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We investigate planar quantum electrodynamics with two degenerate staggered fermions in an external

magnetic field on the lattice. We argue that in external magnetic fields there is dynamical generation of

mass for two-dimensional massless Dirac fermions in the weak-coupling region. We extrapolate our

lattice results to the quantum Hall effect in graphene.
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I. INTRODUCTION

Quantum electrodynamics (QED) in 2þ 1 dimensions
is interesting as a model for several condensed matter
systems. In fact, quantum electrodynamics with two mass-
less Dirac fermions could be relevant to describe the low-
energy excitations of a single sheet of carbon atoms
arranged in a honeycomb structure called ‘‘graphene’’
[1,2]. When graphene is immersed in a transverse magnetic
field, the presence of Landau levels at zero energy leads to
the half-integer quantum Hall effect. Moreover, for very
strong magnetic fields there is experimental evidence for
the dynamical generation of a gap, which signals the
spontaneous breaking of the chiral symmetry. In fact, it
has been suggested that a magnetic field is a strong catalyst
of chiral symmetry breaking in spinorial QED [3,4] even at
the weakest attractive interaction between fermions.

The aim of the present paper is to investigate, by means
of nonperturbative Monte Carlo simulations, planar QED
with two degenerate staggered fermions in an external
magnetic field. To make contact with the physical planar
systems, we choose to work in the weak-coupling region.
A preliminary account of the results discussed in the
present paper has been published in Ref. [5].

The plan of the paper is as follows. In Sec. II, for
completeness, we briefly discuss our method to introduce
background fields on the lattice and compare with different
approaches in the literature. Section III is devoted to the
discussion of our lattice Euclidean action. In Sec. IV we

present the results of our numerical simulations for two
different values of the gauge coupling in the weak-coupling
region. In Sec. V we extrapolate our results to the physical
relevant case of the quantum Hall effect in graphene.
Finally, our conclusions are relegated in Sec. VI.

II. BACKGROUND FIELDS ON THE LATTICE

The study of lattice gauge theories with an external
background field has been pioneered in Refs. [6,7] for
the U(1) Higgs model in an external electromagnetic field.
In the continuum a background field can be introduced by
writing

A�ðxÞ ! A�ðxÞ þ Aext
� ðxÞ: (1)

In the lattice approach one deals with link variables U�ðxÞ.
Accordingly, on the lattice Eq. (1) becomes

U�ðxÞ ! U�ðxÞUext
� ðxÞ; (2)

where Uext
� ðxÞ is the lattice version of the background field

Aext
� ðxÞ. As a consequence the gauge action gets modified

as

SG½U� ! SG½U� þ �S½U;Uext�; (3)

where �S½U;Uext� takes into account the influence of the
external field [8–15]. An alternative method, which is
equivalent in the continuum limit, is based on the obser-
vation that an external background field can be introduced
via an external current [16–20]

Jext� ¼ @�F
ext
��: (4)

The gauge action gets modified in an obvious manner:

SG ! SG þ SB; (5)
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where

SB ¼
Z

dxJext� ðxÞA�ðxÞ ¼ � 1

2

Z
dxFext

��ðxÞF��ðxÞ: (6)

The background action SB can be now easily discretized on
the lattice.

The main disadvantage of this approach resides on the
fact that it cannot be extended to the case of non-Abelian
gauge group in a gauge-invariant way. To overcome this
problem, the background field on the lattice can be imple-
mented by means of the gauge-invariant lattice
Schrödinger functional [21,22]:

Z ½Uext
k � ¼

Z
DUe�SG; (7)

where the functional integration is extended over links on a
lattice with the hypertorus geometry and satisfying the
constraints (xt is the temporal coordinate)

UkðxÞjxt¼0 ¼ Uext
k ð ~xÞ: (8)

We also impose that links at the spatial boundaries are fixed
according to Eq. (8). In the continuum this last condition
amounts to the requirement that fluctuations over the back-
ground field vanish at infinity.

