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We calculate the masses of taste non-Goldstone pions and kaons in staggered chiral perturbation theory
through next-to-leading order in the standard power counting. The results can be used to quantitatively
understand taste violations in existing lattice data generated with staggered fermions and to extract the u,
d, and s quark masses and Gasser-Leutwyler parameters from the experimentally observed spectrum. The
expressions for the non-Goldstone masses contain low-energy couplings unique to the non-Goldstone
sector. With two exceptions these enter as coefficients of analytic terms; all the new couplings can be fixed
by performing spectrum calculations. We report one-loop results for the quenched case and the fully
dynamical and partially quenched 1+ 1+ 1 and 2 + 1 flavor cases in the chiral SU(3) and SU(2)

theories.
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I. INTRODUCTION

The masses of the up, down, and strange quarks are
fundamental parameters of the standard model, and the
low-energy couplings (LECs) of chiral perturbation theory
(xYPT) [1,2] parametrize the strong interactions at energies
soft compared to the scale of chiral symmetry breaking,
A,. By fitting lattice QCD data to yPT, the light quark
masses, Gasser-Leutwyler couplings, and other LECs can
be determined [3,4].

The results of lattice QCD calculations contain discre-
tization effects that in principle must be taken into account,
either before fitting to yPT or in the fits themselves.
For sufficiently small lattice spacings, lattice artifacts per-
turb the continuum physics [5,6], and the effects of these
perturbations at energies much less than A, can be de-
scribed by an effective field theory, lattice chiral perturba-
tion theory [7].

Staggered fermions possess an exact chiral symmetry at
nonzero lattice spacing and are computationally cheap.
However, in practice discretization effects known as taste
violations are significant even with Symanzik improve-
ment. In Ref. [7] Lee and Sharpe introduced the yPT for
a single flavor of staggered fermion coupled to SU(3)
lattice gauge fields. Working to leading order (LO) in a
dual expansion in the quark masses and lattice spacing,
they showed that the staggered pion spectrum, including
taste violations, respects SO(4); taste symmetry and con-
firmed this prediction of the yPT by comparing to lattice
data generated by using unimproved and improved ver-
sions of staggered fermions [8,9].

Motivated by unsuccessful attempts to describe lattice
data by fitting to standard continuum YPT [10], Aubin and
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Bernard generalized the Lee-Sharpe Lagrangian to mul-
tiple flavors to describe the effects of lattice artifacts,
including taste violations, in the pseudo-Goldstone boson
(PGB) sector [11-13]. They used the resulting staggered
chiral perturbation theory (S yPT) to calculate the masses
and decay constants of taste Goldstone pions and kaons
(flavor-charged states) through one loop, including the
leading chiral logarithms, which enter at next-to-leading
order (NLO) in the dual expansion [12,14]. The results
were used to successfully describe lattice data and factored
in phenomenologically successful calculations of quark
masses, meson masses, decay constants, form factors, mix-
ing parameters, and other quantities [4,11,15-28].

In Ref. [29] Sharpe and Van de Water enumerated the
complete NLO Lagrangian of S yPT and used it to predict
relationships between taste-breaking splittings in the PGB
masses, decay constants, and dispersion relations. The
NLO Lagrangian breaks SO(4); to the lattice symmetry
group and contributes to the masses of the PGBs terms at
NLO in the dual expansion.

Lattice QCD calculations with staggered fermions
are conducted by taking the fourth root of the fermion
determinant to eliminate remnant doubling from the sea
[4]. The conjectured relationship of the rooted staggered
theory and QCD has implications that can be numerically
tested. The rooting is systematically incorporated into
S xPT using the replica method [12,13,30]. Rooting leads
to unphysical effects at nonzero lattice spacing. Following
the arguments of Refs. [31-43], we assume that the un-
physical effects of rooting vanish in the continuum limit
and that S yPT with the replica method correctly describes
the effects of rooting that enter soft pion processes at
nonzero lattice spacing.
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Here we calculate the masses of the taste non-Goldstone
pions and kaons through NLO (one loop) in SyPT. The
results can be used to determine the up, down, and strange
quark masses, the Gasser-Leutwyler couplings, and other
quantities by confronting lattice data generated with rooted
staggered fermions. Consistency between lattice data and
the SyPT description of the taste non-Goldstone sector
would constitute additional numerical evidence for the
conjectured relationship between the rooted staggered
theory and QCD.

In Sec. II we review the formalism of S yPT, in Sec. III
we calculate the self-energies of the taste non-Goldstone
states, Sec. IV contains the resulting one-loop corrections
to the masses, and in Sec. V we discuss the results and note
directions for future work. Appendixes A, B, C, and D
respectively contain a derivation of the power counting
through NLO, a discussion of the taste symmetry breaking
induced by NLO analytic terms, details of the loop calcu-
lations, and details of the calculation of the coefficients of
the chiral logarithms.

II. STAGGERED CHIRAL
PERTURBATION THEORY

Here we briefly review the formulation of S yPT [7,12],
recalling relevant differences between the staggered theory
and its continuum counterpart [1,2]. For simplicity we
consider the 4 + 4 + 4 theory of Refs. [12,13]. The sym-
metries and degrees of freedom of SyPT are recalled in
Sec. II A, the extension of the power counting in Sec. II B,
and the Lagrangian in Sec. II C.

Pedagogical treatments of lattice yPT are given in
Refs. [44,45]. Investigations of the foundations of SyPT
were reported in Refs. [32,34-36].

A. Group theory and degrees of freedom

In the continuum limit, the chiral symmetry of the
4 + 4 + 4 theory is SU(12); X SU(12)g. Assuming spon-
taneous breaking to the vector subgroup, the 143 pseudo-
Goldstone bosons in the adjoint irreducible representation
(irrep) of SU(12)y can be classified according to the con-
tinuum flavor-taste subgroup SU(3); X SU(4)7:

SU(12), D SUB); X SU@);, (1)

143 - (815 e (8 1) &(1,15). )

Discretization effects break the direct product of the con-
tinuum chiral symmetry and Euclidean rotations to a direct
product of the lattice chiral symmetry and hypercubic
rotations [12]:

U(l)y X SU(12), X SU(12)z X SO(4)

U)X UEG), X (TSWy i) 3)

PHYSICAL REVIEW D 85, 094503 (2012)

U(3); X U(3), is the lattice chiral symmetry of three fla-
vors of staggered fermions. Its appearance ensures that a
nonet of the PGBs becomes massless in the chiral limit
even at nonzero lattice spacing; by definition, these are the
taste Goldstone states. The U(1),, is not to be confused with
the anomalous axial symmetry of the theory; the flavor-
taste singlet meson receives a large contribution to its mass
from the anomaly and is not among the PGBs.

The Clifford group I'y is a subgroup of taste SU(4)r;
I'y is generated by the Hermitian, 4 X 4 matrices 5#,
{. €1 =28, [7]. SWygine is the group of hypercubic
rotations embedded in the diagonal of the direct product of
Euclidean rotations and the remnant taste SO(4); that
emerges at energies soft compared to the scale of chiral
symmetry breaking [7]:

P<Ay
SO@) X SU@A)Z'SW, giae C SO(@) X SO@)y,  (4)

where the right-hand side of Eq. (4) represents the sym-
metry of the staggered chiral Lagrangian at leading order.

The emergence of SO(4); implies degeneracies among
the PGBs. The fundamental representation of SU(4)7 is a

spinor under SO(4)r, and the SU(4) adjoint and singlet of
Eq. (2) fall into five irreps of SO(4); [12]:

SUM#); D SO4)y, )
15 -PoA®TS®V, (6)
1—1 @)

The SO(4); irreps are the pseudoscalar, axial vector, ten-
sor, vector, and singlet (or scalar), respectively. The flavor-
nonet taste-pseudoscalar PGBs are the taste Goldstone
states. Among them are the pions and kaons of
Refs. [12,13]. The taste singlet i’ receives a large contri-
bution to its mass from the anomaly and can be integrated
out of the theory.

At nonzero quark masses, the continuum chiral symme-
try is softly broken to SU(12)y, SU(8)y X SU(4)y, or
SU4)y X SU4)y X SU(4)y for three degenerate, two de-
generate, or three nondegenerate flavors, respectively.
Noting the anomaly contribution in the taste singlet sector
and assuming the taste singlet PGBs are degenerate with
their physical counterparts in the continuum limit, we can
use the isospin, strangeness, and continuum vector sym-
metries to deduce the degeneracies between the remaining
(taste nonsinglet) PGBs and the physical states.

In doing so we consider the target continuum theory with
1 + 1+ 1 flavors, in which there are 12 valence quarks
(and 12 ghost quarks), but the fourth root has reduced the
number of sea quarks from 12 flavors to three. We also
restrict our attention to PGBs constructed exclusively of
valence quarks. The resulting deductions from symmetry
represent one of the simplest testable implications of the
correctness of the rooting conjecture. We can also use them
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to check our SyPT calculation of the masses of the taste
non-Goldstone pions and kaons.

B. Power counting

The standard power counting of SyPT [7] is a straight-
forward generalization of that in the continuum theory
[2,46]. The Lagrangian is expanded in a series of local
interactions perturbing the low-energy theory about the
chiral and continuum limits, and observables are calculated
in a dual expansion in the quark masses and lattice spacing.

The order of an operator in the Lagrangian corresponds
to the number of derivatives, quark mass factors, and lattice
spacing factors in the operator. The symmetries of stag-
gered fermions ensure the leading lattice artifacts are
O(a?), and derivatives always appear in pairs [7]. Let
n,2, N, and ng be the number of derivative pairs, quark
mass factors, and (squared) lattice spacing factors in an
interaction. The general form of the Lagrangian is

NgE

L=} Ly =L+ L+

3
Il
—_

I
Mz

Lo =Lio+ Lyiot+ s ®)

3
Il

where n = n,» +n, +n,p and Ly 0 = Ly,

This organization of the Lagrangian is consistent with
the expectation that contributions at leading nontrivial
order will be

O (p*/A}) = O(m,/A,) = O(a’A3). ©)

This power counting is appropriate to data generated on the
MILC O(a?) tadpole-improved (asqtad) coarse lattices
(a = 0.12 fm); on finer lattices or with more improved
versions of the staggered action, the discretization effects
are often smaller.

Feynman graphs are functions of external momenta p,,
the quark masses m,, and the lattice spacing a*:

M (p;, my, a®), (10)

where the amplitude M is related to the S-matrix as
follows:

S ~ 54(Zpi)ﬂ\4. (11)

Rescaling p;, m,, and a’® to smaller values in accord with
the power counting in Eq. (9), we have

M (p;, my, a*) — M(Jep;, em,, ea®),  (12)
which leads to [47]

M (Vep;, em,, ea®) = e? M(p;, m,, a?), (13)
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D=1+ (n— 1Ny, +Np. (14)

n=1

A derivation of Eq. (14) is given in Appendix A. N; is the
number of loops in the graph, and N,, is the number of
vertices from operators in £,,. From Egs. (13) and (14),
we see that loops and diagrams with vertices from higher
order interactions are suppressed at small momenta, quark
masses, and lattice spacings.

