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We evaluate exclusive semileptonic decays of ground-state spin-1/2 and spin-3/2 doubly heavy cb
baryons driven by a ¢ — s, d transition at the quark level. We check our results for the form factors against
heavy quark spin symmetry constraints obtained in the limit of very large heavy quark masses and near
zero recoil. Based on those constraints we make model-independent, though approximate, predictions for

ratios of decay widths.
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L. INTRODUCTION

In this work we make a systematic analysis of exclusive
semileptonic ¢ — s, d decays of doubly heavy ground-
state cb baryons. Previous studies are very limited and,
to our knowledge, they only include the work in Ref. [1],
where the E/, — E, decay was analyzed using heavy
quark spin symmetry, the relativistic three-quark model

calculation of the 2., — Ej decay in Ref. [2], and the
combined branching ratio for the (., — E,) + (E., —
E)) + (E. — E}) decay evaluated in Ref. [3] in the
framework of the potential approach and QCD sum rules.'
Since the moduli of the Cabbibo-Kobayashi-Maskawa
(CKM) matrix elements |V.,|, |V 4| are much larger than
|V.|, one would expect the decay widths for ¢ — s, d
semileptonic decay of c¢b baryons to be much larger than
the corresponding b — ¢ driven decays, which have been
more extensively studied in the literature [1,5,7-10].
However, this is corrected by a smaller available phase
space, and the decay widths for ¢ — s transitions turn out
to be larger but of the same order of magnitude as the
b — ¢ decay widths, while widths for ¢ — d transitions are
much smaller. In any case, the analysis of the ¢ — s, d
decays of c¢b baryons could give relevant information on
heavy quark physics complementary to the one obtained
from the study of the b — ¢ decays.

Similar to what happens in atomic physics, in hadrons
with a single heavy quark, the dynamics of the light
degrees of freedom become independent of the heavy
quark flavor and spin when the mass of the heavy quark
is much larger than Agcp and the masses and momenta of
the light quarks. This is the essence of heavy quark sym-
metry (HQS) [11-14]. HQS guarantees that in a heavy

'In the case of the =, baryon, the spin of the cn (n = u, d)
pair is well-defined and it is coupled to one. For the &, and B!,
states, it is however the spin of the two heavy quarks (cb) which
is well-defined, 1 and O, respectively (see Table I). The different
spin configurations are discussed in detail in Sec. II.
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baryon the light degrees of freedom quantum numbers
are well-defined. Then, up to corrections in the inverse of
the heavy quark mass, one can take the spin of the two light
quarks to be well-defined. The two light quarks couple to a
state with spin § = 0 or 1 and then couple with the b quark
to total spin 1/2 or 3/2. This is the classification scheme
followed for the b heavy baryons in Table . However, HQS
cannot be applied to hadrons containing two heavy quarks.
There, the kinetic energy term needed to regulate infrared
divergences breaks the heavy quark flavor symmetry, but
not the spin symmetry for each heavy quark flavor [15].
This is known as heavy quark spin symmetry (HQSS).
According to HQSS [16], for large heavy quark masses
one can select the heavy quark subsystem of a doubly
heavy baryon to have a well-defined total spin. Again
this is the classification scheme followed for cb states
shown in Table I. There, the ¢ and b quark couple to a
state with spin § = 0 or 1 and then couple with the light
quark to total spin 1/2 or 3/2. Since the heavy quark
masses are finite, one has that for spin-1/2 baryons the
hyperfine interaction can admix both $ =0 and S =1
components into the wave function of physical states. As
shown in Sec. II, this is very relevant for spin-1/2 cb
baryons. In principle, one should also expect some degree
of mixing for the E, and E; states. However, in this latter
case the hyperfine matrix elements responsible for mixing
are proportional to the inverse of the b quark mass and
mixing effects are thus suppressed.

In Table I, we present the baryons involved in the present
study. As mentioned, the E,, 2/, and Q,, O/, are not
the physical states that will be discussed in the following.
The quark model masses in Table I have been taken
from our previous works in Refs. [5,6], where they were
obtained using the ALl potential of Refs. [17,18].
Experimental masses are the ones given by the particle
data group (PDG) in Ref. [4] and in the table we quote the
average over the different charge states. The agreement
with our results is better than 1%. For the actual calculation
of the decay widths, we shall use experimental masses

© 2012 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.85.094035

C. ALBERTUS, E. HERNANDEZ, AND J. NIEVES
TABLE 1.

PHYSICAL REVIEW D 85, 094035 (2012)

Quantum numbers of baryons involved in this study. For the cb baryons, states with

a well-defined spin for the heavy subsystem are shown. J7 and I are the spin-parity and isospin
of the baryon, while S§7 is the spin-parity of the two heavy or the two light quark subsystem. n
denotes a u or d quark. Experimental masses are isospin averaged over the values reported by the

PDG [4].

Mass [MeV]
Baryon JP 1 N Quark content Quark model [5,6] Experiment [4]
B ™ ! 1+ cbhn 6928
=1 ' ;o chn 6958
g 3t 3 1" chn 6996
Qe = 0 1" cbs 7013
Ql, ™ 0o o cbs 7038
Qr, 3 0 1 cbs 7075
Ay M 0o of udb 5643 5620.2 * 1.6
3, = 1 1" nnb 5851 5811.5 2.4
3 3 1 1" nnb 5882 5832.7 = 3.1
=7 5" 3 0f nsb 5808 5790.5 = 2.7
=1 5" 3 1" nsb 5946
=1 3t ] 1" nsb 5975
Q, = 0 1" ssc 6033 6071 =+ 40
Q; 3+ 0 1t ssc 6063

taken from Ref. [4] whenever possible. For the neutral
EZO state we follow Ref. [19] and take M 50 = %(ME;* +

MEZ—). For the 22 case, corrections to the analogous

relation, due to the electromagnetic interaction between
the two light quarks in the heavy baryon, have been eval-
uated in Ref. [20] using heavy quark effective theory and in
Ref. [21] in chiral perturbation theory to leading one-loop
order. Based on the known experimental data, they get
Mso = 5810.5+2.2 MeV [20] and Myo = 5810.3 *

1.9 MeV [21], their central values being 1 MeV lower
than the value one would obtain from the less accurate
relation Myy = 3(Ms+ + Ms_). Here we shall use the
value Mzg = 5810.5 MeV given in Ref. [20]. For the
Eﬁ,, E’b‘, 7}, we take our predictions in Ref. [6] which
are in agreement with lattice results by the UKQCD
Collaboration [22]. For doubly heavy cb baryons, there is
no experimental information on their masses and we shall
use our own predictions in Ref. [5].

The paper is organized as follows: in Sec. II, we discuss
the physical spin-1/2 c¢b baryons and the relevance of
hyperfine mixing for those states. In Sec. III, we give
general formulas needed to compute the semileptonic de-
cay width, we present the form factor decompositions that
we use for the different transitions and we present and
discuss our predictions for the ¢ — s, d decay widths. In
Sec. IV, we obtain HQSS constraints for the form factors
and make predictions for ratios of decay widths based on
those constraints. Finally, in Sec. V, we summarize the
main results of this work. The paper contains also two
appendices. In appendix A, we present our nonrelativistic

baryon states, while in appendix B, we give details on how
we evaluate the transition matrix elements and form
factors.

II. CONFIGURATION MIXING IN ¢b DOUBLY
HEAVY BARYONS

Because of the finite value of the heavy quark masses,
the hyperfine interaction between the light quark and any
of the heavy quarks can admix both § = 0 and 1 compo-
nents into the wave function for total spin-1/2 states. Thus,
the actual physical spin-1/2 cb baryons are admixtures of
the 2., B/, (Qu, Q) states listed in Table 1. The

physical states, which we shall call E(Clb), E(j,) and Q(Clh),
QEZ,) are given within the AL1 model by (5
Hpy = —0.9025(, + 04315, Mz =6967MeV,

i =0431E], +0.902E,,; Mz =6919MeV. (1)

Q) =—-0.8990, +0.437Q.,; M0 =7046MeV,
cb

05 =04370/, +0.899Q,; Mg =7005MeV,  (2)

Ura
Comparing the masses of the physical states with the mass
values quoted in Table I, one sees that masses are not very
sensitive to hyperfine mixing. On the other hand, it was

2Note that here we use the order cb, while in [5], we used bc.
Thus our 5/, and )/, states, where the heavy quark subsystem
is coupled to zero, differ in one sign with those used in [5].

094035-2



EXCLUSIVE ¢ — s, d SEMILEPTONIC DECAYS OF ...

pointed out by Roberts and Pervin [23] that hyperfine
mixing could greatly affect the decay widths of doubly
heavy cb baryons. This assertion was checked in Ref. [9],
where Roberts and Pervin found that hyperfine mixing in
the cb states has a tremendous impact on doubly heavy
baryon b — ¢ semileptonic decay widths. These results
were qualitatively confirmed by our own calculation in
Ref. [5]. We further investigated the role of hyperfine
mixing in electromagnetic transitions [24], finding again
large corrections to the decay widths. A similar study was
conducted by Branz et al.. in Ref. [25]. We expect con-
figuration mixing should also play an important role for
¢ — s, d semileptonic decay of c¢b baryons.

