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We study the phase structure of SU(3) lattice gauge theory with Nf ¼ 12 staggered fermions in the

fundamental representation, for both zero and finite temperature at strong gauge couplings. For small

fermion masses we find two transitions at finite temperature that converge to two well-separated bulk

phase transitions. The phase between the two transitions appears to be a novel phase. We identify order

parameters showing that the single-site shift symmetry of staggered fermions is spontaneously broken in

this phase. We investigate the eigenvalue spectrum of the Dirac operator, the static potential and the meson

spectrum, which collectively establish that this novel phase is confining but chirally symmetric. The phase

is bordered by first-order phase transitions, and since we find the same phase structure with Nf ¼ 8

fermions, we argue that the novel phase is most likely a strong-coupling lattice artifact, the existence of

which does not imply IR conformality.
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I. INTRODUCTION

Strongly coupled gauge-fermion systems, beyond their
intrinsic theoretical interest, play an essential role in many
theories of physics beyond the standard model [1]. Lattice
gauge theory is at present the most reliable method to study
strongly interacting models in a systematic, controlled
way. Most lattice studies have focused on determining
whether given models exhibit confinement and chiral sym-
metry breaking or they develop an infrared fixed point
(IRFP) resulting in IR conformality [2]. SU(3) gauge the-
ory with Nf ¼ 12 fundamental flavors has emerged in

lattice studies as one of the most controversial models
[3–18].

A recent large-scale study of the Nf ¼ 12 system con-

cluded that the data favored a confining, chirally broken
scenario [8], though other groups interpreted these data as
consistent with IR conformality [10,11]. One of us recently
investigated the same system with an entirely different
approach, the Monte Carlo renormalization group two-
lattice matching method [6,9,15], finding an IRFP consis-
tent with IR-conformal dynamics. An obvious difference
between Refs. [8,9] is that the Monte Carlo renormaliza-
tion group analysis found the IRFP at a considerably
weaker bare coupling than that considered in Ref. [8].

In this work we present a study of theNf ¼ 12 system at

stronger couplings, reporting results for the phase diagram
in the gauge coupling–fermion mass parameter space, at
both zero and finite temperature. We find two transitions at
finite temperature that converge to two well-separated bulk
phase transitions, consistent with what Refs. [7,19] ob-
served using different staggered lattice actions. The gen-
eral consistency of results obtained with very different
actions indicates that we are observing a robust feature of
lattice gauge theories with many staggered fermions.
Shortly after we completed this work, Ref. [14] interpreted
the second transition as a partial restoration of axial Uð1ÞA

symmetry, which is not consistent with our data discussed
below.
Between the two bulk transitions we identify a novel

phase, and will devote most of this paper to understanding
it. We will show that this novel phase breaks the single-site
shift symmetry of the staggered action, a property that to
our knowledge has never been observed before. It is im-
portant to establish whether or not this phase is a lattice
artifact, because this will affect the conclusions we can
draw from our observation of finite-temperature transitions
converging to bulk transitions. As we will discuss in
Sec. III, such behavior is characteristic of IR-conformal
systems, and in principle provides a signal that distin-
guishes confining and conformal systems [4]. However, if
the phase is a lattice artifact such as the ‘‘Aoki-like phase
for staggered fermions’’ discussed by Ref. [20], then it
would be bounded by bulk transitions regardless of
whether the 12-flavor system were confining or conformal
in the continuum. Moreover, some finite-temperature tran-
sitions could converge to these bulk transitions for both
confining and conformal systems. As a consequence, our
results would not necessarily imply (although they would
be consistent with) IR-conformal continuum dynamics.
The outline and main results of our paper are as follows.

After summarizing our lattice action in Sec. II, we present
our results for the phase structure at light fermion mass in
Sec. III. Using two different order parameters, in Sec. IV
we will clearly show that the single-site shift symmetry
(‘‘S4’’) of the staggered action is spontaneously broken in
the novel (‘‘S4’’) phase. In Sec. V we study the low-lying
eigenvalues of the Dirac operator in both the S4 phase as
well as the more familiar weak-coupling phase. The vol-
ume scaling of the low-lying eigenmodes in the S4 phase
indicates the presence of a ‘‘soft edge’’ �0 > 0 in the
density distribution, �ð�Þ / ð�� �0Þ�. A soft edge im-
plies that not only the chiral condensate h �c c i, but
also higher-order condensates that could break chiral
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symmetry, are vanishing in the chiral limit [21,22]. In the
weak-coupling phase, we do not observe a soft edge in the
eigenvalue density distribution. We also obtain a prelimi-
nary prediction for the mass anomalous dimension �m ¼
0:61ð5Þ, where the error is purely statistical.

