruct the event completely using the
dilepton and jet signals.

(2) Calculate the boost factor to take us from the lab
frame to the zero-rapidity frame of the graviton.

(3) Boost all momenta to the zero-rapidity frame.
Rotate the leptons about the graviton momentum
direction by a small angle, say 1�.

(4) Reboost the new lepton and jet momenta to the lab
frame. Check if they pass the cuts, if they do not
throw out the event.
If they do pass the cuts go back to step 3.

(5) Repeat this procedure until we have made a full
360� rotation of the lepton momenta about the
graviton momentum axis in the zero-rapidity frame.

This procedure ensures that the cuts do not affect the
azimuthal angular distribution in the zero-rapidity frame.

C. Simulations

We used HELAS [26] with spin-2 particles [27] to cal-
culate the helicity amplitudes for the graviton scattering
process. LHApdf [28] was used to fold in the parton distri-
bution functions (pdf) for the protons. We used the pdf set
CTEQ6L [29]. An adaptive Monte-Carlo package, BASES
[30], was used to perform the integration over phase space
and produce the differential cross section d�=d�.

VI. DETERMINING THE COEFFICIENTS
OF THE VARIOUS COSINE MODES

Once we have the binned distribution d�=d� with 2n
bins (for the purposes of calculation in this paper, we used
50 bins), we try to fit coefficients of the form

xi � 1

Binsize

Z ð2�i=2nÞ

½2�ði�1Þ�=2n
d�

d�
d�

¼ 1

2�=2n

Z ð2�i=2nÞ

½2�ði�1Þ�=2n

�Xn�1

j¼0

Aj cosðj�Þ

þ Xn
j¼1

Bj sinðj�Þ
�
d�; (17)

where i runs over 0; 1; 2; . . . ; 2n� 1. The integration ac-
counts for the binning process and the 2n coefficients
A0; . . . ; An�1; B1; . . . :; Bn correspond to the strengths of
the various cosine and sine modes that can be resolved
from each other.
Thus, we have a simple linear relationship between

the 2n binned values of d�=d� (xi) and the 2n binned-
Fourier coefficients (yj) of the form xi ¼ pijyj. Here,

pij are either of the form
R2�i=2n
½2�ði�1Þ�=2n cosðj�Þd� orR2�i=2n

½2�ði�1Þ�=2n sinðj�Þd�.

Now, we can simply invert this matrix for a given value
of n to recover the amplitudes of the various harmonics.
For the d�=d� distribution for the graviton, we expect to
see only the coefficients A0; . . . ; A4 to be nonzero. Also,
since the beams are identical, we expect to see only the
even cosine modes. The odd cosine modes drop out since
they flip sign when the beams are switched (� ! ���).

VII. RESULTS AND DISCUSSION

Simulations were done for the process pp ! eþe�j at
7 TeV beam energy using a dilepton invariant mass-
window cut around the graviton mass. Figure 5 shows the
d�=d� distribution for a 1 TeV graviton with c ¼ 0:05.
Figure 6 shows the normalized fitted coefficients. The

FIG. 4. The leptons are rotated about the graviton momentum
axis in the zero-rapidity frame. The dileptonþ jet momenta
must be reboosted to the lab frame at each step to make sure
that they pass the cuts.
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FIG. 5 (color online). Differential distribution ( d�d� ) for m1 ¼
1 TeV and c ¼ 0:05. A strong cosð2�Þ mode can be seen but
there is also a cosð4�Þ component. The theoretical curve (pro-
duced from simulations) is shown in green. The red dots indicate
the binned values, with error bars corresponding to Gaussian
errors for a luminosity of 500 fb�1.
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normalized cosine coefficients (Si) are shown in the first 25
bins, with the zero mode suppressed. The next 25 bins
show the sine modes. The size of the S4 coefficient is
3.14%. Note the absence of odd cosine modes, this arises
from the fact that we are using identical beams.

To look at the dependence of the signal on graviton
mass, simulations were performed for c ¼ 0:1 and m1 ¼
750 GeV, 1 TeV, 1.5 TeV, and 2 TeV. The results are
summarized in Table I. The total cross section decreases
rapidly with graviton mass as expected. The background is
negligible and, as we will see in the next paragraph, has
little effect even if the coupling c is reduced. The main
concern is therefore the decrease in S4 and the low cross
section at large values of m1.