For any given observable we first consider all graphs
with D = 1 (LO), then those with D = 2 (NLO), and so
on. At leading order (D = 1) the only solutions to Eq. (14)
have N,, = 0 for n = 2 and N;, = 0; i.e., only tree graphs
with vertices from the LO Lagrangian are allowed. At NLO
(D = 2), the solutions have N,, = 0 for n = 3 and either
N4 = 1or N, = 1; one-loop graphs with vertices from the
LO Lagrangian and tree graphs with at most one vertex
from the NLO Lagrangian are allowed. In Sec. III we use
these observations to write down the graphs contributing to
the PGB self-energies through NLO in the dual expansion.

C. Lagrangian
The Lagrangian is constructed of the PGB fields ¢,
quark mass matrix M, derivatives, and taste matrices &,
in accord with the symmetries of the terms in the effective
continuum Symanzik action [7,12,29]. The exponential
parametrization is a convenient way to include the PGBs:

SU(12); X SU(12)z: = — L3R, (15)
where L, R € SU(12); g, and

S = eid/f,

p=D¢®T (16)
U, 7 Ki
¢*=|7m D, K| (17)
K; Ki S,

T“ € {55! if/.LS! lglLLV(/‘L < V)r f,u,! gl} (18)

The index a runs over the 16 PGB tastes in the 15 and 1 of
SU(4)7, the ¢“ are Hermitian 3 X 3 matrices, and the T¢
are Hermitian 4 X 4 generators of U(4)r, chosen (up to
phases) as members of the Clifford algebra generated by
the matrices £,. With this choice for the 7%, the SO(4)r
quantum numbers of the PGBs are explicit.

We follow Refs. [12,29] in including the flavor-taste
SU(12)y singlet in the Lagrangian, so X € U(12). An
additional mass term in the Lagrangian accounts for the
anomaly contribution to the mass of the SU(12)y singlet.
Taking this mass correction to infinity at the end of the
calculation properly decouples the SU(12)y singlet and
yields the desired results [48,49].

At leading order in the expansion of the Lagrangian,
there are three classes of interactions: operators with
(n,2, ny, n2) = (1,0,0), (0, 1, 0), and (0, 0, 1). We have
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2
L= % Tr(0,39,31) — %ufz Tr(MX + MXT)

2mg 2 2 /

where

m, 0 O
0 0 m

&, is the identity matrix in taste space, and the trace (in
flavor-taste space) is ordinary; we use the replica method
of Damgaard and Splittorff to generalize the results of the
4 + 4 + 4 theory to the partially quenched case [30].

The term proportional to m3 is the contribution from the
anomaly, and the potentials ‘U and U’ break SU(4); to
SO(4)7. They are
(n) 2 -[-)

—U = C\Tr(eP3EP3T) + Co 3 Tr(€ S €

w<v

+ c3%Z[Tr(g&">2§§">z) +He]

+ C422[Tr(§(") SEWS) + Hel 1)

—U = Gy [Tr(ES)Tr(ENS) + Hee]
+ CsziZ[Tr(f(V"S)E)Tr(f(S'L)E) +He.]
+ csv;é[Tr@;’)z)Tr(f&")z*)]
+ CSAéé[Tr(gfi’?E)Tr(fg';’z*)], (22)

where 7¢" = T4G) = [, ® T in the 4 + 4 + 4 theory and
T“ is given in Eq. (18). I3 is the identity matrix in flavor
space. The potentials are derived by mapping the operators
of the mass dimension-six effective continuum Symanzik
action into the operators of yPT. The remnant taste sym-
metry of Lee and Sharpe emerges because contributions
to the potential from SO(4)-breaking operators in the
Symanzik action are suppressed in the low-energy effec-
tive field theory by powers of the four-momenta of the
PGBs. The derivation of the potentials and the restoration
of taste SO(4); symmetry are described in detail in
Refs. [7,12,29].

At NLO, the Lagrangian operators fall into six classes:
(n,2, ny, n2) = (2,0,0), 0, 2, 0), (1, 1, 0), (1, 0, 1),
O, 1, 1), and (0, O, 2). The first three contain terms
analogous to those in the Gasser-Leutwyler Lagrangian
[2]. The last three contain the terms enumerated by
Sharpe and Van de Water [29]. The Gasser-Leutwyler
terms of SyPT that contribute to the PGB masses at
NLO are

PHYSICAL REVIEW D 85, 094503 (2012)
L6 =LyTr(0,379,3)Tr(x TS + x21)
+LsTr(0,310,S(xt2 + 31 y)

—Lg[Tr(xt2 + xSHP = Ly (Tr(xT2x12) + Hoe)),

(23)

where y = 2uM.

Many operators in the Sharpe—Van de Water Lagrangian
contribute at NLO, but only a handful break the remnant
taste SO(4)7 to the hypercubic subgroup SW, of the lattice
theory [29]. We use the symmetries of the Sharpe—Van
de Water terms to deduce the form of their contributions
to the masses; as discussed in Appendix B, the
explicit results of Sharpe and Van de Water for the
SO(4)r-breaking contributions to the flavor-charged PGB
dispersion relations restrict the number of independent
parameters in these contributions to only three.

III. SELF-ENERGIES OF FLAVOR-CHARGED
PSEUDO-GOLDSTONE BOSONS

The symmetries protect the flavor-charged PGBs
from mixing. For reasons discussed in Sec. III A below,
here we describe the calculation in the rest frame. In
terms of the self-energy X(p3) at p =0 of the state

o (x # v, x5y €E{u,d, s}),
My = my + 3(—Mj), (24)

where my, is the tree-level (LO) mass, and M is the
(exact) mass to all orders. Noting that the perturbative
expansion of X(p3) begins at NLO and expanding 3.(p3)
in a Taylor series around p; = —mj, gives

M = mly + S(=m) = S(~M3)S/(~md) + - -
= m3, + 2(—m3) + NNLO,

and the NLO correction to the mass is the leading contri-
bution to E(—mi).

In Sec. III A we consider the Feynman graphs entering
the expansion of the self-energies at NLO. In Sec. III B we
outline the calculation of these graphs, and in Sec. III C, we
present a condensed version of the results forthe 4 + 4 + 4
theory.

A. Diagrammatic expansion

The power counting of Sec. IIB, the Lagrangian of
Sec. IIC, and the definition of X, constrain the diagrams
entering the NLO mass corrections to three types.
Expanding the LO Lagrangian through O(¢*) and the
NLO Lagrangian through O(¢?), we write

2(py) = [o=(p3) + o (pD] + o™ (p7) + -

4 f )?
(25)
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FIG. 1. At next-to-leading order, tadpole graphs contribute the
leading chiral logarithms. The vertices are from the leading-
order Lagrangian of Eq. (19), and the propagator represents the
connected part (first term) of Eq. (26).

where o°°" corresponds to the sum of connected tadpole
diagrams [Fig. 1], 0% corresponds to the sum of discon-
nected tadpoles [Fig. 2], and 0™ corresponds to the sum
of tree-level diagrams [Fig. 3]. The tree-level diagrams are
analytic in the quark masses and (squared) lattice spacing,
while the loops contribute the leading chiral logarithms.

The 4-point vertices in the tadpole graphs are from the
O(¢$*) terms in the LO Lagrangian of Eq. (19), and the
2-point vertices in the tree-level diagrams are from
the O(¢?) terms in the NLO Lagrangian of Eq. (23) and
the NLO Lagrangian of Sharpe and Van de Water [29]. The
disconnected propagators (in the graphs of Fig. 2) are from
quark-level disconnected contributions to the tree-level,
flavor-neutral propagators in the taste singlet, axial, and
vector channels [12].

The one-loop graphs break taste SU(4); to the remnant
taste SO(4); of Ref. [7], the tree-level graphs from the
Gasser-Leutwyler Lagrangian respect SU(4)y, and the
tree-level graphs from the Sharpe-Van de Water
Lagrangian break SU(4); in two stages: Terms of
O(a’m,) and O(a*) break SU(4); to SO(4)7, while terms
of O(a’?p?) break the spacetime-taste symmetry SO(4) X
S0(4)T to SW4,diag [29]

The one-loop graphs respect spacetime SO(4) rotations,
and the corresponding contributions to the self-energies,
" and 0%, are functions of p?. The SO(4),-breaking
analytic terms of O(a’p?), however, cannot in general
be written as functions of p?: The dispersion relations
are distorted at nonzero lattice spacing by the taste viola-
tions. To extract the masses one may consider the self-
energies in the rest frame. In this case the self-energy
may be written as a function of p3, the square of the
temporal component of the momentum. In Appendix B
we recall the form of the SO(4)y-breaking corrections to
the dispersion relations [29].

FIG. 2. Disconnected tadpoles enter in the flavor-neutral, taste
singlet, vector, and axial channels. The open circle represents the
second term of Eq. (26).
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(3)
()

FIG. 3. At next-to-leading order, tree-level graphs contribute
terms analytic in the quark masses and (squared) lattice spacing.
The vertices are from the Gasser-Leutwyler and Sharpe—Van
de Water Lagrangians of Eq. (23) and Ref. [29].

B. Calculation in 4 + 4 + 4 theory

For the 4 + 4 + 4 theory of Ref. [12], we outline the
calculation of the graphs in Figs. 1-3. After writing down
the propagators and vertices (Sec. IIIB 1), we present
results for the loops corresponding to each class of vertices
(Sec. IIIB2). These intermediate results are readily
checked against the taste Goldstone case [12].
Section III C contains a condensed version of these results,
which can be straightforwardly generalized to the partially
quenched 1 + 1+ 1 theory and other cases of interest
(Sec. IV).

We calculate the loops without extracting the vertices by
summing over the flavor and taste indices in the O(¢?)
terms in the Lagrangian. Instead we combine the expres-
sions for the (tree-level) propagators of the flavor-charged
and flavor-neutral PGBs and perform the Wick contrac-
tions before summing over the O(¢*) vertices. In
Appendix C we detail the calculation of the contributions
from the mass and a®>‘U vertices.

1. Propagators and vertex classes
Expanding the LO Lagrangian of Eq. (19) through
O(¢?) yields the propagators [12,48]. They are
1

a b\ — Sab a
(i =0 <5i16jkm + 5ij8leil)’ (26)
where i, j, k, | € {u, d, s} are flavor SU(3)p indices, a, b

are taste indices in the adjoint irrep, and

P)
DY = — a
i (> +1)(¢*> + L,)
(¢* + U)(g* + D) (g* + S,)

(q* + 7)(q* + n)(g* + mb)’

(27)

where

8, = 4m}/3, Our =0, 05 =0, (28)

o, = a*sy, Ous = a’s',, (29)
and the names of mesons denote the squares of their tree-
level masses. For X € {I, J, L, U, D, S},

X, =my =2um, + a’A,, (30)

where m, is the mass of the quark of flavor x €
{i, j, L u,d, s}, while for X € {z°, , '}, the squares of
the tree-level meson masses are the eigenvalues of the
matrix
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Ull + 60 5(1 30
50 D a + 8:1 6(1 . (31)
Ly 04 S, + &,
The squared tree-level mass of a flavor-charged meson

oLy (x # y)is

1
P, = E(Xz +Y,) = ulm, + m}’) + azA,, (32)

where X # Y € {U, D, S} and x # y € {u, d, s}. The hair-
pin couplings &y, , and taste splittings A , are combinations

of the couplings of the LO Lagrangian [12]:

oy = f2 (sz Csy), (33)
;o 16
oy = JTz(CZA — Csa), (34)
and
16
A= F(4C3 +4Cy), (35)
16
Ay = (€ +3C + €, +3C), (36)
16
Ay = 5 @C; +2C; +2C,) 37)
16
By = 7 (€1 +3C; +3C; + C), (38)
Ap=0. (39)

We note the symmetry of Egs. (33)—(39) under simulta-
neous interchange of vector and axial taste labels (V < A)
and the coefficients C; and C,. The axial taste matrices
i&,5 generate the Clifford algebra; as a consequence, the
LO Lagrangian is invariant under simultaneous inter-
change of the fields ¢p* < —¢@*> and the coefficients in
the pairs (C3, Cy), (Cay, Cay), and (Csy, Csy).