We present more evidence that the S4 phase is chirally
symmetric in Sec. VI, through the light meson spectrum. In
the S4 phase we observe parity doubling between scalar
and pseudoscalar states as well as between vector and
axial-vector states. Our meson spectrum results in the S4

phase are also independent of the volume, in contrast to
those in the weak-coupling phase. We also investigate the
static potential, which shows that the S4 phase is confining.
The static potential predicts a nonvanishing string tension
and a small Sommer parameter r0 � 2:7. Minimal finite-
volume effects both in the meson spectrum and static
potential are consistent with this r0, and show that the
lattice correlation length is small in the S4 phase.

To explore whether the S4 phase could exist without
implying IR conformality in the continuum, we have per-
formed preliminary investigations of the phase structure
with Nf ¼ 8 fundamental flavors, a system generally be-

lieved to show spontaneous chiral symmetry breaking.
While we have not yet completed our exploration of the
Nf ¼ 8 phase diagram, our initial results in Sec. VII show

an S4 phase with the same properties as we observe with 12
flavors. We do not observe this phase with 4 flavors, and
our data with 16 flavors are currently too preliminary to
draw a definite conclusion. Our investigations with 8 and
16 flavors are ongoing, and we will report our full results in
future works [23].

We conclude in Sec. VIII. Although we find the S4 phase
to be confining yet chirally symmetric, it is bordered by
first-order phase transitions that prevent us from reaching
the continuum (infinite cutoff) limit. It is possible that the
S4 phase is a lattice artifact of staggered fermions, espe-
cially since it exists with 8 flavors as well. This prevents us
from interpreting our observation of finite-temperature
transitions converging to bulk transitions as evidence that
the 12-flavor system is IR-conformal. While Ref. [20] has
discussed a possible Aoki-like lattice artifact phase for
staggered fermions, it is not clear if the breaking of the
single-site shift symmetry we observe in the S4 phase can
be described by the staggered chiral Lagrangian. This
question deserves further study, but it is beyond the scope
of the present paper.

II. THE LATTICE ACTION

Lattice calculations are affected by discretization errors,
and much effort has been devoted to improving lattice
actions to reduce these effects. Strongly coupled systems
are particularly sensitive to these lattice artifacts, which
can contaminate or destroy the scaling of the desired con-
tinuum limit, even to the point of generating spurious
ultraviolet fixed points. Care must be taken that lattice

simulations are in the basin of attraction of the perturbative
fixed point, or its associated IRFP if it exists.
In Ref. [9] we advocated the use of a gauge action with a

negative adjoint plaquette term, to avoid a well-known
spurious ultraviolet fixed point caused by lattice artifacts.
In the present work we follow this suggestion and use a
gauge action that includes both fundamental and adjoint
plaquette terms, with coefficients related by �A ¼
�0:25�F. With this constant ratio, the perturbative relation
to the bare gauge coupling is

6=g2 ¼ �Fð1þ 2�A=�FÞ ¼ �F=2: (1)

Staggered fermions are also affected by taste breaking;
i.e., the four fermion tastes described by each (unrooted)
staggered field are degenerate only in the continuum limit.
Smearing the gauge connections reduces this problem, and
following Refs. [6,9,24], we use nHYP-smeared staggered
fermions. The nHYP smearing significantly improves the
taste symmetry of staggered fermions [25,26], but the U(3)
projection in the nHYP construction can break down at
strong coupling, due to the generation of near-zero eigen-
values in the staple sum. We address this difficulty by
adjusting the three HYP smearing parameters to

�1 ¼ 0:5; �2 ¼ 0:5; �3 ¼ 0:4

from the original ð0:75; 0:6; 0:3Þ values. This choice elim-
inates the numerical problems while it only slightly
increases taste splitting.
In our calculations we use the hybrid Monte Carlo

algorithm. Our code is based in part on the MILC
Collaboration’s public lattice gauge theory software [27].
We have modified this software to implement nHYP
smearing, to add the adjoint plaquette term to the gauge
action and to exploit both even and odd sublattices to
simulate eight flavors. During the course of our work,
we also implemented a second-order Omelyan integrator
[28] accelerated by an additional heavy pseudofermion
field [29] and multiple time scales [30]. Our hybrid
Monte Carlo trajectory length is typically one molecular
dynamics time unit (MDTU), but in some cases can be as
small as 0.5 MDTU or as large as 2.0 MDTU. For most of
the ensembles discussed in this work, we accumulated
1000–2000 MDTU, and measured the eigenvalues and
meson spectrum on every tenth trajectory. Around the
phase transitions we accumulated more than 10 000
MDTU for some ensembles.