The results for a 1 TeV graviton at different values of the
coupling c are shown in Table II. In the absence of cuts, the
graviton cross section is expected to approximately scale
like c2. The standard model background level is 0.15 fb
which is �5% at c ¼ 0:01. The value of S4 is expected to

be diluted slightly by the background because of a corre-
sponding 5% increase in A0. As c is increased, the back-
ground as a percentage of the cross section decreases and
S4 is restored to its maximum strength.

VIII. ERROR ANALYSIS

As we have seen, the effect of background is small and
does not contribute to A4. Its only effect is to dilute the
normalized coefficient S4. Thus, the experimental error
will be determined by event statistics. We assumed

Gaussian errors (�xj ¼ xj

ffiffiffiffi
Nj

p
Nj

) in the jth bin assuming

Nj ¼ L�
xjP
xj
events in each bin for integrated luminosi-

ties L of 10, 100, and 500 fb�1. Since, the coefficients Ai

are determined from the binned values xj through a simple

linear relationship (via the matrix qij ¼ p�1
ij ). It is then

straightforward to work out the errors in the normalized
coefficients (�Si).

�Si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

�
qij
A0

� Si
A0

q0j

�
2
�x2j

vuut : (18)

The first term in the parenthesis arises from the simple
linear relationship between Ai and xj. The second term

comes from the error associated with the normalization

factor A0. The relative errors ( �S4S4
) for various integrated

luminosities at different points in the parameter space of
the model are given in Table III. Avalue>1 for the relative
error indicates that statistics would be poor and give no
reason to doubt S4 being consistent with 0. A value of 0.20
or less indicates at least a 5� effect indicating high like-
lihood of confirmation of the spin-2 nature of the KK
graviton.
Alternatively, if one requires only a 95% confidence

level (2�) effect then a value of 0.5 or less for �S4=S4
should suffice. If we additionally assume information from
�þ��j statistics in addition to the eþe�j channel (assum-
ing that detector resolution for the invariant mass is the
same for both lepton species), then we can see a factor 2
improvement in the statistics. This would in turn result in a

factor
ffiffiffi
2

p
drop in the error. Thus, in this case the parameter

space in Table III for which �S4=S4 < 0:71 would

0

5

10

15

20

0 10 20 30 40 50

i

FIG. 6 (color online). Fitted cosine coefficients of the binned
differential cross section shown in Fig. 5 corresponding to 50
bins. The first 25 modes label the normalized cosine modes, the
next 25 show the sine modes. (The large 0-mode which would be
100% is not shown,) See text for how the error bars in this plot
are calculated using error bars from the binned differential cross
section.

TABLE I. Signal strength S4 � jA4=A0j as a function of the
mass of the graviton. c ¼ 0:1 for all entries. S2 is shown for
comparison. The mass window (based on the ATLAS detector
resolution for eþe� invariant mass [23,24]) cuts out most of the
background.

m1 (TeV) �m (GeV) �total (fb) �bgd (fb) S2 S4

0.75 24.4 871.7 0.39 20.00% 3.50%

1.0 30.7 229.8 0.15 20.48% 3.16%

1.5 42.8 28.7 0.03 20.70% 1.52%

2.0 55.0 5.52 0.01 20.08% 0.80%

TABLE II. Signal strength S4 � jA4=A0j as a function of the
coupling c. All entries are for m1 ¼ 1 TeV. S2 is shown for
comparison. The standard model background cross section is
0.15 fb.

c �total (fb) S2 S4

0.01 3.27 18.62% 3.05%

0.02 12.51 20.02% 3.15%

0.05 72.75 20.42% 3.14%

0.1 229.8 20.48% 3.16%
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correspond to potential for a 2� confirmation of the gravi-
ton spin, and �S4=S4 < 0:28 would correspond to a 5�
confirmation.

IX. COMPARISON WITH RESONANT GRAVITON
PRODUCTION METHOD AND DISTINCTION

FROM SPIN-0

Osland et al. [11,12] consider the resonant graviton
production process pp ! G ! lþl� to measure the spin
of the graviton using the quartic angular dependence of
the polar angle of the lepton. This results in a center-
edge asymmetry (ACE) in the differential distribution
d�=d cos�. Their results indicate (2�) identification of
the graviton spin for c ¼ 0:01 and 10�1 fb of luminosity
for masses upto 1.1 TeV. For c ¼ 0:1, they claim identi-
fication up to masses of 2.4 TeV.

