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We present an analytic description of numerical results for the Landau-gauge SU(2) gluon propagator

Dðp2Þ, obtained from lattice simulations (in the scaling region) for the largest lattice sizes to date, in

d ¼ 2, 3 and 4 space-time dimensions. Fits to the gluon data in 3d and in 4d show very good agreement

with the tree-level prediction of the refined Gribov-Zwanziger (RGZ) framework, supporting a massive

behavior for Dðp2Þ in the infrared limit. In particular, we investigate the propagator’s pole structure and

provide estimates of the dynamicalmass scales that can be associatedwith dimension-two condensates in the

theory. In the 2d case, fitting the data requires a noninteger power of themomentump in the numerator of the

expression for Dðp2Þ. In this case, an infinite-volume-limit extrapolation gives Dð0Þ ¼ 0. Our analysis

suggests that this result is related to a particular symmetry in the complex-pole structure of the propagator

and not to purely imaginary poles, as would be expected in the original Gribov-Zwanziger scenario.
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I. INTRODUCTION

High-precision data from lattice simulations are a key
ingredient in our understanding of the low-energy aspects
of Yang-Mills theories associated with color confinement.
In fact, whereas new insight into the confinement mecha-
nism may be gained by investigating the properties of
gauge-field configurations produced in the simulations
(see e.g. [1]), specific features of proposed confinement
scenarios may be tested by comparison with lattice data. In
this case, one may obtain physical values for a model’s
parameters by fitting the predicted expression of a given
observable to its numerical realization. One may also hope
to over-constrain the proposed analytic forms, if the fits can
be done with a sufficiently high number and wide range of
data points, from which systematic errors have been con-
sistently eliminated. In particular, this applies to predic-
tions for the infrared behavior of gluon and ghost
propagators, formulated in Landau gauge for SUðNcÞ
gauge theory. Here we perform a series of fits to the gluon
propagator Dðp2Þ and test the predictions of the so-called
refined Gribov-Zwanziger (RGZ) framework, which dif-
fers from the scenario originally proposed by Gribov [2]
and Zwanziger [3] through the introduction of dimension-
two condensates, associated with dynamical mass genera-
tion [4]. Our analysis is done for pure SU(2) gauge theory.
The data have been produced previously and discussed in
[5–7] (see also [8]), but they have not been systematically
fitted until now. A companion paper with similar fits for the
ghost propagator is under way [9]. We note that an alter-

native comparison of these data to analytic predictions was
recently presented in [10].
The Gribov-Zwanziger confinement scenario is based on

restricting the functional integration to the first Gribov
region � delimited by the first Gribov horizon @�, where
the smallest nonzero (and positive) eigenvalue of the
Faddeev-Popov matrix M goes to zero [2,3]. Let us recall
that limiting the gauge configurations to this region was an
attempt—made by Gribov in Ref. [2]—to fix the gauge
completely, getting rid of spurious gauge copies, known
thereafter as Gribov copies. Now, � is a convex region of
very high dimensionality and therefore, as the infinite-
volume limit is approached, the increase in entropy should
favor [11] gauge configurations on the surface @�. This in
turn can cause the infrared enhancement of the ghost
propagator (which is related to the inverse ofM), inducing
long-range effects in the theory. Indeed, in Coulomb
gauge, the restriction to the first Gribov region causes the
appearance of a confining color-Coulomb potential [2,12].
Thus, in this scenario, formulated for momentum-space
propagators, the long-range features needed to explain
the color-confinement mechanism are manifest in the ghost
propagator, whereas the momentum-space gluon propaga-
torDðp2Þ should be suppressed in the infrared limit. Such a
suppression is associated with violation of spectral posi-
tivity, which is commonly interpreted as gluon confine-
ment [3,13,14]. In particular,Dð0Þ is originally expected to
be zero [2,3], corresponding to maximal violation of spec-
tral positivity. The parametrization of this behavior as a
propagator having a pair of poles with purely imaginary
masses has arisen in the Gribov-Zwanziger approach [2,3],
in connection with the study of gauge copies.
Lattice studies (see [8] for a recent review) have con-

firmed the suppression of the gluon propagator in the
infrared limit and the enhancement of the ghost propagator
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at intermediate momenta. However, considering lattice
sizes large enough to allow the investigation of the deep
infrared regime, it is clear that the results of the simulations
are not compatible with the scenario described above.
Indeed—in space-time dimension d ¼ 3, 4—the gluon
propagator shows a finite value as the momentum is taken
to zero and the enhancement of the ghost propagator is lost
in this limit. We note the very large lattice sizes employed
in order to observe such a behavior, L � 20 fm and larger
[5–7,15–18]. In any case, violation of reflection positivity
for the real-space gluon propagator (see e.g. [19]) is clearly
observed in the data.

Recently, the quantitative description of the massive
behavior for the gluon propagator has been studied by
several groups [10,18,20–31], based on different proposed
analytic forms. Earlier attempts of fitting gluon-propagator
data can be found, for example, in Refs. [32–35]. We note
that some of these studies (see e.g. [32,35]) have consid-
ered the so-called Gribov-Stingl form [36,37] for modeling
the massive behavior of the gluon propagator. This form is
a generalization of the Gribov propagator described above,
including pairs of complex-conjugate poles with a nonzero
real part. As illustrated below, the behavior predicted for
Dðp2Þ in the RGZ framework is also based on general
complex-conjugate poles for the (massive) propagator.
This proposed form is given for SUðNcÞ gauge theory
and for four or three space-time dimensions [4,38–41].
On the contrary, in the 2d case, the RGZ approach cannot
be implemented, since the dimension-two condensates
would induce severe infrared singularities, precluding the
restriction of the functional integration to the first Gribov
region [42]. By fitting rational functions of p2 to the whole
range of data for the SU(2) gluon propagator, we are able to
obtain estimates for the values in physical units for the
masses in the RGZ framework, as well as to gain a better
understanding of the pole structure in the proposed expres-
sions. In each case, we look for the best fit to the data, with
the smallest number of independent parameters, and relate
them to the condensates in the proposed analytic forms
only at the end. Put differently, the predicted dependence
of the fit parameters on the condensates is not imposed in
the fitting form, but is obtained as a result of the fit. This
allows us to use a wide fitting range, considering all data
points. We note that predictions from the RGZ framework
were already tested in [24], showing good fits (using a
somewhat different analytic form and a smaller fitting
range) to 4d lattice data for the SU(3) case.

The paper is organized as follows. The Gribov-
Zwanziger scenario is briefly reviewed in Sec. II. The
introduction of condensates as part of the RGZ scenario
is summarized is Sec. III, where we present the expressions
to be fitted to the lattice data. The numerical results are
discussed in general in Sec. IVand, in particular, for the 4d,
3d and 2d cases, respectively, in Secs. V, VI, and VII. We
present our conclusions in Sec. VIII.

II. THE GRIBOV-ZWANZIGER ACTION

The Gribov-Zwanziger (GZ) action, introduced in 1989
[13], implements an all-order restriction of the path inte-
gral to the first Gribov region

� � fAa
�ðxÞ: @�Aa

�ðxÞ ¼ 0;Mabðx; yÞ> 0g; (1)

where Aa
�ðxÞ is the gauge field and Mabðx; yÞ is the

Landau-gauge Faddeev-Popov operator

M abðx; yÞ ¼ ��ðx� yÞ@�Dab
�

¼ �ðx� yÞð��ab@2� þ fabc@�A
c
�Þ: (2)

By introducing auxiliary fields—a pair of complex-
conjugate bosonic fields ð �’ac

� ; ’ac
� Þ and a pair of anticom-

muting complex-conjugate fields ð �!ac
� ;!ac

� Þ—one is able

to obtain a local renormalizable action [11,43,44]. More
precisely, the generating functional for the GZ action can
be written in d space-time dimensions as [13,44,45]

ZðJÞ ¼
Z
½d��eSGZþ

R
ddxJa�ðxÞAa

�ðxÞ; (3)

where SGZ is the local GZ action given by

SGZ ¼ S0 þ S�; (4)

with

S0 ¼ SYM þSgf þ
Z

ddx½ �’ac
� @�D

ab
� ’bc

� � �!ac
� @�ðDab

� !bc
� Þ

�gð@� �!an
� ÞfabcDbm

� cm’cn
� �

(5)

and

S� ¼ ��2g
Z

ddx

�
fabcAa

�’
bc
� þ fabcAa

� �’bc
�

þ d

g
ðN2

c � 1Þ�2

�
: (6)

Here, a, b, c, m and n are color indices in the adjoint
representation, Nc is the number of colors, � is the so-
called Gribov parameter, SYM is the classical Yang-Mills
action

SYM ¼ 1

4

Z
ddxFa

��F
a
�� (7)

and Sgf is the Landau-gauge-fixing action

Sgf ¼
Z

ddxðba@�Aa
� þ �ca@�D

ab
� cbÞ; (8)

where the auxiliary field ba is a Lagrange multiplier en-
forcing Landau gauge and ( �ca, ca) are the Faddeev-Popov
ghost fields. Also, we indicate with ½d�� the integration
over all fields � 2 fAa

�; c
a; �ca; ba; �’ac

� ; ’ac
� ;!ac

� ; �!ac
� g.

