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We derive direct representations of the scaling functions of the 3d Oð4Þ model which are relevant for

comparisons to other models, in particular, QCD. This is done in terms of expansions in the scaling

variable z ¼ �t=h1=�. The expansions around z ¼ 0 and the corresponding asymptotic ones for z ! �1
overlap such that no interpolation is needed. The expansion coefficients are determined numerically from

the data of a previous high statistics simulation of the Oð4Þ model on a three-dimensional lattice of linear

extension L ¼ 120. From the scaling function of the magnetization we calculate the leading asymptotic

coefficients of the scaling function of the free energy density. As a result we obtain the universal amplitude

ratio Aþ=A� ¼ 1:84ð4Þ for the specific heat. Comparing the scaling function of the energy density to the

data we find the nonsingular part of the energy density �nsðTÞ with high precision and at the same time

excellent scaling properties.
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I. INTRODUCTION

The aim of the paper is to provide representations of the
scaling functions of the three-dimensional Oð4Þ model
which can be used in tests of other models on their mem-
bership of the corresponding universality class. This is
especially of importance for quantum chromodynamics
(QCD) with two degenerate light-quark flavors at finite
temperature, because it is believed [1–6] to belong to the
Oð4Þ universality class at its chiral transition in the con-
tinuum limit. There exist already many parametrizations
[7–12] of the magnetic equation of state. They differ
essentially in the following aspects:

(a) The form of the magnetic equation of state which is
initially parametrized. The most used form is the
Widom-Griffiths (WG) form [13,14], where both the
scaling function and the scaling variable depend on
the magnetization M. A second form has the advan-
tage that the scaling variable is independent ofM. It
is therefore more appropriate for the comparison to
M-data with errors. The two forms are completely
equivalent in describing the critical behavior of the
model and they can be derived from each other. In
principle, it is then only necessary to parametrize
one form.

(b) The type of parametrization which is used. The
parametrization has to describe the correct general
scaling laws as deduced from renormalization group
(RG) theory, it must satisfy Griffiths’s analyticity
conditions [14] and take into account the Goldstone
singularities in the low temperature phase.

(c) The input fromwhich the parameters are determined.
There are two main sources of information: from
field-theory methods, for example �-expansions,
small-field expansions or high temperature series
etc., and secondly, from Monte Carlo (MC) data.

Our paper is inspired by the pioneering work of Toussaint
[7]. In his paper the scaling function (of the second kind)
for the order parameter was calculated based only on MC
data and moreover these data were simulated at finite
external field H. The main purpose of the paper was, like
ours, to provide the scaling function for the QCD analysis.
The parametrization was carried out in a third, unusual
form, which has not been used since then, yet the
Goldstone effects had still not been taken into account.
Like the WG form, this third form has the drawback that
the calculation of the second form of the scaling function
and, in particular, its derivatives with respect to its scaling
variable is an indirect one and it is therefore unhandy.
Moreover, scaling functions of the second kind determine
via the location of their extrema the important pseudocriti-
cal lines. In Refs. [8,10] the WG form was used and
parametrized with a combination of a low and a high
temperature ansatz in accord with the requirements of
(b). The two parts were subsequently connected by an
interpolation. The parameters were deduced exclusively
from MC data with finite external fields. In
Refs. [9,11,12] the WG form was used. All three papers
discuss and use variants of the classical parametric repre-
sentation of the equation of state introduced by Schofield
and Josephson [15–17] in 1969, which is valid in the whole
critical region. References [9,11] differ in details of the
parametrization and in the input: whereas [9] relies essen-
tially on field-theory input and uses the data for testing,
Ref. [11] determines its parameters directly from fits to the
data. In Ref. [12] the functional RG method is used to
calculate the scaling functions. The classical representa-
tion had been invented for the WG form, at a time where
only fewMC data on small lattices were available. Today it
is still used for all kind of calculations of universal quan-
tities from field theory. However, as we shall demonstrate,
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it is not necessary to work with this representation. Instead
we parametrize directly the scaling functions of the second
kind, which is the preferred choice of the QCD community
in their tests on the universality class of the Oð4Þ model. In
addition, this allows us not only to make use of the mag-
netization data in the determination of the parameters, but
also of the data for the susceptibilities.

In order to broaden the tests on the universality class we
calculate as well the scaling functions connected to the
energy density and the specific heat. Here however, the
initially unknown regular or nonsingular part of the energy
density and/or specific heat is contained in the data and has
to be subtracted correctly. We show how this can be done in
principle, when the critical exponent � is negative. The
inadequate estimate of the regular parts in a former test for
2-flavor QCD [18] prevented a successful outcome of the
test from the beginning and led to unjustified conclusions.
Yet, there is a derivative of the energy density, the thermal
susceptibility or covariance between the energy density
and the magnetization, which does not require a subtrac-
tion of the nonsingular term. We shall use also this quantity
for our parametrization.

The specific model which we study here is the standard
Oð4Þ-invariant nonlinear �-model, which is defined by

�H ¼ �J
X
h ~x; ~yi

~�~x � ~�~y � ~H �X
~x

~�~x; (1)

where ~x and ~y are nearest-neighbor sites on a three-

dimensional hypercubic lattice, and ~�~x is a four-
component unit vector at site ~x. The coupling J and the

external magnetic field ~H are reduced quantities, that is
they contain already a factor� ¼ 1=T. In fact, we consider
in the following the coupling directly as the inverse tem-
perature, J � 1=T.