The minus sign arises in the unitary transformation
connecting the bases {£,,} and {i¢ ,s}: For U such that

UEUY = i€ s, (40)

Ui, sUt = —¢,. 41)

U is unique up to a phase:

o 1 .

U = ¢if e i(m/Dés = 756’0(51 - i§5), (42)

and the other taste generators are invariant under U.
Noting the diagrammatic expansion and the conserva-

tion of SO(4);, we see that taste vector and axial fields

must always appear in pairs in the calculation of the

PHYSICAL REVIEW D 85, 094503 (2012)

self-energies through NLO, and the minus sign in
Eq. (41) is inconsequential. The results in the taste singlet,
tensor, and Goldstone (pseudoscalar) channels must be
invariant under interchange of the coefficients in the above
pairs, while the results in the taste vector and axial chan-
nels must switch. This symmetry provides a check at each
stage of the calculation.

Expanding the LO Lagrangian of Egs. (19), (21), and
(22) and keeping terms of O(¢*) gives 11 classes of
vertices. From the kinetic energy we have two classes,
from the mass terms we have one, and from the potential
a*>U, we have four:
f2 Ty — 1 a b c pd
ry Tr(9,20,2") = Kf‘zTade(a,u,d)ij H0u PPl

_a ¢l/ ,u¢ ¢kl¢;il)+ ’ (43)

- ‘1—‘,uf2 Tr(MS + M)

= 48f2 Tabcd; ¢1J¢ ¢k[¢ (44)
— a’C, Te(¢3 €03
a*C
= - Tfi(’fabcd + 37sabsca —

X b dhbibl + (45)

47’5a5bcd)

— a*Cq ZTr(f(") (")ET)

n<v

2
a C6
= = 12f4 Z (Tabcd + 37—,uv,ab,,u,v,cd - 4T}LV,H,;LI/,de)
m<v

X b dhbibl + (46)

1
*C; 3 Z[Tr(f(y”)zfi”)E) + H.c]

(12C3
= 12f4 Z(Tabcd + 3Tvabvcd + 4Tvavbcd)
X ¢1/¢ ¢kl¢ (47)
—a’Cy= Z[Tr(.f(”) (")2) + H.c.]
a*C
- 12f: Z(Tahcd + 3TV5 ab,v5,cd + 4TV5 a,vs, bcd)

X ¢11¢ ¢kl¢ (48)

where the indices a, b, ¢, d run over the 16 tastes in the 15
and 1 of SU(4)7, and 7,,... = Tr(T¢TPT¢ - - -) are traces
of products of (Hermitian) taste matrices. The four opera-
tors of the potential a> U’ each give one class:
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~ @ (Co ITHEDTHES) + ]
- Csvl[Tr(rf(y")E)Tr(f(u")E*)])

= 3f4 (CZV

Csv)D Toare Bhd%bLbs + 0 (49)
- aZZ(CZA%[Tr({E(V@)E)Tr(fg'L) S) + He]
1
- CSA—[Tr(fi?z)Tr(fg':}z*)])

= 3f4(C2A CSA)ZTVS,abc(ﬁZSﬁb?kfﬁZz(ﬁfj+"': (50)

- azz(czv%[Tr(f(u")E)Tr(&")E) +Hel]
+ Csvl[Tr(f&’”z)Tr(fﬁ")z*ﬂ)

(sz + CSV)ZTvabTVCd¢zJ¢]z¢k1¢lk i

8 f4
(51)
1
- “?(CmZ[Tr(fﬁ?E)Tr(fgﬁz) +He]
+ CSAl[Tr(firg)E)Tr(fg':})ET)])
- 8f4 (C2A * CSA)ZTV5 abTws, cd¢l} I/?i¢lil¢ldk +
(52)

Finally, expanding the Gasser-Leutwyler Lagrangian of
Eq. (23) through O(¢?) gives

LyTr(9,3%0,3)Tr(xTS + x31)

8L
f“a $%9,0%4(Us + Ds + S5) + -+, (53)
LsTe(d,319,3(xTS + Sty)
_ 8L
S0, b0 ls (54)

— Le[Tr(xy'3 + xZ1?

16L
2 Yp4IsA(Us + Ds + S5) + -+, (55)

—LgTr(xyT2xT2) + He. = Gls(Is +Js) + = -+

L
Tzs CH
(56)
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The normalization of Egs. (53) and (55) differs from that in
the continuum YPT by additional factors of 4. These
factors are systematically canceled by factors of 1/4
when using the replica method [12,13,30] to arrive at the
results for the 1 + 1 + 1 flavor theory.

2. Results by vertex class

We consider external fields ¢}, and ¢}, where ¢ is the
taste index, x # y, and we use the renormalization scheme
of Refs. [2,12]. For the tadpole graphs with kinetic energy
vertices (Eq. (43)), we find

1
2 a a _ a
12f? %I:p (Z(Km ix T K}Hy) 20K XX)y)

+ Z(Lm L) 2emL§gxyy] (57)
where i = u, d, s runs over the flavors in the loops a is the
taste of mesons in the loops, #° =17, = +1 if
TeTY ¥ T°T* = 0, and

K,'aj,kl = (2 )4 <¢ ¢k1> (58)
L= [ oo 59

Substituting for the propagators and performing the
integrals for the connected contributions gives

1 1
TJCQZ[W Z(Pz - 0,)1(0Q,)

[(2 )4(p + ¢*) (D4, + DY, —20”’D“):| (60)

where Q runs over the six flavor combinations xi, yi for
i €{u, d, s}, Q, is the squared tree-level meson mass with
flavor Q and taste a, and

I(X) = X(InX/A2 + 8,(VXL)), ©1)

for any squared meson mass X. The finite-volume correc-

tion 8, (v/XL) is [11]

K (1lVXL)

81(VXL) = \/_ Z i

, (62)

and 8,(v/XL) — 0 in infinite volume. Here the temporal
extent of the lattice is assumed infinite, L is the spatial
extent of the lattice, \/)_( L is assumed large for all values of
the quark masses, K; is a Bessel function of imaginary
argument, and the momentum in units of 277/L, 71 € 73, is

summed over all integer components except 7 = 0.
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The diagrams with the mass vertices (Eq. (44)) are
12f2 Z[Z[(mxv + mxz) x[ ix + (m_%y + m )K\l [y]
+ 200K, | (63)

where ml?j = u(m; + m;). Substituting for the propagators

and performing the integrals for the connected diagrams
gives

1 1 d4q .
@g[wg(ﬂs +05)1(Q,) + IW[(P5 + X5)D2,
+(Ps+ Ys)DS, + 2P50MD;§y]], (64)

where X5 = m2, and Y5 = m3,.

For the graphs with vertices in Egs. (45)—(48), from the
potential ‘U, we obtain

12f2 ZI: WZ( Xi,ix + K\C)lzt\) + ZA/ Kgxyvil: (65)

where

Ay = %Zch(s + 309005 — 465097 — 4990 9>,
b#1
(66)
86 bpb 5bgb b gb5
Al =—5 D Cp(1 + 366" — 266" — 26 6"),
f b#1
(67)

and the sum over b includes all tastes appearing in the taste
matrices of the vertices from U, i.e., all tastes except the
taste singlet. The coefficients C,, are the couplings of the
vertices from U:

Cc, iftb=5
Cs ifbe

C, = 6 1 {,U«V}' 68)
C, if b € {u}

Substituting for the propagators and performing the inte-
grals for the connected contributions gives

12f2 ZI:(47T)2Z Qo)+ _[(2 7[Au (DS, + Dyy)

+ 2A;,Dgy]:|. (69)

For the contributions from the ‘U’ (hairpin) vertices of
Egs. (49) and (50), we have

1
— Z 5,2+ 0“’)Z(K,lxx + K&, (70)
6f a€V,A
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where a runs over the taste vector and taste axial irreps,
V ={u} and A = {u5}. Proceeding as above, this result
becomes

1 t
o 2 20 )[(4 (10 + 1,)

EV,A

f Gy 200 o1} 7n

where X, and Y, are given by Eq. (30). The connected and
disconnected pieces of this result can be combined into a
single disconnected piece by using the identity [12]

+1, +;D?f:_

where I, and L, are given by Eq. (30), i, j, [ € {u, d, s},
and a € {V, A, I}. This result follows immediately from
the form of Df; obtained by treating the O(¢?) terms of
the LO Lagranglan that are proportional to d, as vertices
and summing the resulting geometric series for the flavor-
neutral propagators:

q2+L

“pe, (72)

a

o 1
Dfj == — -
(¢ +1)(q*+J,) 1+ 8, Zl_q2+L,,

(73)

The equivalence of this form and that given in Eq. (27) was
demonstrated in Ref. [48] for general partially quenched
theories. With the use of the identity Eq. (72), Eq. (71)
becomes

1

_3_sz(

€V,A

at d4q 2 a
+ 6 )[W(Q + Pa)ny' (74)

For the loops from the remaining two vertices of U/,
Egs. (51) and (52), we find

32f2 Z( Y 0pTapTan(l +

+6% )) 00 (75)

bEV,A
where

“r F{ Cop + Csyif b €{uS} (76)

Performing the integrals gives

IP,)

abiTap(1 + 09 ) <. 77
32f2 Z(beZVAwa bt Tabi ) (477_)2 (77
For the tree-level graphs with the vertices in

Egs. (53)-(56), we have

16
- F(2L6P5 + Lyp?)4(Us + Ds + Ss)

16
- f_2(2L8P5 + Lsp?)Ps, (78)
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while the tree-level graphs with vertices from the Sharpe—
Van de Water Lagrangian may be parametrized by intro-
ducing LECs corresponding to the irreps of SO(4)y
and SWy:

1
—f—6a (ﬂPs+B4(U5+D5+SS)+C,p4+Da2)

(79)

where the coefficients “A,, B,, and D, are degenerate
within the SO(4); irreps, and the coefficients C, are degen-
erate within the SW, irreps. The symmetry of the calcu-
lation under interchange of the (valence) flavors x <y
implies the O(a?m,) terms are proportional to Ps or the
sum Us + D5 + Ss.

