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We study the phase diagram of a chiral random matrix model with three quark flavors at finite

temperature and chemical potential, taking the chiral and diquark condensates as independent order

parameters. Fixing the ratio of the coupling strengths in the quark-antiquark and quark-quark channels

applying the Fierz transformation, we find that the color-flavor locked (CFL) phase is realized at large

chemical potential, while the ordinary chirally broken phase appears in the region with small chemical

potential. We investigate responses of the phases by changing small quark masses in the cases with three

equal-mass flavors and with 2þ 1 flavors. In the case with three equal-mass flavors, we find that the finite

masses make the CFL phase transition line move to the higher-density region. In the case with 2þ 1

flavors, we find the two-flavor color-superconducting phase at the medium-density region as a result of the

finite asymmetry between the flavors, as well as the CFL phase at the higher-density region.
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I. INTRODUCTION

Mapping of a QCD phase diagram at finite temperature
and density [1–7] is one of the most challenging issues in
the theoretical and experimental physics and is significant
to the heavy-ion collision experiments and the structures of
the neutron stars.

At finite temperature and zero or small baryon density,
a number of investigations on QCD phase transitions are
made both with the lattice QCD simulations [8] and with
the model calculations [6]. Lattice QCD simulations
suggest that the phase transition becomes a smooth cross-
over in the realistic case with two light and one heavier
quark flavors, and many model calculations are consistent
with this result. At finite density, however, the situation
is uncertain because lattice QCD simulations are still
challenging at finite chemical potentials with low tem-
peratures [9]. In such a region, it is important to employ
models for qualitative and quantitative calculations
on the phase diagram. Naively, a large baryon number
density may cause overlaps of baryons, which invalidates
a concept of confined colors in a baryon, resulting in
deconfinement, which may be followed by chiral phase
transition.

Furthermore, at asymptotically large density, the ap-
pearance of a color-superconducting (CSC) phase is also
expected, where a weak coupling theory is applied and
the Cooper instability of the Fermi sphere is inevitable
[10,11]. The color-superconducting phases are character-
ized by the diquark condensates. One-gluon exchange
interactions tell us that the color-antitriplet channel is
attractive. Therefore, with the Pauli principle, condensates
in the color- and flavor-antitriplet and spin-antisymmetric
channel is expected. Such condensates can be expressed
as [1]

sAA0 ¼ h �c c�5�A�A0c i; (1)

where c is the quark field, and �c c ¼ c TC with C the
charge conjugation operator. �A and �A, where A ¼ 2, 5,
and 7, are the antisymmetric generators of SUðNfÞ flavor
and SUðNcÞ color groups, respectively.
One of the most striking features in the CSC phases is

the formation of the color-flavor locking (CFL) condensate
[1]. At sufficiently high density, the finite current quark
masses for up, down, and strange quark flavor are ne-
glected so that the system can be treated as the chiral limit.
In the CFL phase, which is characterized by sAA0 ¼ ��AA0

with nonzero �, SUð3ÞL � SUð3ÞR � SUð3Þc symmetry of
the system breaks down to its subgroup of SUð3ÞLþRþc.
This breaking pattern is possible owing to the miraculous
matching of the (effective) number of flavors Nf ¼ 3 and

the number of colors Nc ¼ 3.
To investigate the QCD phase diagram at finite tempera-

ture and chemical potential, chiral random matrix (ChRM)
models provide us with a qualitative way from a viewpoint
of the symmetry [12,13]. In a conventional ChRM model,
the Dirac operator is set as a random matrix, which has the
same symmetry with QCD, and the partition function is
defined as the average of the determinant of the Dirac
operator over the matrix elements with the Gaussian dis-
tribution. The random distribution of the matrix elements
mimics the complex dynamics of the gluon fields. The
Gaussian model can be solved exactly in the thermody-
namic limit. Although the model is constructed in such a
simple way, the resulting phase diagram has a rich struc-
ture. In the chiral limit, the phase transition becomes
second-order in the small chemical potential � region,
while it becomes first-order in the large � region. First-
and second-order phase transition lines are connected at
the tricritical point (TCP). This result is consistent with
Nambu–Jona-Lasinio (NJL).
The extension of the ChRM model to the case with the

CSC phase has already been studied by Vanderheyden and
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Jackson [16].1 In their study, the Dirac matrix is extended
to have the indices of color and spin explicitly with the real
random matrices corresponding to real gluon fields in
QCD. After the integration over the random matrices, the
model produces the quark-quark interaction terms, which
are responsible for the diquark condensates, as well as
quark-antiquark interaction terms responsible for the chiral
condensates. The resulting phase diagram has the diquark-
condensed phase at large � region, and the chirally broken
phase at the small � region, if the ratio of the quark-
antiquark and the quark-quark coupling is taken so that
the Dirac operator of the model has the same symmetry as
that of QCD. Note that because the model in Ref. [16]
contains two quark flavors, the CSC phase is the two-flavor
color-superconducting (2SC) phase, where only two of
three colors of fermions participate in the diquark pairing.

It is then natural to ask whether it is possible to extend
the ChRM model to the case with three flavors, and
whether the CFL phase can appear as the ground state in
a high-density region. We answer ‘‘yes’’ to this question by
constructing the ChRM model containing three flavors and
colors and show a phase diagram with the chirally broken
and the CFL phases. As a simple application of this model,
we also focus on the response of the model by changing the
quark masses. By setting the strange quark mass different
from the other two quark flavors, we observe that the 2SC
phase appears on the phase diagram at the moderate values
of the chemical potential, as well as the CFL phase in the
larger chemical potential region.

This paper is organized as follows. We introduce an
extended ChRMmodel with chiral and CFL condensations
in Sec. II and derive its effective potential in Sec. III. The
model phase diagrams are presented and discussed in the
case with three equal-mass flavors and 2þ 1 flavors in
Secs. IV and V, respectively. Section VI is devoted to a
summary and discussion.