It is useful to decompose the spin vector ~�~x into longi-

tudinal (parallel to the magnetic field ~H) and transverse
components

~� ~x ¼ �k
~x ~eH þ ~�

?
~x ; with ~eH ¼ ~H=H; (2)

where H is the magnitude of the magnetic field. We define
the energy of a spin configuration as

E ¼ �X
h ~x; ~yi

~�~x � ~�~y: (3)

The lattice average�k of the longitudinal spin components
is

�k ¼ 1

V

X
~x

�k
~x; (4)

where V ¼ L3 and L is the number of lattice points per
direction. The partition function is then

ZðT;HÞ¼
Z Y

~x

d4�~x�ð ~�2
~x�1Þexpð��EþHV�kÞ: (5)

We introduce the (reduced) free energy density as usual by

fðT;HÞ ¼ � 1

V
lnZ; (6)

from which one obtains the order parameter of the system,
the magnetization M, as

M ¼ � @f

@H
¼ h�ki: (7)

The longitudinal susceptibility is the second derivative of
�f with respect to the field

�L ¼ @M

@H
¼ Vðh�k2i �M2Þ: (8)

The energy density is

� ¼ @f

@�
¼ hEi

V
; (9)

and the specific heat

C ¼ @�

@T
¼ �2

V
ðhE2i � hEi2Þ: (10)

Finally we define the thermal susceptibility �t as the mixed
second derivative of f

�t ¼ @M

@�
¼ hEih�ki � hE�ki: (11)

The rest of the paper is organized as follows. First we
discuss the critical behavior of the observables and the
universal scaling functions, which we want to calculate.
In Sec. III we describe the expansions with which we
parametrize the scaling functions. Some details of the
used simulations and the parametrizations resulting from
the data are presented in Sec. IV. Here we also investigate
the role of the nonsingular terms for the scaling of the data.
We close with a summary and the conclusions.

II. CRITICAL BEHAVIOR AND SCALING
FUNCTIONS

In the thermodynamic limit (V ! 1) the above defined
observables show power law behavior close to Tc. It is
described by critical amplitudes and exponents of the
reduced temperature t ¼ ðT � TcÞ=Tc for H ¼ 0 and the
magnetic field H for t ¼ 0, respectively. According to RG
theory the nonanalytic or singular part fs of the free energy
density is responsible for critical behavior. Besides fs, the
free energy density contains a regular or nonsingular part
fns. Correspondingly, the derivatives of fns contribute
regular terms to the scaling laws, which apart from the
cases of the energy density and the specific heat (for
�< 0) are subleading. In the two-dimensional Ising model
such an analytic contribution to the magnetic susceptibility
was established [19,20]. In Ref. [7], Toussaint makes
a corresponding ansatz fns ¼ cH2H

2 þ cJ1tþ cJ2t
2 þ

cJ3t
3, which leads to an additional constant in �L, a term

�H in M and an H-independent �nsðTÞ. Since in our
former scaling fits to M at Tc, e.g. in Refs. [10,21], we
never discovered such a regular term we follow Privman
et al. [22] and assume the nonsingular part fns to have no
field dependence, that is
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fðT;HÞ ¼ fsðT;HÞ þ fnsðTÞ; (12)

and

� ¼ �s þ �nsðTÞ; C ¼ Cs þ CnsðTÞ: (13)

The regular parts do not disappear at T ¼ Tc. We may
expand �nsðTÞ in T at Tc

�nsðTÞ ¼ �nsðTcÞ þ ðT � TcÞ � CnsðTcÞ
þ 1

2
ðT � TcÞ2 � C0

nsðTcÞ þ . . . : (14)

The scaling laws at H ¼ 0 are then for the magnetization
(from now on � denotes a critical exponent)

M ¼ Bð�tÞ� for t < 0; (15)

the longitudinal susceptibility

�L ¼ Cþt�� for t > 0; (16)

and the energy density and the specific heat both for t < 0
and t > 0

� ¼ �nsðTÞ þ A�

�ð1� �ÞTctjtj��; (17)

C ¼ CnsðTÞ þ A�

�
jtj��: (18)

For the thermal susceptibility we have for t < 0

�t ¼ �BTcð�tÞ��1: (19)

On the critical line T ¼ Tc or t ¼ 0 we have for H > 0 the
scaling laws

M ¼ BcH1=� or H ¼ DcM
�; (20)

�L ¼ CcH1=��1 with Cc ¼ Bc=�: (21)

The remaining observables scale as follows:

� ¼ �nsðTcÞ þ EcH
ð1��Þ=�; (22)

Cs � 2�s
Tc

¼ Ac

�c

H��c ; (23)

�t ¼ XcH
ð��1Þ=�; (24)

where �c ¼ �=� and � ¼ �� is the so-called ‘‘gap
exponent.’’