The effects of dynamical fermions can be accounted for
quite easily. In fact, when including dynamical fermions,
the lattice Schrödinger functional in presence of a static
external background gauge field becomes [23]

Z½Uext
k � ¼

Z
UkðLt; ~xÞ¼Ukð0; ~xÞ¼Uext

k
ð ~xÞ

DUDcD �c e�ðSGþSFÞ

¼
Z
UkðLt; ~xÞ¼Ukð0; ~xÞ¼Uext

k
ð ~xÞ

DUe�SG detM; (9)

where SF is the fermionic action and M is the fermionic
matrix. Notice that the fermionic fields are not con-
strained and the integration constraint is only relative to
the gauge fields. This leads to the appearance of the
gauge-invariant fermionic determinant after integration
on the fermionic fields. As usual we impose on fermionic
fields periodic boundary conditions in the spatial direc-
tions and antiperiodic boundary conditions in the tempo-
ral direction.

III. LATTICE PLANAR QED IN EXTERNAL
MAGNETIC FIELD

We are interested in planar quantum electrodynamics
withNf ¼ 2 degenerate Dirac fields in an external constant

magnetic field. As it is well known, Dirac fields are de-
scribed nonperturbatively by the lattice Euclidean action
using N flavors of staggered fermion fields ��, � [24]:

S ¼ SG þXN
i¼1

X
n;m

��iðnÞMn;m�iðmÞ; (10)

where SG is the gauge field action and the fermion matrix is
given by

Mn;m½U� ¼ X
�¼1;2;3

��ðnÞ
2

fU�ðnÞ�m;nþ�̂ �Uy
� ðmÞ�m;n��̂g

þm0�m;n;

��ðnÞ ¼ ð�1Þn1þ...þn��1 ; (11)

where m0 is the bare fermion mass. Here we adopt the
compact formulation for the electromagnetic field (for a
detailed account see Ref. [25]). The gauge action is

SG½U� ¼ �
X

n;�<�

�
1� 1

2
ðU��ðnÞ þUy

��ðnÞÞ
�
; (12)

where U��ðnÞ is the plaquette and � ¼ 1
e2
. The action

Eq. (10) with N ¼ 1 flavors of staggered fermions corre-
sponds to Nf ¼ 2 flavors of 4-component Dirac fermions

� [26].
To introduce an external magnetic field, we shall follow

the lattice Schrödinger functional described in Sec. III (for
a different approach see Ref. [27]). Accordingly, in the
functional integration over the lattice links we constrain
the spatial links belonging to the time slice xt ¼ 0 to

Ukð ~x; xt ¼ 0Þ ¼ Uext
k ð ~xÞ; k ¼ 1; 2; (13)

Uext
k ð ~xÞ being the lattice version of the external continuum

gauge potential. Since our background field does not van-
ish at infinity, we must also impose that, for each time slice
xt � 0, spatial links exiting from sites belonging to the
spatial boundaries are fixed according to Eq. (13).
The continuum gauge potential giving rise to a constant

magnetic field is given by

Aext
k ð ~xÞ ¼ �k;2x1H; (14)

so that

Uext
1 ð ~xÞ ¼ 1; Uext

2 ð ~xÞ ¼ cosðeHx1Þ þ i sinðeHx1Þ:
(15)

Since our lattice has the topology of a torus, the magnetic
field turns out to be quantized:

eH ¼ 2�

L
next; next integer; (16)

where L is the lattice size. We recall once more that the
fermion fields are unconstrained and satisfy antiperiodic
boundary conditions in the timelike direction and periodic
boundary conditions in the spatial directions.
Our numerical results were obtained by simulating

the action Eq. (10) on L3 lattice using standard hybrid
Monte Carlo algorithm.

