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We present a first calculation of transverse momentum-dependent nucleon observables in dynamical

lattice QCD employing nonlocal operators with staple-shaped, ‘‘process-dependent’’ Wilson lines. The

use of staple-shaped Wilson lines allows us to link lattice simulations to TMD effects determined from

experiment, and, in particular, to access nonuniversal, naively time-reversal odd TMD observables. We

present and discuss results for the generalized Sivers and Boer-Mulders transverse momentum shifts for

the SIDIS and DY cases. The effect of staple-shaped Wilson lines on T-even observables is studied for the

generalized tensor charge and a generalized transverse shift related to the worm-gear function g1T . We

emphasize the dependence of these observables on the staple extent and the Collins-Soper evolution

parameter. Our numerical calculations use an nf ¼ 2þ 1 mixed action scheme with domain wall valence

fermions on an Asqtad sea and pion masses 369 MeV as well as 518 MeV.

DOI: 10.1103/PhysRevD.85.094510 PACS numbers: 12.38.Gc, 13.60.Hb

I. INTRODUCTION

The picture of the nucleon as a system of interacting
quarks and gluons naturally leads to the question about
the intrinsic motion of these elementary particles inside
the proton or neutron. This intrinsic motion, specifically
with respect to the transverse momentum, can be de-
scribed in terms of Transverse Momentum Dependent
Parton Distribution Functions (TMDs), see, e.g., chapter 2
of Ref. [1] for a recent review. TMDs for quarks, generi-
cally denoted by f1ðx; k2TÞ, g1ðx; k2TÞ, etc., encode essen-

tial information about the distribution of partons with
respect to the longitudinal momentum fraction, x, and
intrinsic quark transverse momentum, kT. With certain
restrictions in mind, they have an intuitively appealing
interpretation as three-dimensional probability densities
[2,3]. TMDs can, for example, be studied on the basis
of angular asymmetries observed in processes such as
Semi-Inclusive Deep Inelastic Scattering (SIDIS) using
suitable QCD factorization theorems that go beyond the
standard collinear factorization, see, e.g., Refs. [4–7]. In
contrast to the usual collinear PDFs, TMDs turn out to be
in general nonuniversal, i.e., process-dependent. The pro-
cess dependence arises from the difference in the final and
initial state interactions in SIDIS and Drell-Yan scatter-
ing, respectively. On the theoretical level, it can be under-
stood as an intriguing consequence of the local color
gauge invariance of the strong interaction and the corre-
sponding nontrivial gauge-link structures. Specifically,
QCD factorization leads to the remarkable prediction

that the naively time-reversal odd (T-odd) TMDs, in
particular, the Sivers and Boer-Mulders functions, differ
in sign for DY compared to SIDIS, fT-odd;SIDIS ¼
�fT-odd;DY. The implications and consequences of these
observations continue to stir intense interest of many
theoreticians and experimentalists, as a number of funda-
mental questions and interesting puzzles remain to be
addressed. Motivated by promising experimental results
from COMPASS, HERMES and JLab (see, e.g., [8–10]
and references therein), as well as considerable progress
on the theoretical and phenomenological sides during
recent years, an essential part of the physics program of
future facilities will therefore be targeted in this direction,
including JLab 12 GeV and the proposed EIC at JLab
or BNL.
Theoretical calculations of TMDs from first principles

require nonperturbative methods such as lattice QCD. In
previous works, we have introduced and explored tech-
niques that allow the computation of the underlying am-
plitudes on the lattice using nonlocal operators [11–13].
Our numerical studies for a ‘‘process-independent’’, direct
gauge link geometry already produced encouraging results.
In this work, we present a first exploratory lattice study
employing a more complex, ‘‘process-dependent’’ link
geometry that gives us rather direct access to highly inter-
esting T-odd observables.
In Sec. II, we present the formalism and techniques

required for our calculations, and provide definitions of
the relevant T-odd and T-even TMD observables. After a
short introduction to the lattice computations at the begin-
ning of Sec. III, we continue with a presentation and
discussion of our numerical results for the generalized
shifts and tensor charge. A summary and conclusions are
given in Sec. IV.
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II. FORMALISM

A. Definition of TMDs

In a relativistic quantum field theory, the question:
‘‘What is the probability to find a quark with a given
momentum k inside the proton?’’ needs to be stated more
precisely. First of all, it turns out to be advantageous to
formulate everything in light-cone coordinates, see
Appendix A, and to consider a frame of reference where
the nucleon has large momentum in z-direction, i.e., Pþ �
mN, PT ¼ 0. In light-cone coordinates, the components
kþ, kT, k� of the quark momentum k scale as Pþ=mN , 1,
mN=P

þ, respectively, under boosts along the z-axis. Thus
the longitudinal momentum fraction of the quark x ¼
kþ=Pþ and its transverse momentum kT are invariant
under boosts along the z-axis, while the k� component is
suppressed. This leads to the concept of transverse mo-
mentum dependent parton distribution functions (TMDs),
which are functions of the longitudinal momentum fraction
x � kþ=Pþ and of the quark transverse momentum kT.
The transverse momentum components kT are particularly
interesting, because they describe an intrinsic motion of the
quarks inside the proton that occurs independent of the
momentum of the proton itself. This gives us a unique
picture of the dynamics inside the proton. Moreover, the
TMDs are an important ingredient in our understanding of
the origin of large angular- and spin-asymmetries found in

experiments studying, e.g., semi-inclusive deep inelastic
scattering (SIDIS) or the Drell-Yan process (DY).
In a naive approach based on a theory quantized on the

light front, one obtains a momentum-dependent number
density of quarks from f1ðx; kTÞ � 1

2

P
�¼�1

P
�¼�1

ja�;qðx; kTÞjP; Sij2 (up to normalization factors), where

a�;q is an annihilation operator of quarks of flavor q and

helicity�. The average over nucleon helicities 12
P

��1 imple-

ments an average over the spinS in the nucleon state jP; Si. In
this example, the TMD f1ðx; kTÞ describes the distribution of
unpolarized quarks in an unpolarized nucleon. Rewriting the
annihilation operator in terms of local quark field operators �q
and q reveals a problem: f1ðx; kTÞ is a Fourier transform of
the matrix element hP; Sj �qð0Þ�þqðbÞjP; Si with respect to
the position b, and the bi-local operator �qð0Þ�þqðbÞ is not
gauge invariant, see Ref. [3] for a review of the issue.
Gauge invariance can be restored by inserting a Wilson
line U½Cb� between the quark fields, as defined in
Appendix A. The Wilson line introduces divergences that
cannot be treated by conventional dimensional regulariza-
tion [14]. Several different schemes have been proposed in
the literature as to how to subtract those divergences
[3,4,6,7,14–19], see Ref. [20] for a recent comparison. In
general, these schemes require the introduction of a so-

called soft factor ~S inside the defining correlator of TMDs.
The starting point for our discussion of TMDs is thus a
correlator of the general form

�½��ðk; P; S; . . .Þ �
Z d4b

ð2�Þ4 e
ik�b

1

2
hP; Sj �qð0Þ�U½Cb�qðbÞjP; Si

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{� ~�½��
unsubtr:

ðb;P;S;...Þ

~Sðb2; . . .Þ : (1)

The detailed properties of the Wilson line U½Cb� and the
soft factor need to be specified by additional parameters,
which we indicate by the dots ‘‘. . .’’ for now and which will
be discussed later. Moreover, all objects above implicitly
depend on a UV renormalization scale �.

In Eq. (1), ~S stands somewhat symbolically for an ex-
pression that can, depending on the formalism, involve
several vacuum expectation values. For example, in the

scheme developed in Refs. [6,7,19], our factor ~Sðb2; . . .Þ
would be (using the notation of those references)

~Sðb2; . . .Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Sð0ÞðbT;þ1;�1Þ~Sð0ÞðbT; ys;�1Þ

~Sð0ÞðbT;þ1; ysÞ

vuut ; (2)

where each of the objects ~Sð0ÞðbT; . . .Þ is a vacuum expec-

tation value ofWilson line structures. In this specific frame-
work, the starting point of the discussion is space-like
Wilson lines. Some Wilson lines remain tilted away from
the light cone, leading to the dependence on the rapidity
parameter ys in the above expression. Other Wilson lines,
including those contained in U½Cb� in the numerator of
Eq. (1), are brought back to the light cone in the sense of

a limit, as indicated symbolically by þ1 and �1 in the
equation above, see Refs. [6,7] for details. As wewill see in
Sec. II E and below, certain matrix elements with space-like
structures of Wilson lines are directly accessible on the
Euclidean lattice, whereas taking the light-cone limit is
only possible in the form of a numeric limit and technically
challenging. For the purposes of our treatment, however, we
do not need to go into any detail concerning the definition of
~Sðb2; . . .Þ in anyparticular framework, since itwill cancel in
the observables we consider.
Integrating the correlator over the suppressed momen-

tum component k� yields

�½��ðx;kT;P;S;...Þ�
Z
dk��½��ðk;P;S;...Þ

¼
Z d2bT
ð2�Þ2

Z dðb�PÞ
ð2�ÞPþe

ixðb�PÞ�ibT�kT

�
1
2hP;Sj �qð0Þ�U½Cb�qðbÞjP;Si

~Sð�b2T;...Þ
��������bþ¼0

:

(3)
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Notice that integrating over k� corresponds to setting
bþ ¼ 0. As a consequence, x $ ðb � PÞ and kT $ bT act
as independent pairs of Fourier conjugate variables in the
expression above. The above correlator can be decom-
posed into TMDs. For choices of the Dirac matrix � that
project onto leading twist, one obtains [21–24]

�½�þ�ðx; kT;P; S; . . .Þ ¼ f1 �
�
�ijkiSj

mN

f?1T
�
odd

; (4)

�½�þ�5�ðx; kT;P; S; . . .Þ ¼ �g1 þ kT � ST

mN

g1T ; (5)

�½i�iþ�5�ðx; kT;P; S; . . .Þ ¼ Sih1 þ
ð2kikj � k2T�ijÞSj

2m2
N

h?1T

þ�ki
mN

h?1L þ
�
�ijkj
mN

h?1
�
odd

:

(6)

The TMDs f1, g1, h1, g1T , h
?
1L, h

?
1T , f

?
1T , and h?1 are

functions of x, k2T, � and further parameters related to
regularization and link geometry. The structures shown in
brackets ½�odd involve so-called naively time-reversal odd
(T-odd) TMDs, namely, the Sivers function f?1T [25] and
the Boer-Mulders function h?1 [26]. The origin of the above
parametrization and the special role of T-odd TMDs
will become clear after we have discussed the geometry
of the gauge-link path Cb and symmetry transformation
properties.

B. General strategy

At this point, several remarks are in order as to how we
aim to introduce TMD observables that can be accessed
with lattice QCD using a nonlocal operator technique.
Because of the underlying operator structure, the situation
is quite different from that of standard collinear PDFs and
offers unique opportunities and challenges.

As an introductory example, consider the definition of a
standard PDF in the unpolarized case,

f1ðxÞ � 1

2ð2�Þ
Z

db�eixPþb�

� hP; Sj �qð0Þ�þU½0; nb��qðnb�ÞjP; Si:
For PDFs, the gauge link U½0; nb�� is simply a straight,
light-like Wilson line of finite extent connecting the two
quark field operators [27]. No continuous Lorentz trans-
formation exists that allows us to ‘‘rotate’’ the nonlocal
operator �qð0Þ�þU½0; nb��qðnb�Þ into Euclidean space.
The light-like separation stays always light-like, but in
Euclidean space objects cannot have any extent in
(Minkowski-) time. As a consequence, one is forced to
invoke the operator product expansion to cast the calcu-
lation in terms of local matrix elements which can be
accessed using lattice QCD.

The situation for TMDs differs fundamentally in several
aspects:
(1) The separation b of the quark field operators has an

additional transverse component, b ¼ nb� þ b?.
Thus, in general, this separation is space-like. This
opens the possibility of a direct representation of the
nonlocal operator in Euclidean space.