Generalizations of these scaling laws to both nonzero t
andH-values may be derived from the RG scaling equation
for fs

fsðu1; u2; u3; . . .Þ ¼ b�dfsðby1u1; by2u2; by3u3; . . .Þ: (25)

Here, the uj with j ¼ 1; 2; . . . are the scaling fields, b is a

positive scale factor and the yj are the RG eigenvalues. The

class of our model has two relevant scaling fields u1 ¼ ut,
u2 ¼ uh with yt, yh > 0 and infinitely many irrelevant ones

with negative yj. The relevant scaling fields depend

analytically on t and H and

ut ¼ cttþOðt2; H2Þ; uh ¼ chH þOðtHÞ: (26)

The ct, ch are two model-dependent (positive) metric scale

factors. Choosing b ¼ u�1=yh
h for H > 0 one obtains from

Eq. (25) the second form of scaling functions from

fsðut; uh; uj>2Þ ¼ ud=yhh fsðutu�yt=yh
h ; 1; uju

�yj=yh
h Þ: (27)

Close to the critical point, for t, H small, ut ¼ ctt, uh ¼
chH and the dependence on the irrelevant scaling fields
becomes negligible, fs is a universal scaling function of ut
and uh and

fs ¼ ðchHÞd=yh�2ðctc�yt=yh
h tH�yt=yhÞ; (28)

where �2 is again a universal function. By comparison
with the scaling laws one obtains

yt ¼ 1=	; yh ¼ 1=	c ¼ �=	; or � ¼ yh=yt;

(29)

and the hyperscaling relations

2� � ¼ d	; � ¼ �ð�� 1Þ; d	 ¼ �ð1þ �Þ:
(30)

Instead of working with two metric scale factors one
usually introduces new temperature and field variables �t ¼
tTc=T0 and h ¼ H=H0 which are chosen such that the
scaling laws for the magnetization simplify to

Mðt ¼ 0Þ ¼ h1=� and H0 ¼ Dc; (31)

Mðh ¼ 0Þ ¼ ð��tÞ� and T0 ¼ B�1=�Tc: (32)

The magnetic equation of state as derived from Eqs. (7)
and (28) becomes then

M ¼ h1=�fGðzÞ; (33)

where fG is a universal scaling function with the argument

z ¼ �t=h1=�: (34)

It fulfills the normalization conditions

fGð0Þ ¼ 1; and fGðzÞ !
z!�1ð�zÞ�: (35)

Because of Eq. (7), the corresponding scaling equation of
the free energy density must then be

fs ¼ H0h
1þ1=�ffðzÞ; (36)

where ffðzÞ is again a universal scaling function, and

fGðzÞ ¼ �
�
1þ 1

�

�
ffðzÞ þ z

�
f0fðzÞ: (37)

Since the susceptibility �L is the derivative of M with
respect to H we obtain from Eq. (33)
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�L ¼ @M

@H
¼ h1=��1

H0

f�ðzÞ; (38)

with

f�ðzÞ ¼ 1

�

�
fGðzÞ � z

�
f0GðzÞ

�
: (39)

For H ! 0 at fixed t > 0, that is for z ! 1, the leading
asymptotic term of f� is determined by Eq. (16)

f�ðzÞ ¼
z!1CþDcB

��1z�� ¼ R�z
��; (40)

where R� is a universal amplitude product. For z ! 1 the

leading terms of fG and f� are identical, because for

T > Tc and small magnetic field M / H. The rest of our
observables are related to ffðzÞ and fGðzÞ as follows:

�s ¼ �T2

T0

H0h
ð1��Þ=�f0fðzÞ; (41)

Cs � 2

T
�s ¼ �

�
T

T0

�
2
H0h

��=�f00f ðzÞ; (42)

�t ¼ �T2

T0

hð��1Þ=�f0GðzÞ: (43)

III. EXPANSIONS OF THE SCALING FUNCTIONS

In principle we have to parametrize only one scaling
function, either ffðzÞ or fGðzÞ, because they are related by

the differential equation (37). We choose as usual fGðzÞ,
because it is directly calculable from the magnetization
data. Our representation of the scaling function is com-
posed of three expansions: one around z ¼ 0 and two for
z ! �1. In the following we derive relations between the
expansion coefficients of ffðzÞ and fGðzÞ. We start with the

expansions for small z

ffðzÞ ¼
X1
n¼0

anz
n; fGðzÞ ¼

X1
n¼0

bnz
n: (44)

From Eq. (37) we obtain

bn ¼
�
�
�
1þ 1

�

�
þ n

�

�
an; or an ¼ �bn

�þ n� 2
:

(45)

The last equation connects the derivatives of the two scal-
ing functions at z ¼ 0

fðnÞf ð0Þ ¼ �

�þ n� 2
� fðnÞG ð0Þ; (46)

and because of the first of the normalization conditions,
Eq. (35)

fGð0Þ ¼ b0 � 1; and ffð0Þ ¼ a0 ¼ �

�� 2
: (47)

Next we consider the asymptotic expansion in the high
temperature region, that is for z ! 1, or for t > 0 and

h ! 0. Since M is an odd function of H for t > 0
(Griffiths’s condition), we must have

fGðzÞ ¼ z�� � X
1

n¼0

dþn z�2n�: (48)

The prefactor is the leading term of fG and dþ0 ¼ R� (see

Eq. (40) and the remark after it). The corresponding ansatz
for ffðzÞ is

ffðzÞ ¼ z2�� � X
1

n¼0

cþn z�2n�: (49)

