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We present a Monte Carlo renormalization group study of the SU(2) gauge theory with two Dirac

fermions in the adjoint representation. Using the two-lattice matching technique we measure the running

of the coupling and the anomalous mass dimension. We find slow running of the coupling, compatible

with an infrared fixed point. Assuming this running is negligible we find a vanishing anomalous

dimension, � ¼ �0:03ð13Þ, however without this assumption our uncertainty in the running of the

coupling leads to a much larger range of allowed values,�0:6 & � & 0:6. We also attempt to measure the

anomalous mass dimension using the stability matrix method. We discuss the systematic errors affecting

the current analysis and possible improvements.
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I. INTRODUCTION

Technicolor theories with fermions in higher repre-
sentations of the gauge group can potentially provide a
dynamical electroweak symmetry breaking mechanism
without conflicting with electroweak precision data.
Minimal walking technicolor is an example of such a
theory, a SU(2) gauge theory with two Dirac fermions
in the adjoint representation [1,2]. It is expected from
perturbation theory to be in or near to the conformal
window, although any new infrared fixed point (IRFP)
is thought to occur at strong coupling and so nonper-
turbative results are necessary. Initial lattice simulations
showed some evidence of walking dynamics and
mapped out the phase diagram of the theory [3,4].
Subsequent Schrödinger functional lattice simulations
have indeed found that the gauge coupling runs very
slowly [5–7], more slowly than the perturbative predic-
tion. The more recent Schrödinger functional study [8]
finds a change of sign in the discrete � function at
strong coupling, indicative of an IRFP. A recent study
using Creutz ratios to measure the running coupling
found evidence for backwards running or absence of
running at strong coupling [9]. If indeed the theory
possesses an IRFP, then the anomalous mass dimension
� at the fixed point coupling will be a scheme inde-
pendent quantity. One of the purposes of the present
paper is to compute � using Monte Carlo renormaliza-
tion group (MCRG) methods. In order to be phenom-
enologically viable (yield the correct quark masses
while having an extended technicolor scale that is large
enough to suppress flavor-changing neutral currents) the
theory must have a large anomalous mass dimension
(� � 1) [10–12], and recent work suggests that � > 1 is
required [13].

A conjectured all-order beta function [14] predicts
� ¼ 11=24 ’ 0:458 for this model.1 This value is also
consistent with the perturbative result of � ¼ 0:500 in

the MS-scheme up to four loops [16,17]. The anoma-
lous mass dimension has been measured nonperturba-
tively in recent lattice studies [5,8,18,19]. These give a
variety of results: 0:05<�< 0:56, � ¼ 0:31� 0:06
and � ¼ 0:51� 0:16.
In this work we measure the discrete � function and

the anomalous mass dimension using the Monte Carlo
renormalization group two-lattice matching method. This
technique has recently been used to investigate theories
with many flavors of fermions in the fundamental repre-
sentation [20,21] of SU(3). One of our goals in this
paper is to exhibit the systematic uncertainties in the
MCRG approach. Indeed, we will find that the matching
that is involved leads to significant errors, which we
argue is due to being still some distance from the
renormalized trajectory with the number of renormaliza-
tion group blocking steps that we are able to take. When
the uncertainty in the matching of bare couplings is
propagated through into the anomalous mass dimension
analysis, a wide range of values is obtained. We also
investigate using the stability matrix MCRG method
[22], which in principle allows the determination of all
the critical exponents of a system. For our simulations
and measurements we use the HiRep [23] implementa-
tion of the Wilson plaquette gauge action with adjoint
Wilson fermions and a rational hybrid Monte Carlo
(RHMC) algorithm with two pseudofermions.

1This prediction supersedes the original all-order conjecture
[15] of � ¼ 3=4 for this model.
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II. TWO-LATTICE MATCHING METHOD

Here, the renormalization group (RG) is implemented
by the real-space method of block transformations. Each
blocking step changes the scale by a factor s; irrelevant
couplings will flow towards the fixed point (FP), and
relevant couplings will flow away from it. After a few
steps the irrelevant couplings should die out, leaving the
flow following the unique renormalized trajectory (RT). A
crucial point is that the validity of the MCRGmethod relies
on having taken enough blocking steps to end up on the RT.
Spurious results will be obtained if this is not the case, and
for this reason it is important to repeat studies on larger
volumes in order to take more blocking steps. This aspect
of MCRG also suggests exploring several blocking
schemes, something that we do here, since they will ap-
proach the RT at different rates. Indeed, consistency be-
tween different blocking schemes is an indicator that the
RT is being reached. It is also important that the flow begin
in the basin of attraction of the Gaussian ultraviolet fixed
point (m ¼ g ¼ 0), in order to extract continuum physics.
This leads one to be suspicious of results for strong bare
coupling.