III. THE PHASE STRUCTURE

In the m ¼ 0 chiral limit, confining and chirally broken
systems with Nf � 3 flavors of fundamental fermions are

expected to exhibit a first-order finite-temperature phase
transition at which they become chirally symmetric and
deconfined. A finite-temperature lattice system with fixed
Nt � L will undergo a phase transition at a critical

coupling �ðcÞ
F . In the weak-coupling scaling region the
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renormalization group equation predicts the dependence of

�ðcÞ
F on Nt. In order for the theory to be confining and

chirally broken at zero temperature, �ðcÞ
F ! 1 as Nt ! 1.

Zero-temperature systems with Nt � L deconfine and
become chirally symmetric when L is so small that the
physics is volume-squeezed. This is a finite-volume effect
and not a real phase transition, though it could be accom-
panied by a discontinuity. In few-flavor QCD-like systems
no discontinuity is observed at zero temperature.

Much less is known about the finite-temperature behav-
ior of IR-conformal systems. At strong enough coupling,
lattice artifacts create a confining, chirally broken phase on
the lattice [31]. This strong-coupling phase must be sepa-
rated from the weak-coupling conformal phase by a bulk
(nonthermal) phase transition in the chiral limit. The bulk
transition has to be a real infinite-volume transition, with
the chiral condensate h �c c i serving as an order parameter
in the chiral limit. While remnants of the finite-temperature

phase transition can coexist with the bulk transition, the
finite-temperature transitions must occur at stronger cou-
plings than the bulk transition, and converge to the bulk
transition as Nt ! 1. This, in principle, gives a signal that
distinguishes confining and conformal systems.
References [4,7,14] investigated the 12-flavor SU(3)

system and found indication for a bulk transition.
References [7,14,19] also discussed a second discontinuity
in h �c c i. Our investigations confirm the existence of both
bulk phase transitions, as illustrated in Fig. 1. In the chiral
condensate we observe a clear discontinuity around �F �
2:0 for m ¼ 0:005 on zero-temperature 84, 124 and 164

volumes. h �c c i has another, much smaller, discontinuity
around �F � 2:65, where the Polyakov loop, an observ-
able related to confinement, shows a much stronger signal.
Because the usual Polyakov loop becomes small and noisy
as Nt increases, we consider an improved observable by
measuring the Polyakov loop on renormalization group
blocked lattices. This blocked Polyakov loop hTrLbi has
the same Z3 symmetry as the standard one, and can also be
thought of as an extended observable on the original,
unblocked lattices.
The chiral condensate h �c c i has very little volume

dependence across the phase transitions, consistent with
bulk transitions. The apparent volume dependence of the
blocked Polyakov loop is due to the different number of
blocking steps performed: the 164 lattices are blocked 3
times with scale factor s ¼ 2, while the 124 lattices can be
blocked only twice.
Figure 2 shows how the locations of the two phase

transitions depend on the volume, temperature and fermion
mass. In both cases, the transitions at finite temperature
converge to zero-temperature bulk transitions where
different observables show the same discontinuity on all
volumes, up to small finite-volume effects. Just like
Refs. [4,7,14], we observe the stronger-coupling transi-
tions to converge on smaller volumes than those that are
needed for the weaker-coupling transitions to converge.

FIG. 1 (color online). The chiral condensate h �c c i (on a log
scale) and the blocked Polyakov loop hTrLbi indicate two well-
separated transitions at m ¼ 0:005.

FIG. 2 (color online). Transitions in the �F-m plane at several temperatures and volumes. The left panel shows the stronger-coupling
transitions signaled by h �c c i, the right panel shows the weaker-coupling transitions signaled by hTrLbi, and the middle panel shows
how the two bulk transitions merge asm increases. Small vertical offsets distinguish the different volumes, and lines connect the points
to guide the eye. The transitions are nearly identical on zero-temperature volumes, and the finite-temperature transitions appear to
converge to these bulk transitions.

NOVEL PHASE IN SU(3) LATTICE GAUGE THEORY . . . PHYSICAL REVIEW D 85, 094509 (2012)

094509-3



We encountered long metastability between runs from hot
and cold initial states at both transitions, especially on
larger volumes. These transitions are strongly first-order,
and molecular dynamics evolution is not very effective
flipping the system between phases. Mixed initial configu-
rations helped to resolve the transition around �F � 2:65
more accurately, but they were less reliable at the transition
around �F � 2.