IV. CHIRAL SYMMETRY BREAKING

We are looking for the dynamical generation of a gap for
massless fermions. This corresponds to a nonzero chiral
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condensate h ���i in the chiral limit. Our strategy is to
measure the fermion condensate with a small bare fermion
mass m0 and then perform the massless limit m0 ! 0 in
presence of a constant external magnetic field. Our simu-
lations have been performed in the weak-coupling region
with two different values of the gauge coupling � ¼ 2:0
and � ¼ 2:5. In fact, in the weak-coupling region we
expect that the effects of the Coulomb interactions could
be neglected allowing to extrapolate our numerical results
to physical planar systems.

We have performed simulations on lattices with L ¼ 16,
24 and 0:005 < m0 < 0:03 with different strengths of the
external magnetic field labeled by the integer next accord-
ing to Eq. (16). For each parameter set, to allow thermal-
ization we discard 10 000 sweeps for L ¼ 16 and 7000
sweeps for L ¼ 24. We collect about 50 000 hybrid
Monte Carlo trajectories. To optimize the performance of
the hybrid Monte Carlo algorithm, we tuned the simulation
parameters to give an acceptance of about 80%. The chiral

condensate h ���i was estimated by the stochastic source
method. In order to reduce autocorrelation effects, mea-
surements were taken every 10 steps for L ¼ 16 and every
5 steps for L ¼ 24. Data were analyzed by the jackknife
method combined with binning.

In Fig. 1 we display the chiral condensate for different
values of the lattice size, bare fermion mass, and mag-
netic field strength for � ¼ 2:0. Note that, according to
Eq. (16), the strength of the external magnetic field
depends on next as well on the lattice size L. To avoid
lattice discretization and finite volume effects, we have
fixed the magnetic field strength such that the magnetic
length satisfies the bounds

1 �
ffiffiffiffiffiffiffi
2�

eH

s
� L: (17)

We expect that in the continuum limit the relevant scale
is set by the magnetic length. This means that the

rescaled chiral condensate h ���i
eH
2�

would depend only on

the scaling variable x � m0ffiffiffiffi
eH
2�

p . Actually, from Fig. 1,

where we display the rescaled chiral condensate versus
the dimensionless scaling variable x, we see that in the
region x * 0:05 data are rather scattered. However, in
the region x & 0:05 our data seem to collapse to an
universal curve. This means that in this region, that we
shall call the scaling region, the rescaled chiral conden-
sate depends only on the scaling variable x. This allows
us to extract the chiral condensate in the chiral limit
m0 ! 0, which corresponds to x ! 0, for a fixed strength
on the external magnetic field. In fact, we try to fit the
data in the scaling region 0< x & 0:045 according to

h ���i
eH
2�

¼ a0 þ a1x; x ¼ m0ffiffiffiffiffi
eH
2�

q : (18)

The best fit of the data to Eq. (18) in the scaling region
gives

a0 ¼ 0:043 99� 0:001 31; a1 ¼ 9:759� 0:055;

�2
d:o:f: ’ 747: (19)

We note, however, that there are sizable violations of our
scaling law as implied by the huge reduced chi-square.
We believe that these scaling violations are mainly due
to the fermion interactions with the electromagnetic field,
which could introduce a spurious dependence of the
scaled chiral condensate on the dimensionless ratio
e2ffiffiffiffi
eH
2�

p . To check this point, we have performed numerical

simulations by increasing the gauge coupling � (which
corresponds to a smaller e2). In fact, in Fig. 2 we display
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FIG. 1. Scaled chiral condensate versus the scaling variable
x ¼ m0ffiffiffiffiffiffiffiffiffiffiffi

eH=2�
p for � ¼ 2:0. The continuum line is the linear fit of

the data Eqs. (18) and (19) in the scaling region 0< x & 0:045.
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FIG. 2. Scaled chiral condensate versus the scaling variable
x ¼ m0ffiffiffiffiffiffiffiffiffiffiffi

eH=2�
p for � ¼ 2:5. The continuum line is the linear fit of

the data Eqs. (18) and (19) in the scaling region 0< x & 0:045.
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the results of our simulations for � ¼ 2:5. Again we see
that the data for the rescaled chiral condensate seem to
collapse to a universal curve in the scaling region x &
0:05. Moreover, comparing Fig. 2 with Fig. 1 it is
evident that the scaling violation are greatly reduced
allowing a better extrapolation to the chiral limit.
Fitting the data to Eq. (18) we find

a0 ¼ 0:035 44� 0:000 84; a1 ¼ 8:382� 0:032;