Suppose we identify two sets of bare couplings which
end up at the same point along the RT after n steps in one
case and n0 ¼ n� 1 steps in the second case. Then the

lattice correlation lengths are related by �̂ ¼ s�̂0, where s
is the blocking parameter. Since they correspond to the
same point on the RT, the physical correlation lengths
agree, �0 ¼ �, and hence the lattice spacings are related
by a0 ¼ sa.

To identify such a pair of couplings, we need to show
that the expectation values of all observables on these
gauge configurations agree, modulo scaling violations. In
the massless theory we only need to tune gauge couplings
� ¼ 4=g2. (On the other hand if one tuned all of the
couplings in a ‘‘perfect action’’ approach, the scaling
violations would vanish and all observables would agree.
In this paper we take the simpler approach of tuning the
unimproved Wilson action, which will lead to larger un-
certainties in our results.) Thus we will end up with a
matched pair �, �0. The quantity

�� ¼ �� �0 � sbð�; sÞ (2.1)

is the discrete � function (step scaling function) for the
bare gauge coupling. In the case with nonzero mass, one
must also match the massesm,m0. (Because we useWilson
fermions, the masses must be measured; we use the stan-
dard partially-conserved axial current mass.) This will
allow us to extract the anomalous mass dimension.

For the reasons alluded to above, we use three s ¼ 2 RG
blocking transforms, defined in Refs. [20,21,24]: ORIG,
HYP and HYP2. In the limit of a large number of blocking
steps, our results would be independent of the choice of
blocking. Therefore, the use of three different blocking
transforms allows us to check the systematic errors of the

procedure and the distance from the RT. The HYP and
HYP2 blocking transforms have also been empirically
found to work better than the ORIG transform at strong
coupling [21]. This is because optimization of the blocking
forces the blocking parameter � to be larger than the
stability limit �< 0:75 for ORIG, at strong coupling. We
have found the same problem in some of our analysis.

III. DISCRETE � FUNCTION RESULTS

Here we measure sbð�; sÞ. An IRFP would be indicated
by a change of sign as the bare � ¼ 4=g2 is varied from
weak to strong coupling. Since the mass is a relevant
operator, while the coupling is expected to be at best nearly
marginal, the mass has to be tuned to zero. We generated
�3000 configurations on 164 and 84 lattices for a range of
� values, each run near the critical bare mass. We opti-
mized the blocking parameter � such that n and n� 1
blocking steps agree on the value of sb. The resulting
measurement of sbð�Þ is shown in Fig. 1. Errors result
from the fact that different observables (plaquette, six-link
loops, and eight-link loops) give different matching pairs,
and hence different estimates of sb. This is interpreted as
due to residing still some distance from the RT after the
number of blocking steps that we are able to perform on
these relatively small lattices. Our results include both the
massless and small mass 164 runs; within errors, sb shows
no mass dependence for these small masses. The ORIG
matching values of sb are clearly positive throughout, the
HYP values are lower, and the HYP2 values are consistent
with zero within error bars. There is no clear crossover
from positive to negative values of sb for any of the block-
ing transforms. While the data are consistent with a fixed
point, they are not sufficiently precise to distinguish slow
running from a fixed point. This level of precision is none-
theless similar to that found in the Schrödinger functional
studies.

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 2  2.1  2.2  2.3  2.4  2.5  2.6  2.7  2.8  2.9

s b
(β

)

β

sb(β)

ORIG
HYP

HYP2

FIG. 1 (color online). Discrete � function obtained from 164

and 84 lattices, where the blocking parameter � is optimized
between the same pair of lattices.
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We have also performed � optimization with volume
matching, as described in [25], in order to demonstrate the
effect of this alternative. This consists of matching 84 to 44

lattices with two and one blocking steps, respectively, to
obtain sb ¼ ��8;4, as well as matching 164 to 84 lattices

with three and two blocking steps, respectively, to obtain
sb ¼ ��16;8. Then the blocking parameter � is optimized