Notice that one can simplify the notation of the auxiliary
fields ( �’ac

� , ’ac
� , �!ac

� , !ac
� ) in the action S0 using the
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symmetry of this action with respect to the composite
index i � ð�; cÞ. Thus, we can set

ð �’ac
� ; ’ac

� ; �!ac
� ;!ac

� Þ ¼ ð �’a
i ; ’

a
i ; �!

a
i ; !

a
i Þ (9)

and write

S0 ¼ SYM þ Sgf þ
Z

ddx½ �’a
i @�ðDab

� ’b
i Þ � �!a

i @�ðDab
� !b

i Þ
� gð@� �!a

i ÞfabcDbm
� cm’c

i �: (10)

Finally, the parameter � in Eq. (6) is fixed by the so-called
gap equation (also known as the horizon condition)

hgfabcAa
�’

bc
� i þ hgfabcAa

� �’bc
� i þ 2�2dðN2

c � 1Þ ¼ 0;

(11)

where hi indicates the expectation value in the measure
defined by Eq. (3). This condition is a consequence of the
restriction of the path integral to the first Gribov region.

As mentioned in the Introduction, one of the main out-
comes of the GZ theory is the modification of the behavior
of gluon and ghost propagators in the infrared (IR) limit
in comparison with the perturbative behavior 1=p2

[2,3,11,13,14,46]. Indeed, the gluon propagator becomes
IR-suppressed with a tree-level behavior given by

hAa
�ðpÞAb

�ð�pÞi � �abDðp2Þ
�
��� �

p�p�

p2

�

¼ �ab p2

p4 þ 2g2Nc�
4

�
��� �

p�p�

p2

�
:

(12)

This result is confirmed by one-loop calculations [47,48].
The above expression for the gluon propagator implies that
Dðp2Þ is null at zero momentum, which in turn indicates
maximal violation of reflection positivity for the real-space
gluon propagator DðxÞ [46]. This violation is usually con-
sidered a manifestation of gluon confinement [3,13,14]. At

the same time, one finds that the ghost propagator displays
an enhanced IR behavior

hcaðpÞ �cbðpÞi � �abGðp2Þ � �ab 1

p4
: (13)

This behavior is indicative of a long-range interaction in
the theory and it should be related to quark confinement
[2,14,49].

III. THE REFINED GRIBOV-ZWANZIGER
FRAMEWORK

More recently, the GZ action has been ‘‘refined’’ by
taking into account the possible existence of dimension-
two condensates [4,38–41]. In the most general case [41],
four different condensates are considered, i.e.

hAa
�A

a
�i ! �m2 h �’a

i ’
a
i i ! M2

h’a
i ’

a
i i ! � h �’a

i �’
a
i i ! �y; (14)

where we have listed the dynamical mass associated to
each condensate. (Note that � is complex, whereas �m2

and M2 are real and positive.) The condensate �m2 is
directly related to the gluon condensate hg2A2i (see e.g.
[24]). One can show [41] that the refined Gribov-
Zwanziger (RGZ) action can be renormalized. At the
same time, there is clear evidence that the original GZ
theory dynamically transforms into the refined theory,
since the minimum of the associated effective potential
favors nonvanishing condensates [41]. As displayed below,
a nonzero value for these condensates has an effect on the
IR behavior of gluon propagators. The influence on the
ghost propagator will be discussed in a forthcoming work
[9], in which one-loop results are taken into account and
the role of the ghost-gluon vertex is investigated.

The gluon propagator

In the presence of the four condensates considered in
Eq. (14), the GZ gluon propagator (12) is modified [41] as

Dðp2Þ ¼ p4 þ 2M2p2 þM4 � ��y

p6 þ p4ðm2 þ 2M2Þ þ p2ð2m2M2 þM4 þ �4 � ��yÞ þm2ðM4 � ��yÞ þM2�4 � �4

2 ð�þ �yÞ ; (15)

where the condensatesm2,M2, � are described above and �4 is related to the Gribov parameter � through �4 ¼ 2g2Nc�
4.

Since � and �y are complex-conjugate quantities, we can set

� ¼ �1 þ i�2 �y ¼ �1 � i�2 (16)

and rewrite Eq. (15) as

Dðp2Þ ¼ p4 þ 2M2p2 þM4 � ð�2
1 þ �2

2Þ
p6 þ p4ðm2 þ 2M2Þ þ p2½2m2M2 þM4 þ �4 � ð�2

1 þ �2
2Þ� þm2½M4 � ð�2

1 þ �2
2Þ� þ �4ðM2 � �1Þ

: (17)

It is interesting to notice that this propagator gets simplified if � ¼ �y ¼ �1 (i.e. �2 ¼ 0), which corresponds to the
equality h �’ �’i ¼ h’’i from (14). Indeed, in this case one can factorize the quantity p2 þM2 � �1 in the numerator and in
the denominator of the above formula, obtaining
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Dðp2Þ ¼ p2 þM2 þ �1

p4 þ p2ðM2 þm2 þ �1Þ þm2ðM2 þ �1Þ þ �4
:

(18)

Clearly, both propagators (17) and (18) have, in principle, a
finite nonzero value at zero momentum. Nevertheless, if
the value of Dð0Þ is sufficiently small, one still finds that
the real-space propagator DðxÞ becomes negative for some
(large) value of x, i.e. reflection positivity can also be
violated for these propagators.

Note that both Eqs. (17) and (18) can be decomposed as
sums of propagators of the type�=ðp2 þ!2Þ. In particular,
we can write Eq. (17) as

Dðp2Þ ¼ �

p2 þ!2
1

þ �

p2 þ!2
2

þ �

p2 þ!2
3

: (19)

To this end, we only need to solve the cubic equation

x3 þ x2ðm2 þ 2M2Þ þ x½2m2M2 þM4 þ �4 � ð�2
1 þ �2

2Þ�
þm2½M4 � ð�2

1 þ �2
2Þ� þ �4ðM2 � �1Þ ¼ 0; (20)

obtained by setting p2 ¼ x in the denominator of Eq. (17),
and to find its three roots!2

1,!
2
2 and!

2
3. At the same time,

the gluon propagator in Eq. (18) can be written as

Dðp2Þ ¼ �þ
p2 þ!2þ

þ ��
p2 þ!2�

; (21)

where we expect to have �� ¼ ��þ if !2� ¼ ð!2þÞ�, i.e. if
!2þ and !2� are complex conjugates. Here, !2� are the
roots of the quadratic equation

x2 þ xðM2 þm2 þ �1Þ þm2ðM2 þ �1Þ þ �4 ¼ 0; (22)

obtained by setting p2 ¼ x in the denominator of Eq. (18).
Clearly, one finds complex-conjugate poles if jM2 �m2 þ
�1j< 2�2.

