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We find the spectrum and wave functions of the heavy-light mesons in (1þ 1)-dimensional QCD in the

’t Hooft limit, both in the rest frame, using the Coulomb (axial) gauge, and on the light cone. Our

emphasis is on the effects of chiral symmetry breaking on the spectrum. While dynamical equations in

both cases look different, the results for the spectrum are identical. The chiral symmetry breaking is

clearly seen from the gap and Bethe-Salpeter equations in the laboratory frame. At the same time, while

vacuum is trivial on the light cone (no chiral condensate), the effects of the spontaneous breaking of the

chiral symmetry manifest themselves in the same way, as it follows from the coincidence of the spectra

obtained from the laboratory-frame Bethe-Salpeter equation on the one hand, and the light-cone ’t Hooft-

type equation on the other.
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I. INTRODUCTION

In this paper, we discuss the relation between the chiral
symmetry breaking in the two-dimensional ’t Hooft model
[1] and the heavy-light meson mass spectrum.

The action of the version of the ’t Hooft model we will
consider is

S ¼
Z

d2x

�
� 1

4
Ga

��G
a
�� þ

X
f¼1;2

�c fði 6D�mfÞc f

�
(1)

where Ga
�� is the gluon field strength tensor, the index a

runs from 1 to N2 � 1, and N is the number of colors,

N ! 1:

The subscript f marks quarks of different flavors. The
quarks are assumed to belong to the fundamental repre-
sentation of the gauge group SUðNÞ. Moreover, in our
consideration we will assume that m2 ! 1, so that the
second quark will play the role of a static force center,
whilem1 ! 0 so that the first quark is massless. The theory
then possesses two Uð1Þ symmetries, generated by the
vector and axial currents, �c 1�

�c 1 and �c 1�
��5c 1, re-

spectively. The axial symmetry is spontaneously broken
(see below).

The coupling constant g has dimension of mass, and in
the large-N limit scales as

� � g2N

4�
¼ const: (2)

The constant � is referred to as the ’t Hooft coupling.
The very fact of confinement is obvious in this model

since in two dimensions the Coulomb potential generated

by the static color source (i.e. the infinitely heavy quark
at the origin) grows linearly with separation. The model
was solved in the light-cone formalism by ’t Hooft [1]
and further developed along the same lines in Refs. [2,3].
The spectrum of the light-light mesons and the light-cone
wave functions were obtained from the ’t Hooft equation,
an integral equation, supplemented by certain boundary
conditions, well studied in the literature (for a review, see
e.g. [4]).
In the light-cone formalism, one chooses the light-cone

gauge condition

A� ¼ 0:

The light-cone time derivative of Aþ does not appear in
G��; hence, Aþ is a nondynamical degree of freedom

which can be eliminated through the equations of motion.
In the large-N limit the only surviving diagrams are ladders
and rainbows. The ’t Hooft equation for the bound state
built from the quark of the first flavor and antiquark of the
second flavor has the form

�
m2

1

x
þ m2

2

1� x
�M2

�
�ðxÞ ¼ 2�

Z 1

0

�ðyÞ ��ðxÞ
ðx� yÞ2 dy; (3)

where x is the first quark’s share of the total (light-cone)
momentum of the composite meson with mass M. If we
deal with massless (anti)quarks in the equation above
(m1 ¼ m2 ¼ 0), Eq. (3) has a massless-meson solution
(‘‘pion’’ with M ¼ 0) which is known exactly. The corre-
sponding light-cone wave function is x-independent,
�ðxÞ ¼ const. The existence of the massless pion implies
[5], through the standard current algebra relations, a non-
vanishing quark condensate [6] h �c c i proportional to

�N
ffiffiffiffi
�

p
, see also [7–9]. The problem is that this chiral

condensate is not seen directly in the light-cone considera-
tion, a usual story with all light-cone analyses of the
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vacuum condensates. The chiral condensate on the light
cone is buried somewhere in zero modes and boundary
conditions.

Indeed, if one tries to extract the quark condensate
directly from the light-cone quark Green’s function given
by ’t Hooft, one obtains

h �c c i / lim
x!0

TrfSðx; 0Þg; (4)

where Sðx; 0Þ is the massless quark Green’s function de-
scribing the quark propagation from the point 0 to the point
x. The right-hand side vanishes after taking trace, since this
Green’s function is linear in the � matrices.