such that ��8;4 ¼ ��16;8. The purpose of this is to cancel

finite volume corrections. Here we only present the modi-
fication that occurs when this approach is applied to the
HYP blocking scheme, since our main interest is to see by
how much this changes the picture. (We found that for
ORIG blocking, the � that is obtained is above the stability
bound, �> 0:75, for all the � we have studied. Hence this
type of blocking fails with this method of optimization for
these sizes of lattices.) The results are shown in Fig. 2. It
can be seen that this alternative method gives sb < 0 for all
but one value of �. Contrasting with Fig. 1, we see that
there is a stronger signal for sb < 0, but no region at which
the discrete beta function clearly changes sign. It is unclear
why one particular value of � has sb > 0. One important
point is that the error bars in Fig. 2 are similar to those in
Fig. 1. Since the size of the error bars is determined by the
mismatch in�0 between different observables, what we see
is that this alternative � optimization does not improve the
matching. That is, it does not reduce scaling violations,
which is not surprising, since it was only designed to
reduce finite size effects. We also remark that the single
step of blocking that is performed on the 44 lattice is most
likely insufficient to fall on the RT. For this reason, larger
volumes will eventually be needed in order to obtain
reliable results from this ‘‘volume matching’’ method.
Thus the results shown here should only be taken as
illustrative of the size of change that can result from this
alternative � optimization.

IV. ANOMALOUS MASS DIMENSION RESULTS

Here we assume that an IRFP exists and attempt to
extract what would in that case be a scheme independent
quantity: the anomalous mass dimension at the FP of the
RG flow. At an IRFP the gauge coupling is irrelevant,
leaving the mass as the only relevant operator. We could
therefore match the mass at arbitrary couplings, as long as
we have sufficient RG steps for the gauge coupling to flow
to its FP value. In practice we only have a small number of
RG steps, and because the beta function is small, the
coupling flows slowly towards its FP value. Nevertheless
we begin by setting �0 ¼ � and assume that the FP be-
havior will be approximated after the RG steps that we are
able to take. Next we consider the impact of choosing
�0 � � (i.e., within the uncertainty in sb), and will find
that this leads to a large systematic error for the anomalous
mass dimension.
We generated �3000 configurations on 164 and 84 lat-

tices, for a range of masses m and m0 respectively, at each
�. This allows for two versions of determining m0 on the
coarse lattice such that there is matching. In one case,
matching is performed after blocking 3 and 2 times on
the 164 and 84 lattices, respectively. In the second case,
matching is performed after blocking 2 and 1 times on the
164 and 84 lattices, respectively. We optimize the blocking
parameter� such that these two versions of matching agree
on the matching m0.
Because the bare mass is additively renormalized we

convert the bare masses to partially conserved axial current
(PCAC) masses. We measure the PCAC mass, am, as a
function of bare mass, am0, for each � on the 164 lattices.
We then use this to convert the bare masses on both 84 and
164 lattices to PCAC masses, as the measured PCAC
masses on the 84 lattices suffer from finite volume effects.
Our previous result [26] for the anomalous mass dimension
used PCAC masses measured on the 84 lattices and hence
contained a large finite volume effect, which has been
removed in the present work.
The anomalous mass dimension appears in the RG

equation for the mass

dðamÞ
d lnj�j ¼ �ymam ¼ �ð1þ �Þam; (4.1)

where � is the renormalization scale. At an IRFP the
anomalous mass dimension is a constant, so the expression
can be integrated to give

a0m0

am
¼ 2�þ1 (4.2)

for a pair of matching masses ðam; a0m0Þ, from which a
value for � can be extracted.
We used four values of �, � ¼ 2:15, 2.25, 2.35, 2.50.

The matching PCAC mass pairs using the HYP blocking
tranform are shown in Fig. 3. We also repeated the match-
ing using ORIG and HYP2 blocking, with similar results.
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FIG. 2 (color online). Discrete beta function with volume
matching � optimization, where different lattices are use in
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Different � values predict consistent values for the anoma-
lous mass dimension, as shown in Fig. 3, which uses all the
beta values and masses in the range 0:02< am< 0:16.

A combined fit to all �0 ¼ � results gives � ¼
�0:03ð13Þ. However, we next must consider the effect of
taking �0 � �, since we expect some flow in the couplings
under the RG transformations. For a given ð�; amÞ there
should be a unique matching set of couplings ð�0; a0m0Þ.
However, all of our observables are small Wilson loops,
and as such are strongly correlated and have a very similar
dependence on �0 and a0m0. This means that we can in fact
find a ‘‘matching’’ a0m0 for a range of values of �0, which,
given that we do not know the correct value of �0 to use,
significantly increases the error on our determination of �.
As an example, the matching mass pairs for � ¼ 2:25 and
various values of �0 are shown in Fig. 4.