Let us remark that rational forms such as (17) and (18)
for the gluon propagator were considered by Stingl [36,37],
as a way of accounting for nonperturbative effects in
an extended perturbative approach to Euclidean QCD.
More precisely, in his treatment, one expresses the proper
vertices of the theory as an iterative sequence of functions
yielding a self-consistent solution to the Dyson-Schwinger
equations. In particular, for the gluon propagator, this
sequence is written [see Eq. (2.10) in Ref. [37]] in terms
of ratios of polynomials in the variable p2, of degree r in
the numerator and rþ 1 in the denominator, with r ¼
0; 1; 2; . . . . This functional form is then related, via opera-
tor product expansion, to the possible existence of vacuum
condensates of dimension 2n, with n � 1. At the same
time, the associated complex-conjugate poles1 are inter-
preted as short-lived elementary excitations of the
gluon field [3,36,37]. By comparison, in the RGZ frame-

work, one proposes specific forms for the dimension-two
condensates—related to the auxiliary fields of the GZ
action—and then obtains (at tree level) the rational func-
tions in Eqs. (17) and (18), which correspond, respectively,
to cases with r ¼ 3 and 2 in Stingl’s iterative sequence.
In Sec. V below, we show that the simplest rational form

[with r ¼ 2, corresponding to Eq. (18)] works well in the
4d SU(2) case. A similar result was obtained for the SU(3)
case in [24].2 It may be noted that, in Ref. [32], lattice data
for the 4d SU(3) Landau-gauge gluon propagator were
fitted using the above sequence of functions with r ¼ 2,
4 and it was found that a good description of the data can be
achieved only for r ¼ 4. Note, however, that the fit was
performed for the real-space propagator, for which the
analysis is known to be complicated by several technical
issues (see e.g. [19,52]). Moreover, although the lattice
volume considered was rather large, the study employed
asymmetric lattices, which may give rise to systematic
effects [53].

IV. NUMERICAL SIMULATIONS

The data presented here for the SU(2) Landau-gauge
gluon propagator were produced in 2007. The 3d and 4d
cases were run on the 4.5 Tflops IBM supercomputer at
LCCA–USP [54], whereas the 2d case was run on various
PC clusters at the IFSC–USP. Most of these data have
already been discussed in Refs. [5–8], but they were not
systematically fitted up to now.
In the 4d case, we have considered lattice sides N ¼ 48,

56, 64, 80, 96 and 128, with lattice parameter � ¼ 2:2.
The corresponding lattice spacing a is approximately
0.210 fermi, implying that the smallest nonzero momentum
pmin ¼ 2 sinð	=NÞ is about 46 MeV in physical units for
the N ¼ 128 lattice. In this case, the physical lattice vol-
ume V ¼ N4 is about ð27 fermiÞ4. The number of gauge-
field configurations produced was 168 for N ¼ 128 and
about 250 for the other lattice sizes.
In 3d, we have N ¼ 140, 200, 240 and 320 at � ¼ 3:0,

with a � 0:268 fermi. Then, for the lattice volume 3203

the smallest nonzero momentum pmin is about 14 MeVand
the physical volume corresponds to about ð85 fermiÞ3. The
number of configurations was 630, 525, 350 and 125,
respectively, for the four lattice sizes.
Finally, in the two-dimensional case, we considered

N ¼ 80, 120, 160, 200, 240, 280 and 320 at � ¼ 10:0. In
this case the lattice spacing is about 0.219 fermi, the lattice
volumes 3202 correspond to V � ð70 fermiÞ2 and in this
case pmin � 18 MeV. We have about 600 configurations
for each lattice volume.
In all cases we set the lattice spacing a by considering

the input value 
1=2 ¼ 0:44 GeV for the string tension,

1See [37,50,51] for some considerations concerning the issue
of causality for propagators with complex poles.

2Let us mention that the condensate � was not considered in
Ref. [24]. Therefore, when discussing fit results using Eq. (18),
we must compare their values for M2 to our values for M2 þ �1.
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which is a typical value for this quantity in the 4d SU(3)
case. The evaluation of the lattice string tension is de-
scribed in [35,55,56], respectively, for d ¼ 2, 3 and 4.
Note that all our runs are in the scaling region [35,56,57]
and all data refer to the SU(2) case. Possible systematic
effects due toGribov copies [58–62] aswell as unquenching
effects [63–66] were not considered here. Finite-volume
effects, on the other hand, are well under control. In par-
ticular, in 3d and in 4d, our largest lattice volumes can be
already considered as infinite. In the 2d case, a simple
extrapolation to infinite volume needs to be considered, as
done in Sec. VII to obtain the limiting value of Dð0Þ.

Configurations have been generated by alternating heat-
bath updates of the link variables with micro-canonical
steps, in order to reduce the problem of critical slowing-
down (see for example [67] and references therein).
Gauge-fixing to Landau gauge was done using the stochas-
tic overrelaxation algorithm [55,67]. Let us also recall [see
Eq. (12)] that the gluon propagatorDðp2Þ in Landau gauge
is evaluated using

Dbc
��ðpÞ ¼

X
x;y

e�2	ip̂	ðx�yÞ=N

V
hAb

�ðxÞAc
�ðyÞi

¼ �bc

�
g�� �

p�p�

p2

�
Dðp2Þ: (23)

Here Ab
�ðxÞ is the lattice gluon field defined as3

A�ðxÞ ¼ 1

2i
½U�ðxÞ �Uy

�ðxÞ�; (24)

where U�ðxÞ are the usual link variables of the Wilson

action. Also, the momentum components p� are given by

p� ¼ 2 sin

�
	p̂�

N

�
(25)

and p̂� takes values 0, 1, N � 1.

In 2d we considered momenta with components ðp; 0Þ
and ðp; pÞ, plus all possible permutations of the compo-
nents. Similarly, in 3d, we have data for momenta with
components ðp; 0; 0Þ, ðp; p; 0Þ and ðp; p; pÞ and all possible
permutations of components. Finally, in 4d, we evaluated
the propagator for momenta with components ðp; 0; 0; 0Þ,
ðp; p; 0; 0Þ, ðp; p; p; 0Þ and ðp; p; p; pÞ. In this case, we
considered all possible permutations of the components
for momenta of the type ðp; 0; 0; 0Þ. On the contrary, we
did not consider permutations for the momenta ðp; p; p; 0Þ
and in the case ðp; p; 0; 0Þ we allowed all permutations
satisfying the constraint p4 ¼ 0. When permutations of the
momentum components were available, an average over
the different permutations was taken for each configura-

tion. In order to reduce discretization effects—and, in
particular, those related to the breaking of rotational sym-
metry [33,69,70]—we have considered, in addition to the
usual (unimproved) momentum defined by the squared
magnitude of the lattice momenta

p2 ¼ X
�

p2
�; (26)

the improved definition [69]

p2 ¼ X
�

p2
� þ 1

12

X
�

p4
�: (27)

This definition does not affect the value of p2 in the IR
limit, but modifies its value significantly for large mo-
menta. In particular, the largest value of p2—obtained
when p̂� ¼ N=2 in Eq. (25) for all directions �—is given

(in lattice units, for the d-dimensional case), by 4d if the
unimproved definition is considered, and by 16d=3 in the
improved case. For the � values considered here, this
implies that the largest momentum pmax is about 2.54,
2.55 and 3.75 GeV, respectively, in 2d, 3d and 4d in the
unimproved case, and about 2.94, 2.94 and 4.33 GeV using
improved momenta.
In the next sections we present fits (obtained using

gnuplot) of the 4d, 3d and 2d data for the SU(2) gluon
propagator and compare the fit results to the predictions of
the RGZ action, discussed above in Sec. . We remark that
the shown data for Dðp2Þ are not normalized. Note that a
(multiplicative) renormalization condition at a given scale
�2 would simply correspond to a rescaling of the overall
factor C in the fitting forms considered below. The con-
densates and the poles, on the other hand, are not affected
by such a renormalization.4 We also note that, whenever
possible, we avoid rounding off the values of the fit
parameters. On the contrary, values for the associated
physical quantities (i.e. condensates and poles) are rounded
to show errors with one significant digit only. We refer
to the gnuplot documentation ([71] ‘‘Statistical
Overview’’ section) for information on the significance of
the standard errors calculated for the fit parameters.