One way of minimizing the hyperfine mixing for cb
baryons is to use from the start baryon states in which
the ¢ quark and the light ¢ quark couple to a state of
well-defined spin S, = 0 or 1. Then the b quark couples
to that state to make the baryon with total spin 1/ 2. We
denote those states as :Cb, ch for S, =1, and 2 HCb, "
for S, = 0. The relation between the latter set of states
and the ones in Table I is given by (here B stands for

Eor Q)

. 3 1 s 1 3
Bch=—\/—_B’cb+chh, B, ==B */—

—B.
> 3 =58t Ba )

Hyperfine mixing for the B, ééh states is much less
important, since it is inversely proportional to the b quark
mass [5]. Physical spin-1/2 cb baryons states should then
be very close to the B,,, B, states and this is indeed the
case. If we write

Bilb) cosf  sind \( B,
o~ : . 4
B —sinf cosf J\ B,

we find 0z = —4.46°, 0 = —4.07° for the ALI inter-
quark interaction [5].

III. SEMILEPTONIC DECAY WIDTHS

A. General formulas

The total decay width for semileptonic ¢ — [ transitions,
with [ = s, d, is given by

2 12
|vL1|2G—M— [ Vol = 1LB(q) H op(P, Pdo,

(&)

where |V,| is the modulus of the corresponding CKM
matrix element for a semileptonic ¢ — [ decay (|V | =
0.97345 and |V, = 0.2252 [4]), G = 1.16637(1) X
107" MeV~2 [4] is the Fermi decay constant, P, M
(P, M) are the four-momentum and mass of the initial
(final) baryon, ¢ = P — P/, and w is the product of the
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initial and final baryon four-velocities w = v -v' =

2 2 _ 2
Af; 1,;1// = %. In the decay, w ranges from w = 1,
corresponding to zero recoil of the final baryon, to a
maximum value that, neglecting the neutrino mass, is given
by @ = Wy = W, which depends on the transi-
tion and where m is the final charged lepton mass. Finally
L2B(q) is the leptonic tensor after integrating in the lepton

momenta. It can be cast as
ap 2\ a8 N
LP(q) = Alq*)g*F + Blq )7, (6)

where explicit expressions for the scalar functions A(g?)
and B(g?) can be found in Egs. (3) and (4) of Ref. [26].
The hadron tensor H ,5(P, P') is given by

H«B(P,P) =

ST 12(3' ' P'|J%(0)|B, rP)

X (B, r'P' |JCI(O)IB, rPy* (7

with J the initial baryon spin, |B, rP)(|B’, ¥ P )) the initial
(final) baryon state with three-momentum P (P) and
spin third component r (+') in its center of mass frame.’
Our states are constructed in appendix A. Finally,
JH(0) = W, (0)y#(1 — y5)W.(0) is the c¢— [ charged
weak current.

B. Form factors for 1/2 —1/2,1/2 — 3/2
and 3/2 — 1/2 transitions

For the actual calculation of the decay width, we
parametrize the hadronic matrix elements in terms of
form factors, which are functions of @ or equivalently of
g*. The different form factor decomposition that we use are
given in the following.

(1) 1/2 — 1/2 transitions.

Here we take the commonly used decomposition in
terms of three vector F, F», F3 and three axial Gy,
G,, G; form factors

(B'(1/2), P P'|J%(0)|B(1/2), rP)

=¥ (P Yy [F\(w) = v5Gy(w)]
+ v Fy(w) — 756, (w)]
+ V[ F3(w) = 75Gs3() B (P).  (9)

The u, are Dirac spinors normalized as (u,)tu, =
2Eb,,.
*Baryonic states are normalized such that

(B, r'P'|B, rP) = 2EQ27)38,,6%(P — P') ®)
with E the baryon energy for three-momentum P.
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(2) 1/2 — 3/2 transitions.
In this case we follow Llewellyn Smith [27] to write

(B'(3/2), ' P'|F,(0)y*(1 — y5)¥ (0)|B(1/2), rP) =

PHYSICAL REVIEW D 85, 094035 (2012)

i (PTM#(P, P')ub(P),

cy cy o
(P, P') = [ﬁ(g“‘d — gty (gt PP g P+ o (gMg - P - gt P+ Cavg”‘]%

c cA c

3 (pAuf A M, . pl— Apl A oA A

+[M(g ~q qv“)+M2(g kq-P qP“)+C5g"+M2q q"]. (10)
Here u? )\ , is the Rarita-Schwinger spinor of the final spin 3/2 baryon normalized such that (2 o "NuBr = —2E'S,,, and we

have four vector (C3 45.6(@)) and four axial (C3 45.6(@)) form factors. Within our model we shall have that C¥(w) =

C V( ) = CA(a)) = 0.
(3) 3/2 — 1/2 transitions.
Similar to the case before we use

(B'(1/2), " P'1T,(0)y*(1 — y5)W.(0)|B(3/2), rP)y = (& (PYT**(P', P)ul (P'))* = aB (P')y*(T** (P, P))ty'u? (P),
P, ) = (- e (g - —Cf;,‘;’) (gq - P = qPo) = S12 (ghg P )+ 1 s
+< C;;fu) (g4 — %(g P — q"P) + Ci(w)g™ + :/[( )q”q"> (11)

Again, and within our model, we shall have that CY(w) =
Cl(w) = C4(w) = 0.
(4) 3/2 — 3/2 transitions.

A form factor decomposition for 3/2 — 3/2 can be
found in Ref. [10], where a total of seven vector plus
seven axial form factors are needed. In this case we
do not evaluate the form factors but work directly
with the vector and axial matrix elements.

In appendix B we give the expressions that relate the form
factors to weak current matrix elements and show how the
latter ones are evaluated in the model. Relations found
between matrix elements that simplify the calculation are
also shown there.

C. Results

The results we obtain for the semileptonic decay
widths of ¢b baryons are presented in Tables II (¢ — s
decays) and III (¢ — d decays). We show between pa-
rentheses the results obtained, ignoring configuration
mixing in the spin-1/2 cb initial baryons. In this latter
case, the E'Y, E? baryons should be interpreted, re-
spectively, as the 2/,, 2. states of Table I. We see
small changes for transitions to final states where the
two light quarks couple to spin 0. On the other hand,
configuration mixing effects are very important for
transitions to final states where the two light quarks
couple to spin 1, where we find enhancements or reduc-
tions as large as a factor of 2.

Note also that, even though |V,|%, |V.4I? > |V,,|%
the values we get for the decay widths are of the same
order of magnitude to what we obtained for b — ¢

transitions in Ref. [5]. In the present case, the greater
value of the CKM matrix elements are compensated by a
smaller phase space.

In the left panel of Table II, we compare our results to
the few available results obtained by other groups (we have
not found in the literature any previous result for ¢ — d

decays to compare with our predictions in Table III). Our

estimate, without configuration mixing, for the = M( . =1

transition agrees very well with the one obtamed in

Ref. [1]. For the E(Clb): — E’bo transition, we are also in

agreement with the calculation in Ref. [2]. There, the
authors use the =, baryon, which is almost equal to our
physical state Eﬁlb) We also see that our result for the

: =M+ _, =0 =+ _, =0
cor(rll‘)bmed 8 b )+ (B — )+
o] +

B, — 270) is in reasonable agreement with the one
predicted in Ref. [3]. This combined decay width is not
very sensitive to configuration mixing effects.

Besides the results shown in Tables II and III, we have
from isospin symmetry that

decay

(S — 35) = (&) — 39,
T(EG) — 357 = 20(E — ),
P(EGi— %) =2MEL =)
LB — 37) = 20(Eg) — 3))
LB, —3,) = 20(E5, — ),
N(E:,— 357) = 20(Eyg, — 33,
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TABLE II.
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I' decay widths for ¢ — s decays. Results where configuration mixing is not

considered are shown in between parentheses. Similar results are obtained for decays into

ut V.
[ [1071 GeV]
This work [1] [2] [3]
B — et 374 (345  (34)
EQ* — Elety, 2.65 (2.87)
ENT — Elety, 3.88 (1.66) 2.44 + 3.8
EQT - Elety, 1.95 (3.91)
EOY — 2ty 1.52 (3.45)
EQT L B0t y, 2.67 (1.02)
20" — 20t v, + EPet v, + Eety, 727 (7.80) 9.7+ 1.3
B — "‘26 v, 4.08
B — :g)eﬂ/ 0.747
B — Elety, 5.03
T [107" GeV]
Q0" — e, 721 (3.12)
Q2 - ey, 3.49 (7.12)
QS,” — Q" ety, 2.98 (6.90)
00— Q;—e Ve 5.50 (2.07)
Q9 — Q; e, 135
Q9 — Qi e, 10.2

dCorresponds to the decay of the écb state.

Our estimate from the total decay width and the branching ratio given in [3].