In Sec. III, while we find that sb ¼ �� �0 is compatible
with zero, corresponding to setting � ¼ �0, the error
bars are relatively large, enclosing the region �0:08 &

�� �0 & 0:16. From Fig. 4 we see that for � ¼ 2:25
this region is approximately bounded by �0 ¼ 2:15 and
�0 ¼ 2:35, and encloses a large range of values for the
anomalous mass dimension, �0:6 & � & 0:6. This range
is representative of the errors in the anomalous mass
dimension due to the uncertainty in the correct value of
�0, and is the dominant source of systematic uncertainty in
our results. In our conclusion, we identify steps that should
be taken to reduce these uncertainties.

V. STABILITY MATRIX METHOD

The two-lattice matching technique used in this work
was first used to investigate quenched QCD [27–29], and
more recently QCD with many flavors of fermions [20,21];
it allows for a determination of the flow of the most
relevant coupling in a system. The original MCRG method
[22] in principle allows the extraction of all critical ex-
ponents of a system, both relevant and irrelevant.

A. Method

Consider a Hamiltonian that can be written as a sum of
couplings Ki and observables (operators) Si, H ¼ P

iKiSi,
and an RG transform Rs of scale s such that

Hðnþ1Þ ¼ RsH
ðnÞ ¼ X

i

Kðnþ1Þ
i Sðnþ1Þ

i ; (5.1)

where Sðnþ1Þ
i is the same observable as SðnÞi , only measured

on the lattice blocked nþ 1 rather than n times. The fixed
point of the RG transform is defined by the condition
H� ¼ RsH

� ¼ P
iK

�
i S

�
i , and near this point the flow in

the couplings can be expanded linearly to give

Kðnþ1Þ
i � K�

i ¼
X

j

T�
ijðKðnÞ

j � K�
j Þ; (5.2)

where

T�
ij ¼

@Kðnþ1Þ
i

@KðnÞ
j

��������H�
: (5.3)

The chain rule gives

@hSðnÞi i
@Kðn�1Þ

j

¼ X

k

@KðnÞ
k

@Kðn�1Þ
j

@hSðnÞi i
@KðnÞ

k

¼ X

k

Tkj

@hSðnÞi i
@KðnÞ

k

(5.4)

from which Tkj can be constructed using the identities

@hSðnÞi i
@Kðn�1Þ

j

¼ hSðnÞi Sðn�1Þ
j i � hSðnÞi ihSðn�1Þ

j i � AðnÞ
ij (5.5)

@hSðnÞi i
@KðnÞ

j

¼ hSðnÞi SðnÞj i � hSðnÞi ihSðnÞj i � BðnÞ
ij : (5.6)

The eigenvalues of the stability matrix T�
ij give the

critical exponents of the system [30], e.g., � ¼ lns= ln�h,
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all �0 ¼ � values in the mass range 0:02< am< 0:16.
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where �h is the largest eigenvalue, and so in the case of
MWTC ym ¼ 1=� ¼ ln�h= lns. From a single simulation
close to the critical point, correlation functions of
blocked observables are measured to construct the matrix
Tij, from which ym and other exponents can be deter-

mined. The formulas for AðnÞ
ij and BðnÞ

ij require the com-

putation of disconnected contributions, which generically
lead to large statistical errors. However, since we are
only extracting the largest eigenvalue in our analysis
below, these errors are under control, as can be seen in
our figures that follow.

If we are sufficiently close to a fixed point, then the
largest eigenvalue of T should stay constant as the number
of blocking steps is varied, and also as the number of
observables used to construct T is varied. This method
requires a larger lattice and higher statistics than the two-
lattice method, but potentially allows more information to
be extracted, in addition to being a useful consistency
check of the two-lattice method results.

B. Pure SU(2) gauge results

In this case the stability matrix approach is used to
study behavior in the vicinity of the ultraviolet fixed point,
� ! 1. One does not expect any relevant couplings, and
so the largest eigenvalue will correspond the gauge cou-
pling, with critical exponent of approximately zero. Hence
the eigenvalue that we expect to extract is unity.

We have seven blocked observables and four blocking
steps on the 324 lattices that we have simulated in this case.
This means that we can vary the number of observables,
and hence the size of the stability matrix T, from 1 to 7. We
can calculate T after 1=2, 2=3 and 3=4 blocking steps, for
any choice of our blocking parameter �. Unlike in the two-
lattice method there is no cancellation of finite size effects,
so these are likely to be large.

Using more than four observables (i.e. including 8-link
loops) tends to give a complex largest eigenvalue of T,
so we only use 1 to 4 observables to construct T.
Figure 5 shows the largest eigenvalue after 1=2, 2=3
and 3=4 blocking steps, as a function of � using
ORIG blocking, on a 324 lattice at � ¼ 3:0. At each
blocking step T is constructed using 1 to 4 observables,
and the spread of eigenvalues for the same blocking
level is used as a measure of the systematic uncertainty.
This is combined with the statistical uncertainty, ob-
tained from 100 bootstrap replicas, to give the overall
uncertainty represented by the error bars.