Using again Eq. (37) we are led to the relation

cþnþ1 ¼
�dþn

2ðnþ 1Þ ; with cþ1 ¼ �R�

2
; (50)

however, the coefficient cþ0 is not specified by the last

equation.
In the low temperature region, for t < 0 and h ! 0,

that is for z ! �1, massless Goldstone modes appear.
They lead to a divergence of the transverse susceptibility
�T �H�1. In addition also the longitudinal susceptibility
�L is diverging on the coexistence curve. Here, the pre-
dicted divergence in three dimensions is [23–25]

�LðT < Tc;HÞ �H�1=2: (51)

This is equivalent to a dependence of the magnetization on

H1=2 near the coexistence curve [8]. Therefore we make the
following ansatz for fGðzÞ in this region:

fGðzÞ ¼ ð�zÞ� � X
1

n¼0

d�n ð�zÞ�n�=2; (52)

where due to the second normalization condition in
Eq. (35), d�0 ¼ 1. The corresponding ansatz for ffðzÞ is

ffðzÞ ¼ ð�zÞ2�� � X
1

n¼0

c�n ð�zÞ�n�=2: (53)

Inserting the two expansions into the differential Eq. (37)
we find

c�nþ2 ¼ � 2d�n
nþ 2

: (54)

As in the high temperature phase the coefficient of the
leading term, c�0 , is not fixed, moreover c�1 � 0, and c�2 ¼
�1. In order to completely solve Eq. (37) for ffðzÞ we still
have to find the coefficients c�0 . Since �< 0 for the Oð4Þ
model we may proceed in the following way. First we
consider the small z-expansions for z > 0

X1
n¼3

anz
n ¼ �

X1
n¼3

bnz
n

�þ n� 2

¼ �z2��
Z z

0
dyy��3

X1
n¼3

bny
n (55)
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¼ �z2��
Z z

0
dyy��3½fGðyÞ � 1� b1y� b2y

2� (56)

¼ ffðzÞ � a0 � a1z� a2z
2: (57)

That enables us to calculate cþ0
cþ0 ¼ lim

z!1ffðzÞz
��2

¼ �
Z 1

0
dyy��3½fGðyÞ � 1� b1y� b2y

2�; (58)

or, by partial integration

cþ0 ¼ �

2� �

Z 1

0
dyy��2½f0GðyÞ � f0Gð0Þ � yf00Gð0Þ�: (59)

In the same manner we can calculate c�0 from an integral

over negative z by starting from

ffðzÞ ¼ a0 þ a1zþ a2z
2 þ �ð�zÞ2��

Z 0

z
dyð�yÞ��3

� ½fGðyÞ � 1� b1y� b2y
2�; (60)

and taking the limit z ! �1
c�0 ¼ lim

z!�1ffðzÞð�zÞ��2

¼ �
Z 0

�1
dyð�yÞ��3½fGðyÞ � 1� b1y� b2y

2�; (61)

or

c�0 ¼ ��

2� �

Z 0

�1
dyð�yÞ��2½f0GðyÞ � f0Gð0Þ � yf00Gð0Þ�:

(62)

The function ffðzÞ is universal as a whole and so are each

of its expansion coefficients, that is cþ0 and c�0 are univer-

sal. In fact, it can be shown, that these coefficients are the
universal products of critical amplitudes

c�0 ¼ f�s ðBcÞ�B�ð1þ�Þ; (63)

where

f�s ¼ A�

��ð1� �Þð2� �Þ ; (64)

are the critical amplitudes of the free energy density for
H ¼ 0 and t � 0

f ¼ fnsðTÞ þ f�s jtj2��: (65)

Because of Eqs. (63) and (64) we can now calculate the
universal ratio

Aþ

A� ¼ cþ0
c�0

(66)

from the two integrals in Eqs. (59) and (62). A similar
formula is known for the magnetic equation of state in the
Widom-Griffiths form [26]. It was, for example, used
to determine the ratio Aþ=A� in the case of the Oð2Þ
model [27].

IV. THE PARAMETRIZATIONS

The data we use in the following to parametrize the
scaling functions were all obtained from simulations de-
scribed in detail in Ref. [21]. We repeat here only the main
features of these simulations. They were performed on
three-dimensional lattices with periodic boundary condi-
tions and linear extension L ¼ 120. The coupling constant
region which was explored is 0:90 � J � 1:2, the mag-
netic field was varied from H ¼ 0:0001 to H ¼ 0:007. In
general 100 000 measurements were done at each fixed H
and J. We have reevaluated the raw data to obtain the
magnetization, the longitudinal and the thermal suscepti-
bilities, the energy density and the specific heat. Because of
the large spatial volume of the lattice, most of the finite size
effects have disappeared from the data. This is, in particu-
lar, true for the energy density and the magnetization, to a
smaller extent also for the susceptibilities and the specific
heat. We shall discuss the remaining effects when the
scaling of the respective observables is analyzed. A further
source of difficulties is, at larger jtj and H-values, the
possible appearance of corrections to scaling because of
the influence of irrelevant scaling fields. These violations
of scaling should be visible in the scaling plots for the data.
However, as we shall show below, we find perfect scaling
properties without any sign of these corrections to scaling
for our values of t and H for the energy density and the
magnetization. This not the case for the corresponding
nonlinear Oð2Þ model, see e.g. Fig. 5 of Ref. [28], where
strong scaling violations were found for T < Tc. An ex-
planation for this striking difference can be inferred from
two papers, by Hasenbusch and Török [29] for N ¼ 2 and
by Hasenbusch [30] for N ¼ 4. In these papers the leading
corrections to scaling could be eliminated by using instead
of the nonlinear OðNÞ invariant models the corresponding
OðNÞ symmetric �4 models and the tuning of the addi-
tional parameter 
. It turned out that the optimal parameter
value is 2.1 for N ¼ 2 and 12.5(4.0) for N ¼ 4. The non-
linear case corresponds to 
 ¼ 1. One expects therefore to
find significantly weaker corrections forN ¼ 4 as compared
to N ¼ 2. The remarkable lack of scaling corrections had
already been noted in Ref. [8], where for the first time the
critical exponents for the 3d Oð4Þ model were determined
from magnetization data at finite external fields. Later, in
Ref. [10], the result for the exponent � could be improved
with better data and fits where correction-to-scaling terms
had been taken into account. Yet, these terms were contrib-
uting at best marginally and could as well be neglected.
In order to define our variables t, �t, h and z we use the