(2) The geometry of the gauge link U½Cb� is more
complicated, depends to a certain degree on the
experiment under consideration and in general ex-
tends out to infinity. As a result, it becomes ques-
tionable whether an expansion in terms of local
operators is possible at all.

(3) Regularization is more complicated, leading to the

introduction of the soft factor ~S and additional
regularization parameters beyond the usual renor-

malization scale � of the MS scheme.
The first two items listed above are our main motivation

to develop a technique for lattice studies of TMDs based
on nonlocal operators. It should be emphasized that
this technique can only work for the analysis of certain
TMD-related observables within a limited kinematical
range. The method cannot be applied to study the
x-dependence of PDFs directly, without the use of non-
trivial extrapolations.
In previous publications [12,13], it was demonstrated

that the nonlocal operator technique is quite promising and
produces interesting results, for a simplified gauge-link
geometry, at least on a qualitative level. The crucial con-
nection between the formalism inMinkowski space and the
results from Euclidean space is provided through a parame-

trization in terms of invariant amplitudes1 ~Aiðb2; b � PÞ. By
virtue of their Lorentz-invariance, the calculation of these
amplitudes can be performed in any desired Lorentz frame.
In particular, for the generic off-light-cone kinematics
appropriate for TMDs, there is no obstacle to performing
the calculation in a frame in which the nonlocal operator in
question is defined entirely at one fixed time. In this frame,
one can cast the computation of the nonlocal matrix ele-
ment in terms of a Euclidean path integral, evaluated
employing the standard methods of lattice QCD.
The study at hand builds directly on Ref. [13], and we

refer the reader to that publication for an introduction to the
essential principles of the methodology. One of the remain-
ing challenges identified in Ref. [13] concerns the geometry
of the gauge link. In the present study, we replace the simple
straight connection by a staple-like path that corresponds
more accurately to the situation in phenomenology. We
stress that these gauge-link structures are part of the estab-
lished phenomenological framework, which we take as
given, and not a new assumption related to our use of lattice
QCDas a calculationalmethod.Whereas our results depend

1Note that the symbol l in Ref. [12,13] corresponds to �b in
the present study.
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on the gauge-link structure, specific physical processes such
as SIDIS and DY unambiguously correspond to definite
instances of that structure. Throughout our discussion, we
clearly identify the SIDIS and DY limits of our data.

It is important to point out that our assumptions about the
operator structure of TMDs rely on factorization arguments
that are much more involved than for the usual PDFs. In
fact, one must be judicious concerning the classes of reac-
tions for which it can be assumed that a factorization frame-
work with well-defined TMDs exists. For example, it has
been realized recently [28,29] that TMD factorization gen-
erally fails for large reaction classes, in particular, processes
with multiple hadrons in both the initial and the final state.
While the consequences of this observation are not yet all
known, it appears certain that to develop a TMD framework
for these processes, a fundamental change of perturbative
QCD techniques is needed. It could, e.g., very well be that
measurement-independent cross sections are simply not
defined for certain reaction classes and that, instead, the
appropriate quantities will be entanglement amplitudes
which then have to be folded with quantities encoding the
measurement process [30]. In contradistinction to the afore-
mentioned classes of reactions, for other types of processes
such as SIDIS and DY, recent progress [6,7,19] indicates
that a valid definition of TMDs based on factorization argu-
ments indeed is possible, within a scheme regularized em-
ploying space-like links. Promising steps have been taken to
develop the predictive capabilities of this framework [31].
A pertinent discussion is given in Sec. I of our previous
publication [13], with further details to be found in the
references therein and recent overviews in Refs. [20,29].
The point which we wish to emphasize here is that it is not
the purpose of our present work to critique or justify the
various approaches to defining TMDs in terms of operators
and matrix elements which have been advanced in response
to issues of factorization and regularization. Instead,wewill
assume that a good definition of TMDswith a connection to
phenomenology through a valid factorization argument ex-
ists for certain classes of processes such as SIDIS and DY;
we focus exclusively on those TMDs and do not aim to
contribute to discussions of factorization, fragmentation
functions, or related matters. Our starting point thus is the
definition of TMDs in terms of a TMD correlator of the
rather general form (1).

Working from this definition, we will moreover restrict
ourselves to observables in which the soft factor cancels, so
that specifics of the soft factor are not relevant for our results.
Regarding the necessary regularization of the gauge link, we
pick the proposal that is most suitable for our purposes,
namely, tilting the gauge link slightly away from the light
cone [32], in a space-like direction [6,7]. We stress that, in
choosing this approach to defining and regularizing TMDs,
we are led to consider kinematics off the light cone from the
very beginning, which makes a connection to Euclidean
lattice QCD feasible, as already noted further above. We

emphasize that, within this work, we do not aim to arrive at
any statements concerning the formal nature of the light-
cone limit. We will, however, focus particularly on the
behavior of our numerical results aswe extend the kinematic
region as far towards the light cone as possible.
One necessary step of a lattice calculation is to discretize

the operators. The discretization of nonlocal operators as
we encounter them here is still a rather new concept. An
important assumption we make is that nonlocal lattice
operators composed of structures much larger than the
lattice spacing essentially renormalize in the same fashion
as their counterparts in the continuum, except that the
renormalization parameters are specific to the lattice action
and the discretization prescription. We have given reasons
for this assumption and explored it numerically in
Ref. [13], see, in particular, Secs. III D, IV B, IV C and
Appendixes B, D, G, and H therein. However, we point out
that a more rigorous treatment would still be desirable.
Especially the question of mixing properties as one at-
tempts to make contact with the local operator formalism
remains a challenge for the future.
Keeping the above remarks in mind, it is worthwhile

summarizing the logic underlying our treatment succinctly
before laying out the details further below:
(1) We start from a definition of TMDs in terms of the

correlator (1), considering generic off-light-cone
kinematics from the very beginning.

(2) The correlator (1) is parametrized in terms of
Lorentz-invariant amplitudes, cf. Sec. II F below.
This crucial step permits one to transform results
into different Lorentz frames in a simple manner.

(3) On this basis, we choose the Lorentz frame in which
the nonlocal operator entering (1) is defined at one
single time as the one most suitable for our calcu-
lation. We stress again that there is no obstacle to
this choice, since the separations in the operator are
all space-like.

(4) In the aforementioned frame, the computation of the
nonlocal matrix element can be cast in terms of a
Euclidean path integral and performed employing
the standard methods of lattice QCD.

(5) We form appropriate ratios of the extracted invariant
amplitudes in which soft factors and multiplicative
renormalization factors cancel, such as the kT-shifts
discussed in Sec. II D, which, in principle, represent
measurable quantities. We particularly study the ap-
proach to the SIDIS andDY limits in these quantities.

C. TMDs in Fourier space and x-integration

In essence, the lattice method we use allows us to
evaluate the b-dependent matrix elements introduced in

Eq. (1), i.e., ~�½��
unsubtr:ðb; P; S; . . .Þ. As a result, it is more

direct and natural to state our results in terms of
Fourier-transformed, bT-dependent TMDs and their
bT-derivatives. For a generic TMD f we define
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~fðx; b2T; . . .Þ �
Z

d2kTe
ibT�kTfðx; k2T; . . .Þ

¼ 2�
Z

djkTjjkTjJ0ðjbTjjkTjÞfðx; k2T; . . .Þ;
(7)

~fðnÞðx; b2T; . . .Þ � n!

�
� 2

m2
N

@b2T

�
n
~fðx; b2T; . . .Þ

¼ 2�n!

ðm2
NÞn

Z
djkTjjkTj

�jkTj
jbTj

�
n

� JnðjbTjjkTjÞfðx; k2T; . . .Þ; (8)

where the Jn are Bessel functions of the first kind, and mN

is the mass of the target hadron. These objects and their
potential phenomenological relevance have been discussed
in detail in Ref. [33]. Moreover, evolution equations are

naturally expressed in terms of the ~fðnÞ, compare, e.g.,
Ref. [34]. In the limit jbTj ! 0, one recovers conventional
kT-moments of TMDs:

~fðnÞðx;0;.. .Þ¼
Z
d2kT

�
k2T
2m2

N

�
n
fðx;k2T;. . .Þ�fðnÞðxÞ: (9)

However, it is known [35] that kT-moments like fð0Þ1 ðxÞ and
f?ð1Þ
1T ðxÞ are ill-defined without further regularization. The

problem is that the integral in the above equation diverges
if the integrand does not fall off quickly enough in the
region of large kT, where the TMDs fðx; k2TÞ are perturba-
tively predictable. Even though kT-moments may be more
familiar to the reader, we therefore do not attempt to
extrapolate to bT ¼ 0, but rather state our results at finite
jbTj, where the kT-integrals of Eqs. (7) and (8) can be
shown to be convergent in the relevant cases [33].

Information about the x-dependence of TMDs can be
obtained from the lattice via the Fourier-conjugate vari-
able, b � P [12,13]. However, the calculations performed in
Euclidean space only allow us to access a limited range of
b � P, precluding us from performing a straightforward
Fourier transform. In this work, we limit ourselves to the
study of x-integrated TMDs

f½1�ðk2T; . . .Þ �
Z 1

�1
dxfðx; k2T; . . .Þ: (10)

These are accessible from the data at b � P ¼ 0. Here, the
superscript ‘‘[1]’’ denotes the first Mellin moment in x. The
integration is performed over the full range of x. TMDs
evaluated at negative values of x can be related to antiquark
distributions, see, e.g., [13,23] for details.

D. Quantities suitable for lattice extraction

Certain ratios of kT-moments of TMDs have interesting
physical interpretations. For example, consider

mN

f?ð1Þ
1T ðxÞ
fð0Þ1 ðxÞ ¼

R
d2kTky�

½�þ�ðx; kT; P; S; . . .ÞR
d2kT�

½�þ�ðx; kT; P; S; . . .Þ
��������ST¼ð1;0Þ

;

(11)

where �þ projects on leading-twist. In the context of the
density interpretation of TMDs mentioned in Sec. II A, the
ratio above yields the average transverse momentum in
y-direction, for quarks with given longitudinal momentum
fraction x inside a proton polarized in x-direction. We will
show below that quantities like this can be calculated rather
directly on the lattice. For the reasons mentioned above, we
limit ourselves to ratios formed from x-integrated quanti-
ties. Let us therefore consider

hkyiTU � mN

f?½1�ð1Þ
1T

f½1�ð0Þ1

: (12)

Ignoring the role of antiquarks, this ratio, called in the
following ‘‘Sivers shift,’’ represents the average transverse
momentum of unpolarized (‘‘U’’) quarks orthogonal to the
transverse (‘‘T’’) spin of the nucleon. Note, however, that

the denominator f½1�ð0Þ1 arises from a difference of quarks

and antiquarks and thus gives the number of valence quarks

in the nucleon. On the other hand, in the numerator f?½1�ð1Þ
1T ,

the average transverse momentum of quarks and antiquarks
is summed over [13,23]. A profound interpretation of

f?½1�ð1Þ
1T in impact parameter space has been given in

Ref. [36]. However, as mentioned before, understanding

f?½1�ð1Þ
1T simply as a kT-weighted TMD is problematic, since

the kT-integral is expected to be UV divergent. A natural
way of circumventing this divergence is to generalize the
Sivers shift to an expression in terms of the Fourier-
transformed TMDs,

hkyiTUðb2T; . . .Þ � mN

~f?½1�ð1Þ
1T ðb2T; . . .Þ
~f½1�ð0Þ1 ðb2T; . . .Þ

: (13)

This is the type of quantity that we investigate in the
present paper. In the limit b2T ¼ 0 we recover the Sivers

shift (12), because the Fourier-transformed TMDs ~f?½1�ð1Þ
1T

and ~f½1�ð0Þ1 coincide with the moments f?½1�ð1Þ
1T and f½1�ð0Þ1 ,

respectively. We are, however, interested in the generalized
Sivers shift for nonzero b2T, where the said UV-divergence
disappears. The variable b2T effectively acts as a regulator.
Moreover, the bT-dependence allows us to study differ-
ences in the widths of distributions on a qualitative level.