Our task is not only to reveal the chiral condensate (this
had been already done by shifting slightly away from the
light cone [8] or, from the solution of the gap equation in
the laboratory frame [10]), but also to analyze its impact on
the spectrum of bound mesons. In order to keep a closed-
form integral equation á la ’t Hooft as the spectral equation,
we have to focus on a system of an infinitely heavy
antiquark at rest at the origin and a dynamical quark of
mass m1 ! 0 bound by a linearly growing potential, i.e.
the heavy-light quark system. The bound quark is ultra-
relativistic, and dynamical details of its binding crucially
depend on the chiral condensate (see below). At the same
time, the system in question can be considered in the
laboratory frame (as opposed to the light-cone considera-
tion). The static infinitely heavy (anti)quark suppresses the
so-called Z graphs in much the same way as the transition
to the light cone in the case of two massless (anti)quarks.
The absence of the Z graphs is necessary to keep the
spectral equation in the closedform. The above integral
equation applies to the one-particle wave function in the
momentum space. It can be readily obtained from
the general analysis of [10] in the limit m2 ! 1 and
m1 ! 0. We will briefly review the derivation below.

Another aspect, to be addressed below, is the relation
with the ‘‘original’’ light-cone spectral equation for the
heavy-light system, which we will refer to as the ’t
Hooft-like equation. It was obtained [11,12] from the gen-
eral light-cone ’t Hooft equation valid for arbitrary m1;2 in

the limit m2 ! 1 and m1 ! 0. In fact, we deal with two
different one-particle equations. One of them is just a
limiting case of the ’t Hooft equation, and applies to the
light-conewave function, which depends on x (0 � x � 1).
Within this approach the (massless quark) condensate van-
ishes. At the same time, our laboratory-frame equation has
the condensate built in. It is the spectral equation for �ðpÞ
where p is the light-quark momentum in the laboratory
frame. In deriving these two equations, one uses two distinct
limiting procedures. To obtain the ’t Hooft-like equation one
first tends the momentum to infinity, keeping the quark
masses fixed, and then tends one of the quark masses to
infinity. At the same time, when one works in the laboratory
frame, one keeps the total momentum fixed and sends the
quark mass to infinity from the very beginning. Generally
speaking, these two limits need not be commutative.

Our analysis will demonstrate that the above two equa-
tions are, in fact, isospectral; i.e. the limiting procedures
are interchangeable, with no obstructions.
Surprisingly, the laboratory-frame equation for �ðpÞ

formally becomes identical to the ’t’ Hooft-like equation
for’ð�Þ (see Eq. (6)) upon substitution into the laboratory-
frame equation a ‘‘wrong’’ solution for the chiral angle (i.e.
a singular solution with no chiral symmetry breaking) and
a rescaling of the overall energy scale. This curious coin-
cidence has no obvious physical reason; at least, we were
unable to find such a reason.
The heavy-light systems in the ’t Hooft model were

considered previously, in an applied context, e.g. in
Ref. [13]. In this work, the original light-cone ’t Hooft

equation was numerically solved at large values ofm2=
ffiffiffiffi
�

p
.

As was mentioned, in the ’t Hooft-like equation the limit

m2=
ffiffiffiffi
�

p ���! 1 is taken before solving the ’t Hooft equa-
tion. The appropriate limiting procedure was implemented
in [11,12]. Note that when the heavy-light meson is
boosted (to put it on the light cone) the total momentum
of the meson is shared between quarks proportionally to
their masses. Therefore, the heavy quark will have x very
close to unity while the light quark’s share will be close to
zero. The width of the x distribution will be proportional toffiffiffiffi
�

p
=m2 ! 0. This fact was noted long ago [14], and was

later extensively exploited in phenomenology. The light-
cone wave function will have an infinitely narrow support

in the limit
ffiffiffiffi
�

p
=m2 ! 0 unless we rescale the variable x, so

that the corresponding distribution does not shrink to a
delta function but is, rather, characterized by a constant
width.
The appropriate rescaling laws are as follows [11,12]:

x ¼ 1�
ffiffiffiffiffiffi
2�

p
m2

�; M ¼ m2 þ E;

�ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ð2�Þ�1=2

q
’ð�Þ; (5)

wherem2 is to be sent to infinity while E is kept fixed (i.e. E
is the mass of the bound state after the subtraction of the
mechanical mass of the infinitely heavy antiquark).
Then the light-cone ’t Hooft equation takes the form