same critical amplitudes, temperature and exponent values
as in Refs. [10,21]. These are

Jc ¼ T�1
c ¼ 0:93590; T0 ¼ 1:093; H0 ¼ 4:845;

(67)

� ¼ 0:380; � ¼ 4:824; � ¼ 1:83312; (68)
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and from the hyperscaling relations

� ¼ �0:2131; 	 ¼ 0:7377; � ¼ 1:4531: (69)

We have compared the exponents from Eqs. (68) and (69)
to the field-theory results of Guida and Zinn-Justin [31],
displayed in their Table 3. Apart from the value for
� ¼ 4:824ð9Þ (from [10]) which corresponds to the value
� ¼ 0:0302ð16Þ via the hyperscaling relation � ¼
ð5� �Þ=ð1þ �Þ our numbers are always close to the re-
spective central values of Guida and Zinn-Justin and they
are always inside their error bars.

We proceed in the following way. First we calculate
fGðzÞ from the magnetization data and fit the large z parts
to the asymptotic expansions. The small z region is more
intricate, because the derivative �f0GðzÞ has a peak for

z > 0, which determines the pseudocritical line. In order
to model the corresponding variation properly we fit di-
rectly the derivative for small z. It can be obtained either
from the data for �t, Eq. (43), or from �L and M, using
Eqs. (33), (38), and (39). After completion of the parame-
trization of fGðzÞ we compute the leading asymptotic co-
efficients c�0 of ffðzÞ. The scaling function of the free

energy density is then also entirely known. In the next
step we determine the nonsingular contributions to the
energy density and the specific heat, first at Tc and then
at all our T-values. We show that the results for �ns shape a
smooth function of T, where Tc is not a distinguished point.
With this function �nsðTÞ it is then possible to compare the
scaling functions to the data for the energy density and
specific heat.

In Fig. 1 we show the data obtained from the magneti-
zation for the scaling function fGðzÞ and our parametriza-
tions. Obviously the data scale very well, apart from the
data for H ¼ 0:0001 and z < 0, which show some finite
size effect (in the figure at z ¼ �1:534 and �5:219). We
have fitted fG in the asymptotic regions with the first three
terms of the respective expansions from Eqs. (48) and (52).
For the positive z-range [1.5, 15] we found the coefficients

dþ0 ¼ 1:10599� 0:00555;

dþ1 ¼ �1:31829� 0:1087; dþ2 ¼ 1:5884� 0:4646:

(70)

In the negative z-range [� 10, �1] we discarded the data
with H ¼ 0:0001 and obtained

d�0 � 1; d�1 ¼ 0:273651� 0:002933;

d�2 ¼ 0:0036058� 0:004875:
(71)

Since dþ0 ¼ R� we have a new value for this quantity,

which is compatible with the old values R� ¼ 1:084ð18Þ
from Ref. [10] and R� ¼ 1:12ð11Þ from Ref. [9] but some-

what more accurate. Astonishingly, the asymptotic expan-
sions describe the function fGðzÞ very well down to rather
small jzj-values, and as can be seen in Fig. 1 they overlap

with our approximation to the Taylor expansion at z ¼ 0.
As mentioned already, we use the derivative �f0GðzÞ to

determine the coefficients of the Taylor expansion. In
Fig. 2 we show the data which we obtained from �t (filled
circles) and �L and M (crosses) for the derivative.
Obviously, the data involving �L suffer from large finite
size effects in the whole low temperature region (z < 0) for
already moderately small H-values. This behavior is
known and a consequence of Eq. (51), the divergence of
�L near the coexistence line. In contrast to that, the data
from �t show a consistent scaling behavior for z < 0 (apart
from the H ¼ 0:0001 point for J ¼ 0:94 at z ¼ �1:534).
For z > 0 but close to the critical point we find still larger
finite size effects for the �L-data as compared to the ones

FIG. 1 (color online). The scaling function fG ¼ Mh�1=� as a
function of z ¼ �th�1=�. The dashed lines show the asymptotic
expansions, the solid line the Taylor expansion at z ¼ 0. The
numbers refer to the different J ¼ 1=T-values of the data.