IV. SINGLE-SITE SHIFT SYMMETRY BREAKING

We identified two phase transitions in Fig. 1 from the
discontinuities in the chiral condensate and (blocked)
Polyakov loop. This was possible as both phase transitions
are first-order, and almost all observables show a disconti-

nuity. However, neither hc c i nor the Polyakov loop is a
bona fide order parameter of the intermediate phase located
between the two transitions. While the Polyakov loop is a
good indicator of confinement, it is only an order parame-
ter in the pure gauge theory, and does not distinguish
between the intermediate and strong-coupling phases.
The chiral condensate is an order parameter in the chiral
limit only, and in that limit it likely vanishes in both the
intermediate and weak-coupling phases.

There is no a priori guarantee that the intermediate
phase is separated from the strong- and weak-coupling
phases by true phase transitions. However, while investi-
gating the phase diagram, we discovered that the single-
site shift symmetry (‘‘S4’’) of the staggered fermion action
is spontaneously broken in the intermediate (‘‘S4’’) phase.
This ensures the existence of an order parameter character-
izing the S4 phase, and full separation of the phases.

The single-site shift symmetry of the staggered action
takes the form [32]

�ðnÞ ! ��ðnÞ�ðnþ�Þ; ��ðnÞ ! ��ðnÞ ��ðnþ�Þ;
U�ðnÞ ! U�ðnþ�Þ; (2)

where

��ðnÞ ¼ ð�1Þ
P
	>�

n	

:

This symmetry ensures that the chiral condensate h �c c i
measured on even lattice sites is identical to that measured
on odd sites, and the underlying gauge configurations
exhibit the usual discrete translational symmetry. To our
knowledge the breaking of this symmetry has never been
observed before.

Order parameters that are sensitive to this symmetry
include the expectation value of the difference between
neighboring plaquettes and that between neighboring links,

�P� ¼ hReTrhn � ReTrhnþ�in�even; (3)

�L�¼h��ðnÞ ��ðnÞU�ðnÞ�ðnþ�Þ
���ðnþ�Þ ��ðnþ�ÞU�ðnþ�Þ�ðnþ2�Þin�even;

(4)

where ReTrhn is the real trace of the plaquette originating
at site n,

��ðnÞ ¼ ð�1Þ
P
	<�

n	

is the usual staggered phase factor, and the expectation
value h� � �in�even is taken only over sites whose � compo-

nent is even. In the intermediate phase these operators
develop nonzero expectation values in one or more direc-
tions�. Occasionally the direction of the symmetry break-
ing changes, rotating in space.
Figure 3 shows both order parameters in the intermedi-

ate (�F ¼ 2:6, m ¼ 0:005) and the weak-coupling (�F ¼
2:7, m ¼ 0:005) phases, as functions of the molecular
dynamics time on 163 � 32 volumes. At �F ¼ 2:6 S4 is
broken in the temporal direction and both order parameters
remain small for � � t. At �F ¼ 2:7 the order parameters
do not develop a nonzero expectation value in any direc-
tion. The order parameters also vanish in the strong-
coupling phase, though we do not include that data in
Fig. 3. The single-site shift symmetry is broken only in
the intermediate phase. The order parameters, when non-
vanishing, have only small dependence on the volume.
It is important to note that the single-site shift symmetry

is an exact symmetry of the action even at finite fermion
mass. It is broken only spontaneously. Both�P� of Eq. (3)

and �L� of Eq. (4) are nonzero when the symmetry is

broken and vanish when it is preserved. The S4 phase must
be separated by true phase transitions from the strong- and
weak-coupling phases where both order parameters vanish.

V. EIGENVALUE SPECTRUM

The results we discussed in Sec. III suggest that the
transition at stronger coupling is related to chiral symmetry
breaking, while the transition at weaker coupling is related
to confinement. We will consider confinement in the next
section, while in this section we investigate the chiral
properties of the phases. Finite fermion mass explicitly
breaks chiral symmetry, and extrapolating the chiral
condensate to the m ¼ 0 chiral limit can be a difficult
task. While such extrapolations are consistent with
limm!0h �c c i ¼ 0 in both the intermediate and weak-
coupling phases, here we use the eigenvalue distribution
of the Dirac operator to perform a more robust study of
chiral symmetry.
The spectrum of the Dirac operator of chirally broken

systems contains a wealth of information. When the eigen-
value distribution is compared to random matrix theory
(RMT), it predicts the chiral condensate and gives infor-
mation about the lattice artifacts of the simulations. There
is no comparable prediction for conformal systems; never-
theless, the volume scaling and the level spacing of con-
secutive eigenvalues are related to the mass scaling
exponent of the fixed point that governs the infrared dy-
namics [33,34].
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The 12-flavor staggered action is local and describes a
well-defined statistical system. In the following analysis
we will investigate general questions of scaling and the
appropriate scaling dimension for this system. We will not
compare our data to RMT predictions, and our analysis
will not be sensitive to taste symmetry, or its breaking.