[(Eq)— E;) = NER, — =),

T(Eqga — B =~ T(Egy — B,

F(EGy— B = TEL — &)

L(EGy — E,) =T(EQ, — E)),
FEG—E)=TEG —&) O
F(EG — 5;) =T(EL, — &)
FES— ~b> ~ (=5, — E).

P(EG — B =T (G, — B,

N(ED,— ) =T(E, — ).

The sources of uncertainties in the present calculation are
the same as the ones we discussed for the ¢ — s, d decays
of cc baryons in Ref. [26]. First, the use of different
interquark potentials, like the AP1 [17,18] and Bhaduri
[28] potentials, to evaluate the wave functions could
change the decay widths at the level of 10%. This can be
considered as part of the uncertainties inherent to our
model. Another important source of uncertainties is our
lack of knowledge of the actual masses of the cb baryons.
For instance, a reduction of 70 MeV in the ()7, mass (a
mere 1% reduction) makes the ()7, — ()} decay width

smaller by some 25%. Precise decay width predictions
should await a precise mass knowledge of cb baryons.
Moreover, one has the possible contribution of intermedi-
ate D* and D7 vector meson exchanges [29,30]. This
mechanisms are not considered in our calculation, nor
have they been taken into account in the previous ones of
Refs. [1-3]. We expect such exchanges to produce small

effects as the D* and D? poles are located far from v/q2,,.
In any case, with the intermediate vector mesons being far
off shell, the computation of their effects will be compli-
cated due to the unknown strength of their couplings with
the singly and doubly heavy baryons, and the lack of a
reasonable scheme to model how the latter interactions
are suppressed when g> approaches the endpoint of the
available phase space (¢> = 0). From our experience in the
previous work of Ref. [30], in particular, from the D — K
semileptonic decay where similar g> exchanges were
involved, we would expect vector meson exchange effects
in the decay widths to be below the 25% already mentioned
above.

IV. HEAVY QUARK SPIN SYMMETRY

In this section, we use HQSS to derive model-
independent, though approximate, relations between dif-
ferent form factors and decay widths. This is similar to
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TABLE III. T" decay widths for ¢ — d decays. In between
parentheses we show the results without configuration mixing.
Similar results are obtained for decays into u*v -

' [1074 GeV]
0.219 (0.196)
0.136 (0.154)
0.198 (0.0814)
0.110 (0.217)

i
E(clb)u — A(,:e+ v,
B — At v,
=~ S,
=)+

:(Cb)u — X0ety,

B — 30"y, 0.0807 (0.184)
B = 30w, 0.147 (0.0556)
B — Aje'v, 0.235
B — Zhetr, 0.0399
Eufy— et v, 0.246

T [10"" GeV]
QY —Ejetr, 0.179 (0.164)
QY —Eyety, 0.120 (0.133)
QLY =B etr, 0.169 (0.0702)
QoY — By ety, 0.0908 (0.182)
Q4 =By et v, 0.0690 (0.160)
b —E;etr, 0.130 (0.0487)
Q) — Eyety, 0.196
O, — Ejetr, 0.0336
O — Ejetr, 0.223

what we did for b — ¢ decays of c¢b baryons in Ref. [8] or
more recently for b — ¢ transitions of triply heavy baryons
in Ref. [31].

The consequences of spin symmetry for weak matrix
elements can be derived using the “trace formalism”
[32,33]. To represent the lowest-lying S-wave cb baryons,
we will use wave functions made of tensor products of
Dirac matrices and spinors, namely [34]

. 1+ ¢ ] [ 1
B, —|—— — (v + YA uv,r],
b _2%&/3\/5( ) ysu( )y
. 1+ y
B, — T Ys]aﬁuy(vy r), (14)
. 1+ y
Bch_) -—2 y/\]aﬂué(v, r),

where we have indicated Dirac indices «, 8 and 7y explic-
itly on the right-hand side and r is a helicity label for the
baryon. These wave functions describe states* where the ¢
quark and the light quark couple to definite spin O (I§’Cb) or
1 (B, B:}). The b quark couples with that subsystem to
total spin 1/2 (B,,, B.,) or 3/2 (B%,). Note that B, = B, .
Under a Lorentz transformation, A, and quark spin rota-

“States are normalized to —2M = —iiu = itu,.

PHYSICAL REVIEW D 85, 094035 (2012)

tions S. and S, for ¢ and b quarks a wave function of the
form I, s U, transforms as

Faﬁ uy - [S(A)FS_ ! (A)]aﬁ[S(A)U]y)

(15)
Fa,B uy - [Scr]aﬁ[sb u]y

with U = u, \/%(v" + y")ysu, u*. On the other hand, the

final b baryons are represented by the following spinor
wave functions [33]

Ay, By — ul, (V) ) (16)

1
s, 2,0, — [— (W™ + YN ysul (v, r’)] (17)
b \/§ y

35 By Q) — ) (v, ), (18)

where here the states are normalized to —2M’. In this case
we have that

U, —[smul,  U,—I[s,Ul,. (19

The semileptonic decays are driven by the current J# =
Iy*(1 — ys)c, with [ = d, 5. Under a ¢ quark spin rotation,
it transforms as J* — J”SI. Thus, the only possible am-
plitude that is invariant under separate bottom and charm
quark spin rotations is of the form

U UTy (1 — y5)I'Q], (20)

where () is one of the two following functions, depending
on whether the spin of the light degrees of freedom in the
final baryon (Sj4,) is 0 or 1
Q=mn +ny, for Stighe =0
Q)= Biya+ Ba¥'ya + Bsva+ Byb'vy, for Sy, = 1.
(2D

Terms in ¥ are not included since #75 = 1%5 We are
interested in the transition matrix elements close to zero
recoil where we have that v'* = v#*, i'ysu = 0, vFi'a =
v'*ii'i = i’ y*ii. Besides we have the exact relations

vut = vt + yN)ysu =0,

it = it ys(v™ + y)‘)v’)L =0,

Yu=u iy =i

v ut = i*y, =0.

(22)

Taking all this into account, we can obtain approximate
expressions for the hadronic matrix elements that are valid
near the zero recoil point. Apart from global phases we get
the following results:
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(i) By — Ay, B Fi+F,+Fy=n G =0. (26
1 1+y
i 7 + ) uTr[ b1 — g Y Q] i
\/g Y)Ys Y Vs D) Yo (111) Bib - Ab, Eb
2 1
~—(n, — )i y*ysu = —=ni'(—y*ys)u, _ 1+
ﬁ("l m)i' y*ys Ay ¥s) u’u”Tr['y“(l — ) s %Q]
- 2 yilut = —qilut,  (27)
~ — ny)i'ut = —ni'ut,
where we have introduced n = —2(n; — 7). This R K
is a function that depends only on w, and it is the which in this case implies that at @ = 1
analog of the Isgur-Wise function firstly introduced
in the context of b — ¢ semileptonic meson _ CAM -M oA MM — M) Lo —
decays [33]. 3T 4 M? 5= 1M
We see that near the zero recoil point, HQSS con- (28)
siderably reduces the number of independent form
factors. In fact we find that for w = 1, The 7 Isgur-Wise function is different for different
1 light quark configurations in the final state and
Fi+F,+ F;=0, G =—%=n. (24) depends also on whether the initial light quark is
an n = u, d quark or a s quark. However,
V3 d quark k. H SUQ)

flavor symmetry could be used to establish rela-

(ii) é/b — A, B, tions between all of them. Besides, » would be
¢ y normalized to 1 at zero recoil (n(1) = 1) in the
_ 1+ 1 In the actual calculation devia-
" Trl v (1 = —1 QO equal mass case. In the actual calculation devia
w rI:y ( 7s)(=1) 2 Ys ] tions from this limiting value are expected due to
~ —2(n, — m)d'y* u = ni'y u (25) the rqismatch of the initial and final baryons wave
functions.
from where one can conclude that at w = 1
(iv) Bepy — 33, B}, Q,
1 1 1+
— i —=vys (V" + YN —= (v + y° uTrI:“l— —UQ:I
\/575( 7)ﬁ( Y7 ysuTr| y#(1 = y5) ——7,0,
_ 2
~ =2(B — ,32)”/<7”L - 5’)’”75)”
_ 2
= pil(v* =37y 29)
where we have defined 8 = —2(8, — 8»), which is the Isgur-Wise function in this case. For @ = 1 one would then
obtain that
2

F1+F2+F3:B, G1:§B (30)

(v) B/Cb - Eb, E;,, Qb

1

- iy + T = -0 0, ] =

1
TVSQ/\] \/g(ﬂl = By ytysu = \/—gﬂﬁ/(_Y’Ws)u (31)

s

that for @ = 1 implies that

F1+F2+F3:0, Glz (32)