II. RANDOM MATRIX MODELWITH CHIRAL
AND DIQUARK CONDENSATIONS

In this section, we introduce a chiral random matrix
model which mimics QCD partition function with three
quark flavors, extending the two-flavor case in Ref. [16].
We denote three quark masses by mf with f ¼ u, d, and s.

Keeping in mind the (extended) Banks-Casher relations,
which relate Dirac soft modes not only with the chiral
condensates [19], but also with the diquark condensates
[20], we consider the truncated Dirac matrix D in low-
lying quark excitation, or zero-mode space. We assume D
can be separated as D ¼ Rþ C, where R is a random part,
which represents the complex gluon dynamics, and C the
nonrandom, deterministic part, which is responsible for the
matter effects.

For simplicity, we first set the matter effects turned off,
i.e. C ¼ 0, and focus on the random matrix R. In this case,
the truncated Dirac matrix should have the symmetries of
the Dirac operator in the vacuum, the chiral symmetry,
f�5; Rg ¼ 0, and the anti-Hermiticity, Ry ¼ �R. Within
these restrictions, the Dirac matrix generally has nonzero
matrix elements only in the off-diagonal blocks

R ¼ 0 iW

iWy 0

 !
; (2)

in the chiral representation, �5 ¼ diagðþ1;�1Þ, where W
is a complex matrix.2 In the conventional ChRM models
[12], W is taken to be a general complex matrix whose
elements are independently distributed according to the
Gaussian distribution.
To consider the diquark condensations, however, it is

crucial to treat the color and spin indices explicitly.
Following the construction in Ref. [16], we express W as
a direct product of the spin, color, and zero-mode matrices,
whose total dimension is 2� Nc � N, where 2 is the size
of the spin space, Nc the color space, and N the zero-mode
space. We adopt the form of W as

W ¼ A�að�� � �aÞ; (3)

where �� ¼ ð1;�i�iÞ with �i as the Pauli matrix, �a is a
generator of SUðNcÞ, and A�a is a N � N random matrix.
Since the randommatrix A�a corresponds to the gauge field
in QCD, we choose A�a to be a real matrix.
The matter effects are introduced as the nonrandom

external fields in the Dirac operator. A simple way [13]
is to add a constant matrix C to the random matrix (2) with

C ¼ 0 !
! 0

� �
¼ ! � �0; (4)

where the 2� Nc � N-dimensional matrix ! is defined as

!¼ ð�þiTÞ1N=2�1spin�1Nc
0

0 ð��iTÞ1N=2�1spin�1Nc

 !
:

(5)

T and � are an effective temperature and quark chemical
potential, respectively. 1spin denotes 2� 2 identity matrix

in the spin space. A total Dirac matrix, D ¼ Rþ C, also
has chiral symmetry, fD;�5g ¼ 0, but not anti-Hermiticity,
Dy � �D if � � 0. Two relative signs between T and �
correspond to the two lowest Matsubara frequencies,
��T. The inclusion of two signs reproduces the invariance

1Also, there are studies on the diquark condensates with
Nc ¼ 2 using ChRM models [17,18].

2One can take W generally to be an Nþ � N� rectangular
matrix. In this case, the Dirac matrix has j�j ¼ jNþ � N�j exact
zero eigenvalues, which represents the index theorem with the
background gauge field having the topological charge �.
Exploiting this fact, we can introduce the effect of the axial
anomaly in the ChRMmodels [21,22]. In this study, however, we
always take W to be square, and the anomaly effect is neglected.
See the discussion in Sec. VI.
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of the partition function under the charge conjugation
transformation, � ! ��.

Using the Dirac matrix D, the ChRM model partition
function is defined as

Z ¼
Z
½dA�YNf

f¼1

detðDþmfÞe
�2N�2

P
a;�;i;j

ðA�a
ij Þ2

; (6)

where the integral is defined over real elements of random
matrices A�a with the Gaussian weight. The parameter �,
which fixes variance of the Gaussian distribution, gives a
scale to the model. Generally,�may change for each a and
�, but by ensuring the color and Lorentz symmetry, their
values should be equal.

Before solving the model, we make two remarks on the
treatment of the ChRM model comparing to that in
Ref. [16]. First, in Ref. [16], the authors examine not
only the form of the random Dirac operator (2), but also
the case where the Dirac operator breaks the symmetry
which QCD Lagrangian holds. In such general cases, the
random matrix R is taken as

ðRÞ	
 ¼ X
Ca

XCa
	
ð�CÞ	
 � �a; (7)

where the chiral indices 	, 
 ¼ R, L, XCa
	
 is a random

matrix, and �C is the independent gamma matrix in four
dimensions,C ¼ 1; . . . 16. A set of �c can be separated into
the subsets forming a Lorentz scalar, pseudoscalar, vector,
axial-vector, and tensor. In Eqs. (2) and (3), we have
chosen XCa

	
 to be nonzero only for the vector content of

the gamma matrices. This is a natural choice because we
consider that the random matrices model the gluon fields,
which form a Lorentz vector. Indeed, nonzero components
for the scalar, pseudoscalar, and tensor break the chiral
symmetry explicitly, and that for the axial-vector does the
anti-Hermiticity. If such non-QCD-like random matrices
are allowed, one can vary the ratio of the coefficients of the
quark-antiquark and the quark-quark interaction channels,
which is denoted as B=A in the next section. The evolution
of the phase diagram with B=A changed was completely
investigated in Ref. [16] for the case with two flavors. In
our study, however, we only focus on the case for which the
model has the same type of interaction as QCD, because
the condition fixes the topology of the phase diagram
without ambiguity, and we can solely concentrate on the
response of the phase diagram by changing the quark
masses.