C. Results in 4 + 4 + 4 theory

The results in Egs. (60), (64), (69), (74), and (77) are the
one-loop contributions to the expansion of the (negative
of the) self-energies of the flavor-charged PGBs of taste
te{l, u, urv(u <w), u5,5} in the 4+ 4 +4 theory.
Collecting the connected contributions and factoring
—1/(4mf)? gives

1
o (pt) == D PP+ Ps Py — a?A)IQ,)
a,Q

2
2 [ Z waathabt(l+9ab):|l(Pa)» (80)

32 bEV,A

where Q runs over the six flavor combinations xi, yi for
i €{u, d, s}, Q, is the squared tree-level meson mass with

flavor Q and taste a, and P, is given by Eq. (32). Setting

p> = —P, = —Ps — a*A,, we have

(=P) = = (@D, — @, + B)Q,)
a,0

_@ [ 5 ovmnrantt + o) |ie)

32 a =beV,A
(81)

For the Goldstone case, ¢t = 5 and Eq. (66) with Egs. (35)
through (39) imply

A=A, (82)

while

PHYSICAL REVIEW D 85, 094503 (2012)
TapsTaps(1 +6°7) =0 if b €V, A, (83)

so the connected contributions vanish identically [12].

The chiral logarithms are degenerate within the SO(4),
irreps; summing over the values of a within each irrep, we
rewrite Eq. (81):

COH

gon = _a22<5conl(PB) + BF ZI(QB)) (84)

where

1
o =1

52 2 ObTanTan(l+0),  (85)

aEBbEV,A

Agp =3 (A, — (A, +A,)). (86)

aEB
The indices B and F designate the SO(4); irreps, B,
Fe{lLV,T, A P}, t € F, and we conveniently abuse the
notation to define

Xz=X, fora€B and X € {P, 0}, (87)

which is possible because the taste splittings are degener-
ate within irreps of SO(4)y.

The coefficients 657 and AGR are linear combinations of
the couplings in the potentials ‘U’ and ‘U, respectively.
Equivalently, the coefficients A%} are linear combinations
of the taste splittings A, and the coefficients 6% are linear
combinations of the couplings wy 4 (defined in Eq. (76)).

Explicit results for 8¢ and A§R are given in Tables I
and II. We note that 637 = AgyY = 0. AgE = 0 follows
from the symmetry of the summand of Eq. (86) under
interchange of the indices a, ¢ and the vanishing of the
connected contributions in the Goldstone case, A4p =
The symmetry a < ¢ does not exist in the summand of
Eq. (85), so the relation 8%F = O appears nontrivial. In
general the symmetry a < ¢ of the summand of Eq. (86)
implies

NpARF = NpAfg, (88)
where Npp) is the dimension of irrep F(B). Equation (88)
is useful for checking the results in Table II. Equation (84),
with the coefficients in Tables I and II, is our final result for
the connected tadpoles in the 4 + 4 + 4 theory.

Collecting the disconnected pieces from the one-loop
results in Egs. (60), (64), (69), (74), and (77) gives

o (p?) = - (47) Z_[(z s [(p* + Ps + a*A,, — a®A,) (DS, + D§y)

+ [—29%2 + Q20 = 6) + p™)g* + 201 + 69) + p*)Ps + 2a*Al, + (2 + p)a*A,]DE ] (89)

where

t

p?

{(;4(2 + 9ot

ifa#1

ifa=1 ©0)
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—P, = —Ps — a*A,, we find

) [ 4t -

Setting p* =

dlsc ( P (4 77)2

+ ZaZAﬁn +a’(209A, + (2 + p™)A,)IDE, ]

PHYSICAL REVIEW D 85, 094503 (2012)

A+ AL+ D5) + [2(1 = 6°) + p“)g? + (21 +20) + p)Ps

oD

For the Goldstone case, t = 5 and Egs. (66), (67), and (82) imply

Al = =694,

and Eq. (91) reduces to the result of Ref. [12].

92)

The sum over a receives nonzero contributions from the SO(4); vector, axial, and singlet irreps. Summing over a within

each irrep, we can write

isc (47T)2 con isc
odise = B f(z )4[ a?ASP(DY, + DY) + 2(=12P5 — 6¢°vyr + a*AY5)DY,

+ (V= A) + a?A5"(DL, + D) + 2(3Ps + a?A§s)DL ],

where

Af = D (Al +6UA, + (1 + p“/2)A,),

aEB

(94)

VBF = 5 Z(l 6),

aEB

95)

for t € F. vgp is the number of taste matrices for irrep
B € {V, A} that commute with the taste matrix correspond-
ing to t € F. The values of vy are given in Table IV.

TABLE 1. The coefficients 6% defined in Eq. (85). To obtain
85", multiply the entry in row B and column F by 16/f2.

(93)

The coefficients A4, like the coefficients AYR, are
linear combinations of the taste splittings A,. In
Appendix D we show that

Adisc =0 for B=11V,A, (96)
Adise = Agon — 24, 97)
Adise = Acon — 244, (98)
The latter two relations follow from the identity
Al,=A, —2(A,+A,) if 67 = 1. (99)

Equations (97) and (98) provide nontrivial checks of the

B\F v A results for A% in Table III. Equation (93), with the
0 0 coefficients in Tables II, III, and IV, is our final result for
v the disconnected tadpoles in the 4 + 4 + 4 theory.
A 0 0 . . . .
T 3(Cyy + Coy) 3(Coy + Csy) Taking into account the hairpin couplings, taste split-
P " 0 " v 0 V2 tings, and coefficients 858, AR, and Adse in Tables 1, 11,
and III, we see that the loops, the results in Egs. (84) and
1 Gy + Csy Con + Csy . .
(93), are invariant under the symmetry
B\F T P I C; = Cy, (100)
14 2(Cyy + Csp) 0 4(Cyy + Csy)
A 2(Cyy + Csy) 0 4(Cyp + Csy) Cov = Cop, (101)
T 0 0 0
P : 0 0 Csy < Csy, (102)
1 0 0 0
or, more briefly, under
TABLE II.  The coefficients AS® defined in Eq. (86). To obtain A$%, multiply the entry in row B and column F by 96/f2.
B\F \%4 A T P 1
14 4C) + C5 +9C, + 6Cq 4C, +3C5 + 3C4 + 6C; 2C; + 6C4 + 8Cq 0 4C5 + 12C,
A 4C, + 3C;3 + 3C, + 6C; 4C, +9C; + C, + 6C4 6C; + 2C, + 8Cq 0 12C; + 4C,
T 3C; +9C, + 12C 9C; + 3C, + 12C 6C; + 6C, + 16C, 0 12C; + 12C,
P 0 0 0 0 0
I C; +3C, 3C; + C, 2C; +2C, 0 4C; + 4C,
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TABLE III. The coefficients A% defined in Eq. (94). To
obtain Al multiply the entry in row B and column F by 96/ f2.

B\F Vv A

1% —-3C, — 6C, — 3Cq —~C, — 6C4 — 9Cq

A _Cl - 6C3 - 9C6 _3C1 - 6C3 - 3C6

1 C; +3Cy 3C; + Cy

B\F T P 1

1% —2C, — 8C, — 6C; 0 —4C, — 12C4

A —2C, — 8C; — 6C; 0 —4C, — 12C4

1 2C; + 2Cy 0 4C; +4Cy
Ve A, (103)

in accord with the observations following Eq. (42) above.
Collecting the analytic contributions to the self-energies
from Eqgs. (78) and (79) gives

» 16
oil(p2) = f—2(2L6P5 + Lyp?)4(Us + Ds + Ss)

16
+ F(ZLSPS + Lsp3)Ps

16
+ Faz(.ﬂtPS + Bt4(U5 + D5 + S5)
+C,p2 + D,a?). (104)
Setting p3 = —P, = —P5 — a*A,, we have
16
O'dndl - F(ZLG - L4)P54(U5 + D5 + S5)

16
+ ]72(2L8 — Ls)P?

1
+ ]TSaZ(EtPS + FAUs + Ds + S5) + G.a),
(105)

where we have absorbed terms proportional to a’A, into
the coefficients &,, F,, and G,. The first two lines of
Eq. (105) correspond to the continuum result and are the
same for all tastes. In the last two lines, the coefficients F,
are degenerate within irreps of SO(4)r, while the coeffi-
cients &, and G, are degenerate within irreps of SW,. The
exact chiral symmetry implies that Fs = G5 = 0. Setting
t =5 in Eq. (105) then yields the result of Ref. [12]. In

TABLE IV. The numbers v of taste matrices for irrep
B € {V, A} that commute with any given taste matrix for irrep
F. vgp appears in row B and column F.

B\F \%4 A T P 1
Vv 1 3 2 0 4
A 3 1 2 0 4

PHYSICAL REVIEW D 85, 094503 (2012)

Appendix B we recall the results for the dispersion
relations of Sharpe and Van de Water [29]; the
SO(4)r-breaking contributions to the &, and G, terms in
Eq. (105) come from only three operators in the Sharpe—
Van de Water Lagrangian. The consequences for fitting
strategy are discussed in Sec. V.

Equations (84), (93), and (105) are useful starting points
for deriving results in various cases of interest. In Sec. IV
we use them to deduce results for fully dynamical, partially
quenched, and quenched theories.

IV. RESULTS

The results in Egs. (84), (93), and (105) must be modi-
fied to account for (partial) quenching [50,51] and the
fourth root of the staggered fermion determinant [4].
The replica method of Ref. [30] allows us to generalize
to the partially quenched case. The replica method also
allows us to systematically take into account the fourth root
of the staggered determinant [13,32,34-36].

The effects of partial quenching and rooting in Eqs. (84),
(93), and (105) are easily summarized: The valence quark
masses m, and m, are no longer degenerate with the sea
quark masses m,,, my, and m,, a factor of 1/4 is introduced
in the second term of Eq. (84), the eigenvalues of the mass
matrix in Eq. (31) are replaced with the eigenvalues of

Uy, +8,/4  8,/4 Sa/4
8./4  D,+é8,/4  8,/4 | (106)
Sa/4 8u/4 Syt 8,/4

and terms in Eq. (105) that are proportional to the sum of
the sea quark masses are multiplied by 1/4.

Accounting for quenching the sea quarks is equally
straightforward [11,12,50]: The second term of Eq. (84)
is dropped, and the disconnected part of the propagator, in
Eq. (27), is everywhere replaced with

Da,quench _ aguench (107)
! (¢° + 1.)(¢* + L)
where
2 2 : —
Szuench _ {4(1’)10 + aq )/3 lf a = I (108)
O, if a#1

The one-loop contributions to the self-energies in the
fully dynamical 1 + 1+ 1 and 2 + 1 flavor cases in the
chiral SU(3) theory are in Sec. IVA 1. One-loop contribu-
tions for partially quenched 1+ 1+ 1 and 2 + 1 flavor
cases of interest are in Sec. IVA2. In Secs. IVB 1 and
IV B 2 we write down the analogous (fully dynamical and
partially quenched) one-loop contributions in the chiral
SU(2) theory. Section IVA 3 contains one-loop contribu-
tions for the quenched case.
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A. SU(3) chiral perturbation theory

1. Fully dynamical case

Introducing a factor of 1/4 in the second term of
Eq. (84), we obtain the connected loop contributions in
the fully dynamical 1 + 1 + 1 flavor case,

COl’l

oeon — _a22<aconl(PB) + BF ZZ(QB)) (109)

where Py is the LO squared mass m? o of a flavor-charged
PGB g{)fy with Xy valence (anti)quarks (x # y), and Qp is
the LO squared mass m%ﬁ of a PGB ¢%, with z¢ valence
(anti)quarks, where z € {x, y}, £ € {u, d, s}, and the sum
over Q runs over the six flavor combinations formed by
pairing the possibilities for z with those for €. Setting
xy = ud, us, ds gives the results for the 7, K*, and
K°. We have

con

A
gcon = _azz<5con 4BSF (l(UB) + 2[(#;)

+UK}) + UDy) + I(Kg))), (110)

disc — 1 4 A con S/ DS
Ot = E[a AVF(SVZ(RUWOW"/]’

+2) (= 1278 + 6Xyvyp + a?AY)a 5| RS
[24%3 14
X

T 42 AconZ(RUﬂ_ﬂ (XDUX)) + RYS, (XIX)) +33ms + azA;an)zRfran(X,)l(X,)],
X

where we decoupled the flavor-taste singlet, 7/, in the taste
singlet channel by taking m} — oo before expanding the
integrands.