In this pilot study we calculate the 12 lowest-lying
eigenvalues of the staggered Dirac operator on volumes
124, 123 � 24, 164 and 163 � 32 in both the S4 and weak-
coupling phases. In principle one should separate the
different topological sectors before averaging the eigen-
values, but all of the configurations we analyzed appear to
be in the zero-topology sector. Figure 4 illustrates the
volume dependence and the level spacing of the lowest-
lying eigenvalues. Our gauge configurations are too coarse
for the eigenvalues to show the fourfold degeneracy ex-
pected in the continuum limit of staggered fermions.
Additional HYP smearing steps can remove enough of the
ultraviolet fluctuations to reveal the expected degeneracy,

but that is not what the dynamical fermions see in the
simulations, and we do not pursue this direction.
In the infinite-volume limit the basic quantity is the

eigenvalue density �ð�Þ. In the chiral limit the density of
low-lying eigenvalues is expected to scale as

�ð�Þ / ð�� �0Þ�; (5)

where the parameter �0 � 0 allows the possibility of a soft
edge [21,35,36]. In a chirally broken system �ð0Þ � 0,
implying �0 ¼ 0 (the ‘‘hard edge’’) and � ¼ 0. In a con-
formal system �0 ¼ 0, and � is related to the mass anoma-
lous dimension as we now derive.
Although the density �ð�Þ is only well-defined in the

infinite-volume limit, the functional form of Eq. (5) can be
used to analyze the spacing between discrete eigenvalues
in a finite volume. Denoting the finite-volume eigenvalues
as �i for i ¼ 1; 2; . . . , we can write the cumulative eigen-
value density as

FIG. 4 (color online). The low-lying eigenvalues h�ii for m ¼ 0:005 on the four volumes 124, 123 � 24, 164 and 163 � 32, in the S4

phase (�F ¼ 2:6, left) and in the weak-coupling phase (�F ¼ 2:7, right). The dashed line in the left panel shows the soft edge �0 ¼
0:0175ð5Þ found in the fit plotted in the left panel of Fig. 5.

FIG. 3 (color online). The plaquette difference �Pt [Eq. (3), left] and the link difference �Lt [Eq. (4), right] measured on 163 � 32
volumes in both the S4 phase (�F ¼ 2:6, m ¼ 0:005) and the weak-coupling phase (�F ¼ 2:7, m ¼ 0:005), as functions of the
molecular dynamics time.
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Z ~�

~�
�ð�Þd� ¼ lim

V!1

�
n�m

V

�
; (6)

where �n ¼ ~� and �m ¼ ~�. Using Eq. (5) this leads to

�n � �0 /
�
nþ x0

V

�
1=ð�þ1Þ½1þOðV�1Þ�; (7)

where we combined m=V and ð�m � �0Þ�þ1 / OðV�1Þ in
the parameter x0=V. Since the eigenvalue � has dimension
of mass, Eq. (7) implies the relation

D

1þ �
¼ ym ¼ 1þ �m (8)

between � and the mass anomalous dimension �m in a
D-dimensional space. For free field theory ym ¼ 1 and
� ¼ D� 1, while for a chirally broken system � ¼ 0.
Equation (7) has four free parameters. The proportionality
constant and x0 can depend on the lattice geometry, while
�0 and � are universal.

The left panel of Fig. 4 shows our results for the low-
lying eigenvalues in the S4 phase at �F ¼ 2:6, m ¼ 0:005.
In this plot we include a dashed line showing the soft edge
�0 ¼ 0:0175ð5Þ predicted by our global fit to Eq. (7) using
all four volumes. The left panel of Fig. 5 shows the result of
this global fit, which does not depend on the aspect ratios of
the lattices. The dependence on x0 is weak, and we fix
x0 ¼ 0. The slope ym ¼ 4=ð�þ 1Þ ¼ 2:50ð10Þ gives � ¼
0:60ð6Þ, consistent with the RMT prediction � ¼ 1=2 at a
soft edge [35,36].

A nonvanishing soft edge is rather unusual. In finite-
temperature systems with Nt fixed, L ! 1, Ref. [21] ob-
served �0 > 0 in the chirally broken phase, but in infinite
volume neither chirally broken nor conformal systems are
expected to have a soft edge. Through the Banks-Casher
relation [37]

h �c c i / m
Z 1

0

�ð�Þd�
�2 þm2

; (9)

a soft edge implies that the chiral condensate h �c c i van-
ishes in the chiral limit m ¼ 0. With a soft edge, �ð�Þ ¼ 0
for 0 � � < �0 as well as for all � larger than the spectral
range of the Dirac operator, so that the integral in Eq. (9)
remains finite while m ! 0.
In addition, a soft edge excludes the scenario in which

h �c c i ¼ 0 but chiral symmetry is broken in the S4 phase by
a nonzero four-fermion condensate. As discussed by
Refs. [38–40], this could result from the chiral symmetry
breaking pattern