Second, the scheme of the temperature dependence is
different from that in Ref. [16]. We use the matter-effect
matrix proportional to the identity in the flavor space,
while, in Ref. [16], the sign of the temperature T is anti-
symmetric in the space of two flavors. As a result of this
difference, our model cannot be reduced to the model in
Ref. [16] in the two-flavor limit. Further discussion will be

given by comparing the effective potentials in the later
section.
Finally, note that the partition function (6) has

SUðNCÞc � SUðNfÞL � SUðNfÞL global symmetry, but

not local gauge symmetry. To be exact, it is then appro-
priate to call the diquark-condensed phase a Bose-Einstein
condensed state, not a BCS state. In the remaining part of
this paper, we use the word ‘‘diquark condensates’’ to
indicate such condensates, but discuss them compared to
the BCS states expected in QCD at finite density.

III. THE EFFECTIVE POTENTIAL

In this section, we derive the effective potential of the
ChRM model defined in Eq. (6). The derivation is almost
parallel to that in Ref. [16]. We present the derivation in
three steps and then make a few remarks.

A. Gaussian integral

The first step is to integrate out the Gaussian integral
variables A

a�
ij . For this purpose, we first express the deter-

minant in the partition function (6) in the form with the
fermion integrals:

YNf

f¼1

detðDþmfÞ

¼
Z
½dc y�½dc �exp

�
�X

f

�c fðDþmfÞc f

�

¼
Z
½dc y�½dc �exp

�
�iJija�Aa�

ij �
X
f

�c fðCþmfÞc f

�
; (8)

where c f ¼ ðc f
R; c

f
LÞT and �c f ¼ ðc fy

L ; c fy
R Þ are

4� Nc � N Grassmann vectors, and

Jija� ¼X
f

ðc fy
Li ���ac

f
Lj þ c fy

Rj�
y
��ac

f
RiÞ (9)

is a fermion bilinear.
Applying the Gaussian integral formula up to the con-

stant,
R
dxe�	x2þ
x ¼ expð
2=ð4	ÞÞ, to the Aij

a� integral
separately for each indices i, j, a, and �, we obtain
analyticallyZ
½dA�e�iJija�A

a�
ij e�2N�2ðAa�

ij Þ2 ¼ exp

�
� 1

8N�2
ðJija�Þ2

�
; (10)

where the summations over i, j, a, and � should be under-
stood on the right-hand side.

B. Fierz transformation

In this step, we expand the square of the fermion bilinear

ðJija�Þ2 and realign the four-point vertices by applying the

Fierz transformation formula. The square of Jija� is
expanded as
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ðJija�Þ2 ¼ 2c fy
Ri �

y
��ac

f
Rjc

gy
Lj���ac

g
Li

þ c fy
Li ���ac

f
Ljc

gy
Li ���ac

g
Lj

þ c fy
Ri �

y
��ac

f
Rjc

gy
Ri �

y
��ac

g
Rj: (11)

The first term represents the quark-antiquark interactions,
and the other terms the quark-quark interactions. The
former is responsible for the formation of the chiral con-
densates and the latter for the diquark condensates.

Using Fierz transformations, these four-fermion terms
are rearranged so that in each fermion bilinear term, zero-
mode indices i and j are contracted. At this point, we
assume that the chiral condensates are formed only in the
color-singlet, scalar channels and that the diquark conden-
sates are formed only in the spin-antisymmetric, flavor-
and color-antitriplet, scalar channels. With these assump-
tions, relevant interaction terms are drastically reduced and
shown explicitly as3

c fy
Ri �

y
��ac

f
Rjc

gy
Lj���ac

g
Li¼�2ðN2

c�1Þ
N2

c

c fy
R c g

Lc
gy
L c f

R

þ . . . (12)

for quark-antiquark channels and

c fy
Li ���ac

f
Ljc

gy
Li ���ac

g
Lj

¼ �Nc þ 1

2Nc

c y
L�A�A0c c

Lc
cy
L �A�A0c L þ . . . (13)

for quark-quark channels, with the same except L ! R,
where the charge conjugation fields are defined as c c �
C �c T ¼ ðc c

L; c
c
RÞT and �c c � c TC ¼ ðc cy

R ; c cy
L Þ. The

dots denote the terms irrelevant to the formation of the
condensates we focus on.
Neglecting the irrelevant terms, we finally obtain the

simple form of four-point interaction as

ðJija�Þ2¼�2G�c
fy
R c g

Lc
gy
L c f

R

�G�c
y
L�A�A0c c

Lc
cy
L �A�A0c LþfL!Rg; (14)

where we have defined coefficients G� ¼ 2ðN2
c�1Þ
N2
c

and

G� ¼ Ncþ1
2Nc

.

C. Bosonization

We apply the Hubbard-Stratonovich transformation for-

mula, e
1
2	 ¼ R
dze�	jzj2þ
1zþ
2z

�
, to the rearranged

four-point interaction (14). For simplicity, we make fur-
ther, but moderate assumptions in the formation of the
chiral and diquark condensates. For chiral condensates,
we assume that only the flavor-singlet condensates are
formed, and for diquark condensates, that only the color-

flavor-locked condensates are formed, i.e., sAA0 ¼
hc cy

L �A�A0c Li / �AA0 . These assumptions allow us to
bosonize the fermion vertex (10) as

exp

�
� 1

8N�2
ðJija�Þ2

�
¼
Z
½d��½d�� exp

�
�N�2

2G�

2j�fj2 � N�2

2G�

ðj�L
Aj2 þ j�R

Aj2Þ
�

� exp

�
�ð��

fc
fy
R c f

L þ c fy
L c f

R�fÞ � 1

2
ð�L�

A c cy
L �A�Ac L þ c y

L�A�Ac
c
L�

L
AÞ � fL ! Rg

�

¼
Z
½d��½d�� exp

�
�N�2

2G�

2j�fj2 � N�2

2G�

ðj�L
Aj2 þ j�R

Aj2Þ
�
exp½��y

LS�R ��y
RS

y�L�; (15)