FIG. 2 (color online). The derivative �f0GðzÞ as a function of
z ¼ �th�1=�. The filled circles denote the data calculated from �t,
the crosses the data obtained from �L and M. The dashed lines
show the asymptotic expansions, the solid line the Taylor ex-
pansion around z ¼ 0.
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for the �t-data, because of the stronger divergence of �L on
the critical line. At larger positive z-values beyond the peak
region we observe however, that the �t-data are systemati-
cally smaller than the �L-data. The reason for this lies in
the cluster update [32] which was used to produce the data.
That update diminishes very efficiently the autocorrelation
time for the order parameter, but is less efficient for the
energy density. For increasing temperature and/or decreas-
ing H the cluster size drops and if the number of cluster
updates is not correspondingly increased the autocorrela-
tion times for the energy density data increase faster than
those for the magnetization data. An increasing decorrela-
tion of � and M takes then place with increasing z, that is
the �t-data become too small. In view of all these consid-
erations we use in our Taylor fits only �t-data for z < 1:3
and in the z-interval [1.3, 2] both types of data.

From our data at Tc we have calculated an additional
data point at z ¼ 0, denoted by a star in Fig. 2. To this end
we have used Eq. (43) at Tc

� f0Gð0Þ ¼
T0

T2
c

h�ð��1Þ=��tðTcÞ: (72)

The corresponding data are shown in Fig. 3. At smallH we
have again finite size effects, at large H corrections to
scaling set in. A fit to the remaining data points leads to
the result�f0Gð0Þ ¼ 0:3173ð5Þ. We have approximated the

Taylor series with polynomials. Instead of using a single
very high order polynomial, we started with two fits to
sixth-order polynomials, that is for f0GðzÞ with the ansatz

f0GðzÞ ¼ b1 þ 2b2zþ 3b3z
2 þ 4b4z

3 þ 5b5z
4 þ 6b6z

5;

(73)

in the overlapping z-intervals [� 2:5, 0.75] and [� 0:75,
2]. The lowest coefficients of the two polynomials should,
at the end of the process, coincide to generate a smooth
parametrization close to z ¼ 0. In the second step we took
therefore the arithmetic averages of the results of the two
fits for b1 and b2, fixed them and repeated the two fits to
determine the remaining coefficients. In step three b3 was

fixed by averaging the corresponding means of the first and
the second step. The last fits were performed with fixed b1,
b2 and b3 in the intervals [� 2:5, 0.75] and [� 0:5, 2],
including some points from the fits to the asymptotic
regions. Our final result is

b0 � 1; b1 ¼ �0:3166125� 0:000534; (74)

b2 ¼ �0:04112553� 0:001290;

b3 ¼ 0:00384019� 0:000667:
(75)

The remaining coefficients are different for z < 0 and
z > 0. We find for z > 0

bþ4 ¼ 0:006705475� 0:001704;

bþ5 ¼ 0:0047342� 0:001429;
(76)

bþ6 ¼ �0:001931267� 0:000312; (77)

and for z < 0
b�4 ¼ 0:007100450� 0:000160;

b�5 ¼ 0:0023729� 0:000095;
(78)

b�6 ¼ 0:000272312� 0:000021: (79)

We note that b�4 and bþ4 still coincide inside their error
bars. In Fig. 2 we have plotted the respective approxima-
tions to �f0GðzÞ in the z-ranges [� 2:5, 0] and [0, 2.5].

Obviously, there is a large range for z < 0 and a shorter
range for z > 0 where the approximations overlap and
coincide with the respective asymptotic expansions. In
the rest of the paper we use therefore the Taylor expansions
in the z-range [� 2, 1.95] and outside the asymptotic
expressions.
It is now straightforward to calculate the coefficients of

the leading asymptotic terms of ffðzÞ from Eqs. (59) and

(62). We find

cþ0 ¼ 0:422059886� 0:010595;

c�0 ¼ 0:229176194� 0:010669:
(80)

The errors of c�0 have been determined using the complete

correlation matrix of the contributing parameters. The
main contributions to c�0 are coming from the two terms

proportional to b1 and b2. The second, larger term is the
same for both coefficients, the first only changes the sign,
that is for cþ0 we have the sum, for c�0 the difference of

these terms and as a consequence the c�0 are strongly

correlated. That allows us to estimate the correlation be-
tween cþ0 and c�0 to Cþ� ¼ ��2

1 þ �2
2, where the �1;2 are

the errors of the two terms. From Eqs. (66) and (80) we
obtain then the universal ratio

Aþ

A� ¼ 1:842� 0:043: (81)

Our value for the ratio is in agreement with the final
estimates found in Refs. [9], 1.91(10), and [11], 1.8(2).

FIG. 3 (color online). The quantity�f0Gð0Þ as a function of the
magnetic field H. The filled data points were used for the fit, the
solid line shows the fit result.
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We note however, that our error estimate does not include a
possible variation of the critical exponents used.