1
Nols

i) By, — 3y, B, Q)
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1 1 2 1
— i —=ys(v + )‘u"TrI: K1 — ys) —— vy, ]z——( — By)i'u* = —= Bit'ut (33)
\57’5 ") yH( Vs ) Yaiia \/§ B1— B2 \/§B
from where at w = 1
M—-M MM — M) 1
_cA _ (A A _
C3 M C4 MIZ + C5 - ﬁﬁ (34)
vii) B, — 35, B, Q
1 1+ ¥ 2 1
n—_ (v + y” uTr[ K1 = y5)—— v, ]z—— — W'ty = — Bit'*u 35)
A Y7)Ys Y= ys) == 7.0 \/g(ﬂl B2) \/5,8 (
and thus at = 1 we have
M-M MM —-M 1
(6 + 4 ( 5 ) +C=— (36)
M M f
(viii) BL, — 35, B}, Q;
= /A 1 + ﬁ ~ ) — )
i uTr| y#(1 — ys)(—1) ¥sQy | =281 — B u = —Bi'*u, (37)
One obtains in this case that at w = 1
M-M MM - M)
A A A — _
(&4 i + Cy e +C§ = —p. (38)
(ix) B}, — 25 B Q;
IA,, 0 n 1+ ﬁ ~ =IA A, — =IA N
u? Tel y#(1 = 75) == Yo | = 2(B1 = B y* (1 = yshuy = =B y*(1 = ys)uy, (39)
which implies, for instance, that the VO vector matrix
element should be equal to —f at @ = 1 when evaluated 1 , , , , , , , ,
in between states with the same spin projection. — P +FR+F §Cb = Ay
. . L 0.8 V3G Zb = M
As for the n function above, the 8 Isgur-Wise function is N - R4+ P4 F 2 A
. . . . . Pe o 1 2 3 ~cb b i
different for different light quark configurations in the final LN e A
. . . TN 1 —ch b
state and depends also on whether the initial light quark is 0.6 Sl M op MO oa BE AL
_ . . TN 3T 7\ 5 —ch b
an n = u, d quark or a s quark. Besides, if the quarks o
involved in the weak decay had equal mass one would have 04l RN 1
that B(1) = 1 when the two light quarks in the final baryon : '\‘-\m\
are different (39, 370, B7, :ZO, B, B, )and B(1) = V2 T
when they are identical (%, ,Q,, Q7). Again, in the 02 ERRIE
actual calculation deviations from these limiting values are
expected due to the mismatch of the initial and final baryon _ - |
wave functions. 1 1.005 1.01 1.015 1.02 1.025
In Figs. I and 2, we check that our calculation respects w
the constraints on the form factors deduced from HQSS. FIG. 1 (color online). Test of HQSS constraints: Different

For that purpose, we have assumed the BL.;,, B’ » States have

masses equal to that of the physical ones B(Clh), Bgzh) One
sees deviations, due to corrections in the inverse of the
heavy quark masses, at the 10% level near zero recoil. In
fact the constraints are satisfied to that level of accuracy
over the whole w range accessible in the decays. We found

combinations of form factors obtained in this work for several
transitions with a A, in the final state (Shghl 0) For the
calculation we have taken the masses of the =, Mcb to be
the masses of the physical states “E.lb), :izb). Similar results are
obtained for the O, O, QOF, — =, and the =, =.,.
éfb —F =, transitions.
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similar deviations in our recent study of the ¢ —s, d
decays of double charmed baryons in Ref. [26], where
we explicitly showed these discrepancies tend to disappear
when the mass of the heavy quark is made arbitrarily large.
One also sees that at our results for (1), B(1) are system-
atically smaller than would be expected if the quarks
participating in the transition had equal masses. This re-
duced value is due to the mismatch in the wave functions
due to the different masses of the initial (¢) and final (d or
s) quarks involved in the transition.

J

N — 2MM’
B, — Ay, By LAPH g ~

Bl,— A, E,

B\ﬁb — Ab’ Eb EQBHaB =~

N

LPH 5 =~ 2MM’772|:A(4 —2w) + B(Z

2MM’

PHYSICAL REVIEW D 85, 094035 (2012)

The results of Figs. 1 and 2 show HQSS is then a useful
tool to understand the dynamics of the ¢ — s, d decays of
cb baryons, as it was also the case for their CKM-
suppressed b — ¢ decays [5,8]. We take advantage of
this fact and we now use the HQSS approximate hadronic
amplitudes in Egs. (23), (25), (27), (29), (31), (33), (35),
(37), and (39) to obtain model-independent, though ap-
proximate, relations between different decay widths. With
the use of those HQSS amplitudes and the leptonic tensor
in Eq. (6) we obtain that near zero recoil

nz[—A(4 +2w) + B(2W — (@ + 1))] (40)

(v-q@' - q)
— (w

- 1))] 1)

(o + 1)[—3A + Jf,@((vlq';])2 - 1)] (42)

Boy— 3, E,Q, LBHaB~2MM’,82|:A (20 — 26w)+89< (“‘ILM 5 — 13a))>] @3)

Bl,—3, 5,0, [ofH,,~2M ﬂz[—A(4 +20) + B(ZW ~wen)] @
Br, =3, 5,0, LobH, ~ M g, 1) 3A+B((U ar )] 45)
Bo—3 50, L= g+ )] - 3A+B( Ll -1)] (46)
Bl,— 3L ELQL  L[UH,, ~ 4MM'52( +1)[ 3A+B<(U ar 1)] @7)

A 8 2
B, — S5 EL Q) LUH,, ~ MM'52[—A§w(1 +2w?) + 39((”")() (20 + 80?) — w(6 + 4w2))]
(43)
We can now follow our work in Ref. [8] and, near zero recoil, take @ = 1 and, because v’ = v, also approximate
. )2 I, . I )2
(v 2q) _@q9-q ([ 261) ’ (49)
q q

Besides, for a light lepton e or u we have that B =

—A near zero recoil.

Using those approximations and denoting by X the quantity in Eq. (49) we arrive at the following approximate results

valid near zero recoil

A

B, — A E,

A

/ Lol
B, — Ay B,

-EaBHaB ~ —

AMM'’
n?AQ2 + X) (50)

L“[”HQB ~ 4AMM'n*A(1 — X) (51)
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A

_
By = Ay By

Bcb i Eb, E;), ‘Qb
Blcb - Eh, E/b’ Qb
B:b - Eb, EZ, Qb
B.,—3 55 Q;
f—t *

b B

* s s %
» = 25 B Q)

PHYSICAL REVIEW D 85, 094035 (2012)

LPH, 5~ — MM 7?AQ2 + X)
LoPH,, ~ 4MM' BA(1 - 13X)
LPH, 5~ 4Mi]VI/BZA(z + X)
LPH, 5~ — MM B2AQR + X)
LAPH 5~ SLM/ BEAQR + X)
LPH 5~ 8MM/ B2AR + X)
LAPH 5 ~ 4MM/ B2A(1 + 14X).

(52)

(53)

(54)

(55)

(56)

(57)

(58)

Can one extrapolate the above expressions over the whole
w range available in a given transition? In fact, B = —A to
a very high degree (better than 1%) practically in the whole
w range accessible in these decays. On the other hand one
has that v- ¢ =M — M'w, v'- g = Mw — M’ and one

1.5 ; . :

|~ Fi+ F+ F;

- gGl
T R+ R+
05F-- v3a, |
© VB(- oAt Q5
- ; 0p 9 ]
B A
P R I AL S
1 1.005 1.01

FIG. 2 (color online). Test of HQSS constraints: Different
combinations of form factors obtained in this work for transi-
tions with a €, O} in the final state (Sj, = 1). V3 232 Stands
for the matrix element of the zero component of the vector
current for spin projections 3/2 both in the initial and final
baryon For the calculation we have taken the masses of the flcb,

Q' to be the masses of the phys1ca1 states Qilb) , Q Slrmlar
results are obtained for the =, HC;,, HC;, — 2,,, the
;—%b, Elcby Ecb - Elb, EZ, and the ch, ch, ch :;,, E«z

transitions.

expects larger deviations in approximate relation in
Eq. (49) for @ = wyy,. For instance, for the e — Ay
transition, one finds that ’;_q =120 for w=1+
0.9(wmax — 1). Fortunately, the differential decay distribu-
tions peak at much smaller w values, so that errors related
to the use of Eq. (49) in the whole w range are less relevant.
We show this in Figs. 3 and 4, where we glve d1fferent1al
decay widths for transitions with a A, or an Qb b, inits final
state. We have assumed the masses of the B, B! c» to be the
masses of the physical states BL B> BL e

With this in mind and further assuming Mz , = M B, =
M B, and Mg = M B = M p; We can make the following

approximate predictions based on HQSS

20 T T T T T T T T
15k /{.’. \\\\ Ecb — A\b |
% ’,_.. D RN
U i II:. \.\\ _‘Cb b
=t 3 DN T ek
— , \ = = A

N b b

L1007 c 4
— i TN
— ! RS

h
'g% SL .'\'\.\..\ _

0 . | . | . | . | .
1 1.005 1.01 1.015 1.02 1.025
w

FIG. 3 (color online). Differential decay widths for the speci-

fied transitions.
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1000 | ' ! ' ' ' '