The azimuthal angular dependence method that we con-
sidered has inherently lower statistics compared to reso-
nant graviton production because of the extra recoiling jet.
Our method suffers from lower statistics, but given
higher luminosities, it can still provide an independent

confirmation of the KK-graviton spin for a large region
of the expected parameter space of the KK graviton.
The center-edge asymmetry method can distinguish a

spin-1 particle (Z0) from a KK graviton more readily than it
can distinguish it from a spin-0 particle.
Our method proves complementary, since the KK gravi-

ton also produces a large cosð2�Þ mode (S2 � 20%) and
can thus easily be distinguished from a scalar which would
not produce any nonzero modes. The results for �S2=S2
are shown in Table IV.
Assuming, as before inclusion of �þ�� statistics

�S2=S2 < 0:71 corresponds to a 2� distinction from a
spin-0 particle, and �S2=S2 < 0:28 corresponds to a 5�
distinction. In regions of the parameter space of m1, where
the standard model background is comparable to the cross
section of interest (Table I), the confidence levels are
altered slightly because the off-shell 
 and Z, being
spin-1, contribute to the A2 coefficient.
From the table, we can see that even with 10 fb�1 of

luminosity, the spin-0 hypothesis can be ruled out for a
large portion of the allowed parameter space. Thus, our
method proves complementary to the approach by Osland
et al. by ruling out spin-0 more easily than spin-1. In both
methods, the distinction from spin-0 can be made from
comparable integrated luminosities.

X. SUMMARYAND CONCLUSION

We studied the process pp ! G jet ! lþl� jet and
looked at the differential distribution d�=d�. The distri-
bution was found to have a cosð4�Þmode, characteristic of
a spin-2 particle, with strength parametrized by S4. The
parameter S4 was �3% for values of m1 below a TeV. As
we go to higher graviton masses, the signal drops off, but
what is of more concern is the drop in cross section with
large m1 or low values of c. Both these scenarios are
unlikely to occur in conjunction because of naturalness
constraints (see Fig. 1).
In conclusion, observing higher cosine modes (> 2)

in the differential distribution would be a clear signal of
beyond standard model physics. Observing the cosð4�Þ
mode at the LHC would be a strong indicator of gravi-
tational physics at the TeV scale. If the coupling is
strong enough �0:05 or greater and the mass is suffi-
ciently low �1 TeV or less, we expect to have a clear
signal of the spin-2 nature of the KK graviton at
the LHC.
For regions of parameter space with larger masses or

lower couplings, the azimuthal angular dependence of the
cross section is still useful in ruling out the spin-0 hypothe-
sis and this can be done for fairly low luminosities
�10 fb�1 as well.
This method provides an important complementary and

independent approach to measuring the spin of the KK
graviton, as compared to the method of using polar angular
dependence from resonant KK-graviton production.

TABLE III. Statistical error �S4=S4 for different integrated
luminosities for the process pp ! eþe�j. �S4=S4 < 0:5ð0:71Þ
corresponds to a 2� confirmation of the graviton spin, and
�S4=S4 < 0:2ð0:28Þ corresponds to a 5� confirmation. The
values in brackets denote the 2� and 5� confidence levels if
one includes �þ��j production channels as well.

m1 (TeV) c 10 fb�1 100 fb�1 500 fb�1

0.75 0.1 0.43 0.14 0.06

1.0 0.01 8.03 2.54 1.14

1.0 0.02 3.97 1.26 0.56

1.0 0.05 1.65 0.52 0.23

1.0 0.1 0.93 0.29 0.13

1.5 0.1 5.42 1.71 0.77

2.0 0.1 23.52 7.44 3.32

TABLE IV. Statistical error �S2=S2 for different integrated
luminosities for the process pp ! eþe�j. �S2=S2 < 0:5ð0:71Þ
corresponds to a 2� distinction from a spin-0 particle, and
�S2=S2 < 0:2ð0:28Þ corresponds to a 5� distinction. The values
in brackets denote the 2� and 5� confidence levels if one
includes �þ��j production channels as well.

m1 (TeV) c 10 fb�1 100 fb�1 500 fb�1

0.75 0.1 0.07 0.02 0.01

1.0 0.01 1.30 0.41 0.18

1.0 0.02 0.62 0.19 0.09

1.0 0.05 0.25 0.08 0.04

1.0 0.1 0.14 0.04 0.02

1.5 0.1 0.39 0.12 0.06

2.0 0.1 0.93 0.29 0.13
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