In general the results seem sensible: the variation with �
is reduced as the number of blocking steps is increased. For
small �, the eigenvalues are independent of the number of
blocking steps, within the spread of eigenvalues that one
obtains by varying the number of observables. The eigen-
values are consistent with a marginal eigenvalue of 1,
corresponding to the expected logarithmic flow of the
coupling in ‘‘pure-glue’’ Yang-Mills.

MWTC results

Here the mass is a relevant direction and will control the
largest eigenvalue of the stability matrix. Since this is all
we extract, our measurements will give an indication of
ym ¼ ln�h= ln2. For MWTC we have 164 lattices, so we
are able to construct T after 1=2 and 2=3 blocking steps;
again, finite size effects are likely to be large. Figure 6
shows the largest eigenvalue of T after 1=2 and 2=3 ORIG
blocking steps for � ¼ 2:25, am ’ 0:2. Between 1 and 7
observables are used to construct T, and the spread of the
largest eigenvalue at a given blocking level is small, show-
ing little dependence on the number of observables used.
Again, this systematic uncertainty has been combined with

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.55  0.6  0.65  0.7  0.75

La
rg

es
t E

ig
en

va
lu

e

α

Pure gauge, β=3.00, 324

FIG. 5 (color online). The largest eigenvalue of the stability
matrix T as a function of �, after 1=2 (solid, red online), 2=3
(dashed, green online) and 3=4 (dotted, blue online) ORIG
blocking steps on a 324 pure gauge lattice at � ¼ 3:0. Error
bars indicate combined systematic and statistical uncertainties.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.55  0.6  0.65  0.7  0.75

La
rg

es
t E

ig
en

va
lu

e

α

MWT, β=2.25, am0=-1.12, ORIG blocking

FIG. 6 (color online). The largest eigenvalue of the stability
matrix T as a function of �, after 1=2 (solid, red online) and 2=3
(dashed, green online) ORIG blocking steps on a 164 lattice for
MWTC, at � ¼ 2:25, am ’ 0:2. The error bars combine the
systematic and statistical uncertainties.

MONTE CARLO RENORMALIZATION GROUP MINIMAL . . . PHYSICAL REVIEW D 85, 094501 (2012)

094501-5



statistical errors (computed with 100 bootstrap replicas) to
give the error bars shown in the figure. On the other hand
there is a large difference between the two blocking steps,
which suggests that we are not close to a fixed point. Larger
lattices and more blocking steps are required. Incidentally,
this gives an indication that more blocking steps will be
required for the two-lattice method as well.

This is representative of the situation for all of our runs:
the picture is qualitatively the same for virtually all of
our values of � and m, and for all three RG blocking
transforms.

VI. CONCLUSION

We find a small anomalous mass dimension and at most
a slow running of the coupling. Our results are in fact
consistent with the existence of an IRFP. There are large
uncertainties in our results, which we interpret as being due
to scaling violations.

While the MCRG method is potentially a promising
technique for studying theories with an IRFP, our analysis
indicates that it is currently limited by several sources of
systematic error. Perhaps the single largest factor contrib-
uting to this error is the relatively small lattices that have
been used in this study; this limits the number of blocking
steps that can be taken. Because we seem to be far from the
RT, and the putative IRFP as well, extraction of an expo-
nent like � is problematic.

Adding more matching observables, in particular, fer-
mionic ones such as meson correlation functions, will give

a more stringent set of constraints on matching ð�0; m0Þ and
ð�;mÞ. Improved actions and observables would help to
reduce scaling violations and hence systematic errors in
matching. We are currently pursuing these improvements
to the present analysis.
A final issue that should be mentioned is that it is

possible to be in the wrong basin of attraction. If the bare
coupling is too strong, the physics may be determined by
an ultraviolet fixed point other than the Gaussian one.
There is no simple criterion for deciding whether one is
in the wrong basin of attraction. Scaling violations are
certainly not an indicator, since they will also vanish in
the vicinity of another ultraviolet fixed point, where there
is an alternative continuum limit defined. Modifying the
lattice action may help, but a careful study of the flow of
couplings needs to be performed in order to reliably ad-
dress this potential problem. Regardless of whether it is
useful for phenomenology, MWTC is a good testing
ground for approaches that propose to investigate this
crucial issue.
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