V. THE 4D CASE

As a first attempt in the 4d case, we consider a fitting
function of the simplest Gribov-Stingl form5

3With this definition of the lattice gluon field, the gluon
propagator evaluated on the lattice corresponds to the propagator
g2Dðp2Þ in the continuum, which has mass dimension 2� d in
the d-dimensional case [68].

4Of course, condensates are, in general, renormalization-scale-
and renormalization-scheme-dependent quantities. This depen-
dence is not taken into account here because the fitting forms we
use are inspired by a tree-level propagator. Indeed, in order to
consider these effects, analytic results beyond tree-level compu-
tations must be employed.

5Since our largest momentum is of the order of 4 GeV,
ultraviolet logarithmic corrections are not important to describe
the lattice data and they are not included in the fitting functions
proposed here. This also avoids the problem of having to
regularize the corresponding Landau pole by hand.
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f1ðp2Þ ¼ C
p2 þ s

p4 þ u2p2 þ t2
; (28)

which corresponds to the RGZ propagator in Eq. (18),
modulo a global rescaling factor C. We note that, in order

to improve the stability of the fit, we impose some parame-
ters to be positive, by setting them to be squares. The
results of the fit for all lattice volumes, using unimproved
and improved momenta, are reported, respectively, in
Tables I and II. From the �2=d:o:f: values one clearly
concludes that the use of improved momenta makes the
behavior of the gluon propagator smoother, allowing a
better fit to the data. This is also seen by comparing the
data in Figs. 1 and 2, plotted, respectively, for unimproved
and improved momenta. Let us stress that we are fitting the
whole momentum range available and that, for the largest
lattice volume, we have 257 data points.
In order to extract the value of the condensates described

in Sec. above, we now consider only the fit results for the
volume V ¼ 1284 (using improved momenta), reported in
the last row of Table II. The corresponding plot is shown
in Fig. 2. By setting f1ðp2Þ equal to the RGZ propagator in
Eq. (18) (modulo the global factor C) and using propaga-
tion of error, we find for the condensates the values re-
ported in the first column of Table III. (Note that, for this
fitting form, the condensates M2 and �1 cannot be deter-
mined separately.) Let us mention that the values obtained
here for M2 þ �1, m

2 and �4 are in good quantitative
agreement with the corresponding values—respectively
indicated with M2, m2 and 2g2N�4—reported in
Ref. [24] for the SU(3) case.6 Also, as remarked above,

TABLE II. Fits of the gluon-propagator data in the 4d case, for different lattice volumes, using the fitting function f1ðp2Þ in Eq. (28)
and improved momenta [see Eq. (27)]. We report, besides the value of the fit parameters, the �2=d:o:f: obtained in each case. The
whole range of momenta was considered for the fit. Errors shown in parentheses correspond to one standard deviation.

V C uðGeVÞ tðGeV2Þ sðGeV2Þ �2=d:o:f:

484 0.791 (0.007) 0.755 (0.027) 0.707 (0.013) 2.419 (0.119) 2.09

564 0.801 (0.006) 0.734 (0.023) 0.696 (0.012) 2.305 (0.100) 1.92

644 0.791 (0.007) 0.760 (0.024) 0.710 (0.012) 2.425 (0.108) 2.35

804 0.785 (0.005) 0.734 (0.019) 0.708 (0.009) 2.404 (0.084) 2.04

964 0.795 (0.004) 0.717 (0.016) 0.694 (0.008) 2.291 (0.068) 1.66

1284 0.784 (0.005) 0.768 (0.017) 0.720 (0.009) 2.508 (0.078) 1.63

TABLE I. Fits of the gluon-propagator data in the 4d case, for different lattice volumes, using the fitting function f1ðp2Þ in Eq. (28)
and unimproved momenta [see Eq. (26)]. We report, besides the value of the fit parameters, the �2=d:o:f: obtained in each case. The
whole range of momenta was considered for the fit. Errors shown in parentheses correspond to one standard deviation.

V C uðGeVÞ tðGeV2Þ sðGeV2Þ �2=d:o:f:

484 0.567 (0.016) 0.507 (0.065) 0.607 (0.023) 2.417 (0.269) 16.47

564 0.572 (0.014) 0.495 (0.058) 0.602 (0.021) 2.344 (0.234) 15.46

644 0.566 (0.013) 0.522 (0.052) 0.612 (0.019) 2.452 (0.223) 15.00

804 0.562 (0.012) 0.496 (0.048) 0.612 (0.017) 2.443 (0.199) 16.59

964 0.567 (0.011) 0.484 (0.044) 0.604 (0.016) 2.367 (0.178) 15.96

1284 0.560 (0.010) 0.534 (0.037) 0.621 (0.014) 2.553 (0.166) 10.65

0.1

1

0 0.5 1 1.5 2 2.5 3 3.5

D
(p

2 )

p

FIG. 1. Plot of the 4d gluon propagatorDðp2Þ (in GeV�2) as a
function of the (unimproved) momentum p (in GeV) for the
lattice volume V ¼ 1284. As a consequence of the breaking of
rotational invariance, the data do not produce a smooth curve.
Note the logarithmic scale on the y axis.

6For comparison with our values in Table III, the SU(3)
condensates from [24] are respectively 2:15ð13Þ GeV2,
�1:81ð14Þ GeV2 and 4:16ð38Þ GeV4.
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the condensate m2 may be used to obtain a value for the
gluon condensate hg2A2i, through the relation (see e.g.
[24])

hg2A2i ¼ � 9

13

N2
c � 1

Nc

m2: (29)

In our case, the valuem2 ¼ �1:92ð9Þ from Table III (using
propagation of error) yields hg2A2i ¼ 1:99ð9Þ GeV2.

Furthermore, we verify from Table III that jM2 �m2 þ
�1j< 2�2, justifying our expectation (see end of Sec. ) that
the propagator may be decomposed in terms of a pair of
complex-conjugate poles. We can thus write [see Eq. (21)]

f2ðp2Þ ¼ �þ
p2 þ!2þ

þ ��
p2 þ!2�

¼ 2ap2 þ 2ðavþ bwÞ
p4 þ 2vp2 þ v2 þ w2

; (30)

with �� ¼ a� ib and !2� ¼ v� iw. The results for the
parameters a, b, v andw (again using propagation of error)
are shown in the first column of Table IV. Thus, the poles
are complex conjugates whose imaginary part is more than
twice their real part. We recall that a Gribov propagator
would have a null real part.
In order to have better control of the errors on the values

of the condensates and poles, we have redone the estimates
described above using a Monte Carlo error analysis (with
10 000 samples).7 The corresponding results are reported
in the second columns of Table III and Table IV. Finally, we
repeated the fit and the evaluation of the condensates and
poles using a bootstrap analysis (with 500 samples). In this
case, from the fit of f1ðp2Þ [see Eq. (28)] at V ¼ 1284, we
find the parameters

C ¼ 0:762� 0:024 (31)

u ¼ 0:755� 0:035 GeV (32)

t ¼ 0:698� 0:027 GeV2 (33)

s ¼ 2:292� 0:253 GeV2: (34)

The corresponding results for the condensates and poles of
the propagator are shown in the third columns of Tables III
and IV. Clearly, all results obtained agree within one
standard deviation.
As a second test, we have also tried to allow for the more

general form of the propagator, given in Eq. (17). To this
end, we consider the fitting function

TABLE IV. Estimates of the parameters of the function f2ðp2Þ
[see Eq. (30)] from fits (see last row of Table II above) to the
equivalent form f1ðp2Þ in Eq. (28), using propagation of error.
For comparison, we also report a Monte Carlo error analysis with
10000 samples and a bootstrap analysis (fit results given in the
text) with 500 samples. In all cases we considered the volume
V ¼ 1284 and improved momenta. Errors shown in parentheses
correspond to one standard deviation.

parameter propagation

of error

Monte Carlo

analysis

bootstrap

analysis

a 0.392(3) 0.392(2) 0.38(1)

b 1.32(7) 1.32(5) 1.20(7)

v (GeV2) 0.29(2) 0.29(2) 0.29(3)

w (GeV2) 0.66(2) 0.66(1) 0.64(2)
0.1
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FIG. 2. Plot of the 4d gluon propagatorDðp2Þ (in GeV�2) as a
function of the (improved) momentum p (in GeV) for the lattice
volume V ¼ 1284. We also show the fitting function f1ðp2Þ [see
Eq. (28)] with the parameters reported in the last row of Table II.
Note the logarithmic scale on the y axis.