2E’ð�Þ ¼ ffiffiffiffiffiffi
2�

p
�’ð�Þ � ffiffiffiffiffiffi

2�
p Z 1

0

’ð~�Þ � ’ð�Þ
ð~�� �Þ2 d~�: (6)

The boundary conditions in this equation are as follows:

’ð� ! 0Þ ! const; ’ð� ! 1Þ ! 0: (7)

Our main results can be summarized as follows. We
solve the heavy-light system in the laboratory-frame using
the Coulomb (axial) gauge. As the first step we solve the
gap equation and obtain the required quark Green function.
Given this quark Green function we are in position to solve
the Bethe-Salpeter equation. Both the single-quark Green
function (the quark condensate follows straightforwardly
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from the quark Green function) and the meson spectrum
manifestly exhibit dynamical chiral symmetry breaking.
Then we solve the same system on the light-cone by
integrating (numerically) the ’t Hooft-like equation. We
obtain exactly the same spectrum even though the dynami-
cal equations in both cases have very different physical
meaning, and there is no gap equation on the light cone.
Dynamical chiral symmetry breaking is manifest through
the absence of parity doubling in the spectrum in both
cases, but in the laboratory-frame this chiral symmetry
breaking is also clearly seen through the nonzero quark
condensate in the vacuum. While all the intermediate
color-nonsinglet quantities, such as the quark Green func-
tion, manifestly depend on the reference frame and on the
gauge-fixing condition, the spectrum of the color-singlet
system is independent of the choice of the quantization
scheme, of the reference frame and of the gauge condition.

In Sec. II, we briefly review the chiral symmetry break-
ing and solution of the associated gap equation in the
laboratory-frame. In Sec. III, we discuss the spectral equa-
tion for the heavy-light mesons in the laboratory-frame and
on the light cone. Numerical solutions are presented.
Section IV briefly summarizes our results and conclusions.

II. CHIRAL SYMMETRY BREAKING IN VACUUM

A. The gap equation

In the laboratory-frame, the axial (Coulomb) gauge
condition

A1 ¼ 0 (8)

is convenient. The derivation of the bound state equation is
carried out in two steps, see [10] for details. First one needs
to obtain the quark Green’s function for the massless quark.
Its self-energy saturated in the large-N limit by the rainbow
graphs.

To introduce necessary notation it is convenient to start,
however, from the one-loop graph presented in Fig. 1.

We will denote the quark self-energy by�i�, so that the
quark Green’s function is

Gijðp0; pÞ ¼
Z

d2xeip�x
�hTfc ðxÞ �c ð0Þgi ¼ i

6p�m��
;

(9)

where the mass parameter m is arbitrary (real and positive)
for the time being. In the A1 ¼ 0 gauge � depends only on
the spatial component of the quark momentum p, not on
p0. In calculating the graph of Fig. 1 we benefit from the

fact that onlyD00 is nonvanishing, and perform the integral
over the time component of the loop momenta using res-
idues. In this way, we arrive at

�ðpÞ¼�

2

�
�2�1

�
p

m2þp2
þ m2

2ðm2þp2Þ3=2 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2

p þpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2

p �p

�

�m

�
2

m2þp2
� p

ðm2þp2Þ3=2 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2

p þpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2

p �p

��
:

(10)

Now we see that (i) The loop expansion parameter is

�=ðm2 þ p2Þ; it explodes atm;p <
ffiffiffiffi
�

p
, so that summation

of the infinite series is necessary; (ii) In the A1 ¼ 0 gauge
� depends only on the spatial component of momentum;
(iii) Its general Lorentz structure is

�ðpÞ ¼ AðpÞ þ BðpÞ�1; (11)

where A and B are some real functions of p (for real p).
From Eq. (9), we see that the combination we will be
dealing with in the quark Green’s function is

mþ p�1 þ AðpÞ þ BðpÞ�1: (12)

Usually A and B are traded for two other functions, which
parametrize the quark Green’s function in a more conve-
nient way. Namely,

Ep�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþAðpÞÞ2þðpþBðpÞÞ2

q
;

mþAðpÞ¼Epcos�p;

pþBðpÞ¼Ep sin�p;

(13)

where for consistency one should demand Ep to be positive

for all real p. The angle �p is referred to as the Bogoliubov

angle, or, more commonly, the chiral angle. The exact
quark Green’s function now can be rewritten as