E. Link geometry

The prescription for the geometry of the gauge-link path
Cb affects both the number of allowed structures appearing
in Eqs. (4)–(6) and the numerical result for the TMDs.
We therefore need to ask which link geometries are
appropriate.
The simplest link geometry is a straight line connecting

the quark fields at 0 and b, see Fig. 1(a). TMDs with
straight gauge links have been studied on the lattice in
Refs. [12,13]. While these ‘‘process-independent’’ TMDs
are interesting from a theoretical point of view in their
own right, it is so far not known how to relate these
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quantitatively to the TMDs that play a role in scattering
experiments. The operator with straight gauge links offers
the largest possible degree of symmetry. As a result, T-odd
TMDs vanish for straight gauge links.

For TMDs that allow us to describe measurable effects
in scattering experiments such as SIDIS or DY, the form of
the gauge link is largely dictated by the physical process.
To understand scattering experiments at high momentum
transferQ, one tries to apply approximations valid for large
Q that separate hard, perturbative and soft, nonperturbative
scales in the dominant physical processes in order to arrive
at an expression for the cross section in factorized form. In
the standard collinear approximation, all internal trans-
verse momenta are integrated out and conventional parton
distribution functions and fragmentation functions are used
to describe the process. In certain kinematical regions this
approximation is insufficient. An example is SIDIS, where
the momentum Ph of one of the final state hadrons is
measured after a lepton-nucleon collision at large momen-
tum transfer Q. The transverse momentum dependent for-
malism is needed when the transverse momentum
component Ph? is small with respect to Q, see, e.g.,
Ref. [35] for an in-depth discussion.

The leading diagram for SIDIS is shown in a simplified,
factorized form in Fig. 2. The lower shaded bubble in the
diagram represents the structure parametrized by TMDs. A

gauge link in the TMD correlator arises naturally as an
idealized, effective, resummed description of the gluon
exchanges between the ejected quark and the remainder
of the nucleon in the evolving final state, see, e.g., Ref. [37]
for a review. The gauge link roughly follows the direction
of the ejected quark, in SIDIS by convention denoted by
the light-cone n direction. The TMD correlator obtained
from the squared amplitude thus has parallel Wilson lines
attached to each of the quark field operators at 0 and b,
extending out to infinity along a direction v 	 n, see
Fig. 1(b). Because of the fact that the gauge link is only
an effective representation of final-state interactions within
a framework of suitable approximations, there is a certain
degree of freedom with respect to its geometry, in particu-
lar, with regard to the choice of its direction v. At tree
level, the most convenient choice is an exactly light-like
gauge link, v ¼ n. However, going beyond tree level, it
has been found that the light-like link introduces so-called
rapidity divergences that are hard to remove, see Ref. [38]
for a review. One way of regulating these divergences is
to use a gauge link slightly off the light cone [27], see
Refs. [4,6,7] for the application to SIDIS. In Ref. [4], the
direction v is chosen time-like. More recent work in
Refs. [6,7] is based on space-like Wilson lines, motivated
by the insight that TMDs with this choice of link directions
feature a ‘‘modified universality,’’ i.e., they are predicted
to be numerically equal for both SIDIS and DY [15] up to
the expected sign changes of T-odd TMDs. The space-like
choice of Wilson lines also opens up the possibility of
implementing the gauge link directly in lattice QCD.
In Fig. 1(b), the two parallel Wilson lines are connected

at the far end by another straight Wilson line. The complete
gauge link thus has a staple-like shape. Bridging the trans-
verse gap is necessary to render the operator gauge invari-
ant and proves to be essential if the light-cone gauge
n � A ¼ 0 is used [39,40]. In a covariant gauge, the con-
necting link at infinity can be omitted; this has been
exploited in Refs. [4,6]. Lattice calculations are typically
performed without any gauge fixing. We therefore prefer
the notation with an explicitly gauge-invariant operator.
Moreover, in our study we take the limit of an infinite
‘‘staple extent’’ � explicitly. The gauge link employed in
this work thus reads

U ½Cð�vÞb � ¼ U½0; �v; �vþ b; b�; (14)

where v is space-like. Even at finite �, this gauge-link
geometry fulfills the desired symmetry transformation
rules, as listed in Eq. (C6) of Ref. [13] and discussed
further below. Here, we will be mostly concerned with
the lowest x-moment of TMDs, corresponding to the case
b� ¼ bþ ¼ 0. In this case, the connection at the far end is
purely transverse.
We choose v space-like and, as in Refs. [4,6,7], we

consider TMDs for the choice vT ¼ 0. The Lorentz-
invariant quantity characterizing the direction of v is the

FIG. 1. (a) Straight gauge link; (b) Staple-shaped gauge link as
in SIDIS and DY.

FIG. 2. Illustration of the leading contribution to SIDIS in
factorized form.
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parameter 	 � 2v � P= ffiffiffiffiffiffiffiffijv2jp
. The light-like direction

v ¼ n can be approached in the limit 	 ! 1. The parameter
	 can be understood as an artificial scale or cutoff introduced
to regulate rapidity divergences. Within their work on
eþe�-scattering, Collins and Soper provided evolution
equations for the dependence on 	 applicable for 	 �
�QCD [32]. Similar equations have been worked out for all

leading-twist and spin-dependent parton distributions [34]
based on the formalism of Ref. [4]. For the more recent
formalism of Refs. [6,7], evolution equations are presently
available for the unpolarized case and the Sivers function
[19]. The vectors P and v can be written in terms of

rapidities yP and yv, respectively: P
� ¼ mNe

�yP=
ffiffiffi
2

p
and

vþ=v� ¼ �e2yv . Rewriting 	 as a dimensionless quantity,

	̂ � 	=2mN ¼ v � Pffiffiffiffiffiffiffiffijv2jp ffiffiffiffiffiffi
P2

p ¼ sinhðyP � yvÞ; (15)

reveals that it is essentially a rapidity difference. Notice that
the entire system can always be boosted to a frame where v
has only spatial components, v0 ¼ 0, yv ¼ 0. This is crucial
for the lattice approach.

F. Parametrization of the correlator

The translation of our results obtained in Euclidean
space into TMDs defined and interpreted in the context
of light-cone coordinates is mediated through a parametri-

zation of the correlator ~�unsubtr: in terms of manifestly
Lorentz-invariant amplitudes. For our purposes, it will be
important to take the dependence on the link direction v
explicitly into account. A parametrization of the correlator

�unsubtr:ðk; P; S;1v;�Þ
¼

Z
d4b=ð2�Þ4eik�b 1

2
hP; Sj �qð0Þ�U½Cð1vÞ

b �qðbÞjP; Si

for link paths that extend to infinity in a direction v has
been worked out in Ref. [24] and involves 32 independent
amplitudes Ai and Bi that depend on the Lorentz-invariant

quantities k2, k � P, k � v=v � P and 	̂ . Appendix C of
Ref. [33] shows that a parametrization of the correspond-

ing b-dependent correlator ~�unsubtr: is of the same form
as the parametrization of �unsubtr: if we substitute
k ! �im2

Nb. We thus obtain

1

2
~�½1�
unsubtr: ¼ mN

~A1 � im2
N

v � P��
��P�b
v�S� ~B5 (16)

1

2
~�½�5�
unsubtr: ¼ m2

Nðb � SÞ ~A5 þ im2
N

P � v ðv � SÞ ~B6 (17)

1

2
~�½���
unsubtr: ¼ P� ~A2 � im2

Nb
� ~A3 � imN�

�
�P
b�S ~A12

þ m2
N

ðv � PÞv
� ~B1 þ mN

v � P��
�P
v�S ~B7

� im3
N

v � P��
�b
v�S ~B8

� m3
N

v � P ðb � SÞ��
�P
b�v
~B9

� im3
N

ðv � PÞ2 ðv � SÞ��
�P
b�v
~B10 (18)

1

2
~�½���5�
unsubtr: ¼ �mNS

� ~A6 þ imNðb � SÞP� ~A7

þm3
Nðb � SÞb� ~A8 þ im2

N

v � P��
��P
b�v�
~B4

� mN

v � P ðv � SÞP� ~B11 þ im3
N

v � P ðv � SÞb� ~B12

þ im3
N

v � P ðb � SÞv� ~B13 � m3
N

ðv � PÞ2 ðv � SÞv� ~B14

(19)

1

2
~�½i��
�5�
unsubtr: ¼ imN�

�
��P�b� ~A4 þ P½�S
� ~A9 � im2
Nb

½�S
� ~A10 �m2
Nðb � SÞP½�b
� ~A11 � mN

v � P��
��P�v�
~B2

þ im3
N

v � P��
��b�v�
~B3 þ m2

N

v � Pv½�S
� ~B15 � im2
N

v � P ðb � SÞP½�v
� ~B16 � m4
N

v � P ðb � SÞb½�v
� ~B17

� im2
N

v � P ðv � SÞP½�b
� ~B18 þ m2
N

v � P ðv � SÞP½�v
� ~B19 � im4
N

ðv � PÞ2 ðv � SÞb½�v
� ~B20 ; (20)

where a½�b
� � a�b
 � a
b�. The structures above are
compatible with the transformation properties of the cor-
relator under the symmetries of QCD. For completeness
we list them again in Appendix B.

Our previous studies of TMDs on the lattice [12,13]
were carried out with straight gauge links. In that case

only the T-even structures involving amplitudes of type ~Ai

appear in the parametrization. As pointed out already in
those references, there is not necessarily a one-to-one

correspondence between the Ai and ~Ai (or the Bi and ~Bi).

For example, ~A8 contributes to A6, A7, and A8. Note that
l ¼ �b in Refs. [12,13].
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In the above parametrization, factors of ðv � PÞ�n ensure
that the structures are invariant under rescaling of v, i.e.,
v ! �v, for any �> 0. The above parametrization is
therefore suitable for describing the case of the staple links
extending to infinity. In that case, only the directional
information contained in v should enter. For the lattice
calculations, it is however advantageous to start with an
equivalent parametrization in which the structures explic-
itly depend on the staple extent � and which is still well-
defined for v � P ¼ 0. Such a parametrization can be
obtained from the parametrization above by replacing
v ! �v and by leaving out the factors ðv � PÞ�n. For
example,

1

2
~�½1�
unsubtr:ðb; P; S; �v;�Þ

¼ mN ~a1 � im2
N�

�
��P�b
�v�S� ~b5 ; (21)

and analogously for the other Dirac structures. Here we
have used lower-case amplitudes to distinguish the two
parametrizations. The relation to the upper case amplitudes
is given by

~Ai

�
b2; b � P; v � b

v � P ;
v2

ðv � PÞ2 ; �v � P
�

¼ ~aiðb2; b � P;�v � b; ð�vÞ2; �v � PÞ;
~Bi

�
b2; b � P; v � b

v � P ;
v2

ðv � PÞ2 ; �v � P
�

¼ ð�v � PÞn ~biðb2; b � P;�v � b; ð�vÞ2; �v � PÞ;

(22)

where n is the power with which v � P appears in the
denominator in front of the corresponding amplitude ~Bi

in the parametrization. Notice that the ~ai and ~bi are func-
tions of all the Lorentz-invariant products of b, P and �v.
For the upper-case amplitudes, however, we choose to
represent the dependence on these invariants in the third
and fourth argument by �-independent expressions, in
order to facilitate taking the limit � ! �1. The depen-

dence on the Collins-Soper parameter 	̂ is given by

the fourth argument, v2=ðv � PÞ2 ¼ �1=ðmN	̂Þ2, while
the fifth argument, �v � P, characterizes the length of the
gauge link and distinguishes between future and past
pointing Wilson lines. For the calculation of TMDs we
work in a frame with bþ ¼ 0 and vT ¼ PT ¼ 0. This leads
to a relation that can be expressed in Lorentz-invariant
form as

v � b
v � P ¼ b � PRð	̂2Þ

m2
N

; (23)

where

Rð	̂2Þ � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	̂�2

q
¼ m2

N

v � P
vþ

Pþ : (24)