In Eq. (116) we introduce a few convenient abuses of
notation. First, in each sum over X, the residue in the
summand determines the values of the index X. For ex-
ample, in

ZRU# oy LX), (117)
the index X takes the values in the set {U, 7°, 1, '}. When
the summation over X is factored from sums of residues
specifying different sets of values for the index X, as in the
first line of Eq. (116), we first distribute the summation
symbol and then use the residues to specify the values of X
in each sum. Second, the SO(4); irrep specified in the
|

(X)IXy) + R,

o
disc — 4 DS
o = EX:[a SRS (RDS,

+(V—A)+ gazAﬁ%“(R (X,)l(X,) + R

and

(X)I(Xy) + RS,

PHYSICAL REVIEW D 85, 094503 (2012)

con

A
o = ~a 3 (B5p1KG) + SEE Uy + 1)
B

+2U(KE) + I(KY) + l(SB))), (111
geon — —aZZ(awnz(KO) + AR oy 41Dy
K° = BF B 48 B B
UK + I(KE) + l(SB))), (112)

where the squared tree-level masses of the flavor-charged
mesons are

7y = plm, +my) + a’Ag, (113)
Ky = p(m, + my) + a®Ag, (114)
K% = u(mg + my) + a®Ag. (115)

The integrals of the disconnected pieces, in Eq. (93), can
be performed by using the residues of Ref. [12] to expand
the integrands. For the 7" we find

(Xv)I(Xy))

oy ZVIXy) + (V= A)

(116)

argument of a given residue applies to all masses appearing
in the residue. For example,

(Dy — Uy)(Sy — Uy)
(7Tv Uv)(nv - Uv)(ﬂ(/ - Uv),

where we continue denoting squared tree-level masses by
the names of the mesons. In general the residues are

[1s,(Ajr — Xp)
[, +x(Bir — Xp)’
B,} and F€{V,A I} is the

/(UV)

Uv o (118)

Ry 5, (Xp) =

(119)

where X € {B|, B,, ...,
SO(4)y irrep.

The results for the K™ and K° may be obtained by
permuting U, D, S in the residues of Eq. (116) and replac-
ing 7+ with K™, K°. They are

(XVIXy)) + 2(—12KS + 6Xyvyp + azAd‘SC)azé’VRDO ,(XV)Z(XV)
(XI)I(XI)) += (3KJr + azAﬁ%n)RD (X[)Z(Xl)] (120)
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) 1
O'%C = E%[a“A(‘:/o;(SIV(RlD]i .,]/(XV)I(XV) + Réjg)nn,(XV)l(Xv)) + 2(_12K2 + 6XVVVF + azAd'SC)aQ(?/VRU ,(Xv)l(Xv)

+(V—4) +4 a’AFP (RS, (XDIX)) + R{E (XPIX)) + 2 (3K° + a?AGMRY, (X)IX))] (121)

Acon
oreon — —a2z(5030;z(1<3) + 5 2l(mp) + 31(K ) + 1(53))).
B

In Egs. (116), (120), and (121), the masses 77'%, Mg, and 9}
are the eigenvalues of the mass matrix in Eq. (106) with
m, * mg.

For physical values of the quark masses, strong isospin
breaking is a small correction to electromagnetic isospin
breaking, and 2 + 1 flavor simulations have proven very
useful [4]. Setting xy = ud, us and m, = m, in Eq. (109)
gives the connected contributions for 7, K:

(123)

In the 2 + 1 flavor case, the disconnected contributions
are most easily obtained by returning to Eq. (93) and
performing the integrals after setting m, = m,. We find

con

oo = —CIZZ((SCODZ( B) + AZF (ZZ(WB) + Z(KB))>,
(122)

, 1
O_gi;sc :E[zz(— 127T5 + 6XVVVF

+ aZ(ACVO;; +AS))a? SRS (Xy)I(Xy) + (V—A)

mnmn

43 (3775+2a2A°°“ (51(77,)—51(77,))], (124)

N 1
o = —[a“A%}’,?S(,Z(R (XVIXy) + RT,(Xy)I(Xy)) + 22( 12Ks + 6Xyvyp + a?AS)a? SR, (Xy)I(Xy)
X

12
2 A con 1 1 2 A con
+ (V—’A) + 4a AIF (5[(771) + Z(S])) + g 3K5 - ZCZ AIF 1(771) , (125)
f
where 7, 1p, and 1}, (B € {V, A, I}) are the eigenvalues 2. Partially quenched case
of the mass matrix in Eq. (106) with m, = m, and we used The connected contributions in the partially quenched
the relat10n§ of Fhe tree—levell masses in tl.le taste singlet 1 + 1 + 1 flavor case have the same form as the connected
channel to simplify the associated residues: contributions in the fully dynamical 1+ 1+ 1 flavor
S (my) =2 RS (9, = —1 (126)  case, Eq. (109). The difference is that the valence and sea
2 an\T1 2 .
quark masses are, in general, nondegenerate: m,, m, &
RE,(S) =3 R (m)=—2. (127)  {mgmg gl

For the disconnected contributions in the 1+ 1 + 1
In the continuum limit, only the taste singlet contributions  flavor case, keeping all quark masses in Eq. (93) distinct
to the disconnected loops survive. Taking the continuum  and performing the integrals as before, we find
limits of Egs. (122) through (125), we recover the one-loop
results of Gasser and Leutwyler [2].
|

. 1
5 =1 [a“A%‘B’ (Rngjf (XVIXy) + RYZS (Y)I(Yy) + Z(Dﬁ{ﬁ&,,,,,x(zv)l(zv) +Dy5S Y(ZV)I(ZV)))

+ 22( 12P5 + 6Zyvyp + aAYF)PSURYDS (Z)U(Zy) + (V= A)

+3 2A°°n(RUDS (T + RYZS, I + S DYES, (201Z) + DY, Y(zm(z,)))

8
+30Ps + TR, (212 | (128)
where
d
Dyl 5 (Xp) = —WRééi ) (129)
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and
I(X) = —(InX/A% + 1) + 8;(vXL). (130)
The finite-volume correction 8;(v/XL) is [11]
8;(VXL) =23 K,(lilVXL), (131)
7i#0

and 65(~/XL) — 0 in infinite volume.
A nontrivial special case of Eq. (128) occurs for m, = m,. We have

olise — _[2( 12X; + @A + AG@SL(RIDS (X,)(Xy)

+ ZDUDS (ZV)Z(ZV)) - 12025/ VVF(RUDS (Xv)(l(XV) XVZ(XV))
- ZZVDUDS L ZOUZy) + (V= A) + = (3X5 + 2a2 AR (RYES (X)IX) + ZDUDS (Z,)Z(Z,))]. (132)

The masses 7703, ng, and 7 (B € {V, A, I}) in Egs. (128) and (132) are the eigenvalues of the mass matrix in Eq. (106).
To obtain the connected contributions in the partially quenched 2 + 1 flavor case, we set m, = m, in Eq. (109). To
obtain the disconnected contributions, we set m,, = m, in Eq. (93) and consider the two cases m, # m, and m, = m,
separately. We find
1

T umd = ]2[ HATRey (Rxm, (XVIXy) + R7S (Yy)l(Yy) + Z(DX,,,, «@Zizy) + DFs y(Zv)l(Zv)))

+ 22( 12P5 + 6Zyvyp + a?AYi)a*SyRTy, (Z)I(Zy) + (V — A)

+ ‘—‘azAﬁ%“(R;f,(Xf)i(xl) + R (YUY, + > (DFS (Z)U(Z)) + D?f,,y(zl)l(zl)))
Z

3
-+ 2(3105 -+ azAC"")ZRXYn(Z,)l(Z,)] (133)
and
O s = 5[ 212K+ AT + AN RES, (X)TX,)

+ ZDW ZVUZy) = 12878, vy(RES (X)) (I(Xy) = XyI(Xy)

Xnm

= SZDE, (@) + (V= A+ S 6Xs + 20 RE X)X, + ZDX,,X@,)Kz,»] (134)

The masses 7, g, and 0} (B € {V, A, I}) appearing in Eqgs. (133) and (134) are the eigenvalues of the mass matrix in
Eq. (106) with m,, = m.

3. Quenched case

The connected loop contributions are
oo = —azzaconl(PB) (135)

To obtain the disconnected contributions, we consider Eq. (93) with the replacement D4 — D%%"" where D% """ is
given in Egs. (107) and (108). We have

I(Yy) — I(Xy)

: 1
ol = —[ S8 (T(Xy) + 1(Yy)) + 2(—12Ps + a*Alie)a? 5,
XV - YV

XFYy 12
Yyl(Yy) — Xyl(Xy)

4 ~
+ 12a 25‘/ Vyp X 1% + (V _’A) + - azAcon((mo aXI)l(XI) + al(X,) + (X — Y)) (]36)
v 1ty
" §(3P5 + a2 Acen) (m§ — aYI(Y;) — (m§ — OlXI)l(XI)]
3 X, - Y,
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and

disc —

PHYSICAL REVIEW D 85, 094503 (2012)

odise = [2( 12X5 + a®*(ASR + AS)) a8, 1(Xy) — 12828, vy p(I(Xy) — Xyl(Xy)) + (V — A)

+ §(3X5 + 2a”A5") ((m§ —

where in Eq. (136) we substituted for the residues,

1
Rxy(Xp) = —Rxy(Yp) = - (138)
B B
The loop contributions to the pion and kaon masses in the
case of three nondegenerate quarks and in the isospin limit
can be obtained from Egs. (135)—(137) by appropriately

choosing m, and m,,.