With the results from Eq. (80) we have completely
specified the parametrizations of fGðzÞ and of ffðzÞ. In
order to test the scaling function of the free energy density
and/or its temperature derivatives we still need the regular
contributions. Quite generally, the exponent � must be
always less than 1 for continuous transitions, because the
energy density at Tc is finite and there is no latent heat
(which would be possible for � ¼ 1). From Eqs. (17) and
(22) we know therefore that

�sðTc;H ¼ 0Þ ¼ 0; or �ðTc;H ¼ 0Þ ¼ �nsðTcÞ: (82)

We may then determine �nsðTcÞ from our data for the
energy density at Tc. In Fig. 4 we see that the data at T ¼
Tc fulfill the expected scaling law, Eq. (22) and (41)
accordingly

�sðTcÞ ¼ �T2
c

T0

H0h
ð1��Þ=�f0fð0Þ: (83)

Moreover, there is no sign of a finite size dependence at
small external fields. We have fitted the data directly with
Eq. (22) and find

�nsðTcÞ ¼ �0:991888ð13Þ; Ec ¼ �0:8500ð06Þ;
f0fð0Þ ¼ 0:47723ð32Þ: (84)

Evidently we have a very precise result for the nonsingular
part of the energy density at Tc. The derivative f0fð0Þ can
also be calculated from b1 ¼ f0Gð0Þ and Eq. (46). That

leads to f0fð0Þ ¼ 0:47843ð81Þ and is consistent with the

previous result.
For positive � the specific heat is diverging and it is

therefore unclear how to determine the regular term
CnsðTcÞ. If however � is negative, then Cs � 2�s=T disap-
pears at Tc for h ¼ 0, because of Eq. (23), the finite regular
term remains and we can calculate CnsðTcÞ. Usually, the
specific heat has nevertheless a sharp peak at Tc andH ¼ 0,

which just means that the critical amplitudes are negative.
That sign is taken care of by the factors 1=� and 1=�c,
respectively, in our amplitude definitions, so thatA� andAc

are positive. In Fig. 5 we show our data for C� 2�=T at Tc

and the corresponding fit to Eqs. (23) and (42). We find�
Cns � 2�ns

T

�
ðTcÞ ¼ 6:2669ð195Þ; and

CnsðTcÞ ¼ 4:4103ð195Þ; (85)

Ac ¼ 0:32041ð468Þ; or f00f ð0Þ ¼ 0:7151ð104Þ; (86)

which is compatible to the value f00f ð0Þ ¼ 0:7075ð221Þ
calculated from b2.
In Fig. 6 we show the scaling function f0fðzÞ which is

obtained from our parametrization. We plot the asymptotic
expansions and the Taylor expansion separately and find
that they are overlapping in the same regions as for fGðzÞ,
that is our calculation of the c�0 is consistent. The data

which we also show have been calculated assuming that

�nsðTÞ ¼ �nsðTcÞ þ ðT � TcÞ � CnsðTcÞ; (87)

where the numbers are from our fits at T ¼ Tc. We note
here, that without the term proportional to CnsðTcÞ the data
would scale nowhere apart from the point z ¼ 0. In Fig. 6
we observe scaling for small jzj and coincidence with the
predicted scaling function, but not at larger values. The
reason for that is the assumption, Eq. (87), for the function
�nsðTÞ, which leads to inaccurate �ns-values for larger
jT � Tcj. We can test this and the scaling behavior at fixed
T and varying H at the same time. If we have scaling then
Eq. (41) must hold and

�nsðTÞ ¼ �ðT;HÞ þ T2 H0

T0

hð1��Þ=�f0fðzÞ; (88)

where the �ðT;HÞ are the energy density data at fixed T and
f0fðzÞ is the predicted scaling function. The test is success-

ful, if we obtain the same value �nsðTÞ for all H inside the

FIG. 4 (color online). The energy density at Tc (open circles)
as a function of hð1��Þ=�. The filled circle shows the extrapola-
tion to h ¼ 0, that is �nsðTcÞ, the points are connected by straight
lines.

FIG. 5 (color online). The quantity C� 2�=T at Tc (open
circles) as a function of h��=�. The filled circle shows the
extrapolation to h ¼ 0, the straight line the fit, Eq. (42).
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error bars. This is indeed the case. The errors of the
averages are tiny. They vary for T � Tc between 6�
10�6 and 1:4� 10�5, and in the hot phase they increase
to 3:5� 10�5. In Fig. 7 we compare the found values
for �nsðTÞ with the approximation from Eq. (87), where
we have used our previously calculated numbers from
Eqs. (84) and (85). Though the differences in Fig. 7 do
not seem to be large, they are the reason for the deviation of
the data from the scaling function f0fðzÞ in Fig. 6. We have

fitted our results for �nsðTÞ with the Taylor expansion,
Eq. (14), up to the third derivative of �ns and find

�nsðTcÞ ¼ �0:991792ð28Þ; CnsðTcÞ ¼ 4:3910ð14Þ;
(89)

C0
nsðTcÞ ¼ 8:448ð108Þ; C00

nsðTcÞ ¼ 42:79� 5:13:

(90)

The new result for CnsðTcÞ is in agreement with the one we
obtained from our admittedly far extrapolation of C�
2�=T in h at Tc. We have used the results from the
Taylor expansion fit to approximate the functions �nsðTÞ
and CnsðTÞ in the calculation of the scaling functions f0f
and f00f from our data. As can be seen from Fig. 8 we find

now perfect scaling for the energy density, even for rela-
tively large jT � Tcj-values. In Fig. 9 we compare our
parametrization for f00f with the data. Since the specific

heat is proportional to the fluctuation of the energy density,
the data are not as precise as for f0f, especially for high

temperatures. Nevertheless we observe satisfactory scaling
and a further confirmation for our parametrization.
Finally we show in Fig. 10 the third derivative of the

scaling function ffðzÞ with respect to z. It controls the

FIG. 6 (color online). The scaling function f0fðzÞ as a function
of z ¼ �th�1=�. The dashed lines show the asymptotic expan-
sions, the solid line the polynomial approximations for small z.
The star at z ¼ 0 is the result from Eq. (84).