�2
d:o:f: ’ 466: (20)

Even though the reduced chi-square is quite large, we
believe that our results are robust enough to allow the
extrapolation of the chiral condensate to the chiral limit.
As a consequence, we conclude that in the chiral limit
the external magnetic field does induce a nonzero chiral
condensate. From Eqs. (18) and (20) we find for the
chiral condensate in the massless limit

h ���i ¼ eH

2�
ð0:035 44� 0:000 84Þ: (21)

The nonzero value of the chiral condensate can be in-
terpreted as the generation of a dynamical fermion mass
which, in principle, can be extracted from the nonzero
chiral condensate in the chiral limit.

In the determination of the value of the chiral conden-
sate, as given in Eq. (21), we neglected a possible contri-
bution present even in absence of the magnetic field.
Indeed, in Ref. [28] it was shown that the chiral condensate
is nonzero in the weak-coupling regime of compact planar
QED even at zero external magnetic field. In order to check
the possible impact of this zero-field contribution on our
determination of the chiral condensate, we observe that

in Ref. [25] two of us found �2h ���i � 1:5� 10�3 for
H ¼ 0 on a lattice with L ¼ 12. This result implies, for

� ¼ 2:5, that h ���i ¼ 0:000 24, in lattice units. In this
work the smallest value of the chiral condensate induced
by an external magnetic field is obtained for next ¼ 1 and
L ¼ 16, which implies eH=ð2�Þ ¼ 0:0625 and therefore,

through Eq. (21), h ���i ¼ 0:002 215. The latter value is 1
order of magnitude bigger than the former and cannot be
attributed to finite size effects, in consideration of the
similar lattice sizes adopted in the two determinations.
This allows us to safely neglect the zero-field contribution
to the chiral condensate.

V. EXTRAPOLATION TO GRAPHENE

In this Section we attempt to apply our numerical deter-
mination of the chiral condensate in the chiral limit to
graphene immersed in a transverse magnetic field. For
the reader’s convenience, we briefly discuss the remarkable
quantum Hall effect in graphene.

As is well known, graphene is a flat monolayer of carbon
atoms tightly packed in a two-dimensional honeycomb
lattice consisting of two interpenetrating triangular sublat-

tices (for a review, see Ref. [29]). Indeed, the structure of
graphene has attracted considerable attention since the
low-energy excitations are given by two Pauli spinors
�� which satisfy the massless two-dimensional Dirac
equation with the speed of light replaced by the Fermi
velocity vF ’ 1:0� 108 cm=s. The Pauli spinors can be
combined into a single Dirac spinor

� ¼ �þ
��

 !
:

Taking into account the real spin degeneracy, we see that
the low-energy dynamics of graphene can be accounted for
by Nf ¼ 2 massless Dirac fields [30,31].

When graphene is immersed in a transverse magnetic
field, the relativistic massless dispersion of the electronic
wave functions results in nonequidistant Landau levels
[32]:

"n ¼ signðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jnj"v

2
F

c
eH

s
; n ¼ 0;�1;�2 . . . ; (22)

where eH > 0, e being the elementary charge (see Fig. 3,
left). The presence of anomalous Landau levels at zero
energy, "0 ¼ 0, leads to the half-integer quantum Hall
effect corresponding to the quantized filling factor � ¼
�2;�6;�10 . . . .
Recent studies of the quantum Hall effect in graphene in

very strong magnetic field H * 20T (1T ¼ 104 gauss)
have revealed new quantum Hall states corresponding to
filling factor � ¼ 0;�1;�4 [33,34]. The new plateaus at
� ¼ 0;�4 can be explained by Zeeman spin splitting. On
the other hand, the � ¼ �1 plateaus are associated with
the spontaneous breaking of the symmetry in the n ¼ 0
Landau levels (the so-called valley symmetry). Indeed,
these states are naturally explained if there is dynamical
generation of a gap �0 (see Fig. 3, right).
The gap �0 can be extracted from the measured activa-

tion energy. In fact, in Fig. 4 we display the measured
activation energy gap �Eð� ¼ 1Þ as a function of the
magnetic field for the � ¼ 1 quantum Hall states [34]. To

ε
F

n=0
-1
-2
-3

n=0

1
2
3

-1
-2
-3

n=0
1
2
3

Ψ-
Ψ+

Ψ- Ψ+

∆0
-∆0

FIG. 3. Schematic spectrum of Landau levels of graphene in
applied magnetic field (left). Landau levels with dynamical
generation of a gap �0 (right). The Fermi level is at "F ¼ 0.
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extract �0 from the activation energy data, we need to
take care of the Zeeman energy which for strong magnetic
fields is no more negligible. To this end, we may fit the
data to

�Eð� ¼ 1Þ ¼ 2

�
�0ðHÞ þ g

2
�BH

�
; (23)

where �B is the Bohr magneton, g ¼ 2 and �0ðHÞ � ffiffiffiffiffi
H

p
[34]. Figure 4 shows that, indeed, our Eq. (23) gives an
excellent fit to the data. We find

�0ðHÞ ¼ ð13:57� 0:28Þ K kB
ffiffiffiffiffiffiffiffiffiffiffi
HðTÞ

p
; (24)

where HðTÞ means that the magnetic field is measured in
Tesla.

Our strategy is, now, to relate the gap �0 to the chiral
condensate. After that, using our determination of the
chiral condensate on the lattice, we will estimate the
gap and compare with the experimental determination
Eq. (24).

To this purpose we follow Ref. [35], where the hypo-
thesis of rearrangement of the Dirac sea of graphene in
an external magnetic field was used and the electron-
electron Coulomb interactions were neglected. Note that
in graphene the electron-electron Coulomb interaction,
e2=r, in general is not small, so that this approxi-
mation could be questionable. A direct calculation gives
[35]

h ���i ¼ �2�0

"ceH

2�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2"

v2
F

c eH
q �ð12Þffiffiffiffi

�
p �

�
1

2
; 1þ 	2

�
;

	 ¼ �0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2"

v2
F

c eH
q ;

(25)

where �ðxÞ is the Euler gamma function and �ðx; yÞ is
the generalized Riemann Zeta function. For small gap,
we may expand to the first order in �0. Using �ð12Þ ¼

ffiffiffiffi
�

p
and �ðx; 1Þ ¼ �ðxÞ, we get

h ���i
"ceH
2�

’ �2�0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2"

v2
F

c eH
q �

�
1

2

�
: (26)

This last equation relates the gap �0 to the rescaled
dimensionless chiral condensate. Using our determina-
tion on the lattice for the rescaled chiral condensate, we
obtain

�0 ’ �
ffiffiffiffi
�

p
�ð12Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"

v2
F

c eH

2�

vuut
a0; (27)

where a0 is given in Eq. (20). Finally, with the experi-
mental value for the Fermi velocity we get

�0ðHÞ ’ 2:6 K kB
ffiffiffiffiffiffiffiffiffiffiffi
HðTÞp

: (28)

Comparing Eq. (28) with Eq. (24), we see that our
estimate of the gap is about a factor five smaller than
the experimental data. However, it is remarkable that we
are able to reproduce the dependence on the external

magnetic field �0 �
ffiffiffiffiffi
H

p
.