TABLE III. Estimates of the parameters of the RGZ gluon
propagator in Eq. (18) from fits (see last row of Table II above)
to the equivalent form f1ðp2Þ in Eq. (28), using propagation of
error. For comparison, we also report a Monte Carlo error
analysis with 10 000 samples and a bootstrap analysis (fit results
given in the text) with 500 samples. In all cases we considered
the volume V ¼ 1284 and improved momenta. Errors shown in
parentheses correspond to one standard deviation.

parameter propagation

of error

Monte Carlo

analysis

bootstrap

analysis

M2 þ �1 (GeV2) 2.51(8) 2.51(8) 2.3(3)

m2 (GeV2) �1:92ð9Þ �1:92ð9Þ �1:7ð2Þ
�4 (GeV4) 5.3(9) 5.3(4) 4.5(9)

7To this end, we considered independent Gaussian distribu-
tions for the fit parameters. Thus, this Monte Carlo analysis may
be considered as a numerical check of the analytic propagation
of error.
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f3ðp2Þ ¼ C
p4 þ 2a2p2 þ b

p6 þ cp4 þ dp2 þ e2
; (35)

which has six parameters. As can be seen in Table V, the
values of �2=d:o:f: do not improve in comparison with the
previous (4-parameter) fit and, with the exception of
the global factor C, most of the parameters are determined
with very large errors. This suggests that the above func-
tion has too many (redundant) parameters, making the
fitting procedure quite unstable. Next, we reduce the num-
ber of parameters by one and introduce a general form that
will prove useful in the description of the 3d data, in
Sec. VI. More precisely, we test the fitting function

f4ðp2Þ ¼ C
ðp2 þ sÞðp2 þ 1Þ

ðp4 þ u2p2 þ t2Þðp2 þ kÞ
¼ C

p4 þ ðsþ 1Þp2 þ s

p6 þ ðkþ u2Þp4 þ ðku2 þ t2Þp2 þ kt2
: (36)

This function is of the type (35) (with different parame-
ters), but is written as a simple generalization of f1ðp2Þ in
Eq. (28).8 Fit results are shown in Table VI. In this case the
fits look reasonable. The corresponding values for the
condensates and �4 in Eq. (17) are obtained by a
Monte Carlo analysis (with 10 000 samples) using the
data in the last row of Table VI. We note that, in this

case, the fitting form allows us to evaluate M2, �1 and
j�j separately. We find the values

M2 ¼ 1:5� 0:1 GeV2 (37)

m2 ¼ �1:7� 0:3 GeV2 (38)

�4 ¼ 4:1� 1:0 GeV4 (39)

�1 ¼ 0:5� 0:1 GeV2 (40)

�2
1 þ �2

2 ¼ 0:2� 0:1 GeV2: (41)

We see that the errors are larger, and that the value ofM2 þ
�1 is incompatible with the numbers in Table III (obtained
assuming �2 ¼ 0). Also, a comparison of the values in (40)
and (41) suggests a very small (and imaginary) value for
�2, implying that � is real and thus supporting the simpler
form in Eq. (18), fitted above using the function f1ðp2Þ.
Moreover, the �2=d:o:f: is not better for the 5-parameter fit
compared to the 4-parameter fit, indicating that the latter is
more stable.
We thus conclude that our best fit is f1ðp2Þ in Eq. (28),

i.e. the 4d gluon-propagator lattice data favor the simpli-
fied expression in Eq. (18), implying h �’ �’i ¼ h’’i.

VI. THE 3D CASE

In this case the simplified fitting form f1ðp2Þ in Eq. (28)
is not able to describe well the lattice data. Indeed, even
using improved momenta (see Table VII), the �2=d:o:f:

TABLE V. Fits of the gluon-propagator data in the 4d case, for different lattice volumes, using the fitting function f3ðp2Þ in Eq. (35)
and improved momenta [see Eq. (27)]. We report, besides the value of the fit parameters, the �2=d:o:f: obtained in each case. The
whole range of momenta was considered for the fit. Errors shown in parentheses correspond to one standard deviation.

V C dðGeV4Þ eðGeV3Þ bðGeV4Þ cðGeV2Þ aðGeVÞ �2=d:o:f:

484 0.889 (0.087) 7.742 (9.663) 2.469 (1.651) 26.613 (32.940) 9.692 (13.240) 2.085 (1.143) 1.95

564 0.798 (0.007) 0.495 (0.020) 0.055 (0.045) 0.014 (0.023) 0.581 (0.057) 1.093 (0.030) 2.04

644 0.795 (0.010) 0.625 (0.662) 0.336 (0.868) 0.543 (2.790) 0.733 (1.031) 1.121 (0.209) 2.52

804 0.781 (0.006) 0.514 (0.016) 0.059 (0.037) 0.016 (0.020) 0.593 (0.046) 1.122 (0.025) 2.08

964 0.893 (0.104) 10.539 (14.750) 3.036 (2.233) 39.289 (53.150) 16.558 (24.490) 2.720 (1.693) 1.56

1284 0.784 (0.006) 0.578 (2.192) 0.229 (4.228) 0.253 (9.335) 0.691 (3.795) 1.143 (0.843) 1.69

TABLE VI. Fits of the gluon-propagator data in the 4d case, for different lattice volumes, using the fitting function f4ðp2Þ in Eq. (36)
and improved momenta [see Eq. (27)]. We report, besides the value of the fit parameters, the �2=d:o:f: obtained in each case. The
whole range of momenta was considered for the fit. Errors shown in parentheses correspond to one standard deviation.

V C uðGeVÞ tðGeV2Þ sðGeV2Þ kðGeV2Þ �2=d:o:f:

484 0.802 (0.009) 0.686 (0.081) 0.792 (0.030) 1.662 (0.368) 0.547 (0.149) 2.02

564 0.809 (0.008) 0.694 (0.063) 0.761 (0.034) 1.714 (0.365) 0.622 (0.177) 1.89

644 0.802 (0.008) 0.701 (0.071) 0.790 (0.028) 1.716 (0.346) 0.573 (0.144) 2.28

804 0.793 (0.007) 0.703 (0.046) 0.767 (0.031) 1.882 (0.308) 0.668 (0.154) 2.01

964 0.804 (0.006) 0.673 (0.043) 0.757 (0.022) 1.694 (0.246) 0.625 (0.119) 1.62

1284 0.793 (0.006) 0.727 (0.045) 0.791 (0.025) 1.903 (0.265) 0.631 (0.120) 1.60

8Note that a fit using the more general form in Eq. (42) below
is unstable in this case, yielding large errors for the fit parame-
ters. Nevertheless, this fit suggests the factor (p2 þ 1) in the
numerator of (36), as adopted here.
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values obtained are quite large. Moreover, as can be seen in
Fig. 3, the fit clearly fails in the IR region.9 The situation
improves by considering the (5-parameter) fitting function
f4ðp2Þ in Eq. (36) above, as can be seen from the results
reported in Tables VIII and IX, obtained, respectively,
using unimproved and improved momenta. Note that, as
in the 4d case, the use of improved momenta helps to
obtain a better fit to the data.