G ¼ i
p0�0 � Ep sin�p�

1 þ Ep cos�p

p2
0 � E2

p þ i"
: (14)

Closed-form exact equations can be obtained for Ep and

�p due to the fact that in the ’t Hooft limit the quark self-

energy is saturated by ‘‘rainbow graphs.’’ An example of
the rainbow graph is depicted in Fig. 2. Intersections of the
gluon lines and insertions of the internal quark loops are
forbidden, and so are the gluon lines on the other side of the
quark line. This diagrammatic structure implies an equa-
tion depicted in Fig. 3, where the bold solid line denotes the
exact Green’s function (14). Algebraically,

FIG. 1. Quark self-energy at one loop. FIG. 2. An example of the rainbow graph in �ðpÞ.
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�ðpÞ ¼ i�

2�
�
Z d2k

ðp� kÞ2 �
0GðkÞ�0: (15)

It is easy to see that this equation sums up the infinite
sequence of the rainbow graphs in its entirety. In Eq. (15), a
principal value of the integral on the right-hand side is
assumed.

Using (14) and performing integration over k0, the time
component of the loop momentum, by virtue of residues, it
is not difficult to obtain

�ðpÞ¼�

2
�
Z
dk

�
�1 sin�k

1

ðp�kÞ2þcos�k
1

ðp�kÞ2
�
; (16)

which implies, in turn,

AðpÞ ¼ Ep cos�p �m ¼ �

2
�
Z

dk cos�k
1

ðp� kÞ2 ;

BðpÞ ¼ Ep sin�p � p ¼ �

2
�
Z

dk sin�k
1

ðp� kÞ2 :
(17)

This should be supplemented by the boundary conditions

�p !
� �
2 at p ! 1;
� �

2 at p ! �1;
(18)

determined by the free-quark limit. The integrals (15)–(17)
contain singularity at p ¼ k, so a regularization is re-
quired. We use the principal value regularization. This
set of equations, called the gap or the Schwinger-Dyson
equation, was first obtained by Bars and Green [10].
Multiplying the first equation by sin�p and the second by

cos�p and subtracting one from another one gets an inte-

gral equation for the chiral angle, namely,

pcos�p�msin�p¼�

2

Z
dksinð�p��kÞ 1

ðp�kÞ2 : (19)

The latter equation, in contrast to (15)–(17), does not
contain singularity at p ¼ k. Assuming that the chiral
angle is found in the limit m ¼ 0 from

p cos�p ¼ �

2

Z
dk sinð�p � �kÞ 1

ðp� kÞ2 ; (20)

one can get Ep from the equation

Ep ¼ p sin�p þ �

2
�
Z

dk cosð�p � �kÞ 1

ðp� kÞ2 : (21)

An immediate consequence is that �p is an odd function of

p, while EðpÞ is even.

By solving the gap equation, one obtains the chiral angle
�p and both dressing functions AðpÞ and BðpÞ. In the chiral
limit m ¼ 0, the chiral symmetry breaking part of the
quark Green function is AðpÞ. Consequently, a nonzero
AðpÞ signals dynamical chiral symmetry breaking in the
vacuum. It is an intrinsically nonperturbative effect that
cannot be obtained within the perturbation theory.

B. A wrong solution

Upon examining Eq. (20) it is not difficult to guess an
analytic solution,

�p ¼ �

2
signp; (22)

where signp is the sign function,

signp ¼ #ðpÞ � #ð�pÞ:
The solution (22) is singular. If nevertheless we use it, then
substituting (22) in Eq. (21) one obtains

Ep ¼ jpj � �

jpj : (23)

The above results show that the analytic solution (22)
is unphysical. This is obvious from the fact that Ep be-

comes negative at jpj< ffiffiffiffi
�

p
. This feature of the solution

(23)—negativity at small jpj—cannot be amended by a
change of the infrared regularization. See also [15].
The unphysical solution (23) leads to the vanishing

quark condensate, as will be clear from Eq. (25). We will
return to the unphysical solution later, after discussing the
(nonsingular) physical solution.

C. Physical solution

A solution that leads to a nonvanishing condensate has
the form depicted in Fig. 4. It is smooth everywhere. At

jpj � ffiffiffiffi
�

p
it is linear in p. Its asymptotic approach to

��=2 at jpj � ffiffiffiffi
�

p
will be discussed later.