SUðNfÞV � SUðNfÞA ! SUðNfÞV � ZNf
(10)

where the custodial ZNf
symmetry forces h �c c i ¼ 0. The

four-fermion condensate considered in Ref. [40] is related
to the difference of scalar and pseudoscalar susceptibilities
! ¼ �P � �S where

�P ¼ 1

V

Z
d4xd4yh ��
ji�5�ðxÞ ��
ji�5�ðyÞi; (11)

�S ¼ 1

V

Z
d4xd4yh ��
j�ðxÞ ��
j�ðyÞi; (12)

and 
j is a flavor generator. The Uð1ÞA-noninvariant !
parameter can be expressed in terms of the eigenvalue
density as [22]

! ¼ 4m2
Z 1

0

�ð�Þd�
ð�2 þm2Þ2 : (13)

Just as for Eq. (9), ! vanishes in the chiral limit if the
eigenvalue density has a soft edge, so the symmetry break-
ing scenario of Eq. (10) is not consistent with our data in
the S4 phase.
The soft edge is a dimensional parameter, but it is not

clear what infinite-volume physical quantity it corresponds
to. Better understanding of the symmetry breaking mecha-
nism could shed light on this question.

FIG. 5 (color online). Scaling of the low-lying eigenvalues for m ¼ 0:005 on the four volumes 124, 123 � 24, 164 and 163 � 32. In
the S4 phase (�F ¼ 2:6, left) the soft edge �0 ¼ 0:0175ð5Þ, and the slope ym ¼ 2:50ð10Þ. In the weak-coupling phase (�F ¼ 2:7,
right), �0 ¼ 0 but x0 � 3, with slope ym ¼ 1:61ð5Þ.
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The eigenvalue spectrum in the weak-coupling phase is
more conventional. The right panel of Fig. 4 shows the
low-lying eigenvalues in this phase at �F ¼ 2:7, m ¼
0:005. The global fit to Eq. (7) predicts �0 ¼ 0 but a
nonvanishing x0 � 3. Volumes with different aspect ratios
prefer slightly different x0 values and proportionality con-
stants. A fit with a common � parameter to the 12 eigen-
values on all four volumes predicts ym ¼ 1:61ð5Þ or mass
anomalous dimension �m ¼ 0:61ð5Þ (right panel of Fig. 5),
where the error is purely statistical. This value is consistent
with results reported by Refs. [10,11,17]. We find similar
scaling properties and exponent at mass m ¼ 0:01.

In a chirally broken, confining system the eigenvalues
should scale with exponent ym ¼ 4, even in the � regime
where the volume is small compared to the pion Compton
wavelength. Our observation of uniform scaling on all four
volumes indicates either that the 12-flavor system is con-
formal or that its intrinsic confinement scale can only be
observed on larger lattice volumes than we consider here.
In future work we will obtain a more robust prediction and

quantify systematic effects by performing similar calcula-
tions at different gauge couplings and mass values, and on
larger volumes as well [23]. For now, we turn to inves-
tigating the confinement properties of the S4 and weak-
coupling phases.

VI. STATIC POTENTIAL AND MESON SPECTRUM

In this section we explore the static potential and meson
spectrum in the S4 phase, contrasting these results with the
same observables in the weak-coupling phase. Although
hTrLbi shows a clear signal in Fig. 1, the Polyakov loop is
not an order parameter in the presence of dynamical fer-
mions. The static potential is a more reliable indicator of
confinement. In Fig. 6 we contrast the HYP-smeared static
potential [41] measured on each side of the transition, at
�F ¼ 2:6 and 2.7 on 123 � 24 and 163 � 32 volumes with
m ¼ 0:005.
The potential at �F ¼ 2:6 is consistent with confine-

ment, with string tension � ¼ 0:20ð1Þ and Sommer pa-
rameter r0 ¼ 2:67ð4Þ in lattice units. We obtain similar
values at other masses and couplings within the S4 phase.
The potential is almost identical on 123 � 24 and 163 � 32
volumes, and the small r0 suggests that there will be no
qualitative change on larger volumes that we are currently
investigating. These results indicate confinement with a
fairly short gauge correlation length. On the other hand,
the potential at�F ¼ 2:7 is Coulombic and cannot be fitted
consistently with a linear term. The lack of volume depen-
dence implies either vanishing string tension and confor-
mality or an intrinsic confinement scale that can only be
observed on larger lattice volumes.
The meson spectrum at �F ¼ 2:7 is also consistent with

a small-volume deconfined system. The right panel of
Fig. 7 shows the Goldstone �5 pseudoscalar (5), the
pseudoscalar and the scalar components of the �0�5 chan-
nel (05 and a0) and the �i�5 pseudoscalar (i5) versus

FIG. 6 (color online). The HYP-smeared static potential in the
S4 phase at �F ¼ 2:6 and the weak-coupling phase at �F ¼ 2:7.