B. SU(2) chiral perturbation theory

Expansions about the SU(2) chiral limit are often better
behaved than expansions about the SU(3) chiral limit. The
corresponding yPT was developed in Ref. [1] and ex-
tended in Refs. [52,53] to describe results obtained with
rooted staggered fermions. To date SU(2) SyPT analyses
have been restricted to the taste Goldstone sector [53-55].
Beginning with the loop contributions from SU(3) SyPT,
we write down corresponding SU(2) S xPT loop contribu-
tions to the taste non-Goldstone PGB masses.

aX)I(X)) + al(X)))],

(137)

1. Fully dynamical case
From Egs. (110)—(112), we have

o = a3 B5p10m) + AU + 2(m) + D)),

(139)
rr = 3 T wwn <m0
o = SR ) ¢ 10

To obtain the disconnected loop contributions in the
I +1+1 flavor case, we consider Egs. (93), (116),
(120), and (121). We find

1
ol = —[a“A‘{,O;(S’VZ(Rgﬂon(XV)l(XV) + R L (XVIXy) + 22(—127r5+ + 6Xyvyp + a*Af)a? 5| R 0, (Xy)I(Xy)
X

12

+(V—oA)+ 2a2A§%“Z(RlD]7TO(X,)l(X,) + ngo(X,)l(X,)) + 437 + azAf"“)l(ﬂ-I)] (142)
X
. 1
i =55 @AGROTRE 5, (XX — T SRE, (KOG + (V= 4)
+ 2005 T REJXIK,) + 60D, - 771)1(77?)] (143)
. 1
ot = [a“A?}’;‘é’VZRgWOn(Xv)Z(Xv) 125 a6 RY, (X )I(X,) + (V= A)
X X
2285 S RY L (X)I(X;) + 6(U; - 779)1(779)]. (144)
X
The taste vector and axial residues in Eqgs. (142)—(144) can be simplified using the tree-level masses:
o _1 a’8y 2 2572
7TB = E(UB + DB) + (Sgn5 ) (DB UB) + - (Cl 53) (145)
1 a8y 2 25/
B ZE(UB + Dp) + ) + (sgndj ) (D — Up)* +— (a 8%)% (146)
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for B =V, A. We have

4
ngon(UB) = 25, (147)
RD . (m) = — 2 (1 +s 148
U7T0n(773) = a25%( sinfp), (148)
R?]WO,,I(T)B) == @(1 — sinfp), (149)
RV, (Dy) = — 150
patn\D8) = asr (150)
RY , (m3) = — 2o (1 —sinBy)., (151
Rgﬁo,,(mg) =~ m(l + sinfBp), (152)
0 2
R7T“T)(7TB) = W COSBB, (153)
B
B 2
Rw('n(nB) = — ﬂ COSﬁB, (154)
1 .
Rgon(wg) = 5(1 + sinf3; — cosBp), (155)
D 1 :
RE, (n5) = 5 (1 = siny +cosBy).  (156)
where
sinBp = (sgnédj) Dy~ Us ,  (157)
V(D5 — Up)* +1(a25))?
1 25/
cosBp = (sgndj) kil (158)

V(D5 — Up)* +1(a?5})?
In the isospin limit, Bz = 0.

PHYSICAL REVIEW D 85, 094503 (2012)

The connected loops in the 2 + 1 flavor case are

ACOH
o = —a3 o + T Jim, 159
Ag
o = —a2z 24 I(7rp), (160)
B

and the disconnected loops are

. 1 .
ol = STAC- 1275 + (AP + AT Umy) — )

+ 24vyp(myl(my) — nyl(ny)) + (V— A)

+ 4G ms + 282 A8 (7)), (161)

: 1
o = E[Zazﬁ%"ﬁ(l(ﬂv) — U(ny)) — 12a%8Y1(ny)

+ (V= A) + 2a>A% (7)) (162)
The masses in Egs. (159)—(162) are
g = 2um, + a’Ay V B, (163)
a’s!
g = 2um, + a*Ap + —L B e {V,A}L. (164)

All mesons circulating in loops in the SU(2) chiral theory
are pions.

2. Partially quenched case

We obtain the connected contributions in the 1 + 1 + 1
flavor case by dropping terms in Eq. (109) corresponding
to loops with a strange sea quark; i.e., the sum over Q
excludes the xs and ys mesons, and we treat the x and y
quarks as light." To obtain the disconnected contributions
in the 1 + 1 + 1 flavor case, we consider Egs. (93), (128),
and (132). We have

. 1 ~ -
=1 [a“A%f’;‘é’v(R,‘;,?on(xv)l(xv) +RYD, (YY) + ;D;’Qo,,,x(zvmzv) + D;fgn,y(zv)l(zv)))

XY

+23 (=12P5 + 6Zyvyp + a?Af5)a’ 8|, RYP
VA

oo ZZy) + (V= A)

+ 205 (RYZ OO + RYZWIY) + T (DY, (2)I(2) + DYL, (Z12,)
VA

w

40P+ PASRYL (212 ]
zZ

(165)

! Another case of interest would be that of a single heavy (strange) valence quark, m, ~ mg > m, ~m, 4.
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and

a.dISC —

PHYSICAL REVIEW D 85, 094503 (2012)

dise —[z( 12X + (AR + Al 25@( uB, (x,)i(xy) + ZDXWO X(Zv)l(zv))

— 1208}y (RYZ, (6I0K) = X,T00) = S 200, (20)12,)
Z

+ (V= A) + 4(3X5 + 2a> A%y (RUD (XpIx;) + ZDM X(Z,)Z(Z,)):I.

(166)

Setting m, = m,, we have the disconnected contributions in the 2 + 1 flavor case:

1

disc

05 s = 15| @294 (RE, (GO0 + R, (4)(1) + 3 (D, (Z) + DF, (ZIZ)

+23(=12P5 + 6Zyvyp + a?A$5)a* 8 RT,, (Zy)I(Zy) + (V — A)
Z

+ 2a*ASN(U(X)) + (7 — XPI(X)) + 1Y) + (7, — Y)I(Y))) + 4(3Ps + a2A§°Fn)ZR;Y(z,)1(z,)] (167)
VA

and

q

e = [2( 12X + a2(A%R + A%))a25), (R;n(xv)Z(xv) 4 ZD nX(ZV)l(ZV)>

— 12078} vy RE, (X)) — X T(Xy) — ZZVD,?U,X<ZV)I(ZV))
zZ

+ (V= A) + 4(3X;5 + 2a> A8 (X)) + () — X,)i(x,))].

V. CONCLUSION

Our final results for the masses of the flavor-charged
PGBs through NLO in S yPT are given by adding Eq. (25)
evaluated on-shell to the tree-level (LO) result of Eq. (32).
These results and others of interest can be obtained
from those in the 4 + 4 + 4 flavor theory given in
Eqs. (84), (93), and (105) of Sec. IIIC. Applying the
replica method to reduce the number of tastes per flavor
from four to one gives the connected tadpole, disconnected
tadpole, and NLO (analytic) tree-level contributions to the
on-shell self-energies. In Sec. IV we write down the con-
nected and disconnected tadpoles in the 1 + 1 + 1 flavor
and 2 + 1 flavor cases in SU(3) and SU(2) SyPT.

For the fully dynamical case with three nondegenerate
quarks, the results in the SU(3) chiral theory are in
Egs. (110) through (121). The corresponding results in
the isospin limit are in Eqgs. (122) through (125).
Expansions about the SU(2) chiral limit are given in
Egs. (139) through (144) and Egs. (159) through (162).
For the quenched case, the results are in Egs. (135) through
(137), where the LECs are the quenched counterparts of
those in the theories with dynamical quarks.

For the partially quenched case, the connected contribu-
tions have the same form as those in the fully dynamical
case, Eq. (109). For three nondegenerate sea quarks, the
disconnected contributions in the SU(3) chiral theory are in
Eqgs. (128) and (132). Taking the isospin limit in the sea, the

(168)

corresponding results are in Eqs. (133) and (134).
The expansions about the SU(2) chiral limit are given in
Egs. (165)—(168).

The LO contributions to the masses break taste SU(4);
to taste SO(4)y [7]. At NLO the (tadpole) loops respect
taste SO(4)r, the tree-level counterterms from the Gasser-
Leutwyler Lagrangian respect taste SU(4)r, and tree-level
counterterms from the Sharpe—Van de Water Lagrangian
break spacetime-taste SO(4) X SU(4); to the lattice sym-
metry, Iy<SWy g,

The pattern of taste symmetry breaking is illustrated in
Fig. 4. Regarded as functions of the valence masses, the LO
masses receive corrections at NLO to their slopes and
intercepts. The chiral logarithms contribute to both types
of corrections but do not lift degeneracies within taste
SO(4); irreps. A small subset of the Sharpe—Van
de Water counterterms breaks the SO(4); symmetry.
With HYP-smeared staggered valence quarks on MILC
coarse lattices, the corrections to the intercepts are smaller
than the statistical uncertainties [56,57]; Fig. 4 represents
this case. The exact chiral symmetry at nonzero lattice
spacing ensures corrections to the intercept of the taste
Goldstone (P) mesons vanish.

As discussed in Appendix B, the SO(4)p-breaking
contributions to the masses of the flavor-charged PGBs
arise from only three operators in the Sharpe—Van
de Water Lagrangian [29]. As a direct consequence, the
SO(4)r-breaking corrections to the slopes and intercepts of
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y

e H<

>
>
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FIG. 4. Pattern of taste symmetry breaking in squared PGB
masses. The PGBs fall into eight lattice irreps, and the masses
receive corrections to the slopes and intercepts that lift the
degeneracy of the taste SO(4); irreps. The corrections to the
intercepts are of @(a*) and very small on typical lattices.

Fig. 4 depend on only three LECs. One could obtain them
from the splittings in the slopes of the taste vector, axial,
and tensor irreps.

The LECs of the LO taste-breaking potentials enter the
results in four specific ways: The couplings of the potential
‘U, Eq. (21), enter only via the tree-level mass splittings
and the coefficients of the chiral logarithms from discon-
nected tadpoles; for each taste channel, these coefficients
are given in Tables I and III. The couplings of the potential
U', Eq. (22), enter only via the hairpin coefficients of
the Goldstone sector and the two linear combinations of
Eq. (76). The former arise in disconnected propagators,
while the latter multiply connected tadpoles with valence-
valence mesons in the loop; for each taste channel, they are
given in Table L.

From Eqgs. (35)—(39) and Tables II and III, we observe
that the coefficients of the chiral logarithms from the dis-
connected tadpoles are completely determined by the tree-
level mass splittings. The tree-level mass splittings also
determine the coefficients of chiral logarithms from con-
nected tadpoles with sea quarks in the loop. Having deter-
mined the SO(4)-breaking terms and the LO masses, one
could perform fits to partially quenched data to extract the
remaining (two) coefficients of the connected contributions
and the coefficients of the SO(4)-preserving analytic cor-
rections at NLO. We note in passing that the coefficients of
the quenched and SU(2) chiral theories are different from
the coefficients of the SU(3) chiral theory.

The calculation here can be extended to mixed action
XPT and to other quantities of phenomenological interest
such as decay constants, form factors, and mixing parame-
ters. For example, one could consider HISQ or HYP-
smeared staggered on asqtad staggered simulations; the
SxPT for both cases is the same [58—61]. A calculation
for By is given in Ref. [27]. We plan to calculate in the near
future the one-loop corrections to the mass spectrum of
pions and kaons in the mixed action case.
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APPENDIX A: POWER COUNTING FORMULA

In Sec. IIB we recalled the standard power counting
of SYPT. Here we derive the power counting formula,
Eq. (14). The derivation is based closely on the discussion
for the continuum case in Ref. [47].

We begin by noting that the effective continuum
Symanzik action contains no operators of mass dimension
five or seven [29]:

SSYM = S4 + (1286 + a4SS + e (Al)

For the following discussion, we assume without proof that
no operators of odd mass dimension appear at higher
orders in the Symanzik action. At the end of the derivation,
we consider the restrictions this assumption places on the
validity of Eq. (14).