where the measure ½d��½d�� ¼ Q
f¼u;d;s

Q
A¼2;5;7 �

d�fd�
L
Ad�

R
A. We have defined the Nambu-Gorkov

spinors by

� ¼ 1ffiffiffi
2

p �R

�L

 !
¼ 1ffiffiffi

2
p

c R

c c
L

c L

c c
R

0
BBBBB@

1
CCCCCA (16)

and

�� ¼ 1ffiffiffi
2

p ð�y
L;�

y
RÞ ¼

1ffiffiffi
2

p ðc y
L; c

cy
R ; c y

R; c
cy
L Þ; (17)

and the 2� NC � Nfð¼ 18Þ-dimensional order parameter
matrix S by

S ¼ �̂1Nc
�L

A�A�A

�R�
A �A�A �1Nc

 !
; (18)

where �̂ ¼ diagð�u;�d;�sÞ is a matrix in the flavor
space.
By representing the mass and matter-effect terms in the

Nambu-Gorkov basis, we obtain the partition function as

Z ¼
Z
½dc y�½dc �½d��½d��

� exp

�
�N�2

2G�

2j�fj2 � N�2

2G�

ðj�L
Aj2 þ j�R

Aj2Þ
�

� exp

�
� ��

SþM ~C

~C Sy þMy

 !
�

�
; (19)

where ~C ¼ diagð!;�!Þ andM is the extendedmassmatrix

3For the Fierz transformation formulae, see, for example,
Ref. [7].
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M ¼ m̂1Nc
�A�A�A

�
A�A�A m̂1Nc

 !
(20)

with mass matrix m̂ ¼ diagðmu;md;msÞ in the flavor space.
We have introduced the external field A, which should be
zero in the end of the calculation. It is useful to clarify the
meaning of the order parameters.

Finally, the evaluation of the fermion integral is straight-
forward, which yields

Z¼
Z
½d��½d��exp

�
�N�2

2G�

2j�fj2�N�2

2G�

ðj�L
Aj2þj�R

Aj2Þ
�

�
�
detN=2

SþM ~z

~z SyþMy

 !

�detN=2
SþM ~z�

~z� SyþMy

 !�
1=2

¼
Z
½d��½d��e�2NNfNc�ð�;�;m;T;�Þ; (21)

where ~z ¼ diagðz;�zÞ with z � ð�þ iTÞ1Nf
1NC

. The

square root over the determinant is given because the
number of the fermion measures is a half of that of
the Nambu-Gorkov basis. We have defined the effective
potential � as the function of the order parameters. In the
thermodynamic limit, N ! 1, the ground state of the
model is determined by the set of the order parameters
which minimizes the effective potential.

For the ground-state solutions, we make a few Ansätze
for the order parameters. First, we set �f to be real, ��

f ¼
�f. Second, we also set �L

A and �R
A to be real and ��L

A ¼
�R

A � �A. Both assumptions are consistent for the forma-
tion of the scalar and parity-positive condensates in the
ground state, which are favored by the finite quark mass
term and the real A. Then, the effective potential is a
function of six order parameters, �f with f ¼ u, d, and s

and �A with A ¼ 2, 5, and 7. Using these assumptions, the
effective potential � becomes

� ¼ B

3
�2

f þ
A

3
�2

A �
1

8NcNf

½lndetðSþMþ zÞ

þ lndetðSy þMy � zÞ þ lndetðSþMþ z�Þ
þ lndetðSy þMy � z�Þ�; (22)

where A ¼ 3�2=ð2NcNfG�Þ and B ¼ 3�2=ð2NcNfG�Þ
are defined. Note that we have omitted the 2-dimensional
identity matrix multiplied by z for simplicity. In the ther-
modynamic limit, we can obtain the ground state by solv-
ing the six gap equations, @�=@�f ¼ 0 and @�=@�A ¼ 0,

simultaneously.

D. Remarks

To relate the order parameters in the ChRM model
with the expectation values of the fermion bilinears in

the microscopic theory, we use the external field deriva-
tives as

h �c fc fi � � lim
N!1

1

2NNcNf

@ lnZ

@mf

¼ 2B

3
�f; (23)

sAA ¼ h �c c�A�A�5c i � � lim
N!1

1

2NNcNf

@ lnZ

@A

¼ 2A

3
�A:

(24)

The order parameters �f and �A are proportional to the

chiral and the diquark condensates, respectively, and then
we simply use the values of �f and �A to distinguish

each phase.
Note that, in the partition function, the parameter � can

be absorbed by rescaling the order parameters, as well as
the parameters T, �, mf, and A. Therefore, in the chiral

limitmf ¼ 0 (together withA ¼ 0), a change of� affects

only on the scale of the phase diagram, and the global
structure of the phase diagram is invariant. In fact, the
parameter which can change the structure of the phase
diagram is B=A, which is independent of �. In our treat-
ment, the ratio is fixed by the Fierz coefficients and is
obtained as B=A ¼ 3=8 with Nc ¼ 3. In Ref. [16], various
structures of the phase diagrams have been found with B=A
changed.