FIG. 7 (color online). The masses of light scalar and pseudoscalar staggered mesons, from 123 � 24 and 163 � 32 lattices. Small
horizontal offsets distinguish results from different volumes. In the left panel we include the Goldstone 5, its ‘‘a5’’ parity partner, the
05 pseudoscalar and the a0 scalar in the intermediate phase at �F ¼ 2:6. In the right panel we show the 5, 05, a0 and (on 16

3 � 32
only) i5 in the weak-coupling phase at �F ¼ 2:7.
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fermion mass m. We observe significant volume depen-
dence in the scalar and pseudoscalar masses. The
Goldstone and the scalar become degenerate at small m,
consistent with parity doubling. The 05 meson becomes
heavier than the scalar atm ¼ 0:005, where it is degenerate
with thei5 state. (Our data do not allow precise results for
these states on 123 � 24 at m< 0:01.) Overall our meson
spectrum results at �F ¼ 2:7 are dominated by finite-
volume effects, and do not provide clear information about
the IR dynamics of the 12-flavor model. With the computa-
tional resources available to us, we cannot compete with
the large-volume spectral study of Ref. [8].

Our goal in investigating the static potential and meson
spectrum in the weak-coupling phase is to contrast these
results with measurements in the S4 phase, where we
observe several interesting differences. Our results for the
pseudoscalar and scalar spectrum at �F ¼ 2:6 are summa-
rized in the left panel of Fig. 7. In the S4 phase we find that
the pion has a parity partner (‘‘a5’’) in the �5 channel, a
state that is forbidden in QCD-like systems. The masses
measured on 163 � 32 and 123 � 24 volumes are indistin-
guishable in the S4 phase: the finite-volume corrections are
negligible, consistent with the small correlation length
indicated by the static potential. The parity partner states
both in the �5 and �0�5 channels are degenerate. The �5

states are largely independent of the fermion massm while
the �0�5 mesons’ masses increase steadily with increasing
m. The data indicate that all four mesons could be degen-
erate in the chiral limit. However, the 05 mass again
proved difficult to extract, and our statistics and volumes
do not allow precise results for the 05 at m> 0:01.

In Fig. 8 we show the masses of the vector meson � and
its parity partner a1 measured on 163 � 32 volumes in both
the S4 phase at �F ¼ 2:6 and the weak-coupling phase at
�F ¼ 2:7. At both of these couplings, the � and a1 are
degenerate for all m � 0:015. In the deconfined weak-

coupling phase, this parity doubling is a familiar effect.
In the confining S4 phase, however, such spectral proper-
ties are unusual. The �-a1 parity doubling we observe in
Fig. 8 is inconsistent with the spectrum associated with
the chiral symmetry breaking pattern of Eq. (10) [40].
Combined with the vanishing chiral condensate observed
from the Dirac spectrum in this phase, the degeneracy of
the parity partners in the meson spectrum implies that the
intermediate phase is confining but chirally symmetric.
The continuum ’t Hooft anomaly matching condition
does not permit the existence of such a phase, suggesting
that the novel phase we observe does not exist in the
continuum.

VII. THE 8-FLAVOR CASE

Finite-temperature transitions converging to a bulk tran-
sition could signal that the continuum weak-coupling
phase is conformal in the infrared. However, because we
observe two bulk transitions bounding an intermediate
phase with unusual properties, we must consider the pos-
sibility that our results are due to lattice artifacts. With
Wilson fermions the existence of a lattice artifact phase,
first proposed by Aoki [42], is well-known. Reference [20]
argues that an Aoki-like phase might exist with staggered
fermions if more than a single four-taste multiplet is con-
sidered. We are currently investigating this possibility
through additional studies with Nf ¼ 4, 8 and 16 flavors.

This work is preliminary, but important in interpreting
our Nf ¼ 12 results. Figure 9 shows the Nf ¼ 8 chiral

condensate h �c c i at m ¼ 0:005 on 124 and 164 volumes.
We observe the same phases as with Nf ¼ 12 flavors. On

both volumes there are two first-order transitions at ap-
proximately volume-independent gauge couplings. The
phase in between has the same properties as the S4 phase
with 12 flavors. It breaks single-site shift symmetry as

FIG. 8 (color online). The � and a1 are degenerate in both the
weak-coupling phase at �F ¼ 2:7 as well as the S4 phase at
�F ¼ 2:6. At �F ¼ 2:7 this degeneracy is a familiar effect. At
�F ¼ 2:6, it is consistent with our observation of chiral symme-
try in the eigenvalue spectrum.