The relation Eq. (23) shows that the third argument of the
~Ai and ~Bi is not independent of the others in the context
of TMDs. Moreover, in our lattice calculations, we have
to choose the link directions b and v such that Eq. (23) is
fulfilled. As a side remark, the parameter corresponding
to Eq. (23) in momentum space is v � k=v � P 	 x,
i.e., the amplitudes Ai and Bi acquire an explicit
x-dependence, which has already been pointed out in
Refs. [11,41].
For the �-structures at leading twist, the correlator can

be written in the form

1

2Pþ
~�½�þ�
unsubtr: ¼ ~A2B þ imN�ijbiSj

~A12B (25)

1

2Pþ ~�½�þ�5�
unsubtr: ¼ ��~A6B þ ifðb � PÞ�

�mNðbT � STÞg ~A7B (26)

1

2Pþ
~�½i�iþ�5�
unsubtr: ¼ imN�ijbj ~A4B � Si

~A9B � imN�bi ~A10B

þmNfðb � PÞ��mNðbT � STÞgbi ~A11B ;

(27)

where the indices i, j correspond to transverse directions,
i.e., i, j 2 f1; 2g (cf. Appendix A for further details on
notation), and where we have introduced the following
abbreviations for combinations of amplitudes:

~A 2B � ~A2 þ Rð	̂2Þ ~B1
~A4B � ~A4 � Rð	̂2Þ ~B3

~A6B � ~A6 þ ð1� Rð	̂2ÞÞf ~B11 þ Rð	̂2Þ ~B14g
~A7B � ~A7 þ Rð	̂2Þ ~B13

~A9B � ~A9 þ Rð	̂2Þ ~B15

~A10B � ~A10 � ð1� Rð	̂2ÞÞf ~B18 � Rð	̂2Þ ~B20g
~A11B � ~A11 � Rð	̂2Þ ~B17

~A12B � ~A12 � Rð	̂2Þ ~B8

(28)

For later convenience we also define

~A 9Bm � ~A9B � 1

2
m2

Nb
2 ~A11B : (29)

Performing the Fourier transformation and comparing with
the decomposition Eqs. (4)–(6), we can express the TMDs
in terms of Fourier-transforms of the above amplitudes.

Using the combined amplitudes ~AiB, the results are of the
same form as in the straight-link case of Ref. [13],
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f1ðx;k2T; 	̂ ; . . . ;�v �PÞ¼ 2
Z
F

~A2B ;

g1ðx;k2T; 	̂ ; . . . ;�v �PÞ¼�2
Z
F

~A6Bþ2@x
Z
F

~A7B ;

g1Tðx;k2T; 	̂ ; . . . ;�v �PÞ¼ 4m2
N@k2T

Z
F

~A7B ;

h1ðx;k2T; 	̂ ; . . . ;�v �PÞ¼�2
Z
F

~A9Bm ;

h?1Lðx; k2T; 	̂ ; . . . ;�v �PÞ¼ 4m2
N@k2T

�Z
F

~A10Bþ@x
Z
F

~A11B

�
;

h?1Tðx; k2T; 	̂ ; . . . ;�v �PÞ¼ 8m4
Nð@k2TÞ2

Z
F

~A11B ; (30)

except that the abbreviation
R
F is now applied to the

v-dependent amplitudes and includes the soft factor,

Z
F

~Ai�
Z d2bT
ð2�Þ2e

�ibT�kT 1
~Sðb2;. . .Þ

Z dðb �PÞ
ð2�Þ

�eixðb�PÞ ~Aið�b2T;b �P;ðb �PÞRð	̂2Þ=m2
N;

�1=ðmN	̂Þ2;�v �PÞ

¼
Z 1

0

dð�b2Þ
2ð2�Þ

J0ð
ffiffiffiffiffiffiffiffiffiffi
�b2

p
jkTjÞ

~Sðb2; . . .Þ
�
Z dðb �PÞ

ð2�Þ eixðb�PÞ ~Aiðb2;b �P;ðb �PÞRð	̂2Þ=m2
N;

�1=ðmN	̂Þ2;�v �PÞ (31)

Also, there are two further TMDs that are not present in the
straight-link case, the T-odd distributions

f?1Tðx; k2T; 	̂ ; . . . ; �v � PÞ ¼ 4m2
N@k2T

Z
F

~A12B ;

h?1 ðx; k2T; 	̂ ; . . . ; �v � PÞ ¼ �4m2
N@k2T

Z
F

~A4B :

(32)

Again the dots ‘‘. . .’’ indicate further parameters that spec-
ify the geometry of the soft factor. The T-even distributions
f1, g1, h1, g1T , h

?
1L and h?1T fulfill

fT�evenðx;k2T; 	̂ ; . . . ;�v �PÞ¼ fT�evenðx;k2T; 	̂ ; . . . ;��v �PÞ
(33)

while the T-odd distributions, i.e., at leading twist the
Sivers function f?1T and the Boer-Mulders function h?1 ,
fulfill

fT�oddðx;k2T; 	̂ ; . . . ;�v �PÞ¼�fT�oddðx;k2T; 	̂ ; . . . ;��v �PÞ:
(34)

As a result, T-odd distributions must vanish for � ¼ 0,
which corresponds to straight gauge links. TMDs for
SIDIS and DYare obtained for �v � P ! 1 and �v � P !
�1, respectively. In the following, we choose v � P 
 0,
such that the SIDIS and DY limits for space-like v can also
be written as �jvj ! 1 and �jvj ! �1, respectively.
Equations (30) and (32) show that certain x-integrated
TMDs in Fourier space directly correspond to the ampli-

tudes ~AiB evaluated at b � P ¼ 0:

~f½1�ð0Þ1 ðb2T; 	̂ ; . . . ; �v � PÞ ¼ 2 ~A2Bð�b2T; 0; 0;�1=ðmN	̂Þ2; �v � PÞ=~Sðb2; . . .Þ;
~g½1�ð0Þ1 ðb2T; 	̂ ; . . . ; �v � PÞ ¼ �2 ~A6Bð�b2T; 0; 0;�1=ðmN	̂Þ2; �v � PÞ=~Sðb2; . . .Þ;
~g½1�ð1Þ1T ðb2T; 	̂ ; . . . ; �v � PÞ ¼ �2 ~A7Bð�b2T; 0; 0;�1=ðmN	̂Þ2; �v � PÞ=~Sðb2; . . .Þ;
~h½1�ð0Þ1 ðb2T; 	̂ ; . . . ; �v � PÞ ¼ �2 ~A9Bmð�b2T; 0; 0;�1=ðmN	̂Þ2; �v � PÞ=~Sðb2; . . .Þ;

~h?½1�ð1Þ
1L ðb2T; 	̂ ; . . . ; �v � PÞ ¼ �2 ~A10Bð�b2T; 0; 0;�1=ðmN	̂Þ2; �v � PÞ=~Sðb2; . . .Þ;
~h?½1�ð2Þ
1T ðb2T; 	̂ ; . . . ; �v � PÞ ¼ 4 ~A11Bð�b2T; 0; 0;�1=ðmN	̂Þ2; �v � PÞ=~Sðb2; . . .Þ;
~f?½1�ð1Þ
1T ðb2T; 	̂ ; . . . ; �v � PÞ ¼ �2 ~A12Bð�b2T; 0; 0;�1=ðmN	̂Þ2; �v � PÞ=~Sðb2; . . .Þ;
~h?½1�ð1Þ
1 ðb2T; 	̂ ; . . . ; �v � PÞ ¼ 2 ~A4Bð�b2T; 0; 0;�1=ðmN	̂Þ2; �v � PÞ=~Sðb2; . . .Þ:

(35)

The (derivatives of) Fourier-transformed TMDs ~fð0Þ1 , ~gð0Þ1 ,
~gð1Þ1T ,

~hð0Þ1 , ~h?ð1Þ
1L , ~h?ð2Þ

1T , ~f?ð1Þ
1T , and ~h?ð1Þ

1 are naturally acces-
sible from the Fourier-transformed cross section of, e.g.,
SIDIS [33], and naturally appear in evolution equations,
see, e.g. [34].

G. Generalized shifts from amplitudes

In Sec. II D we have given an example that ratios of
certain kT-moments of TMDs have interesting physical
interpretations. These ratios, and their counterparts gener-

alized to nonzero bT, are also advantageous from a theo-

retical point of view: Obviously, the soft factor ~S cancels in
any ratio formed from the objects in Eq. (35), along with
any �-independent multiplicative renormalization factor
[11–13,33].
Equation (35) identifies x-integrated derivatives of

Fourier-transformed TMDs with simple linear combina-

tions of amplitudes ~Ai and ~Bi evaluated at the same values

of b2T, b � P, 	̂ , and �v � P. Forming ratios of these objects
thus just amounts to taking ratios of linear combinations of

SIVERS AND BOER-MULDERS OBSERVABLES FROM . . . PHYSICAL REVIEW D 85, 094510 (2012)

094510-9



the fundamental correlators ~�½��
unsubtr: evaluated at the same

point, i.e., with the same values for b, P and �v. For a
discussion of the renormalization properties of ratios of the
objects in (35) it is thus sufficient to understand the renor-
malization properties of (ratios formed from) the correla-

tors ~�½��
unsubtr: ¼ 1

2 hP; Sj �qð0Þ�UqðbÞjP; Si.
Analytical studies of the operator �qð0Þ�UqðbÞ in the

continuum [42–47] suggest that for b2 � 0 the renormal-
ization factors are multiplicative and �-independent. The
basic reason is that the quark field operators are at differ-
ent locations and undergo wave-function renormalization
separately. We will assume here that our lattice represen-
tation of �qð0Þ�UqðbÞ is renormalized multiplicatively

independent of � as long as we keep b2T larger than a
few lattice spacings. A more detailed discussion and
numerical studies of the renormalization properties of
this operator can be found in Ref. [13]. It remains an
interesting task for the future to perform a more thorough
treatment of nonlocal operators on the lattice. Under the
assumption of multiplicative renormalization, generalized

shifts such as hkyiTUðb2T; 	̂ ; �v � PÞ � mN
~f?½1�ð1Þ
1T =~f½1�ð0Þ1

can only depend on b2T, 	̂ and on the staple extent �v �
P. All other renormalization and soft-factor related de-
pendences cancel out in the ratio. In this work, we will
present numerical results for the following generalized
shifts:

hkyiTUðb2T; 	̂ ; �v � PÞ � mN

~f?½1�ð1Þ
1T ðb2T; 	̂ ; . . . ; �v � PÞ
~f½1�ð0Þ1 ðb2T; 	̂ ; . . . ; �v � PÞ ¼ �mN

~A12Bð�b2T; 0; 0;�1=ðmN	̂Þ2; �v � PÞ
~A2Bð�b2T; 0; 0;�1=ðmN	̂Þ2; �v � PÞ

!b
2
T¼0

R
dx

R
d2kTky�

½�þ�ðx; kT; P; S; . . .ÞR
dx

R
d2kT�

½�þ�ðx; kT; P; S; . . .Þ
��������ST¼ð1;0Þ

(36)

hkyiUTðb2T; 	̂ ; �v � PÞ � mN

~h?½1�ð1Þ
1 ðb2T; 	̂ ; . . . ; �v � PÞ
~f½1�ð0Þ1 ðb2T; 	̂ ; . . . ; �v � PÞ ¼ mN

~A4Bð�b2T; 0; 0;�1=ðmN	̂Þ2; �v � PÞ
~A2Bð�b2T; 0; 0;�1=ðmN	̂Þ2; �v � PÞ

!b
2
T¼0

P
�¼�1

R
dx

R
d2kTky�

½�þþsji�jþ�5�ðx; kT; P; S; . . .Þ
P

�¼�1

R
dx

R
d2kT�

½�þþsji�jþ�5�ðx; kT; P; S; . . .Þ
��������sT¼ð1;0Þ

(37)

hkxiTLðb2T; 	̂ ; �v � PÞ � mN

~g½1�ð1Þ1T ðb2T; 	̂ ; . . . ; �v � PÞ
~f½1�ð0Þ1 ðb2T; 	̂ ; . . . ; �v � PÞ ¼ �mN

~A7Bð�b2T; 0; 0;�1=ðmN	̂Þ2; �v � PÞ
~A2Bð�b2T; 0; 0;�1=ðmN	̂Þ2; �v � PÞ

!b
2
T¼0

R
dx

R
d2kTkx�

½�þþ��þ�5�ðx; kT; P; S; . . .ÞR
dx

R
d2kT�

½�þþ��þ�5�ðx; kT; P; S; . . .Þ
��������ST¼ð1;0Þ;�¼1

; (38)

~h½1�ð0Þ1 ðb2T; 	̂ ; . . . ; �v � PÞ
~f½1�ð0Þ1 ðb2T; 	̂ ; . . . ; �v � PÞ ¼ �

~A9Bmð�b2T; 0; 0;�1=ðmN	̂Þ2; �v � PÞ
~A2Bð�b2T; 0; 0;�1=ðmN	̂Þ2; �v � PÞ

!b
2
T¼0

R
dx

R
d2kT�

½sji�jþ�5�ðx; kT; P; S; . . .ÞR
dx

R
d2kT�

½�þ�ðx; kT; P; S; . . .Þ
��������ST¼ð1;0Þ;sT¼ð1;0Þ

: (39)

(i) The ‘‘generalized Sivers shift’’ hkyiSivers ¼ hkyiTU
has already been discussed in Sec. II D. It is T-odd,
i.e., we expect to obtain results of opposite sign in
the SIDIS and DY limits �v � P ! 1 and �v � P !
�1, respectively. The generalized Sivers shift de-
scribes a feature of the transverse momentum distri-
bution of (unpolarized) quarks in a transversely
polarized proton. In the formal limit b2T ¼ 0 it mea-
sures the dipole moment of that distribution orthogo-
nal to the polarization of the proton.