T %:b =
Szg;b — Qb’
SAZ(:b =,
— gA)lcb — SZZ |
: (}gb — QE
~~~~~~~ o .ch — “Qb

500

do 19014 Gev]

I
1.015

FIG. 4 (color online).
fied transitions.

Differential decay widths for the speci-

F(écb — Ay = F(éib — Ay),

[(B.y — E,) = T(B, — E))

(59)

[(E.,—3,) ~30(E, —3,)
~ (B, — 35) = N(EL, — ),
T(B, — E}) ~ 3T(B", — 2
=~ il_‘(écb - :,b) ~ %F(élcb - E;),
F(ch - Qb) = 3F(ch - Qb)
~0(Q., — Qf) = I0QL, — QF)  (60)

F(éjb ) F(éjh —3,) +T(E, — ),
I8, — E;)=T(B, — E,) + (B, — E,), (6]
T, — Q) = T(Q, — Q) + T(Q — Q).

Assuming that the states B,,, B’,, have the same masses

M g

as the physical states B, we get the following nu-

merical results (we give = m)
[E, = A)=T(E —AY  0219=0235
(62)
rQd, —=,)=rQn—g,) 0179 =0.19
(63)
&, —>E)=T(E, -E) 374=408 (64)

T2, — 39) = 30(El) — 39) = (5], — 39
~IN(EL, — 310
0.0930 = 0.120 = 0.0946 = 0.0813 (65)

PHYSICAL REVIEW D 85, 094035 (2012)

P, — By) = 30(@Q5 — 5y = 31, — &)
~ 1NN — B~
0.0776 =~ 0.101 =~ 0.0826 ~ 0.0714 (66)
F(=e — Bp) ~31(Ey — B ~31(Es, — B
~ (=G — )
1.65 = 2.24 = 1.74 =~ 1.47 (67)

T(Q5 — Q) =30 — Q;) = 3T(QY — Q)
~ INQS, — Q;7)
298 = 4.05 = 3.57 = 3.01 (68)

T(Ey -39 =T(E, —»3)+T(ES, -3

0.246 = 0.258 (69)

QN — B =TQ9 -5+ Q% — B
0.223 = 0.213 (70)

[(EL — B9 =T(E, — EP) + D(EL — 2P)
5.03 = 4.99 (71)

L5 — 0;7) = TQ5 — Q) + (02, — Q)
10.2 = 9.16. (72)

We find our results agree in most of the cases at the level of
10% with some notable exceptions in Eqs. (65)—(68).
These latter discrepancies are largely due, not to the use
of the approximate HQSS-inspired relations in Eqgs. (50)-
(58), but to the fact that the different baryons that appear in
the relations do not have the same mass, and therefore the
available phase space is different for each transition For

instance, if we just make the masses of =, = equal to

2,

the :Cb mass and the mass of = equal to the = mass
we get
f*('—'/+ /0) ~ 31'*(:?2— /0) ~ 3F(ch :ZO
11“('_’l+ "[;0)
1.65 = 1.69 = 1.66 = 1.65 (73)

or in the () sector, with similar changes in the masses,
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L — Q) = 30Q:; — Q) = %f‘(ij - Q)0)
~ @ — ;)
2.98 = 3.07 = 2.93 = 2.91. (74)

The agreement improves considerably. Then, the HQSS-
derived relations are appropriate to evaluate the hadronic
amplitudes but the final results may be very sensitive on
actual mass values.

Thus, mass differences and the variations induced by
them in the available phase space cannot be neglected.
Besides the physical states B(Clb), B(Czb) are not exactly equal
to the B, EQ,, states and this could also affect some of the
decay widths. In what follows we give the corresponding
numbers for the physical states.

TEWT - A) =T(ES —A) 0219 =0.235
(75)
rQl—g,)=1T0Q9—-5,) 0179 =0.19%
(76)
LE) - E)~TE; —-E) 373~408
(77

F(EQ - 39) ~ 30 — 39 ~ WEV — 519
%fw(—'(ZH EZO)

0.110 = 0.120 = 0.121 = 0.0737 (78)
[Q8° — 5 =~ 30 — Ey) = Q) — 55
2 0 =e—
IF(Q( ) — =
0.0907 = 0.101 = 0.104 = 0.0652 (79)
f(E 2+ H/0) ~ 3I‘(H*+ /0) ~ SF(:EII;H HZO)
=2 —
~ %r( ()+ N :bO)
1.95 = 2.24 ~ 2.29 ~ 1.34 (80)
rQb’ — ;) =39 — ;) =30’ - ;)
~ Mg’ — ;)
3.49 ~ 4.05 =~ 4.48 = 2.75 (81)

[(E:f - 30 ~T(E; -3 +T(EY — 39
0.246 = 0.238 (82)

PHYSICAL REVIEW D 85, 094035 (2012)

0.223 = 0.203 83)
f(E *0) ~ F(::;rb /0) + F(:(Llh)+ _,20)

5.03 = 4.62 (84)

[0 — Q) =T —0,)+ T - ;)
10.2 = 8.56. (85)

Most of the relations are satisfied at the 10% level, with a
few notable exceptions that involve the decay widths for

the 22 — 3%, 2% and Q2° — =:~, Q% wansitions.

V. SUMMARY

We have made a systematic study of semileptonic de-
cays of cb ground-state doubly heavy baryons driven by
¢ — s, d transitions at the quark level. We have employed a
simple constituent quark model scheme, which benefits
from the important simplifications in the solution of the
nonrelativistic three-body problem that stem from the ap-
plication of HQSS [6,35]. Despite the modulus of CKM
matrix elements |V,,|, |V,,| are much larger than |V,,|, the
smaller available phase space leads to ¢ — s decay widths
that turn out to be larger but of the same order of magnitude
as the b — ¢ driven processes, while widths for ¢ — d
transitions are much smaller.

As for b — ¢ semileptonic [5,9] and electromagnetic
[24,25] decays, here also hyperfine mixing effects have a
tremendous impact on ¢ — s, d semileptonic decays of
spin-1/2 cb baryons. We find factors of 2 corrections in
many cases due to mixing.

We have derived for the first time HQSS relations for the
hadronic amplitudes. By requiring invariance under sepa-
rate bottom and charm quark spin rotations, we have
obtained constraints on the form factors that enormously
simplify the description of these decays. Though these
relations are strictly valid in the limit of very large heavy
quark masses and near zero recoil, they turn out to be
reasonable accurate for the whole available phase space
in these decays. Indeed, we find our calculation is consis-
tent with HQSS and only deviations at the 10% level are
observed due to the actual, finite, heavy quark masses.
With the use of the HQSS relations and assuming Mp, =
MB:»[; = Mij and MBb = MBL = MBj;,
model-independent, though approximate, predictions for
ratios of decay widths. Our values for those ratios agree
with the HQSS-motivated predictions at the level of 10% in
most of the cases. We expect those predictions to hold to
that level of accuracy in other approaches.

we have made
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|B, rPyg = \/Z_Ejd3Q1jd3Q253 Z

ay,q, a3

m > >
X |a1ﬁ1 =4P+Q1>
M

The factor v/2E is introduced for convenience in order to
have the proper normalization. We denote by a; the spin
(s), flavor (f), and color (¢) quantum numbers (@ =
(s, f, ¢)) of the jth quark with (Ef p;) and my, its four-
momentum and mass, and M = my +omy, +omp

Individual quark states are normalized such that
(@' plarp) = 26,2 8,,8 (' — B). §P0)0, (01, 02)
is the internal wave function in momentum space, belng
Ql (Q2) the conjugate momenta to the relative position 7,