Mapping the operators of the Symanzik action into
the Lagrangian of S yPT and using it to compute an arbi-
trary amplitude, we note that dependence on the lattice
spacing enters via the vertices and the (tree-level) propa-
gators. By the assumption of the previous paragraph, all
vertices and propagators depend analytically on a”. The
Symanzik and SyPT actions are translation invariant, so
momentum conservation holds in SyPT, as in the contin-
uum theory.

The lattice-spacing dependence of the propagators can
be deduced from Egs. (26)—(39). The propagators receive
corrections proportional to the hairpin couplings of
Eqgs. (33) and (34) and the taste splittings of Eqs. (35)
through (39). The former enter only the disconnected parts
of the flavor-neutral propagators; the latter are corrections
to the tree-level masses of all the PGBs.

In any given amplitude, internal lines contribute factors
of

d*q B
w [ 24 y
— 5ab o (5,-,5jk Tt 5ij5lei,),
2 \ta a

(A2)

and vertices contribute momentum-conserving delta func-
tions and couplings of the form

2

v = pZnP —ny qnqumaZnaz’ (A3)

where 2n » is the number of derivatives in the interaction,

p is an external momentum, ¢ is an internal momentum, n q
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is the number of internal lines contracted with the vertex,
n,, is the number of quark-mass factors from the vertex, m,,
is a light (u, d, or s) quark mass, 2n, is the number of
lattice-spacing factors from the vertex, and a is the lattice
spacing.

Rescaling the external momenta, quark masses, and
lattice spacing,

p— ep, (Ad)
m, — emg, (AS)
a’> — ead?, (A6)
the factors from internal lines scale as
dq .. dq ..
(277_)4 <¢ij¢2[> — & (277_)4 <¢,‘j¢21>, (A7)

where we changed the variable of integration from ¢ to
/£q. Under the same change of variable and the rescaling
of Eq. (A4), the momentum-conserving delta functions
scale as

8*(p + q) — 8*(Velp + q)), (A8)
_ Ly
= ?5 (p+q) (A9)
while the vertex contribution of Eq. (A3) scales as
v— ey, (A10)
= gy, (A11)

where n =n,. +n, + n,. Recalling the definitions of

n,2, N, and n, and the organization of the Lagrangian
in Eq. (8), we conclude that Eq. (A11) implies that a vertex
contribution scales with a factor of &" if and only if
the vertex is from an interaction in the Lagrangian £,,
of Eq. (8).

A given Feynman graph M(p;, m,, a?) has N, internal
lines and Ny vertices, where

o0
Ny = D Noys (A12)
n=1
i.e., the number of vertices in the graph is the sum of
the number of vertices N,, from each term L,, in the
Lagrangian. Because the total momentum flowing into
the diagram equals the total momentum flowing out, one
momentum-conserving delta function does not contribute
an independent constraint and is factored out of the ampli-
tude. Multiplying the rescaling factors of the internal lines,
vertex contributions, and remaining Ny — 1 momentum-
conserving delta functions gives

M (p;, m,, a*) — e M(p;, m,, a*), (A13)
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where

D=N;=2(Ny = 1)+ ) nN,, (A14)
n=1

The number of loops in a diagram is the number of inde-

pendent integrations after imposing the Ny, — 1 constraints

from the momentum-conserving delta functions:

Using this relation to eliminate N; from Eq. (A14) gives
the desired result:

D=N,—Ny+1+ Y nN,,

n=1

(Al6)

=1+ N+ D (n— DN, (A17)

n=1

We now reflect on the validity of this result. We assumed
that no operators of odd mass dimension appear at any
order in the Symanzik action. This assumption is known to
be true only through mass dimension eight. In principle it
could be violated at mass dimension nine:

SSYM = S4 + 0286 + 614S8 + a5S9 +oeeen (A18)

In this case the rescaling is the same for the internal lines
and the momentum-conserving delta functions, but the

possible vertex contributions are different:
v = pnp—nq qnq mZmana’ (A19)

and the expansion of the S yPT Lagrangian can be written

r=y r,

n=24,5,...

(A20)

We allow for the number of derivatives n,, in an operator to
be odd because they are the only objects in the chiral
Lagrangian with indices that can contract with those of
taste matrices to construct operators with an odd number of
taste spurions.

The vertex factors now rescale as

v — g2y, (A21)

where n = n, + 2n,, + n,, and we have

Ny=>N,. (A22)
The modified power counting formula is
n
D=1+N, + —— 1N, A23
L Z (2 ) n ( )

n=24y5,...

and writing out the solutions to this equation for D =

1,2, %, 3 yields the same solutions to the power counting

relation for D = 1,2, 3 as before. For D = 1, 2, the new
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operators in L5 do not contribute, and the power counting
of Eq. (14) is justified through NLO.

APPENDIX B: NLO ANALYTIC CORRECTIONS
AND TASTE SYMMETRY BREAKING

The NLO analytic corrections to the PGB masses break
spacetime-taste SO(4) X SO(4); to the diagonal hypercu-
bic subgroup SW, gi,e Of the lattice theory. Here we con-
sider the responsible operators and note the pattern of
symmetry breaking in the mass spectrum.

Sharpe and Van de Water enumerated the NLO
Lagrangian giving rise to the NLO analytic corrections
[29]. Although many operators contribute at NLO, the
vast majority respect the remnant taste symmetry
SO(4)7; only three operators are responsible for the sym-
metry breaking in the masses of the flavor-charged PGBs,
and all are of type (npz, N n2) = (1,0, 1). For example,
the operator

a’C
SV NTH0,, €0, bE,) (B1)
/7
yields the correction to the self-energy for ¢,
8a2C36V
T%l’ﬂpﬂe’”y (B2)

which in the dispersion relations breaks (spatial) rotation
invariance and lifts the SO(4); degeneracies of the masses
of the PGBs.

The symmetry breaking corrections to the dispersion
relations were calculated by Sharpe and Van de Water.
They have the form

E? = p* + M:(1 + k)), (B3)

Ei = 1_52(1 + K4 — Ki) + M\2/(1 + K4)’ (B4)
E} = pX(1 + &; — &4) + p2 + p} + M3(1 + &), (BS)

E} = (p; + p)( + ki; — ki) + pi + Mz(1 + «;),
(B6)

E} = p? + (pf + p)(1 + kg — ki) + MF(1 + k),
(B7)

EL = pi(l + ks — ky4s) + p + pp + MA(1 + K;5),

(B3)
Efs = p*(1 + kys — k;5) + M5(1 + Kys), (B9)
E3 = p* + M3(1 + ks), (B10)

where M, is the flavor-charged PGB mass through NLO
including all but the taste SO(4); violating contributions,
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and we use k, to denote the 9§, of Ref. [29]. Writing out the
various contributions to M, more explicitly,

M} =mi, + a*A, + 4, + a, (B11)

where the first two terms are the LO result, €, is the sum
of all loop corrections for taste ¢, and a, is the sum of all
NLO analytic corrections respecting taste SO(4)y. The
results of Sharpe and Van de Water then imply that the
NLO SO(4),-breaking corrections are

(m2, + a*A)k, = mi K, + a*Ak,. (B12)

Since the corrections «, are proportional to a®, the NLO
masses of the flavor-charged PGBs, considered as func-
tions of m, + m,, receive corrections to their slopes and
intercepts. However, these corrections are completely de-
termined by only three a priori unknown LECs in the
Sharpe—Van de Water Lagrangian.

Recalling the SO(4),-breaking corrections in Eq. (105),

_ 16a?
t f2
we see that 2, contains the 16 a priori independent co-
efficients &£, and G,, and that the part of =, which breaks
SO(4); is fixed by only three LECs in the Sharpe—Van
de Water Lagrangian. The remaining part, which is
SO(4)7-symmetric, can be determined by fitting as dis-
cussed in Sec. V.

In summary, the SO(4);-breaking corrections to the
dispersion relations imply the presence of O(a*m,) and
O(a*) analytic corrections to the masses of the correspond-
ing (flavor-charged) PGBs. These corrections are deter-
mined by only three LECs, which may be taken to be the
splittings of the SO(4); vector, tensor, and axial irreps.

I

(m)zcygt +a*G,), (B13)

APPENDIX C: EXAMPLE LOOP CALCULATIONS

In Sec. III B 2 we wrote down the results for each class of
vertices in the graphs contributing to the PGB self-energies
at NLO. Here we detail the calculation of these results in
two cases: for the (mass) vertices of Eq. (44), which yield
Eq. (63), and the (a>U) vertices of Egs. (45) through (48),
which yield Eq. (65) with Egs. (66) and (67).

Perhaps the approach taken here can be extended with-
out too much difficulty to calculations beyond NLO. The
integrals associated with two-loop contributions will differ
from those entering tadpole graphs, but in principle one can
construct them from the propagator (Eq. (26)) and the
generic forms of loops with (for example) O(¢®) vertex
classes from the LO Lagrangian.

1. Mass vertices
We begin by considering the vertices in Eq. (44):

- %ﬁrabmmicﬁw,@k@i@fi. (el))
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The corresponding tadpole graphs are the sum of all com-
plete contractions with the external fields ¢}, and ¢},.
Contractions between a field in the vertex and an external
field vanish unless the flavor and taste indices match, in
which case they contribute factors of unity to amputated
diagrams:

1
@ 5,0y 6.

t
Ty T

(C2)

The remaining fields contract together to give the propa-
gator of Eq. (26) in the loop, and integrating over the loop
momentum gives the integral of Eq. (58):

Qb _5ab <5 8 1
ig Pkl — il qu2+%(1a+Ja)

no sum.

+ 5ij5k1D§Lg>
— §ab K&

There are six ways to contract the vertex fields and external
fields while maintaining the order of the latter, or equiv-
alently, while maintaining the order of x and y.
Suppressing the common factors of the coupling u /(48 f2),
taste factor 7,,.4, and mass m;, we have

+ 5ta,td,bc Kb

ta,tc,bd b
+0 K Xj, iy, yi, x> jk kl

ta,tb,cd ¢
o K Xj, iy, yLkx™* jk,li

Xj,iy, vk, jx kI, 1i

+ 5tb,tc,ad K4

th,td,ac a te,td,ab a
wk jyt ke Kijii 0 K§+6 K

xk, jy,yi,Ix xlky,yi,lx"™ ij, jk

+(xey) (C3)
where & is simply a product of Kronecker deltas:
ab,cd,e. _ a cd Se
Sl = 8110118, 8,058 (C4)

Restoring the taste factor 7,,.; and quark mass m; and
summing over the flavor and taste indices gives

c b b
TttccmyKyi,iy + befbm)’Kxx,yy + lebfm}'Kxi,iX
a a
T TanaiKF; iy + Taramy Ky
a
+ TaattmyKyi,iy + (X - y)’ (CS)

where we used the symmetry of the propagator under
interchange of the fields and relabeled dummy flavor in-
dices. The taste matrices 7¢ all commute or anticommute
with one another. Defining 6% such that

TTY = 9°°TPT* ¥ a,b (C6)
and noting
(T°? =& Va, (€7
Eq. (C5) becomes
42[(2mx +m, + m)K% .+ 2m, + m, + mi)K;fi‘iy
+260%(m, + m,)K¢, 1 (C8)

Restoring the coupling gives the desired result, Eq. (63).
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Contributions from loops with kinetic energy, mass, and
hairpin vertices (respectively Egs. (60), (64), and (74))
cancel against the term with 6" in Eq. (63), and evalu-
ations of the sums over ' (within irreps of SO(4)7) are
not needed to arrive at the coefficient of the mass term in
the result, Eq. (93). In general such cancellations do not
occur. The needed sums are collected in Appendix D.