FIG. 9 (color online). The chiral condensate h �c c i (on a log
scale) in the Nf ¼ 8 flavor system at m ¼ 0:005 on 124 and 164

lattices. The phase between the two first-order transitions is an
S4 phase like that we observe for Nf ¼ 12.
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shown by the nonzero expectation values of the two order
parameters �P� [Eq. (3)] and �L� [Eq. (4)]. The Dirac

operator eigenvalue spectrum has a soft edge, the static
potential has a nonvanishing string tension, and the meson
spectrum shows parity doubling. Yet it is generally
believed that the Nf ¼ 8 flavor system is below the con-

formal window [3,5,33,43,44], and our data in the weak-
coupling phase support this expectation [23].

The fact that an S4 phase exists with 8 flavors implies that
this phase and its two corresponding bulk transitions do not
necessarily imply IR conformality in the continuum. The
infrared behavior of the weak-coupling phase is indepen-
dent of the S4 phase and has to be studied by other means.

We emphasize that our treatment of the Nf ¼ 8 system

is not complete, and our results with Nf ¼ 4 and 16 flavors

are even more preliminary. We include Fig. 9 to help
clarify the situation with 12 flavors, but more work is
needed to map out the full phase diagram.

VIII. CONCLUSION

Our investigations of the phase diagram of the 12-flavor
SU(3) model have identified a novel phase with unusual
properties. At small masses this phase lies in between the
usual confining, chirally broken lattice strong-coupling
phase and the weak-coupling phase that is governed by
the perturbative Gaussian fixed point and possibly an in-
frared fixed point. The two first-order phase transitions
separating these three phases get closer together with in-
creasing fermion mass. At some mass value the two tran-
sitions merge and eventually turn into a crossover. The
intermediate phase forms a packet in between the strong-
and weak-coupling phases at small fermion masses.

In this work we studied the intermediate phase and con-
trasted it with the weak-coupling phase using several ob-
servables. The chiral condensate h �c c i and blocked
Polyakov loop gave our first glimpse of the phase structure,
and suggested that the transition at stronger coupling is
related to chiral symmetry breaking, while the transition
at weaker coupling is related to confinement. Our inves-
tigation led us to two operators, �P� [Eq. (3)] and �L�

[Eq. (4)], which serve as order parameters of the intermedi-
ate phase. Both of these order parameters are sensitive to the
single-site shift symmetry (S4) of the staggered fermions, a
symmetry that is exact at the level of the lattice action. Since
these order parameters develop nonzero expectation values
in the intermediate phase, but vanish in both the strong- and
weak-coupling phases, we conclude that the intermediate
phase spontaneously breaks single-site shift symmetry, S4.
Since the single-site shift symmetry is exact even at finite
fermion mass, the S4 phase must be separated by real phase
transitions from both the strong- andweak-coupling phases.

We used the spectrum of the Dirac operator to study the
chiral properties of the phases. In the S4 phase we found
evidence for a soft edge, implying chiral symmetry. In the
weak-coupling phase the eigenvalue spectrum is consistent

with both conformal and volume-squeezed confining sce-
narios. We obtained a preliminary prediction for the mass
anomalous dimension, �m ¼ 0:61ð5Þ, in the weak-
coupling phase.
The static potential showed that the S4 phase is confining

with a small lattice correlation length, while in the weak-
coupling phase on our relatively small volumes the poten-
tial was only Coulombic. These results are consistent with
the signal from the (blocked) Polyakov loop. The meson
spectrum in both phases indicated parity doubling at light
fermion mass. However, in the S4 phase we observed very
little volume dependence, yet we found that all mesons
remained massive in the chiral limit. The parity doubling in
the weak-coupling phase was accompanied by strong vol-
ume dependence and could also be consistent with both
conformal and confining scenarios.
We presented preliminary data showing that the S4 phase

is present with 8 flavors as well, suggesting that this phase
is not related to conformal infrared dynamics. Our findings
lead us to believe that the S4 phase is a lattice artifact of the
staggered fermions [20]. Since the single-site shift sym-
metry is closely related to the fermion staggering and taste
breaking, it is most likely that the origin of the S4 phase is
in the fermionic sector. However, we do not yet have a clear
and complete understanding of the symmetry breaking
mechanism that produces the S4 phase.
Further investigations of the phases on larger volumes,

and with Nf ¼ 4, 8 and 16 fermions, are under way and

should clear up the still open questions of these surpris-
ingly complex systems.
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