VI. CONCLUSIONS

We investigated planar quantum electrodynamics with
two degenerate staggered fermions in an external magnetic
field on the lattice. Our numerical results seem to indicate
that in an external magnetic field there is a nonzero chiral
condensate in the chiral limit pointing to a dynamical
generation of mass for two-dimensional massless Dirac
fermions.
We performed our simulations in the weak-coupling

regime of the compact formulation of the lattice gauge
action. As discussed in Ref. [28], the noncompact formu-
lation of the theory could have a different continuum limit
than the compact one, the signature of this being the
different magnetic monopole dynamics, which in compact
QED leads to an enhanced chiral condensate. As a matter
of fact, in the compact theory the chiral condensate is
nonzero in the strong-coupling regime and undergoes a
crossover to a nonzero value in the weak-coupling regime,
while in the weak-coupling regime of the noncompact
theory it is compatible with zero. Although we believe
that the numerical impact of this possible different behav-
ior in the continuum should be negligible to our purposes,
we plan to explicitly check this point by performing
numerical simulations with the noncompact lattice gauge
action. This will also permit us to make a comparison with
the results of Ref. [27], where a different approach was
adopted to introduce the background magnetic field on the
lattice.

0 10 20 30 40 50
H(T)

0

25

50

75

100

125
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175

200

∆E
(ν

=1
)/

k B
(0 K

)

FIG. 4. The measured activation energy gap �Eð� ¼ 1Þ as a
function of magnetic field for the quantum Hall states at filling
factor � ¼ 1. The data have been extracted from Fig. 2 of
Ref. [34]. The continuum line is the best fit of the experimental
data to Eq. (23).
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We also tried to extrapolate our lattice results to the
quantum Hall effect in graphene, since the low-energy
dynamics of graphene is described by Nf ¼ 2 massless

Dirac fermions. Our nonperturbative Monte Carlo simu-
lations allowed to confirm the dynamical breaking of the
valley symmetry in the lowest Landau levels. Moreover,
even though we greatly underestimate the dynamical
gap, we were able to reproduce the dependence of the

dynamical gap on the strength of the external magnetic
field.

ACKNOWLEDGMENTS

We acknowledge the use of the computer facilities of the
INFN Bari Computer Center for Science.

[1] K. S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang,
Y. Zhang, S. V. Dubonos, and A. Firsov, Science 306, 666
(2004).

[2] K. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V.V.
Khotkevich, S. V. Morozov, and A.K. Geim, Proc. Natl.
Acad. Sci. U.S.A. 102, 10451 (2005).

[3] V. Gusynin, V. Miransky, and I. Shovkovy, Phys. Rev. Lett.
73, 3499 (1994).

[4] V. Gusynin, V. Miransky, and I. Shovkovy, Phys. Rev. D
52, 4718 (1995).

[5] P. Cea, L. Cosmai, P. Giudice, and A. Papa, Proc. Sci.,
LATTICE2011 (2011) 307.

[6] P. H. Damgaard and U.M. Heller, Phys. Rev. Lett. 60,
1246 (1988).

[7] P. H. Damgaard and U.M. Heller, Nucl. Phys. B309, 625
(1988).

[8] J. Smit and J. C. Vink, Nucl. Phys. B286, 485 (1987).
[9] J. Ambjorn, V. Mitrjushkin, V. Bornyakov, and A.

Zadorozhnyi, Phys. Lett. B 225, 153 (1989).
[10] J. Ambjorn, V. Mitrjushkin, and A. Zadorozhnyi, Phys.

Lett. B 245, 575 (1990).
[11] K. Kajantie, M. Laine, J. Peisa, K. Rummukainen, and

M. E. Shaposhnikov, Nucl. Phys. B544, 357 (1999).
[12] P. Buividovich, M. Chernodub, E. Luschevskaya, and

M. Polikarpov, Phys. Rev. D 80, 054503 (2009).
[13] M. D’Elia, S. Mukherjee, and F. Sanfilippo, Phys. Rev. D

82, 051501 (2010).
[14] G. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. Katz
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