IV. THREE EQUAL-MASS FLAVORS

We first examine the ground state in the case with the
exact flavor SUð3Þ symmetry. For this purpose, we set
mu ¼ md ¼ ms ¼ m. Assuming that the flavor symmetry
is not broken spontaneously, we can set the order parame-
ters as �u ¼ �d ¼ �s � � and �2 ¼ �5 ¼ �7 � �.
The effective potential is simplified to the function of the

two order parameters,

� ¼ A�2 þ B�2 � 1

72

X
�

ln½ð�� zÞ2 þ �2�8

� ½ð�� zÞ2 þ ð2�Þ2� þ c:c:; (25)

where � ¼ �þm, and we have set A ¼ 0. The terms
under the logarithm may correspond to eight degenerated
quasiparticles with massmþ�þ � and one quasiparticle
with mass mþ�þ 2� [1]. Combining two gap equa-
tions, @�=@� ¼ 0 and @�=@� ¼ 0, we can determine a
ground-state solution for given T, �, and m.
It is easy to find that � ¼ 0 is always a solution of the

gap equation, since � appears as �2 in the effective po-
tential. Moreover, ifm ¼ 0,� ¼ 0 is also a trivial solution
for any T and �. Then, in the chiral limit, there are
generally four types of the solutions: (i) � ¼ 0, � ¼ 0,
(ii) � � 0, � ¼ 0, (iii) � ¼ 0, � � 0, and (iv) � � 0,
� � 0. When m � 0, the solution � ¼ 0 no longer exists
and is replaced by a small value proportional to m.
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Let us first consider solutions with� ¼ 0. When� ¼ 0,
the effective potential (25) becomes identical with that
analyzed in Ref. [13],

� ¼ G2

2
�2 � 1

4
lnð�2 � z2Þ � 1

4
lnð�2 � z�2Þ; (26)

where G2 ¼ 2B is defined. Therefore, the phase diagram
described by the effective potential (25) at � ¼ 0 is the
same as in Ref. [13]. Several points on the phase structure
with the effective potential (26) are summarized: When
m ¼ 0, we find a second-order phase boundary in the
large T and small � region, and a first-order phase bound-
ary in the small T and large � region. Two lines are

connected at the TCP, ðT3; �3Þ ¼
�
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p þ 1
p

G�1; 12 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p � 1
p

G�1

�
¼ ð0:776G�1; 0:322G�1Þ. The transition

temperature at � ¼ 0 is obtained as T0 ¼ G�1, while the
transition chemical potential at T ¼ 0 is �0 ¼ 0:528G�1.
We use these two values of T0 and �0 for a normalization
of T and � in the presentation of the phase diagram to
remove the � dependence as possible. If finite m is intro-
duced, the second-order phase transition line becomes a
smooth crossover, while the first-order line remains. The
TCP also becomes the critical point.

We next consider the solutions with � ¼ 0. By setting
� ¼ 0 and m ¼ 0, the effective potential becomes

� ¼ A�2 � 1
4½89 lnð�2 þ z2Þ þ 1

9 lnð4�2 þ z2Þ� þ c:c:

(27)

The gap equation for a nontrivial solution � � 0 is ob-
tained as

A� 1

4

�
8

9

1

�2 þ z2
þ 1

9

4

4�2 þ z2

�
þ c:c: ¼ 0: (28)

For a large T and/or �, this equation does not have a real
solution of �, which indicates that at some values of T and
�, its solution coalesces to the trivial solution � ¼ 0,
where the system reaches a second-order phase transition.

It is easy to find a curve of the phase transition by setting
� ¼ 0 in Eq. (28):

�2 � T2

ð�2 þ T2Þ2 ¼ 2A

3
: (29)

The true phase structure should be, of course, determined
by comparing the effective potential for all solutions of the
gap equations, and the second-order phase transition line
(29) may be replaced by other phase structures.
To investigate the whole phase diagram, we have to

numerically compare the effective potentials for all pos-
sible solutions. The result is presented in Fig. 1 for the case
with m ¼ 0 (left panel) and with m � 0 (right panel).
In the chiral limit, we find a� ¼ 0 solution becomes the

ground state for a small chemical potential �=�0 & 0:95.
In this region, the phase diagram is the same as that
investigated in Ref. [13]: There is the second-order phase
transition line between the T axis and the TCP and the first-
order line from TCP to the large � region.
When a chemical potential exceeds a critical value,

however, we find a first-order phase transition to the CFL
phase at a small temperature. In this phase, the chiral order
parameter � becomes zero. We stress that the phase tran-
sition to the CFL phase in the ChRM model is remarkable
because in the construction of the ChRM model, the ratio
of the couplings between the quark-antiquark and the
quark-quark channels is given by the symmetry consistent
with QCD, not tuned so that the phase transition can be
reproduced.
Unfortunately, on the other hand, the CFL condensate �

continuously goes to zero not only as T is increased, but
also as� is. In QCD, the second-order phase transition at a
large � is not expected, since the Cooper instability re-
mains even if the attractive interaction is infinitely small.
This unphysical phase transition may be explained by the
absence of the Fermi surface in the ChRM model, which is
regarded as a model without the spatial dimension. We
consider that, at such a region, the model reaches a limi-
tation. Similar structures are found in the ChRM models
for two-color QCD with the diquark baryon condensates
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FIG. 1 (color online). The phase diagrams with three equal-mass flavors. The left (right) panel shows the case with m ¼ 0 (�m ¼
0:1). The solid lines denote the first-order phase transitions, and the dotted lines the second-order phase transitions. The largest order
parameters in each phases are shown by its letter. T0 (�0) is defined as the chiral phase transition temperature (chemical potential) on
the T (�) axis in the chiral limit when � ¼ 0.
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[17,18], as well as in the study on the 2SC phase in the
ChRM model [16].

When m � 0 (the right panel of Fig. 1), we find quali-
tative and quantitative changes from the case with m ¼ 0.
Because of the nonzero m, � has a small value even in the
symmetric and the CFL phases. The second-order chiral
phase transition line is washed out to become a crossover,
and then the TCP becomes a critical point. Note that the
second-order phase transition line for � remains. The first-
order chiral phase transition line is pulled up in the larger T
and � directions. The phase transition line between the
chirally-broken phase and the CFL phase also shifts to the
larger � region. Although the second-order CFL phase
transition line moves to extend the CFL phase, the CFL
phase shrinks in total.