(ii) The ‘‘generalized Boer-Mulders shift’’ hkyiBM ¼
hkyiUT is also T-odd and addresses the distribution

of transversely polarized quarks in an unpolarized
proton. In the limit b2T ¼ 0, the Boer-Mulders shift

describes the dipole moment of that distribution
orthogonal to the polarization of the quarks. Note
that we use a sum over proton helicities

P
�¼�1 in

Eq. (37) to represent the unpolarized target nucleon.
(iii) The generalized shift hkxig1T ¼ hkxiTL attributed to

the ‘‘worm-gear’’ function g1T quantifies a dipole
deformation of the transverse momentum distribu-
tion induced by the correlation of the quark helicity
and the transverse proton spin. Unlike the Sivers
and the Boer-Mulders shifts, it is a T-even quantity,
i.e., the SIDIS and DY limits �v � P ! �1 are
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expected to be the same. This shift has already been
studied in lattice QCD using straight gauge links
[11–13]. We are interested to see by how much
this ‘‘process-independent’’ result obtained at
� ¼ 0 differs from the results calculated with
SIDIS- and DY-type gauge links in the limit �v �
P ! �1.

(iv) The ratio ~h½1�ð0Þ1 =~f½1�ð0Þ1 can be identified with a

‘‘generalized tensor charge.’’ Clearly, it is also a
T-even quantity, i.e., no differences are expected
between the SIDIS and DY limits �v � P ! �1.

We have studied ~h½1�ð0Þ1 already in [11–13] on the

lattice using straight gauge links. As ~h½1�ð0Þ1 =~f½1�ð0Þ1

does not involve any k-weighting and is directly
related to the well-known transversity and unpolar-
ized distribution functions, we expect it to be a
particularly clean observable. It therefore qualifies
as a very good candidate for our study of the
�jvj-dependence of T-even observables, in particu-
lar, the transition from straight to staple-shaped
gauge links.

The framework laid out above provides the basis for
our numerical lattice calculations described in the next
section. Before proceeding, it is worth reiterating the logic
underlying our approach. Recognizing that the generic
kinematics for which TMDs are defined are space-like,
with light-like separations representing a special limiting
case, we proceed by considering kinematics off the light
cone from the start. We again emphasize that, whereas we
thoroughly examine the behavior of our data as the kine-
matics are pushed in the direction of the light cone, state-
ments about formal properties of the light-cone limit lie
beyond the purview of this investigation. Having parame-
trized the relevant nonlocal matrix element in terms of
Lorentz-invariant amplitudes, cf. Sec. II F, we choose to
perform its evaluation in a Lorentz frame in which the
operator under consideration is defined at one fixed time.
There is no obstacle to this choice in view of the space-like
separations entering the original definition of the matrix
element. In this frame, we cast the computation of the
matrix element in terms of a Euclidean path integral, which
we evaluate employing lattice QCD, as detailed in the next
section.

III. LATTICE CALCULATIONS

A. Simulation setup and parameters

The methodology we use to calculate the nonlocal cor-
relators on the lattice has been described in detail in
Ref. [13], except that we now extend this method to
staple-shaped links. Again, we employ MILC lattices
[48,49] that have been previously used by the LHP col-
laboration for GPD calculations [50]; however, compared
to our previous work with straight gauge links, we now go
to lighter pion masses and make use of the coherent proton

and antiproton sequential propagators of Ref. [51] to in-
crease our statistics. The new LHPC data set offers forward
propagators at four different source locations on each
gauge configuration. Moreover, coherent proton and anti-
proton sequential propagators have been calculated, each
one implementing simultaneously four nucleon sink loca-
tions per gauge configuration. This way it is possible to
conduct eight measurements of a three-point function on
each gauge configuration in well-separated areas of the
lattice, boosting statistics significantly. The source-sink
separation has been chosen to be nine lattice units. The
simulation parameters are summarized in Table I.

B. Nucleon momenta, choice of link directions, and
extraction of amplitudes

For all of the ensembles listed in Table I, nucleon

momenta P ¼ 0 and P ¼ 2�=ðaL̂Þ � ð�1; 0; 0Þ, imple-
mented via corresponding momentum projections in
the sequential propagators, were available. In addition,
sequential propagators were produced corresponding to

the nucleon momenta P ¼ 2�=ðaL̂Þ � ð�2; 0; 0Þ and P ¼
2�=ðaL̂Þ � ð1;�1; 0Þ for the m̂u;d ¼ 0:02 ensemble only.

We extracted the matrix element ~�½��
unsubtr:ðb; P; S; CbÞ �

1
2 hP; Sj �qð0Þ�U½Cb�qðbÞjP; Si from plateaux in standard

three-point function to two-point function ratios, for a
complete basis of � structures and nucleon states polarized
in the 3-direction. The nucleon momenta P, quark separa-
tions b and corresponding staple-shaped gauge-link paths
Cb used on the lattice in the present investigation are listed
in Table II. The link path Cb is characterized by the quark
separation vector b and the staple vector�v, cf. Fig. 1. The
range of � studied was always chosen to extend from zero
to well beyond the point where a numerical signal ceases to
be discernible. Furthermore, it should be noted that in the
case of either b or v extending into a direction in a lattice
plane which forms an angle of �=4 with the lattice axes
spanning the plane, there are two optimal approximations
of the corresponding continuum path by a lattice link path;
e.g., if one denotes the lattice link vector in i-direction as
ei, then b ¼ 2ðe1 þ e2Þ is equally well approximated by
the sequence of links ðe1; e2; e1; e2Þ as by the sequence
ðe2; e1; e2; e1Þ. As far as b is concerned, in such a situation,
our calculations always included both optimal link paths.
However, in the case of v, in these situations, only one of
the two link paths was included. To be specific, in the
instances of �v ¼ �n0ðe1 � eiÞ quoted in Table II, the
link path always departs from the quark locations in
i-direction, not 1-direction. This is a shortcoming of the
discretization which breaks the manifest T-transformation
properties present for the continuum staple; presumably it
is responsible for the problematic mixing of T-even and
T-odd amplitudes which we observe in our analysis in the
case of staple directions off the lattice axes. While we
expect a symmetry-improved calculation including both
optimal link paths to avoid this issue, with the presently
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available data, we find that we need to impose explicitly
T-odd/T-even symmetry in the system of equations from
which we extract the amplitudes whenever v does not
coincide with a lattice axis.

In practice, the overdetermined system of equations
which we solve in order to relate the matrix elements
~�½��
unsubtr: to the corresponding amplitudes is set up in terms

of the quantities ~ai, ~bi, cf. Eq. (22) in conjunction with
Eqs. (16)–(20). This form is suited to include the case

	̂ ¼ 0, where the sign of the prefactor in front of ~bi
depends on whether the limit �v � P ¼ 0 is approached
from the SIDIS or the DY side.

C. Numerical Results

1. The generalized Sivers shift

In the following, we concentrate on results for the iso-
vector, u� d quark combination, because in this case
contributions from disconnected diagrams and possible
vacuum expectation values cancel out. The errors shown
are statistical only. At the present level of accuracy in this
exploratory study, we set aside a quantitative analysis of
systematic errors. We use the central values for the lattice
spacing a as given in Table I to convert to physical units.
FormN , we consistently substitute the value of the nucleon
mass as determined on the lattice, rather than the physical
nucleon mass.

Figures 3–7 show our results for the generalized Sivers
shift, hkyiSiversu�d . We begin with a discussion of its depen-

dence on the staple orientation, i.e., SIDIS- or DY-like, and
the staple extent, �jvj, as displayed in Fig. 3 for a Collins-
Soper evolution parameter of 	̂ ¼ 0:39 and a pion mass of
m� ¼ 518 MeV. As mentioned before, the T-odd Sivers
function must vanish for �jvj ¼ 0, i.e., a straight Wilson
line between the quark fields, but nonvanishing results are
allowed (and generally expected) for nonzero staple ex-
tents. Furthermore, the T-odd observables are antisymmet-
ric in �jvj, so we expect the Sivers shift to be of the same
size but opposite in sign for the SIDIS and the DY cases.
This is exactly what we find in, e.g., Fig. 3(a), showing the
shift for a quark-antiquark distance of a single lattice

spacing, jbTj ¼ 1a. The aforementioned features are real-
ized in form of a curve that is reminiscent of a hyperbolic
tangent. We stress that the observed zero crossing with a
change in sign is directly caused by the underlying gauge-
invariant operators and their symmetry properties, and
hence represents a consistency check of our calculation
rather than any sort of a prediction.
Remarkably, already as j�jjvj approaches values of

�6a, we find that the Sivers shift stabilizes and reaches
specific plateau values. Apart from finite volume effects, in
particular, wraparound effects due to the periodic boundary
conditions on the lattice, we see no reason to expect that
once a plateau has been reached, the value of the shift
would significantly change as j�jjvj ! 1. To obtain first
estimates for staple-shaped Wilson lines that have an infi-
nite extent in v-direction, we therefore choose to average
the shifts in the plateau regions j�jjvj ¼ 7a . . . 12a, as
illustrated by the straight lines. Clearly, as jbTj increases
from 0.12 fm in Fig. 3(a) to 0.47 fm in Fig. 3(d), the signal-
to-noise ratio decreases as we approach larger values of
j�jjvj. For smaller j�jjvj the statistical uncertainties are
much smaller, and the corresponding values tend to domi-
nate the averages when the errors are taken into account as
weights. At the same time, however, these statistically
dominating data points are more likely to introduce sys-
tematic uncertainties related to the (unknown) onset of the
‘‘true’’ plateau region and the corresponding starting value
for the averaging procedure. Therefore, in order to avoid a
too strong bias from the data at smaller j�jjvj, we do not
use the respective statistical errors as weights in the aver-
aging. Our final estimates for the Sivers shift are obtained
from the mean value of the SIDIS and DYaverages and by
imposing antisymmetry in �jvj. The results are displayed
as open diamonds at �jvj ¼ �1 in Fig. 3. The depen-
dence of these results on jbTj is shown in Fig. 4. In

summary, for 	̂ ¼ 0:39 and jbTj ¼ 0:12 . . . 0:47 fm, we
find a sizeable negative Sivers shift for u� d quarks in

the range of hkyiSivers;SIDISu�d ¼ �0:3 . . .� 0:15 GeV.