FIG. 3. Exact equation for �ðpÞ summing all rainbow graphs.
The bold solid line is the exact quark propagator (14).

FIG. 4 (color online). Numerical solution of the gap equation
for the Bogolyubov angle �ðpÞ, p is in units of

ffiffiffiffi
�

p
. Where x

comes from the change of variable p ¼ tanðxÞ.

GLOZMAN et al. PHYSICAL REVIEW D 85, 094030 (2012)

094030-4



Now, let us calculate the chiral condensate, the vacuum
expectation value h �c c i,

h �c c i ¼ �Tr
Z d2p

ð2�Þ2 Gðp0; pÞ; (24)

where Tr stands for both traces, with respect to color and
Lorentz indices, and the quark Green function Gðp0; pÞ is
defined in Eq. (14). Taking the trace and performing the p0

integration, we arrive at

h �c c i ¼ �N
Z dp

2�
cos�p: (25)

For the singular solution (22) the above quark condensate
vanishes since cos�p � 0. However, for the physical

smooth solution depicted in Fig. 4 the quark condensate
does not vanish,

h �c c i ¼ � Nffiffiffi
6

p ffiffiffiffi
�

p
: (26)

Equation (25) in conjunction with (20), allow us to
determine the leading preasymptotic correction in �p at

jpj � ffiffiffiffi
�

p
. Indeed, in this limit the right-hand side of

Eq. (20) reduces to (at p > 0)

�

2p2

Z
dk sin

�
�

2
� �k

�
¼ �

2p2

Z
dk cos�k; (27)

while the left-hand side

p sin

�
�

2
� �p

�
! p

�
�

2
� �p

�
: (28)

This implies, in turn, that

�p ¼ �

2
signp� �ffiffiffi

6
p

� ffiffiffiffi
�

p
p

�
3 þ . . . ; jpj � ffiffiffiffi

�
p

: (29)

At the same time, from Eq. (21) we deduce that there is no
p�3 correction in E=jpj, the leading correction is of order
of �3=p6.

D. Numerical solution of the gap equation and an
alternative scheme of regularization

The gauge choice (8) for the model (1) ensures the
existence of only one nontrivial component of the gluon
propagator:

Dab
01 ðx0 � y0; x� yÞ ¼ Dab

11 ðx0 � y0; x� yÞ ¼ 0;

Dab
00 ðx0 � y0; x� yÞ ¼ � i

2
	abjx� yj	ðx0 � y0Þ:

(30)

Dab
00 ðx0 � y0; x� yÞ corresponds to an instantaneous linear

confining potential. All loop integrals calculated with a
linear potential diverge in the infrared region, hence one
has to introduce an infrared regularization. This can be
done in a number of ways. In previous sections, we used a
principal value regularization.

Here we apply an alternative regularization, which
suppresses the small momenta of the linear potential by
introducing a cutoff parameter into the propagator in the
momentum representation. We define propagator in
momentum representation as

Dab
00 ðx0 � y0; pÞ ¼ i

	ab	ðx0 � y0Þ
p2 þ�2

IR

: (31)

Then in the final answer for the color-singlet quantities the
infrared limit �IR ! 0 must be taken.
In the regularization scheme defined by (31) the expres-

sion for the self-energy operator (15) turns into

�ðpÞ ¼ �

2

Z
dk

�
�1 sin�k

1

ðp� kÞ2 þ�2
IR

þ cos�k
1

ðp� kÞ2 þ�2
IR

�
: (32)

Using the representation of the delta-function

	ðxÞ ¼ lim
�IR!0

1

�

�IR

x2 þ�2
IR

; (33)

it is easy to see that the self-energy defined in (32) diverges
at �IR ! 0 as

lim
�IR!0

�ðpÞ¼ ��

2�IR

sin�p�
1þ ��

2�IR

cos�pþa finite part:

(34)

The self-energy operator defined in (15) via the principal
value regularization is always finite. This is also true for
the energy of a single quark which, being regularized
through (31), takes the form

Ep ¼ p sin�p þ �

2

Z
dk cosð�p � �kÞ 1

ðp� kÞ2 þ�2
IR

:

(35)