V. 2þ 1 FLAVORS

We next concentrate on the response of the model to the
asymmetry between the light up and down (ud) quark
flavors and the mid-light strange quark flavor. In order to
see this effect, we set the quark masses as mu ¼ md ¼ m
and ms � m. We assume that the flavor symmetry is not
broken further spontaneously and set the order parameters
as �u ¼ �d ¼ � and �5 ¼ �7 ¼ �s. We also write
�2 ¼ � for convenience. Because of the asymmetry be-
tween the ud and strange quarks, the typical symmetry in
the CFL phase SUcþLþRð3Þ is not realized. Nevertheless,
we call the phase with � � 0 and �s � 0 the CFL phase.
Also, the phase with � � 0 and �s ¼ 0 is defined as the
2SC phase.

Under the parametrization, the effective potential be-
comes the function of the four order parameters as

�¼A

3
ð�2þ2�sÞþB

3
ð2�2þ�sÞ� 1

72

X
�
ln½fð��zÞ2þ�2g3

�fð��zÞð�s�zÞþ�2
sg4fð�s�zÞ2ðð��zÞ2þ�2Þ

þ4�2
sðð��zÞð�s�zÞþ�2

sÞg�þc:c:; (30)

where � ¼ �þm, �s ¼ �s þms, and we set A ¼ 0.
For the general case with � � �s and � � �s, the deter-
minant part under the logarithm becomes complicated. By
setting ms ¼ m, �s ¼ �, and �s ¼ �, we recover the
effective potential in the three equal-mass limit (25).
Another interesting limit is the 2SC phase, where �s ¼
0, in which the effective potential is separated to the ud
quark sector and the strange quark sector as

� ¼ �udð�;�Þ þ�sð�sÞ; (31)

where

�udð�;�Þ ¼ A

3
�2 þ 2B

3
�2 � 1

72

X
�
½4 lnðð�� zÞ2 þ�2Þ

þ 2 lnð�� zÞ2� þ c:c: (32)

and

�sð�sÞ ¼ B

3
�2

s � 1

72

X
�

lnð�s � zÞ6 þ c:c: (33)

The effective potential for the strange quark flavor (33) is
equivalent to the one of the conventional ChRM model
without diquark condensates [13], whose phase structure is
summarized in Sec. IV.
The effective potential (32) can be compared to the one

in Ref. [16], where two light quark flavors are introduced,
and the strange quark degree of freedom is neglected. We
first point out that the ratio of the coefficients of the
quadratic terms of the order parameters, which can be
read from Eq. (32) as ð2B=3Þ=ðA=3Þ ¼ 2B=A ¼ 3=4 since
B=A ¼ 3=8, is equal to that appearing in the model in
Ref. [16]. The reproduction of 3=4 is important since the
phase structure is sensitive to this ratio.
Interestingly, however, these two effective potentials

are not completely equivalent and match only if T ¼ 0 or
� ¼ 0. This is because we use the different temperature
scheme, or the matter effect matrix (4), from that used in
Ref. [16]. In the scheme used in Ref. [16], the effective
temperature is introduced with opposite signs for two
flavors.4 On the other hand, in the scheme we used here,
the temperature is introduced proportionally to the identity
in the flavor space. The relation of these schemes is dis-
cussed in detail in Ref. [23].
By considering the microscopic theory, a reason of the

choice of the flavor-antisymmetric scheme can be ex-
plained as follows [23]: To make the flavor-antisymmetric
quark pair condensate be independent of the imaginary
time �, only the terms of two quark fields with the opposite
signs of the Matsubara frequencies should be nonzero in
the Fourier summation over the Matsubara frequencies.
This indicates that the temperature term, or the lowest
Matsubara frequencies, should have the opposite signs
for different flavors because, in the diquark pairing, two
quarks have different flavors in our treatment.
Nevertheless, we use the flavor-symmetric scheme in

this paper because of the following reasons. First, if we
construct the ChRM model relying only on the symmetry,
we cannot find a scheme which has to be adopted. Both
treatments are consistent with the QCD symmetry, the anti-
Hermiticity at � ¼ 0, and the chiral symmetry for all T
and � of the Dirac operator. Second, because we treat the
ChRMmodel in the case with three flavors, in order to adopt
the flavor-antisymmetric scheme, we have to concern con-
tributions from three combinations of the three flavors. This
might make the effective potential more complicated, and
we try to make the model as simple as possible. Indeed, the
resulting phase diagram, which will be shown below, is
qualitatively equivalent to the model with the flavor-
antisymmetric scheme at �s ¼ 0. In other words, they

4Superficially, it seems to break the flavor symmetry, but,
indeed, the symmetry is held if the chemical potentials for two
flavors are equal [23].
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have the same global structure, or topology, of the phases. It
suggests that the qualitative structure of the phase diagram is
not sensitive to the selection of the temperature-dependence
schemes, as long as they hold the symmetry.

We next present the resulting phase diagram. Similar to
the case with three equal-mass flavors, we need numerical
calculations to evaluate the whole phase diagram. The
result with m ¼ 0 and ms � 0 is shown in Fig. 2. At a
small chemical potential, the diquark condensates do not
have finite values in the ground state, and the phase dia-
gram is the same with the model without the diquark
condensates. Because for the ud quark flavors, there are
no symmetry-breaking mass terms, the second-order phase
transition line, as well as the TCP, exist. On the contrary,
for the strange quark flavor, finite ms breaks the chiral
symmetry explicitly, and then the second-order phase tran-
sition line becomes a crossover. The TCP also becomes a
critical point. In the symmetric phase,�,� and�s become
exactly zero, but �s never becomes zero due to the finite
symmetry-breaking term ms.