Next, we turn to the dependence of our results on the

Collins-Soper evolution parameter 	̂ . In Fig. 5, we consider

two ‘‘extreme’’ cases, namely, a vanishing 	̂ as well as the

TABLE I. Lattice parameters of the nf ¼ 2þ 1MILC gauge configurations [48,49] used in this work. The lattice spacing a has been
obtained from the ‘‘smoothed’’ values for r1=a given in Ref. [52] and the value r1 ¼ 0:3133ð26Þ fm from the analysis of Ref. [53]. The
first error estimates statistical errors in r1=a, the second error originates from the uncertainty about r1 in physical units. We also list the
pion and the nucleon masses determined in Ref. [51] with the LHPC propagators using domain-wall valence fermions. The first error is
statistical, the second error comes from the conversion to physical units using a as quoted in the table. Note that the masses quoted here
in physical units differ slightly from those listed in Refs. [50,51], because these references use a different scheme to fix the lattice
spacing. The second to last column lists the number of gauge configurations and the last column shows the resulting number of
measurements for the calculation of three-point functions achieved by means of multiple locations for source and sink.

m̂u;d m̂s L̂3 � T̂ 10=g2 a (fm) mDWF
� (MeV) mDWF

N (GeV) # conf. # meas.

0.01 0.05 283 � 64 6.76 0.119 67(14)(99) 369.0(09)(35) 1.197(09)(12) 273 2184

0.01 0.05 203 � 64 6.76 0.119 67(14)(99) 369.0(09)(35) 1.197(09)(12) 658 5264

0.02 0.05 203 � 64 6.79 0.118 49(14)(99) 518.4(07)(49) 1.348(09)(13) 486 3888
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TABLE II. Sets of staple-shaped gauge-link paths and nucleon momenta P used on the lattice. Gauge-link paths are characterized by
the quark separation vector b and the staple vector �v, cf. Fig. 1. The surveyed range of �, parameterized in the table by the integer n0,
was always chosen to extend from zero to well beyond the point where a numerical signal ceases to be discernible. The maximal
magnitude of the Collins-Soper parameter 	̂ attained in these sets is j	̂j ¼ 0:78, for P � aL̂=ð2�Þ ¼ ð�2; 0; 0Þ paired with �v=a ¼
�n0 � ð1; 0; 0Þ.
b=a �v=a P � aL̂=ð2�Þ Notes

n � ð0; 0; 1Þ, n ¼ �7; . . . ; 7 �n0 � ð1; 0; 0Þ (0, 0, 0)

ð�1; 0; 0Þ
ð�2; 0; 0Þ m̂u;d ¼ 0:02 ensemble only

�n0 � ð1; 1; 0Þ ð�1; 0; 0Þ
ð�2; 0; 0Þ m̂u;d ¼ 0:02 ensemble only

�n0 � ð1; 0; 0Þ ð1;�1; 0Þ m̂u;d ¼ 0:02 ensemble only

�n0 � ð1;�1; 0Þ ð1;�1; 0Þ m̂u;d ¼ 0:02 ensemble only

n � ð0; 1; 0Þ, n ¼ �7; . . . ; 7 �n0 � ð1; 0; 0Þ (0, 0, 0)

ð�1; 0; 0Þ
ð�2; 0; 0Þ m̂u;d ¼ 0:02 ensemble only

�n0 � ð0; 0; 1Þ ð�1; 0; 0Þ
ð�2; 0; 0Þ m̂u;d ¼ 0:02 ensemble only

�n0 � ð1; 0; 1Þ ð�1; 0; 0Þ
ð�2; 0; 0Þ m̂u;d ¼ 0:02 ensemble only

n � ð0; 1; 1Þ, n ¼ �2; . . . ; 2 �n0 � ð1; 0; 0Þ (0, 0, 0)

ð�1; 0; 0Þ
ð�2; 0; 0Þ m̂u;d ¼ 0:02 ensemble only

n � ð0;�1; 1Þ, n ¼ �2; . . . ; 2 �n0 � ð1; 0; 0Þ (0, 0, 0)

ð�1; 0; 0Þ
ð�2; 0; 0Þ m̂u;d ¼ 0:02 ensemble only

�ð0; 3;�2Þ �n0 � ð1; 0; 0Þ (0, 0, 0)

ð�1; 0; 0Þ
ð�2; 0; 0Þ m̂u;d ¼ 0:02 ensemble only

�ð0; 4;�2Þ �n0 � ð1; 0; 0Þ (0, 0, 0)

ð�1; 0; 0Þ
ð�2; 0; 0Þ m̂u;d ¼ 0:02 ensemble only

�ð0; 4;�3Þ �n0 � ð1; 0; 0Þ (0, 0, 0)

ð�1; 0; 0Þ
ð�2; 0; 0Þ m̂u;d ¼ 0:02 ensemble only

n � ð1; 1; 0Þ, n ¼ �4; . . . ; 4 �n0 � ð1;�1; 0Þ ð1;�1; 0Þ m̂u;d ¼ 0:02 ensemble only
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largest 	̂ ¼ 0:78 that we could access in this study. While

we find rather precise values for the Sivers shift for 	̂ ¼ 0
with a well-defined plateau2 for j�jjvj 
 6a in Fig. 5(a),
fluctuations and uncertainties quickly increase with j�jjvj
for 	̂ ¼ 0:78 in Fig. 5(b). In particular, it is difficult to
identify the onset of a plateau on the right-hand (SIDIS)
side of Fig. 5(b). Following the averaging procedure de-
scribed above, we however find that the estimated values at

j�jjvj ¼ 1 for the two extreme cases of 	̂ agree within
uncertainties.

Figure 6(a) shows the Sivers shift as a function of 	̂ , for
jbTj ¼ 0:36 fm and a pion mass of m� ¼ 518 MeV.
Within the present uncertainties, we observe a statistically
significant negative shift; however, it is not possible to

FIG. 3 (color online). Extraction of the generalized Sivers shift on the lattice with m� ¼ 518 MeV using a lattice nucleon
momentum jPlatj ¼ 2�=ðaL̂Þ 	 500 MeV at the corresponding maximal Collins-Soper evolution parameter 	̂ ¼ 0:39. The continuous
horizontal lines are obtained from two independent averages of the data points with staple extents in the ranges �jvj ¼ 7a . . . 12a and
�jvj ¼ �12a . . .� 7a, respectively. The outer data points shown with empty symbols have been obtained from an antisymmetrized
mean value of these averages, i.e., the expected T-odd behavior of the Sivers shift has been put in explicitly. These outer data points are
our estimates for the asymptotic values at �jvj ! �1 and thus represent the generalized Sivers shifts for SIDIS and DY. Error bars
show statistical uncertainties only. Figures (a) and (b) have been obtained with rather small quark field separations jbTj ¼ 1a and 2a.
Therefore, they might be affected by significant lattice cutoff effects.

FIG. 4 (color online). Generalized Sivers shift as a function of
the quark separation jbTj for the SIDIS case (�jvj ¼ 1), ex-
tracted on the lattice with m� ¼ 518 MeV for 	̂ ¼ 0:39. The
data points lying in the shaded area below jbTj 	 0:25 fm might
be affected by significant lattice cutoff effects. Error bars show
statistical uncertainties only.

2Note that, in the case at hand, 	̂ ¼ 0 corresponds to P ¼ 0, so
that one cannot identify a ‘‘forward’’ or ‘‘backward’’ direction.
Hence, there is only a single branch in �jvj, the sign of which is
a matter of definition, see also the discussion further below in the
text.
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identify a clear trend of the data points as 	̂ increases. With
respect to data points obtained for staple link directions v

off the lattice axes, i.e., 	̂ 	 0:55 in Fig. 6(a), we note
again that we need to impose the T-odd/T-even (anti-)
symmetry already when we solve our system of equations,
in order to avoid problematic mixings of T-even and T-odd
amplitudes. As already mentioned further above, we ex-
pect this to become unnecessary in the case that lattice
symmetry-improved operators (see Appendix D of
Ref. [13]) are used.

We find it very interesting to note that the contribution

from ~A12 alone in the numerator of Eq. (36) (rather than
~A12B), illustrated by the open squares, is essentially com-
patible with zero within errors for all accessible values

of 	̂ . The main contribution to the transverse shift

therefore comes from �Rð	̂2Þ ~B8 ¼ ��ðv � PÞRð	̂2Þ~b8
[see Eqs. (22)], i.e., the amplitude ~b8. Note again that, on

the lattice, we employ expressions in terms of the lower-

case ~ai and ~bi amplitudes, e.g. ~b8, as they are well defined

even when 	̂ ! 0. In this limit, v � P ! 0, and hence the

prefactor behaves as �ðv � PÞRð	̂2Þ ! amN . The sign of

the prefactor of ~bi depends on whether one approaches the
limit v � P ! 0 from the SIDIS or the DY side.
An example that explicitly shows the relative smallness

of ~A12 is given in Fig. 6(b), for 	̂ ¼ 0:39 and jbTj ¼
0:36 fm. While ~A12 as a function of �jvj shows the typical
behavior expected for a T-odd amplitude, it represents only
about 10% of the total contribution for, e.g., j�jjvj ¼ 6a.
As one of our central results, we show in Fig. 7 the

Sivers shift as a function of 	̂ for all considered ensembles,
as before for a fixed jbTj ¼ 0:36 fm. Within statistical
uncertainties, the data points for the two different pion
masses m� ¼ 369 MeV and m� ¼ 518 MeV, as well as
the spatial lattice volumes V 	 ð2:4 fmÞ3 and

FIG. 5 (color online). Generalized Sivers shift on the lattice with m� ¼ 518 MeV for a quark separation of three lattice spacings,
jbTj ¼ 3a ¼ 0:36 fm, extracted at 	̂ ¼ 0 and at our highest value of the Collins-Soper evolution parameter, 	̂ ¼ 0:78. Figure (b) has
been obtained from nucleons with momentum jPlatj ¼ 2� 2�=ðaL̂Þ 	 1 GeV on the lattice. Error bars show statistical uncertainties
only.

FIG. 6 (color online). Generalized Sivers shift on the lattice with m� ¼ 518 MeV for a quark separation of three lattice spacings,
jbTj ¼ 3a ¼ 0:36 fm. In Figure (a) we show the 	̂-dependence of the generalized Sivers shift, depicting both the full result and the
result obtained with just ~A12 in the numerator. The data points correspond to those displayed in the SIDIS limit �jvj ! 1 in plots such
as Fig. (b). Figure (b) shows the �-dependence at 	̂ ¼ 0:39 for both the full result (diamonds) and the contribution from amplitude ~A12

in the numerator (squares). Asymptotic results corresponding to SIDIS and DY have been extracted as in Fig. 3. Error bars show
statistical uncertainties only.
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V 	 ð3:4 fmÞ3, are overall well compatible. Apart from the

less well-determined data point at 	̂ 	 0:55, we find a
clearly nonzero negative Sivers shift in the range

hkyiSivers;SIDISu�d ¼ �0:48 . . .� 0:2 GeV. Together with the

relatively mild bT-dependence at smaller bT, cf. Fig. 4,
this provides strong evidence that the (x- and kT-moment
of the) Sivers function f?1T considered here is sizeable and

negative for u� d quarks. Our preliminary separate data
for u- and for d-quarks (not shown in this work) further-

more indicate that f?;u
1T < 0 and f?;d

1T > 0. Although our

results for the T-odd Sivers effect are still subject to many
systematic effects and uncertainties, it is interesting to note
that they are overall well compatible with results from a
phenomenological analysis of SIDIS data [54,55], as well
as arguments based on the chromodynamic lensing mecha-
nism by Burkardt [36,56,57]. It should also be noted that,
in a recent twist-3 analysis of single spin asymmetries from
RHIC experiments, a possible discrepancy has been found
with respect to the signs [58].