Ep diverges at �IR ! 0 as

lim
�IR!0

Ep ¼ ��

2�IR

þ finite terms; (36)

while with the principal value regularization it is always
finite. For any other color-nonsinglet quantity one has the
same situation.
This circumstance reflects the confining properties of the

’t Hooft model. Confinement means that only observable
color-singlet quantities have finite well-defined values, that
should not depend on the infrared regularization scheme.
The color-nonsinglet quantities are not observable and
manifestly depend on the regularization choice. Our
present regularization is convenient in the sense that it
explicitly removes all color-nonsinglet objects from the
physical Hilbert space since they are all infrared divergent.
At the same time this infrared divergence exactly cancels
in all color-singlet observable quantities, such as the meson
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spectrum, the chiral angle and the quark condensate. The
color-singlet quantities are finite and do not depend on the
choice of the regularization.

In the following we show that the infrared divergences
exactly cancel in the gap equation, written in the form

AðpÞ sin�p � ½BðpÞ þ p� cos�p ¼ 0; (37)

where AðpÞ and BðpÞ in the regularization scheme (31) are

AðpÞ ¼ �

2

Z
dk

cos�k
ðp� kÞ2 þ�2

IR

;

BðpÞ ¼ �

2

Z
dk

sin�k
ðp� kÞ2 þ�2

IR

:

(38)

Using the representation of the delta function (33), we
obtain at �IR ! 0:

AðpÞ ¼ ��

2�IR

cos�p þ AfiniteðpÞ;

BðpÞ ¼ ��

2�IR

sin�p þ BfiniteðpÞ:
(39)

Note that in (37) all divergences exactly cancel and

tan�p ¼ BðpÞ þ p

AðpÞ ¼ BfiniteðpÞ þ p

AfiniteðpÞ : (40)

Equation (37) can be solved at exceedingly small but
finite values of�IR; then extrapolation to the limit�IR ! 0
must be performed. The equation is solved recurrently with
a special care for the numerical integration in the vicinity
of p ¼ k. The resulting chiral angle is consistent with
previous studies [7,8] and is presented in Fig. 4.

III. THE HEAVY-LIGHT MESONS

A. Equation for the heavy-light mesons

The Bethe-Salpeter equation for the heavy-light mesons
in the laboratory frame follows from [10] in a straightfor-
ward manner, by taking the limit m2 ! 1 in the coupled
equations of [10], which untangles them. The correspond-
ing Bethe-Salpeter equation was obtained e.g. in
Refs. [15,16]; an alternative derivation can be found in
the text [17]. It has the form

E�ðpÞ¼psin�p�ðpÞ��
Z dk

ðp�kÞ2

�
�
cos

�p��k
2

�ðkÞ�
�
cos

�p��k
2

�
2
�ðpÞ

�
: (41)

It is not difficult to derive the boundary conditions on
�ðpÞ and some properties of the wave function:

(i) it can be taken real, nonsingular, and either symmet-
ric or antisymmetric under p ! �p,

�ð�pÞ ¼ ��ðpÞ;

(ii) and at large jpj

�ðpÞ 	
8<
:

1
jpj3 symmetric levels;

1
p4 antisymmetric levels

: (42)

This asymptotic behavior is necessary to guarantee the
cancellation of the leading (at large p) term on the right-
hand side of Eq. (41).
Knowing the numerical solution for the chiral angle �p,

we are able to solve Eq. (41). For the numerical solution of
Eq. (41) it is convenient to use the regularization (31).
Equation (41) then takes the form

E�ðpÞ¼psin�p�ðpÞ��
Z dk

ðp�kÞ2þ�2
IR

�
�
cos

�p��k
2

�ðkÞ�
�
cos

�p��k
2

�
2
�ðpÞ

�
:

(43)

Considering (43) at �IR ! 0, one can see that all infrared
divergences cancel each other

E�ðpÞ ¼ p sin�p�ðpÞ � ��

�IR

�ðpÞ þ ��

�IR

�ðpÞ

þ a finite part: (44)

We solve Eq. (43) variationally by expanding the unknown
wave function in the basis

�ðpÞ ¼ XN
i¼1

Ci
iðpÞ: (45)

For the symmetric levels, we choose a basis in the form


iðpÞ ¼ expð��ip
2Þ

while for antisymmetric


iðpÞ ¼ p expð��ip
2Þ:

A relatively small number of Gaussians is required for a
sufficiently accurate expansion. Given the above basis,
Eq. (43) transforms into a system of linear equations,