One can also try to use the more general function

f5ðp2Þ ¼ C
ðp2 þ sÞðp2 þ lÞ

ðp4 þ u2p2 þ t2Þðp2 þ kÞ ; (42)

obtained by introducing the extra parameter l. In this case,
the results of the fit using improved momenta for the lattice
volume V ¼ 3203 are

C ¼ 0:405� 0:003 GeV (43)

u ¼ 0:692� 0:040 GeV (44)

t ¼ 0:635� 0:018 GeV2 (45)

s ¼ 0:025� 0:002 GeV2 (46)

k ¼ 0:050� 0:007 GeV2 (47)

l ¼ 1:092� 0:103 GeV2 (48)

with �2=d:o:f: ¼ 1:19. By noticing that l � 1 and by com-
paring these values to the corresponding ones from the fit
using f4ðp2Þ in Eq. (36) (reported in the last row of
Table IX), it is clear that the two results are equivalent.
At any rate, the values of �2=d:o:f: for the 6-parameter fit
[using the function f5ðp2Þ in Eq. (42)] and for the fit in
Table IX are the same, indicating that the latter is more
stable.

In order to evaluate the condensates of the RGZ model,
we thus consider only the results from the fit using f4ðp2Þ,
given for the lattice size N ¼ 320 in the last row of
Table IX. (The corresponding plot is shown in Fig. 4.) By
setting f4ðp2Þ [see Eq. (36)] equal to the RGZ propagator
(17) modulo the global factor C, we find (using propaga-

tion of error) the values for the condensates reported in the
first column of Table X. Note that, using this fitting form,
we are able to evaluate M2, �1 and j�j (and therefore �2)
separately. In this case, we can see that �2 � 0 and � is
indeed a complex quantity. This is consistent with the fact
that the (four-parameter) fit to the simplified form f1ðp2Þ
fails, as seen above.
Finally, we decompose the propagator as in Eq. (19)

with � ¼ aþ ib, � ¼ a� ib, !2
2 ¼ vþ iw e!2

3 ¼ v�
iw, i.e. we consider the function

f6ðp2Þ ¼ �

p2 þ!2
1

þ 2ap2 þ 2ðavþ bwÞ
p4 þ 2vp2 þ v2 þ w2

: (49)

We find (again using propagation of error) the results10

reported in the first column of Table XI. Note that the
imaginary part w of the complex-conjugate poles is more

TABLE VII. Fits of the gluon-propagator data in the 3d case, for different lattice volumes, using the fitting function f1ðp2Þ in
Eq. (28) and improved momenta [see Eq. (27)]. We report, besides the value of the fit parameters, the �2=d:o:f: obtained in each case.
The whole range of momenta was considered for the fit. Errors shown in parentheses correspond to one standard deviation.

V CðGeVÞ uðGeVÞ tðGeV2Þ sðGeV2Þ �2=d:o:f:

1403 0.441 (0.003) 0.306 (0.013) 0.385 (0.009) 0.217 (0.013) 10.86

2003 0.440 (0.002) 0.305 (0.011) 0.389 (0.008) 0.223 (0.011) 8.68

2403 0.443 (0.002) 0.307 (0.010) 0.374 (0.007) 0.198 (0.009) 6.53

3203 0.445 (0.002) 0.296 (0.011) 0.365 (0.006) 0.183 (0.008) 3.19
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FIG. 3. Plot of the 3d gluon propagatorDðp2Þ (in GeV�1) as a
function of the (improved) momentum p (in GeV) for the lattice
volume V ¼ 3203. We also show the fitting function f1ðp2Þ [see
Eq. (28)] with the parameters reported in the last row of
Table VII. Note the logarithmic scale on both axes.

9In order to highlight the results at small momenta, here and in
Fig. 4 we present the plot with a logarithmic scale on both axes. 10Clearly, we have !2

1 ¼ k from f4ðp2Þ.
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than twice the value of their real part v, as in the 4d case.
Note also that the mass !1 and the residue � associated
with the real pole are very small. Moreover, � is negative,
which may be associated with violation of reflection pos-
itivity, indicating that this mass cannot correspond to a
physical degree of freedom.

Also in this case we have repeated the analysis using a
Monte Carlo estimate for the errors (with 10 000 samples)
and the bootstrap method (with 500 samples). The results
are shown, respectively, in the second and in the third
columns of Tables X and XII. The values of the fit parame-
ters for the function (36) using the bootstrap method for the
lattice volume V ¼ 3203 are

C ¼ 0:411� 0:004 GeV (50)

u ¼ 0:673� 0:016 GeV (51)

t ¼ 0:611� 0:006 GeV2 (52)

s ¼ 0:025� 0:002 GeV2 (53)

k ¼ 0:052� 0:005 GeV2; (54)

which should be compared to the results shown in the last
row of Table IX. Again, all results obtained using the three
different analyses agree within one standard deviation.

We thus conclude that, in the 3d case, the data support a
gluon propagator given by the general RGZ form (17), in
which the condensate � is a complex quantity. This is in
contrast with the 4d case seen in the previous section, for
which � was real. There are also significant differences for
the values of the other condensates and of �4 in comparison
with the 4d case. The masses from the complex-conjugate

poles, on the contrary, have similar values in 3d and 4d (see
Tables XI and IV respectively).

VII. THE 2D CASE

In the two-dimensional case the situation is different.
Indeed, we know from Refs. [6,57,72] that the gluon
propagator at zero momentum Dð0Þ does go to zero in
the infinite-volume limit, even though one always has
Dð0Þ> 0 at finite lattice volume. Moreover, the behavior
of Dðp2Þ at small momenta is of the type p�, with some
noninteger power � � 0:8. This makes the fitting proce-
dure more complicated than in the above cases, for which
polynomial forms were used. After trying several general-
izations of the fitting functions considered in the 4d and 3d
cases, we found that a good fit to the gluon data can be
obtained using the function

f7ðp2Þ ¼ C
p2 þ lp� þ s

p4 þ u2p2 þ t2
; (55)

which is a simple generalization of Eq. (28). Results of the
fit for the various lattice volumes, using unimproved and
improved momenta, are reported in Tables XII and XIII
respectively.11 A plot of the fit for the lattice volume V ¼
3202 using improved momenta can be seen in Fig. 5.
It is interesting to note that the function f7ðp2Þ above

can be decomposed as

TABLE VIII. Fits of the gluon-propagator data in the 3d case, for different lattice volumes, using the fitting function f4ðp2Þ in
Eq. (36) and unimproved momenta [see Eq. (26)]. We report, besides the value of the fit parameters, the �2=d:o:f: obtained in each
case. The whole range of momenta was considered for the fit. Errors shown in parentheses correspond to one standard deviation.

V CðGeVÞ uðGeVÞ tðGeV2Þ sðGeV2Þ kðGeV2Þ �2=d:o:f:

1403 0.289 (0.002) 0.382 (0.022) 0.552 (0.006) 0.018 (0.003) 0.030 (0.006) 10.48

2003 0.289 (0.002) 0.386 (0.019) 0.552 (0.006) 0.019 (0.003) 0.032 (0.006) 9.45

2403 0.290 (0.002) 0.393 (0.017) 0.550 (0.005) 0.020 (0.003) 0.034 (0.005) 6.55

3203 0.290 (0.002) 0.389 (0.017) 0.549 (0.005) 0.019 (0.003) 0.035 (0.005) 2.89

TABLE IX. Fits of the gluon-propagator data in the 3d case, for different lattice volumes, using the fitting function f4ðp2Þ in Eq. (36)
and improved momenta [see Eq. (27)]. We report, besides the value of the fit parameters, the �2=d:o:f: obtained in each case. The
whole range of momenta was considered for the fit. Errors shown in parentheses correspond to one standard deviation.