(7,) between quark 1 (2) and the third quark. In the tran-
sitions under study, an initial cb!’ baryon decays into a final
1I'b one, where [ = d, s and I’ = u, d, s. We construct the
wave functions such that the ¢ and b quarks in the initial
baryon are quarks 1 and 2, respectively. Also in the final
baryon the two light quarks / and [’ are, respectively,
quarks 1 and 2. Expressions for the different
J;Eﬁ’za%(Ql, 0,) are given below. These wave functions

A (Els) _ 2(ELS) 22
a](1b2a3(Q1; Q2) A CICZC3¢(51 ;1)(52»f2)(53:.f3)(Q1’ 0>)

8- -

A CHD) 2(Els)

me - >
azf)z = 4P + Q2>
M

PHYSICAL REVIEW D 85, 094035 (2012)
No. 227431. C. A. thanks a Juan de la Cierva contract from
the Spanish Ministerio de Educacion y Ciencia.
APPENDIX A: NONRELATIVISTIC BARYON
STATES AND WAVE FUNCTIONS

We construct our nonrelativistic states as follows

1
JED (0, 0)

alaza;

(2m)\2E;,2E;2Ey,
M > = R
= A;;P_Q1—Q2>-

azp3 (A1)

[

are normalized as

[0 [¢0, 3 (58001 0y 382 (01, 0

ap,aj,as

= 0, (A2)
For the final states we use wave functions that are anti-
symmetric under the exchange of quarks 1 and 2 quantum
numbers. In order for our nonrelativistic baryon states to
have the proper normalization

sr(B. P'P'|B, rP)yy = 2EQ27)*8,,8°(P' — P)  (A3)

we need to introduce in Eq. (Al) a symmetry factor

Sp = 12 for those states. For the initial states Sp = 1.
The wave functions for cb states where the spin of

the heavy quark subsystem is well-defined are given by

8c1c2c3$(5"b)(é1, é2)6f108f2b8f3u(1/2’ 1/2, 1551, 80, 81 + 5)(1, 1/2,1/2;51 + 55,53, 5)  (Ad)

alazaz(er QZ) - \/_— 1603 d)(‘] 7,52, fz)(‘g3,f3)(Q1’ QZ)

1 cE 2 A
G Ecrees B EN(D1, 02)8 4,60 1,587,,(1/2,1/2,0;5, 55,08,

3!

5, (Bgp ) 7 ()

1 .
alﬂzﬂz(er QZ) \/— (,]L2£'; d)(s] Fi) (52, ‘flz)(‘YS’.f'3)(Ql7 QZ)

==t

\/?7 €162C3

where &

normalized such that

(AS5)

FED(Qy, 02)87,81,58,u(1/2,1/2, 1551, 53, 51 + 52)(1, 1/2,3/25 51 + 53, 53, 5), (A6)

ciee, 18 the totally antisymmetric tensor with "‘2“ being the fully antisymmetric color wave function. The
(J1, Jo» J; my, my, m) are SU(2) Clebsch-Gordan coefficients. The different & (0,
angular momentum 0 being invariant under rotations and thus depending only on |0,!, |0,| and O, -

0,) wave functions have total orbital
Q2 They are
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[cPQl fd3Q2|d3((21, O = 1. (A7)

The corresponding Z*) neutral states are obtained by implementing the trivial replacement & #,u — Oy,q- Besides, the Qe
color-spin-flavor-momentum wave functions are obtained from the cascade ones by substituting the momentum space
~=(l) > > . . ~n® > > .

= (Q,, Q,) wave functions by the appropriated (]Bch (Q1, Q») ones, and always using & .. For b-heavy baryons, we
further have

(AD.5) s

A (A9, > o
'7[’ 011C¥2013(Ql: QZ) T— [SToYe) ¢(s| ) (Yz,fz)(s_%f_%)(Ql) QZ)

\/—3"‘ (YY) ¢( A (Ql; QZ) \/—(5f]u6f2 af]dafzu)af}b(l/z’ 1/2: O’ S1, 82, 0)653S (AS)

S99 A _ 2 (305) ~
¢a1a2a3(Q1’ QZ) o \/—_ C1€2€3 ¢(51 ). (52,£2)(s3, fz)(Ql’ Q2)
= T— c]czc;d)(zb)(Ql’ Qz)\/—(5f|u5f2d + 67,a0,)0,(1/2,1/2, 1551, 55, 51 + 57)
>< 1) 1/2!1/2) §1 +S2, §3, S) (A9)
~ (390 ) >
oq[b(za;(Q], QZ) - T— cicycy ¢(S| fl)(sz F2)(s3 fg)(Q]’ QZ)
1
= \/—3—‘8c1c2c3¢ (0, QZ)\/—(6f1u6f2d + 8£,a85,u)07,5(1/2,1/2, 1551, 55,51 + 57)
X(1’1/2’ 3/2’ Sl +S2, 53’ S) (AIO)
~ (,_h s) o :’,0 s
al“z“%(Ql’ QZ) - T c1C)C3 ¢(Y] F1) (52, f2)(s3, f3)(Q1: Q2)
(~ ) 7ED 2 2
:T (,](,ZL’;\/_ b (Ql’ Q2)6f]u6f7\ ¢Suh (Ql’ Q2)5f]s5f2u)5f3h(1/2’ 1/2’ O;Sl,Sz, 0)353s
(A11)
5 (55)s) 2 (EP,s) 2 >
alaz%(Ql) QZ) T C1CC3 qs(sl fl)(Szvfz)(33,f3)(Q1’ Q2)
1 FE E
= \/—' Eeleacs \/— (Ql’ Q2)5f]u6f2s + d)Sul (Ql’ Q2)6f|s5f2u)5fgb(1/2 1/2 1; Sy, 82,81 + SZ)
X (1,1/2,1/2;8, + 2, 53, 5) (A12)

~ (B05) > >
alzlzaz(Qb QZ) - T 1003 ¢(V| fl)(Yz £2)(s3, fg)(Ql’ Qz)
1

E"

7 (B0
= =8¢ 005 \/—(d’ (0, Q2)5f1u§f23 + ¢ (0, Q2)6f1s6f2u)5f3b(1/2 1/2, 155y, 55, 81 + 55)

X(l’ 1/2: 3/2,S1 +S2, S3, S) (A13)

)
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- Q)

1,// 0(10(2(12(Q1’ QZ) = \/—— c1CyC3 ¢(91 fl) (55, fo)(s&f})(Ql; Qz)

8-

¥ alisan(01, 0o) = \/— s Bla )y toa o010 02)
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c1c2c1¢(ﬂ (0, Q2)6/198f2y6f3b(1/2 1/2, 1551, 80,81 + 85)(1, 1/2, 1/2, 51 + 55, 53, 5) (Al4)

1 ey > >
= =200, (01, 008,878 5(1/2,1/2, L), 55,51 + 55)(1, 1/2,3/2, 51 + 59, 53, 5). (A15)

V3!

Here, besides the properties above, the relation
G5u(01, 02) = $,5(0s, 0)), with n = u, d, also applies.
The wave functions for the other members of the different
isospin multiplets are obtained from those given above by
implementing obvious substitutions.

The momentum space wave functions are the Fourier
transform of the corresponding wave functions in coordi-
nate space

J’(él,éz) fd371d3r2€ i01°F1 =iy R (7, 7).

(A16)

@m)?

We use a HQSS-constrained variational approach to deal
with the underlying three-body problem and to obtain the
spatial wave functions. For the latter, we consider they only
depend on the three interquark relative distances ry, r, and
r1o = |Fy — #,|. This amounts to assuming that the total

orbital angular momentum of the baryon is zero. However,
this does not imply that the individual orbital angular
momenta (/13 and /3) of the (13) and (23) pairs is zero,
though both /,5 and /,; should take a common value /, since

713 and 723 must be coupled to a total S-wave. Indeed, the
wave functions ¢ (7|, 7,) can be decomposed as a sum of a
large number of contributions or multipoles for different
values of [ =0,1,2 3.... More details, for the case of
singly and doubly heavy baryons, can be found in
Refs. [6,35], respectively.

As already mentioned, the two baryon states =, 2/,
differ just in the spin of the heavy degrees of freedom, and
thus they mix under the effect of the hyperfine interaction
between the light quark and any of the heavy quarks. The
same happens for the €., )/, states. This mixing is
important and greatly affects the results for the decay
widths. The mixing is however negligible for the =, 2/