E
XN
i¼1

Ci
iðpÞ¼psin�p
XN
i¼1

Ci
iðpÞ��
Z dk

ðp�kÞ2þ�2
IR

�
�
cos

�p��k
2

XN
i¼1

Ci
iðkÞ

�
�
cos

�p��k
2

�
2XN
i¼1

Ci
iðpÞ
�
: (46)

Multiplying (46) by 
jðpÞ, we obtain the generalized

eigenvalue problem:
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ED ~Cn ¼ ðAþ BÞ ~Cn;

where

Dij ¼
Z

dp
iðpÞ
jðpÞ;

Aij ¼
Z

dpp sin�p
iðpÞ
jðpÞ;
(47)

Bij ¼
Z

dp
Z

dk

�
cos

�p � �k
2


iðkÞ
jðpÞ

�
�
cos

�p � �k
2

�
2

iðpÞ
jðpÞ

�
: (48)

Energy levels obtained by solving the problem (47) are
shown in Table I and in Fig. 5, the corresponding wave
functions are in Fig. 6 and 7. All wave functions are
normalized by condition

R
dp�2ðpÞ ¼ 1.

B. The heavy-light mesons on the light cone

Now we deal with the ’t Hooft-like Eq. (6). In order to
solve it numerically, we split the integral into two parts

2Em’mð�Þ ¼
ffiffiffiffiffiffi
2�

p
�’mð�Þ

� ffiffiffiffiffiffi
2�

p
lim
�!0

�Z ���

0

’mð~�Þ � ’mð�Þ
ð~�� �Þ2 d~�

þ
Z 1

�þ�

’mð~�Þ � ’mð�Þ
ð~�� �Þ2 d~�

�
: (49)

Alternatively the ’t Hooft-like equation can be solved
with definition (31). Then it takes form

TABLE I. Energy levels of the heavy-light hadrons in units offfiffiffiffi
�

p

n P ¼ � P ¼ þ
0 1.161 3.043

1 4.300 5.286

2 6.126 6.868

3 7.540 8.159

4 8.734 9.276

5 9.789 10.27

6 10.74 11.18

FIG. 5 (color online). Spectrum of the heavy-light mesons in
units of

ffiffiffiffi
�

p
.

FIG. 6 (color online). Wave functions of mesons with the
negative parity (i.e. with the ‘‘symmetric’’ relative motion
wave function). The wave function �nðpÞ is in units of �ð�1=4Þ
and momentum p is in units of

ffiffiffiffi
�

p
.

FIG. 7 (color online). Wave functions of mesons with the
positive parity (i.e. with the ‘‘antisymmetric’’ relative motion
wave function). The wave function �nðpÞ is in units of �ð�1=4Þ
and momentum p is in units of

ffiffiffiffi
�

p
.
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2Em’mð�Þ ¼
ffiffiffiffiffiffi
2�

p
�’mð�Þ �

ffiffiffiffiffiffi
2�

p Z 1

0

’mð~�Þ � ’mð�Þ
ð~�� �Þ2 þ�2

IR

d~�;

(50)

where �IR ! 0 is assumed.
Both Eqs. (49) and (50) were solved numerically in

much the same way as Eq. (43). The results in both cases
(49) and (50) coincide. The spectrum is identical to that
following from the laboratory-frame Eq. (43), see Fig. 5.
The light-cone wave functions are normalized by the con-
dition

R
d�’2

mð�Þ ¼ 1 and presented in Fig. 8.

C. Equation (41) with the unphysical chiral
angle vs the ’t Hooft-like equation

People are used to the fact that the chiral condensate
cannot be directly captured if one works on the light cone.
At the same time, the chiral symmetry breaking is seen
indirectly, through the absence of the parity degeneracy
in the spectrum of physical mesons. The situation in
our laboratory-frame construction is totally different. The
nonsingular solution for �p, see Sec. II D, immediately

produces h �c c i � 0, see Eq. (25). As a result, naturally,
all P-odd states split from P-even.

The singular solution (22) would lead to h �c c i ¼ 0: If,
using (22), we could obtain a consistent laboratory-frame
Bethe-Salpeter equation, with a proper Foldy-Wouthuysen
transformation, it should have produced a parity degener-
ate meson spectrum, in full accord with general theorems.
However, (22) implies (23), which obviously precludes the
use of (22) in the Bethe-Salpeter equation because of
negativity of the solution (23) at small jpj.