V CðGeVÞ uðGeVÞ tðGeV2Þ sðGeV2Þ kðGeV2Þ �2=d:o:f:

1403 0.407 (0.001) 0.654 (0.008) 0.623 (0.004) 0.022 (0.002) 0.041 (0.003) 2.14

2003 0.407 (0.001) 0.655 (0.007) 0.623 (0.004) 0.024 (0.002) 0.043 (0.003) 1.92

2403 0.408 (0.001) 0.662 (0.007) 0.620 (0.004) 0.025 (0.002) 0.047 (0.003) 1.59

3203 0.408 (0.001) 0.656 (0.008) 0.619 (0.005) 0.023 (0.002) 0.046 (0.004) 1.19

11Note that in this case the use of improved momenta does not
affect the quality of the fit significantly. Nevertheless, we choose
to consider improved momenta in our analysis also in 2d.
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f8ðp2Þ ¼ �þðp2Þ
p2 þ!2þ

þ ��ðp2Þ
p2 þ!2�

¼ 2ap2 þ 2cwp� þ 2ðavþ bwÞ
p4 þ 2vp2 þ v2 þ w2

; (56)

with

��ðp2Þ ¼ a� iðbþ cp�Þ; !2� ¼ v� iw: (57)

An estimate for these five parameters is reported in
Table XIV, using again three different analyses for the
error. The average values of the fit parameters in Eq. (55)
using the bootstrap method for the lattice volume V ¼
3202 are

C ¼ 0:112� 0:001 GeV2 (58)

u ¼ 0:550� 0:013 GeV (59)

t ¼ 0:255� 0:006 GeV2 (60)

s ¼ 0:0152� 0:0008 GeV2 (61)

l ¼ 0:326� 0:033 GeV2�� (62)

� ¼ 0:859� 0:026: (63)

We also tried an extrapolation to the infinite-volume
limit of the gluon propagator at zero momentum Dð0Þ
using the function Aþ B=N�, where N is the lattice side
in lattice units. This gives12

A ¼ �0:002� 0:010 (64)

B ¼ 1:7� 0:8 (65)

� ¼ 0:7� 0:1; (66)

with �2=d:o:f: ¼ 1:07 (considering seven data points). The
fit improves if one sets A ¼ 0. Indeed, in this case we find

B ¼ 1:9� 0:2 (67)

� ¼ 0:71� 0:02 (68)

with �2=d:o:f: ¼ 0:87. Thus, the value of the parameter s
in f7ðp2Þ [see Eq. (55)] is consistent with zero at infinite-
volume, implying Dð0Þ ¼ 0 in the same limit. One should
note, however, that the condition Dð0Þ ¼ 0 is not obtained
here with b ¼ 0 and v ¼ 0 [see Eqs. (56) and (57)], i.e.
with purely imaginary poles as in a Gribov-like propagator

0.1

1

0.01 0.1 1

D
(p

2 )

p

FIG. 4. Plot of the 3d gluon propagatorDðp2Þ (in GeV�1) as a
function of the (improved) momentum p (in GeV) for the lattice
volume V ¼ 3203. We also show the fitting function f4ðp2Þ [see
Eq. (36)] with the parameters reported in the last row of
Table IX. Note the logarithmic scale on both axes.

TABLE X. Estimates of the parameters of the RGZ propagator
in Eq. (17) from fits (see last row of Table IX above) to the
equivalent form f4ðp2Þ in Eq. (36). Errors are obtained using
propagation of error, a Monte Carlo analysis with 10 000
samples and a bootstrap analysis with 500 samples. In all cases
we considered the volume V ¼ 3203 and improved momenta.
Errors shown in parentheses correspond to one standard devia-
tion.

parameter propagation

of error

Monte Carlo

analysis

bootstrap

analysis

M2 (GeV2) 0.512 (1) 0.512 (1) 0.513 (1)

m2 (GeV2) �0:55ð1Þ �0:55ð1Þ �0:52ð2Þ
�4 (GeV4) 0.94 (1) 0.94 (1) 0.91 (3)

�1 (GeV2) 0.479 (2) 0.479 (2) 0.477 (2)

�2 (GeV2) 0.09 (1) 0.094 (9) 0.100 (6)

TABLE XI. Estimates of the parameters of the function f6ðp2Þ
[see Eq. (49)] from fits (see last row of Table IX above) to the
equivalent form f4ðp2Þ in Eq. (36). Errors are obtained using
propagation of error, a Monte Carlo analysis with 10 000
samples and a bootstrap analysis with 500 samples. In all cases
we considered the volume V ¼ 3203 and improved momenta.
Errors shown in parentheses correspond to one standard devia-
tion.

parameter propagation

of error

Monte Carlo

analysis

bootstrap

analysis

� (GeV) �0:024ð5Þ �0:024ð5Þ �0:029ð4Þ
!2

1 (GeV2) 0.046 (4) 0.046 (4) 0.046 (4)

a (GeV) 0.216 (3) 0.216 (2) 0.220 (4)

b (GeV) 0.27 (5) 0.271 (3) 0.275 (3)

v (GeV2) 0.215 (5) 0.215 (5) 0.23 (1)

w (GeV2) 0.580 (6) 0.580 (6) 0.57 (1)

12Recall that, with our notation, the 2d gluon propagator is
dimensionless.
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(12), but it seems to be due to the relations a ¼ �b and
v ¼ w (see Table XIV). Thus, the behavior in the 2d case
appears closer to the RGZ propagator (18) (with a non-
integer power in the numerator) than to a GZ propagator
(12). However, as mentioned in the Introduction, one can-
not relate the fitting parameters to dimension-two conden-
sates in the 2d case.

Finally, taking into account the infinite-volume limit, we
set s ¼ 0 in f7ðp2Þ. In this case, the gluon propagator at
small momenta behaves as Dðp2Þ � Clp�=t2. From the
conformal relation (see, for example, Ref. [57] with d ¼ 2)

Dðp2Þ � ðp2Þ2þð4�dÞ=2�1 ¼ p4 (69)

we find the IR exponent  � 0:225 using � � 0:9 (see
Table XIII). This result is in reasonable agreement with the
numerical estimate in Ref. [57].

VIII. CONCLUSIONS

We have performed a systematic fitting analysis of
Landau-gauge gluon-propagator data for SU(2) gauge the-
ory in 2, 3, and 4 space-time dimensions. The fit results
were matched to analytic predictions from the RGZ frame-
work, with the intent of calculating values in physical units
for the dimension-two condensates in the theory, as well as
to test the predictions in a neutral way. Indeed, as men-
tioned in the Introduction, our strategy has been firstly to
find fits with convenient free parameters in simple

(rational, except for 2d) forms and then to interpret the
parameters in terms of physical quantities. In that way, we
do not bias the fits by imposing relations between fit
parameters from the predicted forms. In particular, a direct
fit to the general RGZ formula [see Eq. (17)] would involve
six parameters (corresponding to the four condensates, the
parameter �4 and the overall normalization) with pre-
scribed relations among them. On the contrary, our best
fits in the 4d and 3d cases involve, respectively, four and
five free parameters (including the overall normalization),
considering all generated data points.13 We find that the
resulting fits of the infrared gluon propagator in 3d and 4d
agree remarkably well with the tree-level predictions from
the RGZ scenario. Nonperturbative effects are, of course,
encoded in the values obtained from the fits for the con-
densates and for the Gribov parameter �.14

In particular, the 4d results are well described by
the simplified version of the RGZ gluon propagator in
Eq. (18), equivalent to the simplest Gribov-Stingl form.
This corresponds to a pair of complex-conjugate poles, as
opposed to the Gribov propagator, in which the poles
would be purely imaginary. Our fit results—using im-
proved momenta and the fitting function f1ðp2Þ in

TABLE XII. Fits of the gluon-propagator data in the 2d case, for different lattice volumes, using the fitting function f7ðp2Þ in
Eq. (55) and unimproved momenta [see Eq. (26)]. We report, besides the value of the fit parameters, the �2=d:o:f: obtained in each
case. The whole range of momenta was considered for the fit. Errors shown in parentheses correspond to one standard deviation.