As � is increased with T kept small, a first-order phase
transition to the 2SC phase is first observed. In the 2SC
phase, not only �, but also �s, have large values. If � is
further increased, we next observe a phase transition to the
CFL phase, where both � and �s have large values. Note
that because the flavor symmetry is explicitly broken, gen-
erally � � �s in the CFL phase. The diquark condensates
become zero continuously when T and � are increased. As
seen in the right panel of Fig. 2, there is a narrow slit between
two second-order phase transition lines for � and �s. In this
area, only �s has a large value. We also show in detail the
region around the end points of two horizontal second-order
phase transition lines for � and the vertical first-order phase
transition lines for�s and�s in Fig. 3.We find the first-order
phase transition between CFL phase and the phasewith finite
�s. The second-order phase transition line for�s touches the
first-order phase transition line for �s.

The result of the phase diagram can be considered as a
function ofms as follows; the 2SC phase appears as soon as
ms is turned on, and it extends as the symmetry-breaking
parameter ms is increased. In the model with anomaly
effects [21,24–27], the flavor-mixing terms generally

make the phase diagrams robust under the small changes
of the parameters. In our model, on the contrary, the
anomaly effect is neglected, and the small symmetry
breaking of ms suddenly changes the phase diagram.
We consider the sequence of the melting of the diquark

condensates. In the CFL phase, as T is increased with �
fixed, we find that the � becomes zero first, and the �s

becomes secondary. In the analysis of the NJL models
[28,29], on the contrary, it was found that �s melts first
and � second, and then the phase with only �s finite is not
found. The 2SC phase (where only � is finite) above the
CFL phase may also be expected in QCD. The reason is
explained as follows [4,29]: Around the melting tempera-
ture, the quark Fermi spheres are smeared, and then the
sizes of gaps are mainly dominated by the density of states.
Because the larger ms makes the strange quark Fermi
sphere smaller, its density of states is smaller than that of
the ud quarks, which results in the smaller �s than �. This
indicates the preceding melting of �s. We consider that the
contradicting result of our model is due to the absence of
the Fermi sphere in our treatment and, unfortunately, that
this is a limitation of our model.
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FIG. 2 (color online). The phase diagram with two massless and one massive quark flavors, mu ¼ md ¼ 0 and �ms ¼ 0:14.
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VI. SUMMARYAND DISCUSSION

We have studied a ChRM model which can treat the
competition between the chiral and the diquark conden-
sates in the case with three flavors to investigate the phase
diagram with the CFL phase. In order to describe the color
superconductivity, we have introduced the color and
Lorentz indices to the truncated Dirac matrix. The random
matrices mimicking the gauge fields are taken to be real
matrices, whose elements are distributed according to the
Gaussian weight. After the integration over the random
matrices, we are left with the four-fermion interaction
term, which contains not only quark-antiquark interaction
vertices, but also quark-quark vertices. Using Fierz trans-
formations, the ratio of the coefficients is uniquely deter-
mined. Applying the bosonization techniques, we finally
derive the effective potential as the function of the order
parameters, the chiral condensates, and the diquark
condensates.

The phase diagram on the T �� plane is calculated
by solving the gap equations simultaneously. In the case
with three equal-mass quark flavors, we find the CFL
phase in the large chemical potential region, while the
chirally broken phase in the small chemical potential
region. In the region where the CFL condensate is
zero; the phase diagram is equivalent to that obtained
from the conventional ChRM model without the diquark
condensations. The CFL condensates become zero con-
tinuously, as T and/or � are increased. The unphysical
phase transition at large � may be considered as the
result of the fact that the ChRM model does not contain
the Fermi surface. When finite quark mass m is intro-
duced, the phase transition line for the CFL phase moves
towards the larger chemical potential region. We also
find that the region of the CFL phase becomes smaller
as m is increased.

For the case with 2þ 1 flavors, mu ¼ md ¼ 0 and
ms � 0, we find both the CFL and the 2SC phases.
Moreover, we find the phase where �s has a finite value
and � ¼ 0. Such a phase is not found in the NJL model,
and not expected in QCD. We also consider that this
phase may be a model artifact due to the absence of the
Fermi surface, but cannot be excluded from the view-
point of the symmetry.

Although there are unphysical points, the ChRM model
studied in this paper can consistently address both the
chirally broken phase and the CFL phase. In addition,
with the finite asymmetry between the ud quarks and the
strange quark, the model also can show the 2SC phase.
Because the ChRMmodel includes the Dirac matrix, inves-
tigation of its eigenvalue distribution, the Dirac spectrum,
may be possible. It may be possible to understand the phase
transition into the diquark-condensed states in the context
of the moving of the Dirac eigenvalues. Furthermore, in the
microscopic region, there might be the universal structure
of the Dirac spectrum, which can be compared to the other
models at high density [30,31]. The applications in these
directions are postponed to future studies.
Finally, we consider an outlook or a possible extension

of the model. One of the most important effect we neglect
is the Uð1Þ breaking axial anomaly effect. It is known that,
in the ChRM model, the anomaly effect introduces the
flavor mixing, which changes the phase diagram drastically
[21,24,25]. Indeed, we find that the effective potential in
the case with 2þ 1 flavors and �s ¼ 0 can be separated to
the ud quark sector and the strange quark sector, as a result
of the absence of the mixing effect. Moreover, on the phase
diagram around mid-chemical potential, it is suggested
that the anomaly effect, which also mixes the chiral and
the diquark order parameters, plays a crucial role on the
phase structure with the various superconducting phases
[26,27,32]. We are then interested in combining the treat-
ment of the ChRM model with the color-superconducting
phases presented here, and of the ChRM model with the
axial anomaly in Ref. [21] to investigate the effects of the
axial anomaly on the phase structure with the color-
superconducting phases. It will allow us to discuss the
phase structure at finite temperature and density from a
viewpoint of the symmetry.
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Weidenmüller, Phys. Lett. B 367, 28 (1996); 374, 362(E)
(1996); for review, J. J.M. Verbaarschot and T. Wettig,
Annu. Rev. Nucl. Part. Sci. 50, 343 (2000).