and ,, Q) states and we have ignored it.

APPENDIX B: WEAK MATRIX ELEMENTS AND FORM FACTORS

Taking the initial baryon at rest and ¢ in the positive Z direction we define vector and axial matrix elements

vE =AY

r—r!

that in our model are given as

VH' _

e = [0, [ #0570,
XFY (1/2,1/2,8F —r+s,,r

51,82

X (1/2,1/2, 851,50, 81 + $2)(S, 1/2,J581 + 50,7 — 53

- 5)7#(1 - 75)”&?1(@1)

X ﬁlr'*rJrsl (Ql

V2E(10, — 3D2E.10,)

= (B, F'P' = =g, (0)y*(1 — y5) ¥ (0)|B, rP = 0) (B1)
my, + my > my ., * 7 (B) N N
T ¢ 3,-0,—0,+ 74 704, 0y)
s1— S0, 7 —5)(8,1/2, 0517 — 55, 80, 1)
- 8, r)
, (B2)
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TABLE IV. F flavor factors (Eq. (B2)) for ¢ — s (left panel)
and ¢ — d (right panel) transitions.

PHYSICAL REVIEW D 85, 094035 (2012)

where J, § (J/, §') are the total spin and the spin of the
two first quarks for the initial (final) baryon. F is a

F F flavor factor that depends on the transitions and which
= =0 | =+ A0 ) values are collected in Table IV. Here we have a ¢ — [
! - transition at the quark level, while /' is the light quark
Scb T Fb ! Eo =2 ! originally present in the initial baryon When the final
By —EY -1 B =3, -2 baryon has just one s quark, then 95(3 ) should be inter-
B0 — B -1 B — 3P -1 preted, respectively, as @& or d) ds ) for the case of
g, — B0 -1 20, — 3 -2 ¢ — s or ¢ — d transitions.

20, — Ep _1 Bt — A 1 Relations between different matrix elements can be
0 | = 30 . found by performing the spin sums in Eq. (B2). For that
_o _ Eﬁ 5 purpose the following results, that we obtain for g in the
Seb = ! Seb T S V2 positive Z direction, are very useful
=+, =10 -1 =1 N 2*0 —1
=cb = =cb b
BN — By -1 BN — 35" -2
=it 550 —1 =t A0 1 1 . . .
=0 _,b, ,_,ii g 71215’(17 - Q)VOMCS(P)
B0 — 5 -1 B — 3 -1 V2E2E,
= — E) I 50— -2

Lz b < 21;0 \/_ \/(El + ml)(Ec + mc)
BEa—E, 1 B — 3 -1 =

ch b cb b 2E ZE )
i — ER -1 B — 3¢ -2 l cz 3
=0 B ey -1 % [(1 Ll )5
B — B -1 Y, — =} -1 (E; + m)(E, + m,)
29— B —1 Q0 — =i~ -1 141

cb =b ch ,_,b 1 _"_ l 2 5',‘
), — 0, -V on— =, -1 E ) E, ) P T PO
Q’?b - Q" —V2 ng — By -1
=, —v2 an =By -1 +(p'+ ipz)asfs—l)] (B3)
Q% — Q" -2 QN —E; -1
QN —Qp -2 QN — = -1
Q9 — -2 00 -5 -1

1 (B — @) yiu(p) = (E; + m))(E. +m)|'< p—q | E.+m.—E —m
it — u i
SEaE P T AP 2E2E,  L\E.+m. E +m '(E +m)E, +m,)
|é|(EC + mc) - (Ec + me. — El - ’nl)p3

X (=p?8;1 + p'6)(8,12 — 5S*1/2))6S1S + 0

|é|(Ec + mc) -

X (6s’sfl

E.+m.—E —

(EZ + ml)(Ec + mc)

(E.+m, — E, —m)p>
< - ! ! (85’s+l + 5.?/.&‘*1)

— 8yy1) T 6

+6

B(E; +m)E, +m,)

(E; + m)(E. + m,)

ML (= pl + ipD)d s + (p + ipD)Sys n] (B4)

| . N (E; + m)(E. + m )r< P’ P’ - Iél)
—=lus (P — §)7° = L + S — 8,_1/2)8y
TT it (P — )y Ystes(P) \/ 2E2F, | E.+m, E +m, (85172 s—1/2) 0
1 1
+ L —ip?)8ys4y + 1+‘25/_] B5
<Ec+mc El+m1)((p ip*)0yse1 + (p' +ip*)8y5-1) (B5)
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I E - m)E+md[(  i(GXp) Pl
AP DY ysua(p)= \/ 2EQE, L(<E1+ml><Ec+mc>)5f“**(1 <E1+mz><Ec+mc>)

(E;+m)(E+m)

(p' =g )p* + p'(p* —13l)
(E;+m)(E.+m,) 855(651/2 s 1/2):|-

X(83303(851/20— 05-172) + 8y541(8j1 —i8p) +8y5-1(8;, +id ) +

X((p'=ip?)8yse1+(p' +ip?)8ys—) +

(B6)
The fact that the orbital wave functions are invariant under rotations implies that the integrals of the form
PN ~(nl > m + mpy *®o > > > N .
1@ = [@0, [0, (%(0 =" 2" 4. -0 — : + 5d)) $9(G1 6FU0: — L 12:DQ),
M M (B7)
iy — [ so a5 —Metme . 33 M AN 565 4 A j
g)= | d&Q, | &0, ¢""’| O, ¢ 0, QZJFW(] d7(01, Q)F(10; — 4l 10,10}
where F(|0, — ql, |é1 |) is a function of |Q; — gl and |01, are tensors under rotations and are thus given by
i i) = D(g "
r(g) = C(Iql)| - '*(g) = D(|41) e (B8)

As aresult we have that I'(g) = I*(g) = 0, I''(§) = I’*(§) and I’(G) = O unless j = k. With all this in mind, one can see
that all spin sums that appear in the evaluation of the different matrix elements correspond to one of the following cases:

(1) V?—W” Vf—»r
2(1/2, /2,857 —r+ s, r—s1 =85, 7 —5)(S, 1/2, 057 — 53,55, 1)
X (1/2,1/2,8;51, 82, 81 + 5)(S, 1/2,J; 8, + 80,7 — 8 — 89, 1),
= ([(1/20)® 1/23)% ® 1/2 ¥ I[(1/2(1) ® 1/212))5 ® 1/2(3, ). (B9)
(2) V:—»r/’ V%—»r
2(1/2’ 1/2’5/;’,./ —r+ sl’r_sl _S2’ r/ _SZ)(Slr 1/2)Jl;r/ _SZ)SZ! r/)
S1,82
X (1/2,1/2,8; 51, 59,81 + 82)(S, 1/2, J;81 + $p, 7 — 81 — 59, )0+
1 ) /
= 5{(1/20)© 1/26)" ® 1/2) )10V I[(1/2) © 1/20)° @ 1/23) ). (B10)
(3) A(r)—>r”A:—>r

2(1/2, 1/2, 8¢ —r+s,r—s, =85, 7 — )8, 1/2, 7 — 55, 55, F')

51,82

X (1/2,1/2, 851,85, 51 + $2)(S, 1/2, 581 + 85,7 — 81 — 52, 1)8,,(85,172 — 85,-1/2)
= ([(1/2) ® 1/23)% ® 1/2p) 1| o} 1)|[(1/2(1) ®1/202))° ® 1/2)1). (B11)

@ A

r—r

2
/)A

r—r
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Z(I/Z, 1/2,8 ¢ —r+s,r—s; — sy, — )8, 1/2, 057 — 55,55, ¥)(1/2,1/2, S; 51, 59,5 + 52)

X (S, 1/2,J58) + 50,7 — 5] — 850,178,412 ([(1/2(1) ®1/2;3)% ® 1/2(2)]J/|U(])|[(1/2(1) ®1/20)5®1/23)1). (B12)
where [[(1/2() ® 1/2;))5 ® 1/23)]/) represents a spin state in which quarks 1 and 2 couple to spin § and then couple with

quark 3 to a final state of total spin J and projection r. Similarly, |[(1/2(;) ® 1/2)% ® 1/ 2(2)]{,' ) is a spin state in which
quarks 1 and 3 couple to spin S’ and then couple with quark 2 to a final state of total spin J' and projection . Besides ! is

the spin operator for quark 1 being a(l) = (1) * 10(1) Use of the Wigner-Eckart theorem allows us to immediately obtain
0 — yo 0 — A0 3 3 43
Vr—»r/ - Vl/Z—vl/26rr” Ar—vr A”_”‘Br"/’ Vr—»r Vl/2—>1/28”‘/’ Ar—»r Ar_’rarrl’
Vi, =0, AL, =0, VZ, =0, A2, =0, (B13)

which are valid for all cases under study. Further relations are quoted in the following.

In terms of matrix elements, the different form factors for the 1/2—1/2, 1/2—3/2 and 3/2 — 1/2 can be
evaluated as

(1) 1/2 — 1/2 transitions

Fo— E +M 1 vl Fo— 1 (VO E’ M )
L= "\ s 121V -12-1)2 2= ﬁ 1/2—»1/2 1/2—»1/2 —1/2—»1/2
| g1 . (E+ M)2M [Fl 131 (B14)
- _ M vs _yl
Fy = & + M)2M Fi (V1/2—»1/2 Vfl/z—»l/z)’
o 1 Al G — E +M 1 A0 _M’A1 +ElA3
_m —1/2—1/2 2 M @ 1/2—1/2 |qT| —1/2—1/2 |T3| 1/2—1/2 )
(B15)
. E +M M 1
G; =— M |51|2(A1/2_'1/2 Afl/z—»l/z)'