We stress again that fully quantitative predictions for, or
a comparison with, phenomenological and experimental
TMD studies employing QCD factorization would require
lattice data for much larger Collins-Soper parameters,

	̂ � 1. With 	̂2 ¼ �ðv � PÞ2=ðv2m2
NÞ, the limit 	̂ ! 1

corresponds to the limit of a light-like staple direction v,
or an infinite rapidity yv ! �1 in Eq. (15). For the shifts
and ratios defined in Eqs. (36)–(39), where the soft factors

in the TMD definitions [4,6,7] cancel out, large values of 	̂
can also be accessed through large nucleon momenta.
Clearly, the limit of an infinite Collins-Soper parameter
is in practice not accessible on the lattice, so that we have

to rely on results for a limited range of 	̂ , as, for example,
in Fig. 7. From the perturbative prediction for the 	 depen-
dence, cf., e.g., Ref. [6], we would expect that the ratios of

TMDs should become independent of 	̂ as 	̂ ! 1. It

would be very interesting to investigate this on the basis
of future lattice results for larger hadron momenta and with
substantially improved statistics.

2. The generalized Boer-Mulders shift

We now turn to the second prominent T-odd TMD, the
Boer-Mulders function. Our results for the generalized
Boer-Mulders shift hkyiBMu�d [Eq. (37)] are summarized

in Figs. 8(a)–8(d). A typical example for the
�jvj-dependence is shown in Fig. 8(a) for a pion mass of

m� ¼ 518 MeV, 	̂ ¼ 0:39, and jbTj ¼ 0:36 fm. Apart
from the magnitude of the shift, the results are very similar
towhat we have found for the Sivers shift in Fig. 3(c) above,
with indications for plateaus for j�jjvj 
 6a. Figure 8(b)
illustrates the dependence on jbTj for the SIDIS case.
Although the central values indicate some trend towards
values smaller inmagnitude as jbTj increases, the somewhat
large uncertainties and fluctuations at larger jbTj prevent us
fromdrawing any strong conclusions. In the range of jbTj 	
0 . . . 0:4 fm, we find a clearly nonzero negative Boer-

Mulders shift of hkyiBM;SIDIS
u�d 	 �0:17 . . .� 0:1 GeV, for

	̂ ¼ 0:39 and the given pion mass. The 	̂-dependence for
m� ¼ 518 MeV and jbTj ¼ 0:36 fm is shown in Fig. 8(c).
As for the Sivers shift, it is interesting to note that the

contribution from the ~A amplitude, in this case ~A4, given
by the open squares, is mostly compatible with zero within

errors, while the main signal is coming from �Rð	̂2Þ ~B3 ¼
��ðv � PÞRð	̂2Þ~b3, cf. Eqs. (28).
Finally, a comparison of the results and their

	̂-dependences for the three different lattice ensembles is
provided in Fig. 8(d), for a fixed jbTj ¼ 0:36 fm. We find
that most of the data points for the two pion masses and
the two volumes are well compatible within uncertainties,

with central values of hkyiBM;SIDIS
u�d 	 �0:2 . . .� 0:1 GeV.

While the central values show little dependence on 	̂ , the
errors have to be significantly reduced before any ex-
trapolations towards a large Collins-Soper parameter
may be attempted. In summary, for the given ranges of
parameters, our results indicate that the Boer-Mulders
function is sizeable and negative for u� d quarks. Our
data for the individual u- and d-quark contributions (not

shown) furthermore indicate that h?;u
1 < 0 and h?;d

1 < 0.
Interestingly, these preliminary results are well compat-
ible with a recent phenomenological study of the Boer-
Mulders effect in SIDIS [59], as well as an earlier lattice
QCD study of tensor generalized parton distributions
[60] in combination with the chromodynamic lensing
mechanism [61].

3. T-even TMDs: The transversity h1

In the previous sections, we have discussed the T-odd
Sivers and Boer-Mulders distributions, in particular, their
emergence in the transition from straight to staple-shaped
gauge links, i.e., as �jvj changes from zero to large

FIG. 7 (color online). Comparison of the 	̂-evolution of the
generalized Sivers shift at jbTj ¼ 3a ¼ 0:36 fm for the three
different lattices listed in Table I. Filled symbols correspond to
the full SIDIS result. The data points with open symbols have
been obtained with only ~A12 in the numerator. Error bars show
statistical uncertainties only.
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positive or negative values. A natural question to ask is:
What is the influence of final state interactions, which we
mimic on the lattice with the staple-shaped links, and
which are essential for the appearance of T-odd distribu-
tions, on the T-even TMDs? More specifically, we would
like to see whether and how the T-even distributions, which
are generically nonvanishing already for straight gauge
links, change during the transition to finite staple extents.
This is also of considerable interest with respect to the
much less involved lattice studies of (T-even) TMDs using
straight gauge links that we have presented in [13]. As we
will show, there is only little difference in the transition to
staple-shaped links, such that our previous results might be
of greater phenomenological importance than initially ex-
pected for the straight ‘‘process-independent’’ gauge-link
structures.

A suitable observable for investigating these questions
is the ‘‘generalized tensor charge’’ given by the ratio of
the (lowest x-moments of the) transversity to the unpo-

larized distribution, ~h½1�ð0Þ1 =~f½1�ð0Þ1 , defined in Eq. (39). The

�jvj-dependence of this transversity ratio is displayed
in Figs. 9(a)–9(c), for different jbTj of 0.12, 0.24, and
0.36 fm, a pion mass of m� ¼ 518 MeV, and

	̂ ¼ 0:39. We find it quite remarkable to see that
~h½1�ð0Þ1 =~f½1�ð0Þ1 stays nearly constant over the full range

of accessible j�jjvj in Figs. 9(a) and 9(b), within com-
paratively small statistical errors. For jbTj ¼ 0:36 fm, we
see little dependence apart from larger values of j�jjvj
where the signal-to-noise ratio quickly decreases. In all
cases, we find indications for plateaus from j�jjvj �
3a . . . 8a. As in the previous sections, we choose to
average over the data in the plateau regions (solid lines),
and obtain estimates for j�jjvj ! 1 from the mean of
the DY and SIDIS averages by imposing the symmetry
condition in �jvj. The corresponding results are illus-
trated by the open diamonds. In all considered cases,
differences between j�jjvj ! 1 and j�jjvj ¼ 0 are
barely visible within uncertainties. In other words, lattice
data for simple straight gauge links provide already a
very good estimate for the phenomenologically interest-
ing case of infinite staple extents, at least in the covered

ranges of 	̂ and not too large jbTj.
The jbTj-dependence of our estimates for the transver-

sity ratio at j�jjvj ¼ 1 is displayed in Fig. 9(d), for m� ¼
518 MeV and 	̂ ¼ 0:39. We observe a small, approxi-
mately linear rise of in total about 20% as jbTj increases

FIG. 8 (color online). Generalized Boer-Mulders shift. (a) �jvj-dependence at m� ¼ 518 MeV for 	̂ ¼ 0:39, jbTj ¼ 3a ¼ 0:36 fm.
Asymptotic results corresponding to SIDIS and DY have been extracted as in Fig. 3. (b) jbTj-dependence of the SIDIS results at
m� ¼ 518 MeV, 	̂ ¼ 0:39. (c) 	̂-dependence of the SIDIS results at m� ¼ 518 MeV, jbTj ¼ 0:36 fm. Empty squares correspond to
the ratio with ~A4 in the numerator only. (d) Comparison of the 	̂-dependence of the SIDIS results obtained from the three different
lattice ensembles listed in Table I. All error bars show statistical uncertainties only.
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from 0.12 fm to about 0.6 fm. This is in agreement with our
previous observation of a flatter jbTj-dependence of the

amplitude ~Au�d
9m compared to ~Au�d

2 in Ref. [13] on the basis
of straight gauge links.3 Remarkably, a naive linear
extrapolation of the data to jbTj ¼ 0 would give a value

for the tensor charge, gu�d
T ¼ R

dxd2kTh1ðx; k2TÞ ¼
~h½1�ð0Þ1 ðbT ¼ 0Þ, of gu�d

T 	 1:1, which is in very good

agreement with the direct lattice calculation of this quan-
tity using a renormalized local operator that has been
presented in [62] for the same ensemble, for a scale of

�2 ¼ 4 GeV2 in the MS scheme.4

Figure 10(a) shows the transversity ratio as a function of
the Collins-Soper parameter, for the same pion mass as

before but a fixed jbTj ¼ 0:36 fm. The 	̂-dependence turns
out to be rather flat over the full range of accessible values.

It is interesting to note that, in contrast to the T-odd

distributions discussed before, the amplitude ~A9m (open
circles) provides �100% of the total results, while the

contribution from Rð	̂2Þ ~B15, Eq. (28), as well as from ~B17

through Eq. (29), is negligible within errors, over the full

range of 	̂ .
Finally, we show a comparison of our results for

ð~h½1�ð0Þ1 =~f½1�ð0Þ1 Þu�d obtained for the different ensembles in

Fig. 10(b). As before, the data points for the two values of
the pion mass and the different volumes agree within
uncertainties. On the basis of the comparatively good
signal-to-noise ratio for this observable, we conclude

that the 	̂-dependence is in this case rather flat and
very well compatible with a constant behavior,

ð~h½1�ð0Þ1 =~f½1�ð0Þ1 Þu�dð	̂Þ 	 1:2� 0:1, at least for 	̂ � 0:8
and the given parameters. It would be interesting to
investigate in future lattice studies whether this constant
behavior persists as one approaches larger Collins-Soper
parameters.

FIG. 9 (color online). (a)–(c) The dependence of the transversity ratio ~h½1�ð0Þ1 =~f½1�ð0Þ1 , Eq. (39), on the staple extent �jvj, obtained at
m� ¼ 518 MeV, 	̂ ¼ 0:39 for three different quark separations jbTj ¼ 1a ¼ 0:12 fm, 2a ¼ 0:24 fm and 3a ¼ 0:36 fm. Asymptotic
results corresponding to SIDIS and DY have been extracted as in Fig. 3, except that we assume an even behavior of h1 to obtain the
data points plotted as empty symbols at �jvj ! �1. The averages (lines) are obtained from the data points with staple extents in the
ranges �jvj ¼ 3a . . . 8a and �jvj ¼ �8a . . .� 3a, respectively. Figure (a) might be affected by significant lattice cutoff effects due to

the small quark separation jbTj ¼ a. (d) The transversity ratio ~h½1�ð0Þ1 =~f½1�ð0Þ1 as a function of the quark separation jbTj from the SIDIS

results extracted on the lattice with m� ¼ 518 MeV for 	̂ ¼ 0:39. The data points lying in the shaded area below jbTj 	 0:25 fm
might be affected by lattice cutoff effects. Error bars show statistical uncertainties only.

3Note again that b in the present work corresponds to �l in
[13].

4Note that the tensor charge is denoted by h1i�q in [62].
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4. T-even TMDs: The generalized worm-gear
shift from g1T

As a final example, we study in this section the

generalized shift defined in Eq. (38), which is essentially

given by the T-even TMD g1T . Figure 11 shows

ð~g½1�ð1Þ1T =~f½1�ð0Þ1 Þu�d as a function of �jvj for m� ¼
518 MeV, 	̂ ¼ 0:39 and two values of jbTj. Within uncer-

tainties, we observe, as expected, an approximate symme-

try with respect to the sign of �jvj. Furthermore, we find

overall only little dependence on the staple extent for

jbTj ¼ 0:12 fm. At larger jbTj, the signal-to-noise ratio

quickly decreases as j�jjvj becomes larger. Still, we find

indications that the results stabilize in the region j�jjvj ¼
3a . . . 8a, which we choose as our plateau region for the

computation of average values, as discussed in the previous

section.
As before, the averages serve as approximations for the

asymptotic results at �jvj ¼ �1, i.e., corresponding to

FIG. 10 (color online). Evolution with respect to 	̂ for the transversity ratio ~h½1�ð0Þ1 =~f½1�ð0Þ1 at a quark separation of jbTj ¼ 3a ¼
0:36 fm. Figure 10(a) shows the SIDIS results obtained at m� ¼ 518 MeV. The solid data points correspond to the full result, and
empty symbols to the result obtained with just ~A9m in the numerator. Figure 10(b) displays the full results for all ensembles listed in
Table I.