V CðGeV2Þ uðGeVÞ tðGeV2Þ sðGeV2Þ lðGeV2��Þ � �2=d:o:f:

802 0.073 (0.005) 0.363 (0.041) 0.265 (0.011) 0.078 (0.008) 0.403 (0.142) 1.129 (0.151) 2.92

1202 0.069 (0.004) 0.432 (0.027) 0.252 (0.008) 0.052 (0.005) 0.566 (0.128) 1.145 (0.088) 2.75

1602 0.067 (0.004) 0.458 (0.022) 0.250 (0.007) 0.044 (0.003) 0.665 (0.117) 1.138 (0.066) 2.68

2002 0.068 (0.003) 0.470 (0.022) 0.254 (0.007) 0.037 (0.003) 0.653 (0.104) 1.088 (0.057) 3.22

2402 0.069 (0.002) 0.469 (0.018) 0.252 (0.005) 0.031 (0.002) 0.626 (0.076) 1.051 (0.041) 2.61

2802 0.069 (0.002) 0.483 (0.016) 0.261 (0.005) 0.029 (0.002) 0.648 (0.064) 0.994 (0.033) 2.34

3202 0.070 (0.002) 0.483 (0.016) 0.260 (0.005) 0.025 (0.002) 0.630 (0.062) 0.981 (0.032) 2.77

TABLE XIII. Fits of the gluon-propagator data in the 2d case, for different lattice volumes, using the fitting function f7ðp2Þ in
Eq. (55) and improved momenta [see Eq. (27)]. We report, besides the value of the fit parameters, the �2=d:o:f: obtained in each case.
The whole range of momenta was considered for the fit. Errors shown in parentheses correspond to one standard deviation.

V CðGeV2Þ uðGeVÞ tðGeV2Þ sðGeV2Þ lðGeV2��Þ � �2=d:o:f:

802 0.114 (0.002) 0.433 (0.031) 0.207 (0.012) 0.031 (0.004) 0.026 (0.043) 0.684 (0.594) 2.63

1202 0.112 (0.003) 0.486 (0.024) 0.197 (0.008) 0.020 (0.002) 0.091 (0.050) 1.003 (0.186) 2.51

1602 0.110 (0.002) 0.503 (0.020) 0.199 (0.006) 0.018 (0.001) 0.133 (0.044) 1.027 (0.111) 2.31

2002 0.110 (0.002) 0.523 (0.020) 0.201 (0.007) 0.015 (0.001) 0.157 (0.046) 1.017 (0.092) 2.92

2402 0.110 (0.002) 0.519 (0.018) 0.201 (0.006) 0.013 (0.001) 0.152 (0.038) 0.955 (0.073) 3.06

2802 0.110 (0.002) 0.530 (0.016) 0.208 (0.006) 0.012 (0.001) 0.168 (0.033) 0.904 (0.055) 2.77

3202 0.110 (0.001) 0.539 (0.015) 0.209 (0.006) 0.011 (0.001) 0.180 (0.033) 0.909 (0.049) 2.91

13We recall, however, the importance of considering improved
momenta [see Eq. (27)] for the fits.
14A continuum extrapolation of the numerical values obtained
for these quantities is postponed to a future study.
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Eq. (28)—are given in Table II. The condensates and pole
masses obtained for the largest lattice size are given,
respectively, in Tables III and IV. The values for the con-
densates M2 þ �1, m

2 and �4 are in agreement with the
ones obtained for the SU(3) case in Ref. [24], where the
analysis was done using a slightly different notation, as
previously explained. The quantitative agreement between
the infrared limit of SU(2) and SU(3) theories was ob-
served numerically before in [16,73].

In 3d, our fits support the more general form of the RGZ
propagator in Eq. (17). Fit results—using improved mo-

menta and the fitting function f4ðp2Þ in Eq. (36)—are
given in Table IX, while condensates and pole masses
from the largest lattice size are reported in Tables X and
XI. In this case, the condensate � is a complex quantity and
there are significant differences in the values of the other
condensates and of �4 compared to the 4d case. Also, in 3d
one has a real pole mass in addition to the pair of complex-
conjugate poles. It is interesting to note that the masses
from the complex poles assume similar values in 3d and
4d, with an imaginary part that is more than twice their real
part. (We recall that a Gribov propagator would have a null
real part.) Note also that the mass and the coefficient
associated with the real pole in 3d are very small.
In the 2d case, two particular features arise in the

analysis of the data. First, as known from previous lattice
studies, the description of the infrared behavior of the
gluon propagator Dðp2Þ requires a noninteger power � of
the momentum p. [See the fitting form f7ðp2Þ in Eq. (55)
and fit parameters obtained using improved momenta in
Table XIII.] Second, the pole structure that best fits the data
is similar to the one observed in the 3d and 4d cases—i.e.
complex-conjugate poles with nonzero real part—at all
considered (finite) lattice volumes. In the infinite-volume
limit, one findsDð0Þ ¼ 0, as would be the case for a Gribov
propagator, with purely imaginary poles. However, in our
case, the real part of the poles does not seem to vanish in
this limit. The null value of Dð0Þ comes, instead, from an
exact cancellation of the contributions from the two
complex-conjugate poles (see values of pole masses in
Table XIV).
Our analysis strongly suggests—in d ¼ 2, 3, 4—a pole

structure with complex-conjugate masses (with compa-
rable real and imaginary parts) for the infrared gluon
propagator in Landau gauge.15 As stressed at the end of
Sec. III, one can interpret this result as describing an
unstable particle [3,36,37]. In particular, by considering
the position m2

g � img�g of the gluon pole, one can esti-

mate the gluon mass mg and its width �g, which are in

principle gauge-independent quantities [77,78]. In our
case, if we take as a reference the pole masses in the 4d
case—i.e. the values !2� ¼ v� iw with v � 0:3 GeV2

and w � 0:65 GeV2 from Table IV—we obtain

mg � 550 MeV and �g � 1180 MeV: (70)

Note that the value for the gluon mass mg is in agreement

with other determinations [24,29,79,80].16 At the same

TABLE XIV. Estimates of the parameters of the function
f8ðp2Þ [see Eq. (56)] from fits (see last row of Table XIII above)
to the equivalent form f7ðp2Þ in Eq. (55). Errors are obtained
using propagation of error, a Monte Carlo analysis with 10 000
samples and a bootstrap analysis with 500 samples. In all cases
we considered the volume V ¼ 3202 and improved momenta.
Errors shown in parentheses correspond to one standard devia-
tion. Note that the value of � can be obtained from the last row
of Table XIII for propagation of error and Monte Carlo analysis,
and from Eq. (63), for the bootstrap analysis.

parameter propagation

of error

Monte Carlo

analysis

bootstrap

analysis

a (GeV2) 0.0550 (5) 0.0550 (5) 0.0559 (7)

b (GeV2) �0:049ð8Þ �0:049ð7Þ �0:037ð2Þ
c (GeV2��) 0.07 (1) 0.07 (1) 0.089 (8)

v (GeV2) 0.145 (8) 0.145 (8) 0.151 (7)

w (GeV2) 0.15 (2) 0.15 (1) 0.205 (6)
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FIG. 5. Plot of the 2d gluon propagator Dðp2Þ as a function
of the (improved) momentum p (in GeV) for the lattice volume
V ¼ 3202. We also show the fitting function f7ðp2Þ [see Eq. (55)]
with the parameters reported in the last row of Table XIII. Note
that in 2d, with our convention, the gluon propagator Dðp2Þ is
dimensionless. Also note the logarithmic scale on the y axis.

15Let us mention that this complex-conjugate pole structure has
been shown to describe also the longitudinal and transverse
gluon propagators in Landau gauge at finite temperature [74–
76], at least up to twice the critical temperature Tc.
16Let us remark that in Ref. [81] the authors prefer to consider,
instead of the gluon mass mg, the maximum wavelength of
(confined) gluons, roughly corresponding to the inverse gluon
mass 1=mg.
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time, the very large value for the width �g would corre-

spond to a lifetime �g smaller than 10�24 s, supporting the

existence of very short-lived excitations of the gluon field.
In summary, we have presented fits—inspired by an

analytic prediction, i.e. the tree-level RGZ expression,
which is equivalent to the Stingl formulation (see discus-
sion at the end of Sec. III)—allowing a good description of
lattice data for the Landau-gauge SU(2) gluon propagator
Dðp2Þ. The data points range from about 4 GeV down to
20–40 MeV, which are the smallest simulated momenta to
date. Our results thus provide an accurate modeling of
Dðp2Þ in the whole IR region using a simple rational

expression, whose parameters may be interpreted as
(effective) values for the condensates in the RGZ theory.
This parametrization will hopefully be a useful input in
future studies of the IR sector of Yang-Mills theories.
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