(2) 1/2 — 3/2 transitions.
M 1 M
o e AOSTEI S S A @19
E' — 2(ME' — M"?)
A — A — A0 3 1
C3 =0, C4 - E M,)ZM\/r |q| 1/2—»1/2+ |q| A1/2—»1/2) |67|2 A 1/2~1/2:|
A ME’ M’2 E —M 5 2M'2ME' — M? — M'?) 1
s = 1212+ A1212 21> Al pmap |
Iql (E’+M’)2M gl e M2l e
Ch = \[ + E g L2 )
6 |q| (E’+M’)2M 1/2~1/2 H 1/2—1/2 H —1/2—1/2 )
(B17)

In the derivation of the above formulas, the following relations found among 1/2 — 3/2 matrix elements have been used

0 _ 3 _ 1 _ yl 1 _ 1
V1/2—»1/2 - V1/2~1/2 =0, V1/2—>—1/2 - V—1/2~1/2’ V1/2—»3/2 - \/gv—l/2—>1/2’

_ — B1
A}/z—»—l/z - A]—1/2~1/2’ A}/z—e/z - \/gA]—I/2—>1/2’ (BIS)

(3) 3/2 — 1/2 transitions.
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M’ M

y = cf=-5,C  =c=o (B19)

ST 2M(E’+M’ Vo

ct =0,
M/2
i = M\GI* JE + M/)ZM\/r (E M)Al/2—>1/2 + |Q|Al/z—»1/2) —2(E' — M)Al,l/z_,l/z:l,
1 1 3 (B20)
e = lg1? M\/;(_(E/ - M)ZA?/Z_’I/Z + lglv = E/)AI/Z—*I/2 2QE'M — M” = M?)AL 1/2-1/2 )
2
o = M| m\/g(fq/z—»l/z 2A171/2—»1/2)’

where again we have made use of the following relations observed between 3/2 — 1/2 matrix elements

VO

1)2—1/2 v

13/2—>1/2 =0, V31/2—»1/2 = \/§V11/2—»l/2’ Aé/2—>1/2 = _\/gALI/Z—»I/Z' (B21)

As mentioned, we do not use a form factor decomposition for the 3/2 — 3/2 transitions but work directly with the
matrix elements. For 3/2 — 3/2 transitions, and apart from the relations in Eq. (B13), we further obtain that

3 3 —/2
V13/2 1/2 £V171/2 12 = Vll/z 32 _V31/2 12 = \/—Vll -ve \/_V’
—— ) — — — 7 V12—-12 T 1/2--3/2 5
(B22)
2 V3 2 — 2 \/_ 2 _ \/iy
V—3/2—»—1/2 7‘/—1/2—»1/2 V1/2~3/2 o V3/2—»1/2 7 1/2—»—1/2 V—1/2—>—3/2 - 1\75
0 0 0 _ 0 3 — 243 3 3
Al jpappy = 3AL i = T3A i = A s ALy apy =3AL i = T3A 0 = TAY s
3 3 2
A£3/2 —12 = \/__A£1/2 12 = Al/2 32 Aé/z 12 = \/__A} _ip = Al \/__ﬂ’
30— 5 — - - 5 A2—-1/2 12327 7=
3 3 —/2
A2—3/2 —-1/2 £A—1/2 1/2 A%/z 32 —A§/2 12 = _\/——Af _yp = —AL ajy = i—\/_jll,
- > — — — 5 /2—-1/2 1/2—-3/2 NG
(B23)

where V and A stand for reduced matrix elements.
In every case, we just need to evaluate three different vector and three different axial matrix elements that we take to be

VY e Vi Vi oy pand AY ) 0 Ay ps AL 5, Tespectively. The vector matrix elements have the general
structure
L 20: Y = m. + my
V?/2—>1/2 = Vé(l):)\/ZM\/ZE’[ch] [d3Qz|:¢(B)<Q1 - qu -0,- 0, + )] 0y, 0,)
(E(1Q, = ) + m)EQ,]) + m )/ 101> - 1310;
> — § (B24)
20— dREAGD N\ (EAG — a) + mEGD + m)
V3= VOIMVIE [ &0, [a0)|§® (6, - T 5 3B(G,, 0
1/2—1/2 SF 0, Os| &7 01 — T =01 — 0, + M’ 2q)| 620y, 0,)
o T A z z _ |7
% (E(10, CIL) + "11)@1(@91” +m)( »Ql N 91 9|f]| ) (B25)
2E(10: — D2ENGD  \ENGD +m.  E(; — D +m
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TABLE V. Vé’]g and A(SJF) spin-flavor factors for ¢ — s (left TABLE V. (Continued)

panel) and ¢ — d (right panel) transitions.

3
©) 3) M ©) 0) M Ve Ve v AR Ag Ay
Vsk Vsr Vsi  Asg A Age
=+, 50 V3 V3 1 1 1 1 B —A) JTE @ il' 71' 71' 71'
=) — = N N - c 23 2+/3 23 2/3
Seb T ) 2 2
25 2 W i =5t — 30 1 1 -5 5 5 5
=0, = 3 &) =1 1 1 1 Seb b 2 2 6 6 6 6
e 2 2 23 23 23 23 0,3~ 1 1 -5 5 5 5
. —_ = -
Ef, — EP 1 1 2 2 2 2 =cb b V2 V2 3V2 32 3V2 3V2
0 /- 1 1 -5 5 5 5 By — 270 0 0 il' _3/5 _3/5 71'
B 5 2 b s 6 5 3 ‘ ’ e e
=0 H— —1 =2 -2 1
=+, =0 0 0 -1 -2 =2 1 o — 2} 0 0 3 3 3 3
—cb ~b 32 3 3 32
5t A9 1 1 1 R |
=0 - 0 0 -1 -2 =2 1 Seb 2 2 2 p) 2 2
Seb T = 32 3 3 33
_ h > ~/+ N 20 -3 -3 1 —1 -1 —1
gt — 8) 3 3 3 5 — 5 S 2 2 23 23 23 23
= o 1 1 1 -1 —1 —1 BN — 3, =3 =3 L -1 -1 -1
En—Ey > 2 SR < 2 R LA
=, =0 ;) J | | | | Elp o0 0 0 Z £ £ L
S ™ S 2 S S N BN BN - BooE T
=0 _, 5i- -3 N&) 1 = = = Hl - zb 0 0 N BB BB Na
Seb 7 S 2 2 NN N ENG | ; !
. ; "5 5 X B — A 0 0 -1 2 2 1
En—EY 0 0 7 F KR % BoAE R
_ Ny "5 2 — 3 0 0 1 -2 -2 -1
,:/0}) — B 0 0 iﬁl & % 715 3 3 3 ENG)
N = () - 1 -2 -2 —1
=t _, =0 0 0 -1 2 2 1 o= 2 0 0 3 3 3 3
Teb TR g V3 V3 V6 = +0 2 -1 -1 -2
=40, - 0 0 N B i — X -1 -1 3 3 03 3
T BB BB e 2F o o
et _, =00 I -2 =2 -1 o %) R A S S
= —_ = 0 0 Nz Nz 3 3 3 3
Seb T = 32 3 3 3V2
_ _ N N 0o =i -3 -3 1 =1 =1 =1
S LTI T T - T T
Q0 — = 1 1 =5 5 5 5
B — B0 -1 -1 z — 3 2 ) 2 2 6 6 6 6
c 2 B B B
. o _ _ 3 QO N E*— 0 0 —1 -2 -2 1
:’j(b) — gz —1 -1 % Tl Tl T2 cb b 32 32 32 32
o) O- 1 1 -5 5 5 5 0y, —E; %1 %1 %] % % %
cb 2 N V2 32 32 32 32
00— gi- A -3 1 -1 -1 -1
Q0 — Qi~ 0 0 - 2 32 ! b b 2 2 23 253 23 23
_ ' . . . Q0 =m0 0 S
a0 —Q -3 -3 L -1 -1 -1 cb b NI 7%
¢ N V2 V6 /6 V6 V6 Q" = 0 0 | B - e
—_— =
on-a; 0 0 4 o & H-E A
) - i -2 -2 i Q) —Ey 0 0 y 5 £ 7
a5 —Q 0 0 3 3 3 3 o SCEEE ’ W
) ) *0 —— 2 =1 -1 =2
0, - _ 25 B = 28 gy F ! —1 3 3 3 3
a3 — 0 s s s i < 2 2 : 2

Lot = Vélp)\/m@fd3Q1 [d3Q2|:<Z~5(B/)( 0 w ~0, - 0, + 2 )]*J)(B)(ép 0,)

Ml

X

(101 = gl) + m)ENQ) + m) GIEL]) + me) = [E(Q,]) + me = E(10, — gl) = m]OT

2E/(10, = GD2E(10,]) (E1Q; = Gl + m)(EO,]) + m,)
(B26)

The VéjF) depend on the flavor and spin structure of the baryons involved. Their values for the different transitions appear in
Table V. Similarly, for the axial matrix elements we have

= AQVIAE [0: [ @0 3%(0) "5 4. ~61 — 0: + ) | 6161, G

0
A1/2 1/2

X

M/

(E(1G, — ) + m)END ) +m)( 05 05—l ) ©27)

2610, — GD2E(10,)  \E.(10\) +m,  E(Q; —gl) +m
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o > + my IR
A?/2—»1/2 =A(53F)\/2W\/ﬁ/d3Ql [d3Q2|:¢(B)( % 0, -0, + %67)] $P(0,, 0,)
o JEND —a +m)ENGD +mo)(, 101 ~ 14105 ~ 205(05 ~ laD ) B28)
25,10, — d2EA0D N (EGr —ab + m)E(OD + m)
ALy o = ANIE [ @00, [0 396y =" 6 -Gy - 02+ 10) | 9701, G
\l(E,qu — ) +m)ENOD +m, 101 ~ 13105 ~ 20103 ~ i0}) ) 29)
2E/(10, — GN2E.(10,]) \! (E(10, — gl) + m)(E10:]) + m)/)

where the A(]F) axial spin-flavor factors can be found in Table V. Note that, due to the symmetry properties already
discussed, the integral in 207107 in A_1 J2—1)2 is equivalent to an integral in |Q1 |2 — (QZ)2 while the integral in 207 Q7 is
identically zero.

As already said, when the final baryon has just one s quark then the d;(B') above should be interpreted as g{gﬁl;’) or J)f’), for
the case of ¢ — s or ¢ — d transitions, respectively.
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