FIG. 7 (color online). The nonsingular part of the energy
density �nsðTÞ as a function of T � Tc (filled diamonds). The
dashed line shows the approximation from Eq. (87).

FIG. 8 (color online). The scaling function f0fðzÞ as a function
of z ¼ �th�1=�. The line shows our parametrization, the data have
been calculated using Eqs. (89) and (90).

FIG. 9 (color online). The scaling function f00f ðzÞ as a function
of z ¼ �th�1=�. The line shows our parametrization, the data have
been calculated using Eqs. (89) and (90), the star at z ¼ 0 is the
result from Eq. (86).
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singular behavior of the third derivative of the free energy
density with respect to temperature,

@3f

@T3
� @3fs

@T3
¼ H0

T3
0

h�ð1þ�Þ=�fð3Þf ðzÞ; (91)

and is the first thermal derivative of the free energy density
that diverges at Tc in the limit H ! 0. It thus allows a
discussion of critical behavior resulting from the structure
of the singular part of the free energy density without the
need of determining nonsingular contributions to the free
energy density. This property of the three-dimensional
Oð4Þ model has been exploited in the discussion of critical
behavior in the vicinity of the chiral phase transition of
2-flavor QCD [33,34].

V. SUMMARYAND CONCLUSIONS

In this paper we have investigated the scaling functions
of the three-dimensionalOð4Þmodel, which can be derived
from the singular part of the free energy density. In contrast
to other papers [8–12] where the scaling functions are
parametrized in the Widom-Griffiths form, we have chosen
a form which is preferred in tests of other models such as
QCD. Here the scaling variable z is independent of the
magnetization. These scaling functions can of course be
derived from those of the other type, however the explicit
functional dependence on z is of value. The major advan-
tages of our parametrization are

(1) derivatives with respect to the variable z can be
taken directly and not implicitly; the positions of
extrema are easily calculable.

(2) the parameters are determined from direct fits to the
data; one can immediately judge how well the data
are represented.

In order to carry out the parametrization we have used the
best presently available data set for finite magnetic fields

[21]. Furthermore, we have tackled the problem of the
scaling of the energy density and the specific heat in the
3d Oð4Þ model, to our knowledge for the first time at all,
and we were able to clarify the role of the nonsingular part
of the energy density for scaling. This is very important for
all corresponding checks of QCD with two light flavors
(see, for example, Ref. [18]). Our approach in some more
detail was the following:
We have parametrized the scaling function fGðzÞ of the

magnetization with asymptotic expansions for z ! �1
and Taylor expansions around z ¼ 0. The knowledge of
the expansion coefficients of fGðzÞ enabled us to derive the
corresponding coefficients for the scaling function ffðzÞ of
the singular part of the free energy density. In particular,
we could calculate the leading asymptotic coefficients c�0
of ffðzÞ and thereby determine the universal amplitude

ratio for the specific heat to Aþ=A� ¼ 1:842ð43Þ. In the
following we have tested our data for the energy density
and the specific heat with the respective scaling functions.
To this end we have determined the nonsingular parts of the
two observables at Tc. Whereas this is always possible for
the energy density, we could do that for the specific heat only,
because in the three-dimensionalOð4Þmodel the exponent�
is negative.With these resultswe found scaling for the energy
density in the neighborhood ofTc or small jzj but not outside.
As it turned out, we can achieve scaling for all our T or
J-values, ifwe use the correct values of �nsðTÞ. The latter can
be calculated fromour function f0fðzÞ if the data show scaling

in h. We found indeed perfect scaling in h and very accurate
�nsðTÞ-values. They form a smooth function of T in accord
with the results from Tc. As expected, Tc is not a distin-
guished point of this function. For other models the regular
parts of the energy density are of course different andmay be
not so easy calculable, if, for example, correction-to-scaling
terms spoil h-scaling. A test of the energy density and/or
specific heat on scaling may then be problematic.
As a last result of our parametrization we quote the peak

positions of scaling functions which are relevant for the
definition of pseudocritical lines. In all cases the peaks are
very flat and symmetric around the peak positions zp. We

found the value z0;2p ¼ 1:374ð30Þ for f�, in �f0G the value

z1;1p ¼ 0:74ð4Þ and for �f00f the value z2;0p ¼ �0:38ð8Þ. The
corresponding observables are �L, �t, and C� 2�=T, the
upper index of zp denotes the number of derivatives of

the free energy density with respect to T and H. Evidently,
the pseudocritical lines can be rather different. If, for ex-
ample, the peak position of �t is used to define the pseudo-
critical temperature, itwill be closer toTc as in the caseof�L.
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FIG. 10 (color online). The scaling function fð3Þf ðzÞ as a func-
tion of z ¼ �th�1=�. The line shows our parametrization.
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