FIG. 11 (color online). Dependence of the generalized g1T shift on the staple extent �jvj, obtained at m� ¼ 518 MeV, 	̂ ¼ 0:39 for
two different quark separations jbTj ¼ 1a ¼ 0:12 fm and jbTj ¼ 3a ¼ 0:36 fm. Asymptotic results corresponding to SIDIS and DY
have been extracted as in Figs. 9(a)–9(c). Error bars show statistical uncertainties only. Figure (a) might be affected by significant
lattice cutoff effects due to the small quark separation jbTj ¼ a.

FIG. 12 (color online). Generalized g1T shift for j�jjvj ¼ 1
as a function of the quark separation jbTj from the SIDIS and
DY results extracted on the lattice with m� ¼ 518 MeV for
	̂ ¼ 0:39. The data points lying in the shaded area below
jbTj 	 0:25 fm might be affected by lattice cutoff effects.
Error bars show statistical uncertainties only.
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infinite staple extents. The dependence of these asymptotic
values on jbTj is displayed in Fig. 12. Although a small
curvature in the central values can be observed, the results

are overall rather stable within errors, with hkxig1Tu�d ¼
ð~g½1�ð1Þ1T =~f½1�ð0Þ1 Þu�d 	 0:16 . . . 0:21 GeV.

In Fig. 13(a), we show the dependence of the generalized
g1T shift on the Collins-Soper parameter, for a pion mass of

m� ¼ 518 MeV and a fixed jbTj ¼ 0:36 fm. As 	̂ in-
creases, one observes a slight trend towards values that
are smaller in magnitude, although it is difficult to draw
any strong conclusions in view of the present uncertainties.
Similar to the case of the transversity ratio of the previous
section, we find that essentially the full signal is due to the

amplitude ~A7, while the contribution from Rð	̂2Þ ~B13,
cf. Eq. (28), is compatible with zero within errors.

Finally, Fig. 13(b) gives an overview of our results as

functions of 	̂ , obtained for the three considered ensem-

bles, for jbTj ¼ 0:36 fm. Apart from 	̂ ¼ 0, the data points
for the two pion masses and volumes clearly overlap within
uncertainties. Taking into consideration the results for
m� ¼ 369 MeV and a spatial volume of 283 (given by
the filled diamonds), the data are overall compatible with
a constant behavior, although more statistics is necessary to

establish a clear trend in 	̂ . Altogether, we observe a
sizeable positive generalized transverse shift in the range

of hkxig1Tu�d ¼ ð~g½1�ð1Þ1T =~f½1�ð0Þ1 Þu�d 	 0:15 . . . 0:25 GeV, for

	̂ ¼ 0 . . . 0:8 and the given parameters. We note that these
values are in good agreement with our previous analyses on
the basis of straight gauge links [12,13].

IV. SUMMARYAND CONCLUSIONS

We have presented an exploratory study of quark trans-
verse momentum distributions in the nucleon in full lattice
QCD employing nonlocal operators with staple-shaped
gauge links (Wilson lines). Compared to our earlier works
[12,13], the use of staple-shaped instead of straight-link

paths allowed us for the first time to systematically access
the naively time-reversal odd (T-odd) observables, in par-
ticular, the amplitudes related to the Sivers and the Boer-
Mulders TMDs. In the framework of QCD factorization
theorems, the path dependence corresponds to a process
dependence that leads to the famous sign difference be-
tween the T-odd TMDs for the SIDIS and the DY pro-
cesses. In our study, we were able to distinguish the SIDIS
and DY cases through the relative orientation of the nu-
cleon momentum P and the vector �v that characterizes
the direction and extent of the staple on the lattice,
cf. Fig. 1(b). It is important to keep in mind that TMDs
defined with non-light-like staple vectors v, as required on
the lattice, will additionally depend on the Collins-Soper

evolution parameter, here denoted by 	̂ . In order to avoid
additional soft factors in the formal definition of the
TMDs, we have concentrated on the Sivers, Boer-
Mulders, and worm-gear (g1T) generalized transverse mo-
mentum shifts and the generalized tensor charge. Since the
generalized shifts and tensor charge are defined in terms of
ratios of TMDs, potential soft factors as well as the renor-
malization constants cancel out. Our numerical results,
obtained for three different ensembles with pion masses
m� ¼ 369 MeV and m� ¼ 518 MeV, as well as spatial
lattice volumes of 203 and 283, are very promising: We find
clearly nonzero, sizeable signals for all observables we
considered. The expected antisymmetry (change of sign)
for T-odd quantities in �jvj is fulfilled within statistical
uncertainties. In contrast, for the T-even quantities we
observe little systematic dependence on the staple direction
and extent. As the staple extents are increased, our data
appear to approach plateaus. Averages of the plateau values
then provide estimates for the limit of infinite staple ex-
tents, �jvj ! �1, which is formally required for all
phenomenologically relevant TMDs.
The physical length scale beyond which the influence of

the gauge-link extent diminishes is of the order of
0.4 fm for all cases considered. This observation invites

FIG. 13 (color online). Evolution with respect to 	̂ for the generalized g1T shift at a quark separation of jbTj ¼ 3a ¼ 0:36 fm.
Figure 13(a) shows the results obtained atm� ¼ 518 MeV for the SIDIS and DY limit j�jjvj ! 1. The solid data points correspond to
the full result and empty symbols to the result obtained with just ~A7 in the numerator. Figure 13(b) displays the full results for all
ensembles listed in Table I.
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speculations as to the physical background of this scale,
e.g., an interpretation as color correlation length. The scale
might also be related to a mass gap in the spectrum. If v is
interpreted as the Euclidean time direction, the legs of the
staple-shaped gauge link resemble static quark propaga-
tors. Considering our three-point function in this rotated
frame of reference suggests that the plateau region is
reached when the propagation time j�vj of the static quark
pair is large enough to suppress contributions from excited
states sufficiently.

Our numerical extrapolations to infinite staple extents,
�jvj ! �1, represent first predictions for the signs and
approximate sizes of the generalized transverse shifts from
lattice QCD. In particular, we find strong indications that
the T-odd Sivers and Boer-Mulders TMDs are both size-
able and negative for the isovector, u� d quark combina-
tion in the case of SIDIS.

Within statistical errors, we do not observe any clear
trend in the data for the transverse shifts as functions of the

Collins-Soper evolution parameter 	̂ in the range 	̂ �
0 . . . 0:8. For the T-even generalized tensor charge, which
shows a much better signal-to-noise ratio and less scatter of
the data points, we can tentatively conclude that it is

approximately constant in 	̂ for the accessible parameter
ranges. We stress, however, that more quantitative predic-
tions with respect to phenomenological analyses of SIDIS
and DYexperiments on the basis of QCD factorization will

require much larger Collins-Soper parameters 	̂ � 1. For

the TMD ratios discussed in this paper, large 	̂ can in
principle be accessed through larger nucleon momenta.
In practice, this represents a considerable challenge due
to quickly decreasing signal-to-noise ratios and potentially
significant finite volume effects at higher P. Still, we
expect that future lattice results for an extended range of
momenta and with improved statistics will be very useful

to establish trends in 	̂ , eventually allowing extrapolation
into the region where factorization theorems and related
evolution equations are applicable.

ACKNOWLEDGMENTS

We thank Harut Avakian, Gunnar Bali, Alexei Bazavov,
Vladimir Braun, Markus Diehl, Robert Edwards, Meinulf
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APPENDIX A: CONVENTIONS AND DEFINITIONS

Whenever the four-vector b fulfills b2 � 0, we shall

make use of the abbreviation jbj �
ffiffiffiffiffiffiffiffiffiffi
�b2

p
.

In the continuum, a ‘‘gauge link’’ or ‘‘Wilson line’’ is
given by the path-ordered exponential

U ½Cb� � P exp

�
�ig

Z
Cb
d��A�ð�Þ

�

¼ P exp

�
�ig

Z 1

0
d�AðCbð�ÞÞ � _Cbð�Þ

�
: (A1)

Here the path is specified by a continuous, piecewise

differentiable function Cb with derivative _Cb and with
Cbð0Þ ¼ 0, Cbð1Þ ¼ b. Straight Wilson lines between
two points x and y shall be denoted U½x; y� and concate-
nations of several straight Wilson lines (i.e., polygons)
U½x; y�U½y; z� � � � shall be abbreviated U½x; y; z; . . .�.
For an arbitrary four-vector w, we introduce light-cone

coordinates wþ ¼ ðw0 þ w3Þ= ffiffiffi
2

p
, w� ¼ ðw0 � w3Þ= ffiffiffi

2
p

and the transverse projection w? ¼ ð0; w1; w2; 0Þ, which
can also be represented as a Euclidean two-component
vector wT ¼ ðw1;w2Þ � ðw1; w2Þ, w T � wT 
 0. The basis
vectors corresponding to the þ and � components shall
be denoted �n and n, respectively, and fulfill �n � n ¼ 1.
The nucleon moving in z-direction has momentum
P ¼ Pþ �nþ ðm2

N=2P
þÞn and spin S ¼ �ðPþ=mNÞ �n�

�ðmN=2P
þÞnþ S?, S2 ¼ �1. We use the convention

�0123 ¼ 1 for the totally antisymmetric Levi-Civita sym-
bol, and introduce �ij � ��þij such that �12 ¼ 1.

APPENDIX B: SYMMETRY TRANSFORMATION
PROPERTIES OF THE CORRELATOR

The symmetry transformation properties of � used in
Refs. [21,22] need to be generalized to arbitrary link
directions v to arrive at the parametrization of Ref. [24].
The transformation properties of the corresponding

b-dependent correlator ~� with the gauge link (14) have
already been discussed in Ref. [13] and are restated here
for completeness:

~�½��
unsubtr:ðb; P; S; �vÞ ¼ ~�

½��1
1=2

��1=2�
unsubtr: ð�b;�P;�S;��vÞ;

(B1)

~�
½��
unsubtr:ðb; P; S; �vÞ ¼ ~�½�0��0�

unsubtr: ð �b; �P;� �S;� �vÞ; (B2)
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½ ~�½��
unsubtr:ðb; P; S; �vÞ�� ¼ ~�½�1�3���3�1�

unsubtr: ð� �b; �P; �S;�� �vÞ;
(B3)

½ ~�½��
unsubtr:ðb; P; S; �vÞ�� ¼ ~�½�0�y�0�

unsubtr: ð�b; P; S; �vÞ: (B4)

In the equations above, the matrices� and�1=2 describe

Lorentz transformations of vectors x� ! ��

x


 and spin-
ors c ! �1=2c , respectively. For any Minkowski vector

w ¼ ðw0;wÞ, the space-inverted vector is defined as �w �
ðw0;�wÞ.

[1] D. Boer, M. Diehl, R. Milner, R. Venugopalan, W.
Vogelsang et al., arXiv:1108.1713.

[2] A. Bacchetta, M. Boglione, A. Henneman, and P. J.
Mulders, Phys. Rev. Lett. 85, 712 (2000).

[3] J. C. Collins, Acta Phys. Pol. B 34, 3103 (2003).
[4] X.-D. Ji, J.-P. Ma, and F. Yuan, Phys. Rev. D 71, 034005

(2005).
[5] X.-D. Ji, J.-P. Ma, and F. Yuan, Phys. Lett. B 597, 299

(2004).
[6] S.M. Aybat and T. C. Rogers, Phys. Rev. D 83, 114042

(2011).
[7] J. C. Collins, Foundations of Perturbative QCD

(Cambridge University Press, Cambridge, 2011).
[8] M. Alekseev et al. (COMPASS collaboration), Phys. Lett.

B 673, 127 (2009).
[9] A. Airapetian et al. (HERMES collaboration), Phys. Rev.

Lett. 103, 152002 (2009).
[10] H. Avakian et al. (The CLAS collaboration), Phys. Rev.

Lett. 105, 262002 (2010).
[11] B. U. Musch, Ph.D. thesis TU München, http://

nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-
20090529-738021-1-8, 2009.
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