Physically it means that the chiral symmetry is a priori
broken in the ’t Hooft model. Trying to restore it by brute
force insisting on the chirally symmetric vacuum, we see
that the bound state equation for hadrons in the rest frame
is not defined, and no consistent solutions for hadronic
spectrum exists.
Nevertheless, let us perform this incorrect and illegiti-

mate operation, and see what happens. Below we examine
a strange construct, namely, Eq. (41) with the singular
(unphysical) chiral angle, i.e. we replace �p;k in Eq. (41)

by (22). This is no longer a legitimate laboratory-frame
Bethe-Salpeter equation, but it has a miraculous feature.
For positive values of p, we get

E�ðpÞ ¼ p�ðpÞ � �
Z 1

0

dk

ðp� kÞ2 ½�ðkÞ ��ðpÞ�: (51)

Next, we introduce dimensionless variables (marked by
tildes)

p ¼ ffiffiffiffi
�

p
~p; k ¼ ffiffiffiffi

�
p

~k: (52)

The wave functions are to be understood now as functions

depending on ~p, ~k rather than p, k, although we will keep
using the same notation �. Then, in terms of these dimen-
sionless variables, Eq. (51) takes the form

E�ðpÞ ¼ ffiffiffiffi
�

p
~p�ð~pÞ � ffiffiffiffi

�
p Z 1

0

d~k

ð~p� ~kÞ2 ½�ð~kÞ ��ð~pÞ�:
(53)

Compare it with Eq. (49) or (50). We observe, with sur-
prise, that Eq. (53) is identical to (49), up to a renaming of
the integration variables and rescaling

E ! ffiffiffi
2

p
Em: (54)

Thus, the laboratory-frame Bethe-Salpeter equation with
the wrong chiral angle and the boundary conditions inap-
propriate for the laboratory-frame equation [18] reprodu-
ces the spectrum of the (correct) ’t Hooft-like light-cone
equation up to an overall energy scale which is off by a

factor of 1=
ffiffiffi
2

p
. In particular, the ratios of the energy levels

following from (51) are correct. The physical reason for
this coincidence remains puzzling.

IV. CONCLUSIONS

We studied the heavy-light mesons in (1þ 1)-
dimensional QCD in the ’t Hooft limit, with the emphasis
on the impact of the chiral symmetry breaking both on the
spectrum and wave functions. To this end, we compared
two alternative quantization schemes: laboratory-frame
Bethe-Salpeter equation with a nontrivial chiral angle
and the light-cone ’t Hooft-like equation which has no
direct information on the chiral condensate in the vacuum.
Two distinct limiting procedures leading to these two
respective equations are not a priori interchangeable.

FIG. 8 (color online). Wave functions of mesons obtained from
the ’t Hooft-like equation. Even m represent the negative parity
mesons and odd m correspond to the positive parity mesons.
Both the wave functions ’mð�Þ and the variable � are dimen-
sionless.
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First, we solved the system in the laboratory frame using
the Coulomb (axial) gauge. The solution proceeds via two
steps. One begins from the solution of the gap equation and
obtains a single-quark Green’s function as well as the
quark condensate in the vacuum. Chiral symmetry is man-
ifestly dynamically broken in the vacuum. Then one solves
the Bethe-Salpeter equation determining the odd and even
wave functions and the spectrum. Chiral symmetry is
broken in the spectrum as well. The spectral results are
independent on the gauge choice and on an infrared regu-
larization scheme.

Second, we solved the same system on the light cone. In
this case there is no analog of the gap equation, and
vacuum is trivial. Nevertheless, the chiral symmetry is
broken in the observable spectrum. Needless to say, all
wave functions are totally different (they depend on vari-
able which have very different meanings in these two
schemes). While dynamical equations on the light cone
and in the laboratory frame (with the Coulomb gauge) look

very different, the results for the spectra are the same. We
demonstrated this numerically; the question of explicitly
finding an appropriate unitary transformation between both
schemes remains open.
A curious fact was observed en route. The laboratory-

frame equation for �ðpÞ becomes identical to the ’t Hooft-
like equation for ’ð�Þ (see Eq. (6)) upon substitution into
the laboratory-frame equation of a singular (nonphysical)
solution for the chiral angle with simultaneous rescaling of
the overall energy scale.
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