2. Potential a2‘U vertices

We begin by noting that the flavor structure of the
vertices from a?7U is identical to the flavor structure of
the mass vertices (Eq. (C1)):

a’C )

- Tf‘t(T abed T 3Tsabsca = 4Tsasved) B 0% b5, #f (C9)
a*C ,

- Tfj(Tade + 37—,11.1/,ab,,u,v,cd - 4T,U,V,a,,U,V,bL'd)¢?j¢?k¢(];l¢;l[’

(C10)

a2C3 a pb pc pd

- Tf;;(Tabcd + 3Tuabvcd + 4TvaVbcd)¢ij¢jk ¢k1¢li’ (Cl 1)
a2C4 a b pc pd

- W(Tabcd + 375ab,v5ca T 4TV5,a,1/5,bcd)¢ij¢jk¢k1¢1['

(C12)

Only the overall normalizations (couplings) and taste fac-
tors differ from those in Eq. (Cl). Therefore the same
contractions and corresponding products of Kronecker
deltas and integrals that appear in Eq. (C3) enter the
calculation, and we can obtain the loops for each of the
vertex classes in Egs. (C9) through (C12) from Egs. (C3)
and (C5) by taking m; — 1 and replacing 7., in Eq. (C5)
with the appropriate linear combinations of traces from
Egs. (C9) through (C12).

Noting that the taste factors in Egs. (C9) through (C12)
all have the same form, viz.

Tabed + 37—xabxcd - 495S7xashcd’ (C13)

where

5 for vertices o« C;

v for vertices = C,
s=4" : ° (C14)

v for vertices = Cy

vS  for vertices x Cy

and recalling Egs. (C6) and (C7), we find the taste factors
in Egs. (C9) through (C12) are
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— Ss —
Tttee + 3Tsttscc 460 Tsistce —
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16(1 — 6556%)

Tibp T 37'xszzb - 405sT.vtsbtb = 49}7[(1 + 3607565 — 40559”)

_ 5s —
Tiobt T 3Tsibsor — 407 Trsppr =
— Ss —
Tatta + 3Tsatsz‘a 460 Tsastta —

— Ss —
Tatat + 3Tsalsal 46 Tsastat —

Taart T 3Tsaas —

Replacing the taste factors in Eq. (C5) with these (and
taking m; — 1 there) leads directly to Eq. (65).

APPENDIX D: COEFFICIENT CALCULATIONS

Here we detail one way to calculate the coefficients in
Tables I, II, and III. The coefficients defined in Egs. (66)
and (67) can be computed similarly. As a by-product of our
calculation, we obtain the intermediate results of Tables V
and VI, which we calculated twice: once using the (anti)
commutation relations of the generators to count the posi-
tive and negative terms in each sum, and once using the
relation 69° = 1,,,,/4 and a computer. We have also
checked Table V (VI) implicitly, using an independent
accounting scheme to arrive at the coefficients A§R
(Adisey given in Table II (I1I).

The coefficients 8%y are defined in Eq. (85):

1
6CBOIE“1 Yy Z Z waathabt(l + eab)’

(D)
32 aEB bEV,A
1
=35 2 lov(rau(+ 6 (D2)
m,aEB
+ a)A(Ta,,LLS,t)z(l + ea,y,S)], (DS)
and we note
2 if[T9 &,5] =0
|+ gan® — { LT Eue] =0y
0 if {14 ¢,51=0 DY

TABLE V. Sums for evaluating the coefficients Agy. All the
sums required for the coefficients A§F can be obtained by

repeated use of the results in the first three lines.

1e P I v A T
z,u,gl.“ _4 4 _2 2 0
3,00 —4 4 2 -2 0
D0 6 6 0 0o -2
Zp,,u<1/6#v’p0#m 0 0 0 0 0
Z/J,Iuelupeﬂt 8 _8 4 —4 O
DI L 8 -8 4 4 0
ZP<A‘#<V6MV,;7/\0#V,[ 12 —12 0 0 4
PSRl 0 0 0 0 0

peru 0PN O 0 0 0 0 0

Ss —
460 Tsasatt —

4(1 + 36070 — 46%¢*)
A(1 + 300 — 46%9*)
4641 + 36% 6 — 46%6°)
16(1 — 6%:6%).

[

so that
op=0 VF (D5)
and
1
8 = 1 2Lov(mu) + @a(rus )’} (D)
"
=D [wydH + w641, (D7)
"
=4 w, iftF=A. (D8)
0 otherwise
Similarly, for B = V we have
1
6(\:/01?1 = 3_22[0)V(TVMZ)2(1 + 0,}“)
v
+ wA(TV,MS,t)Z(l + 0’/’#5)]’ (D9)
1 1
=—Yoy(r) + 2 D w1, 5% (D10)
16 8=,
4oy it F=1
op=42w, IfF=T, (D11)
0 otherwise

and for B = A, we have

TABLE VI. Sums (in addition to those in Table V) for evalu-
ating the coefficients AJs°. The last three lines can be obtained
from the first two, since 9*>! = g5 9H!,

‘€ P IV A T
3 s O ORI G 0o 0 12 -12 0
>, 07640 01 -8 -8 4 4 8
S pcauc 0PMORIPAGEY —12 =12 0 0 20
>, 00610 611 -8 -8 -4 —4 8
DR T 0 0 -12 12 0
>, 075610 g1 -8 -8 4 4 8
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5con = Z[wV(TVS /”)2(1 01}5’”)

+ wA(TVS,,u,S,t) (1+67#)] (D12)

1
= _22 a)V(TV /.LSt I+ 0#5 V) + a)A(TV‘U,t)z(]‘ + ev,u,)],
wv

(D13)
OF =q4w, fF=1. (D14)
0 otherwise
Finally, for B = T we have
=3 2 [ovmmul 1+ 07w
mp<A
T wa(Tppus)?(1 + 0P213)], (DI5)
16 Z [wV(TpA ,u,t) + a)A( p)x uS, I) ] (D16)
p<A
MFEp,A
3wy if F=A
o =43w, IfF=V. (D17)
0 otherwise

These results are straightforwardly obtained by substitut-
ing for ¢ and counting the number of nonzero terms in the
sums. For evaluating the traces, the (anti)commutation of
the generators 7, the fact that (T%)? = &, the orthogonal-
ity relations Tr(T“ T?) = 457", and the traces over products
of Euclidean gamma matrices vy, are useful.

The coefficients of Table II are defined in Eq. (86):

Agp = Z Ay — (A, + AY)).

a€B

(D18)

Substituting for the coefficients A, and taste splittings
using Eqs. (66) and (82) gives

con —

BE = cmb(l + 090" — 6309" — °09™), (D19)

b#1

f2 Z (C (1 + 95295t — g5t — 0511)
aEB

+ ) Co(1+ grragrrt — grrt — grra)

n<v

+ D C3(1 + 0191 + gLt + 1)
y22

+ D Cy1 + GH3agrST + GrS1 4 gr3a)) (D20)
M

Writing out the sum over each irrep B gives
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s =0, (D21)
con 48 t 5.t
Agon = f—22(c3(1 + 011 + C4(1 + 6#57),  (D22)
o
24
AYR = FZ(zcl(l - 6"
P
+ ) Coll + grrrgurt — gurt — gure)
u<v
+ D C5(1 + 1ror + 11 + gre)
y23
+ D Cy(1 — grrouS + gr5T — gur)), (D23)
o
con — Z(zc 1- 95t)
+ Z Co(1 + GLrpryt — gunt — gure)
m<v
+ D C5(1 = grrort + 1 — gre)
)
(D24)

+ D Cy1 + 012 O#S + g1 + gre)),
Y23

Hryvt — a,u,v,p)\)

con — Z(ZQ(I L

f2 P<A <V
+ D C5(1 + grrrgus + gui + grrd)
)

+ 3 Cy(1 + grrrorst + guSt 4+ eﬂm)). (D25)
w

Inspecting Eqgs. (D22) through (D25), we note the requisite
sums. Their values are given in Table V. Using Table V to
evaluate Egs. (D22) through (D25) yields the results of
Table II. For F = P (t = 5), all the coefficients explicitly
vanish, as they must.

The coefficients of Table III are defined in Eq. (94):

Adise = 3 (AL, + 0UA, + (1 + p/2)A,).

a€EB

(D26)

Substituting for the coefficients A!,, taste splittings, and
coefficients p“’ using Egs. (66), (67), (82), and (90) gives,
for B # 1,

Mgy =

Zcb(_l + gat(eabebt _ 05170171) + gababS)’

2
s
(D27)
and for B = I,
Adise = = Zcba + bt — obgb — 9%).  (D28)

2
f b#I
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For B # I, adding and subtracting Egs. (D19) and (D27)
gives

Adise = Ason —6NpAp (B # ), (D29)
Adise = Agon, (D30)
Adise = ASH — 36A, (D31)
ARy = —AF, (D32)
Afie = —A%D, (D33)
Afise = — ASon, (D34)
Afy = —ASR. (D35)

while for B = I, comparing Eqgs. (D19) and (D28) gives
Afpe = Af. (D36)

Equation (D29) implies Eqgs. (97) and (98); they and
Egs. (D34) and (D35) can be used to cross-check the
results in Table III. Equation (D36) and Table II give the
coefficients A%, while the coefficients A% and Agise do
not appear in Eq. (93); the remaining coefficients in
Eq. (93) are Adis¢ and Adie.

Writing out the sum over b in Eq. (D27) gives

‘ 24
A%IIS:C == <C1(_1 + 0at(05a95t _ 95t) + 65(1)
f aEB
+ ) Co(—1 + gui(grragryt — gurt) + grre)
u<v

+ D C3(—1 + 69 (gre g + g1) — gra)
y23

+ 3 Cy(—1 + 6(g1520#5 + g51) — 0#«5’“)),
"
(D37)
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and writing out the sums over the vector and axial irreps
(B =V and B = A) gives

. 24
Al = f—zz(zcl(—l — 676"
P

+ Y Co(—1 + 001 (grrPgrrt — Grrt) 4 grrp)

u<v

+ D C5(—1 + 6161, O11 + G11) — GrP)
o

+ 3 Cy(—1 — gri(grr oS — grST) + W)),
"

(D38)

o 24
Adse = f—zz:(ZCl(—l — 6r516%)
P

+ Z Cé(_l + epS,I(H/LV,pG,MV,t _ 0/1,1/,[) + e,uu,p)

n<v

+ ) C3(—1 = 0P51(01P 01 — G11) + 64P)
y23

+ ZC4(_1 + GPSI(QHrPGRST 4 guST) — 9#;7))_
I

(D39)

Examining Egs. (D38) and (D39), we note the sums be-
yond those in Table V that are needed to evaluate the
coefficients Al and A4c. The values of these sums are
given in Table VI. Using the sums in Tables V and VI in
Egs. (D38) and (D39) yields the results in Table III. From
Eq. (D28) and Eq. (D37), we see that Adic = Adise =
Adise = 0, as necessary for the result in Eq. (93) to reduce
properly in the taste Goldstone case.
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