[13] A.M. Halasz, A. D. Jackson, R. E. Shrock, M.A.
Stephanov, and J. J.M. Verbaarschot, Phys. Rev. D 58,
096007 (1998).

[14] M. Asakawa and K. Yazaki, Nucl. Phys. A504, 668
(1989).

[15] A. Barducci, R. Casalbuoni, S. De Curtis, R. Gatto, and
G. Pettini, Phys. Lett. B 231, 463 (1989).

[16] B. Vanderheyden and A.D. Jackson, Phys. Rev. D 61,
076004 (2000); 62, 094010 (2000).

[17] B. Vanderheyden and A.D. Jackson, Phys. Rev. D 64,
074016 (2001).

[18] B. Klein, D. Toublan, and J. J.M. Verbaarschot, Phys. Rev.
D 72, 015007 (2005).

[19] T. Banks and A. Casher, Nucl. Phys. B169, 103 (1980).
[20] K. Fukushima, J. High Energy Phys. 07 (2008) 083.
[21] T. Sano, H. Fujii, and M. Ohtani, Phys. Rev. D 80, 034007

(2009).
[22] R. A. Janik, M.A. Nowak, G. Papp, and I. Zahed, Nucl.

Phys. B498, 313 (1997).
[23] B. Vanderheyden and A.D. Jackson, Phys. Rev. D 72,

016003 (2005).
[24] H. Fujii and T. Sano, Phys. Rev. D 81, 037502 (2010).
[25] H. FujiiT. SanoPhys. Rev. D 83, 014005 (2011).
[26] T. Hatsuda, M. Tachibana, N. Yamamoto, and G. Baym,

Phys. Rev. Lett. 97, 122001 (2006).
[27] H. Abuki, G. Baym, T. Hatsuda, and N. Yamamoto, Phys.

Rev. D 81, 125010 (2010).
[28] M. Buballa and M. Oertel, Nucl. Phys. A703, 770 (2002).
[29] K. Fukushima, C. Kouvaris, and K. Rajagopal, Phys. Rev.

D 71, 034002 (2005).
[30] N. Yamamoto and T. Kanazawa, Phys. Rev. Lett. 103,

032001 (2009).
[31] G. Akemann, Int. J. Mod. Phys. A 22, 1077 (2007).
[32] H. Basler and M. Buballa, Phys. Rev. D 82, 094004

(2010).

T. SANO AND K. YAMAZAKI PHYSICAL REVIEW D 85, 094032 (2012)

094032-10

http://arXiv.org/abs/1101.0208
http://dx.doi.org/10.1016/0550-3213(77)90123-7
http://dx.doi.org/10.1016/0370-1573(84)90145-5
http://dx.doi.org/10.1016/0375-9474(93)90098-I
http://dx.doi.org/10.1016/0375-9474(93)90098-I
http://dx.doi.org/10.1103/PhysRevD.53.7223
http://dx.doi.org/10.1103/PhysRevD.53.7223
http://dx.doi.org/10.1016/0370-2693(95)01401-2
http://dx.doi.org/10.1146/annurev.nucl.50.1.343
http://dx.doi.org/10.1103/PhysRevD.58.096007
http://dx.doi.org/10.1103/PhysRevD.58.096007
http://dx.doi.org/10.1016/0375-9474(89)90002-X
http://dx.doi.org/10.1016/0375-9474(89)90002-X
http://dx.doi.org/10.1016/0370-2693(89)90695-3
http://dx.doi.org/10.1103/PhysRevD.61.076004
http://dx.doi.org/10.1103/PhysRevD.61.076004
http://dx.doi.org/10.1103/PhysRevD.62.094010
http://dx.doi.org/10.1103/PhysRevD.64.074016
http://dx.doi.org/10.1103/PhysRevD.64.074016
http://dx.doi.org/10.1103/PhysRevD.72.015007
http://dx.doi.org/10.1103/PhysRevD.72.015007
http://dx.doi.org/10.1016/0550-3213(80)90255-2
http://dx.doi.org/10.1088/1126-6708/2008/07/083
http://dx.doi.org/10.1103/PhysRevD.80.034007
http://dx.doi.org/10.1103/PhysRevD.80.034007
http://dx.doi.org/10.1016/S0550-3213(97)00265-4
http://dx.doi.org/10.1016/S0550-3213(97)00265-4
http://dx.doi.org/10.1103/PhysRevD.72.016003
http://dx.doi.org/10.1103/PhysRevD.72.016003
http://dx.doi.org/10.1103/PhysRevD.81.037502
http://dx.doi.org/10.1103/PhysRevD.83.014005
http://dx.doi.org/10.1103/PhysRevLett.97.122001
http://dx.doi.org/10.1103/PhysRevD.81.125010
http://dx.doi.org/10.1103/PhysRevD.81.125010
http://dx.doi.org/10.1016/S0375-9474(01)01674-8
http://dx.doi.org/10.1103/PhysRevD.71.034002
http://dx.doi.org/10.1103/PhysRevD.71.034002
http://dx.doi.org/10.1103/PhysRevLett.103.032001
http://dx.doi.org/10.1103/PhysRevLett.103.032001
http://dx.doi.org/10.1142/S0217751X07036154
http://dx.doi.org/10.1103/PhysRevD.82.094004
http://dx.doi.org/10.1103/PhysRevD.82.094004

