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The multiperipheral ladder structure of the Pomeron leads to the quite natural conclusion that the elastic

slope, Bel, is not a simple linear function of the logarithm of the collision energy. The existing

experimental data on the diffraction cone shrinkage provide evidence in favor of such ‘‘complicated’’

energy dependence. An increase of the diffraction cone shrinkage with the beam energy is directly

connected with the extreme rise of the total cross section (Froissart limit).
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I. INTRODUCTION

The high-energy behavior of the hadron-hadron scatter-
ing is usually described by the Pomeron exchange. A
popular parametrization of the elastic scattering amplitude
at small momentum transfer takes into account only the
Reggeon and Pomeron poles exchanges. The ab elastic
scattering amplitude reads

TabðtÞ ¼ FaðtÞFbðtÞCPs
�PðtÞ þ FRðtÞCRs

�RðtÞ; (1)

where the form factors Fa, Fb, FR describe the hadronic
matter distribution in the incoming hadrons a, b. CP and
CR are the normalization constants. The contribution of
the secondary Reggeon poles [last term in (1)] becomes
negligible at

ffiffiffi
s

p � 100 GeV.
From the microscopic point of view the Pomeron is

described by the ladder-type diagrams where the energy
(longitudinal momentum fraction) in each next cell is a few
times smaller than that in the previous cell.1 To reach
the largest cross section we have to consider the chain
(sequence) of strong interactions with relatively low partial
subenergies. Such a sequence of interactions allows a large

cross section which does not decrease with energy � /
s�Pð0Þ�1.

On another hand, at each step the interaction radius, �,
changes by the value ��� 1=kt leading to the ‘‘diffusion’’
in the impact parameter plane. At each step the energy of
incoming particle diminishes a few times. Thus, the num-
ber of steps is n� lns, and the final radius is R2 ¼ R2

0 þ
n � ð��Þ2. Therefore, the Pomeron trajectory�PðtÞ depends
on the transverse momentum t ¼ �q2t , and for a not large
jtj it can be written as �PðtÞ ¼ 1þ �þ �0

Pt.
Correspondingly, the elastic ab cross section takes the

form

d�ab

dt
¼ �2

0

16�
F2
aðtÞF2

bðtÞ
�
s

s0

�
2�þ2�0

Pt
: (2)

The power growth of the ‘‘single Pomeron exchange’’
cross section generated by the ladder diagram reflects the
rise of the parton multiplicity, N. Since at each (ladder)
step the longitudinal momentum decreases by a few times
the mean number of steps hni � c � lns. At each splitting
(step) the parton multiplicity increases by a factor 2. Thus,
the final parton multiplicity N � 2c lns ¼ sc ln2.
The slope of a Pomeron trajectory �0

P accounts for the
growth of interaction radius. This is caused by a long chain
of intermediate (relatively low energy) interactions whose
length increases with lns. In the case of Gaussian form
factors F2

aF
2
b ¼ expðB0tÞ, we arrive at the slope of elastic

cross section d�=dt ¼ jTðtÞj2=16�s2 / expðBeltÞ
Bel ¼ B0 þ 2�0eff

P lnðs=s0Þ: (3)

While the first term B0 in (3) depends on the type of the
incoming hadrons a and b, the second term 2�0eff

P lnðs=s0Þ
is universal. In the case of the one-Pomeron exchange it
should be the same at any energy and for any type of
incoming hadron. This universality was confirmed in the
fixed target experiments [2] (

ffiffiffi
s

p
< 25 GeV), where the

value of �0
P ¼ 0:14 GeV�2 was measured.2

Donnachie and Landshoff [3] [see Eq. (7)] from the
analysis of the d�el=dt distribution, measured at

ffiffiffi
s

p ¼
52:8 GeV [4], have obtained much larger value of �0

P ¼
0:25 GeV�2.

II. MORE COMPLICATED BEHAVIOR
OF THE SLOPE BelðsÞ

The growth of �0eff
P was by no means unexpected.

Recall that in the impact parameter, �, representation the
amplitude3

Tð�Þ ¼ 1

8�2s

Z
TðqtÞ expði ~qt ~�Þd2qt (4)

should satisfy the unitarity equation
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1Such a multiperipheral ladder structure of the Reggeon was

considered first in [1].

2At not too large fixed target energies it was important to
account for the secondary Reggeon contribution in the fit [2].

3Here we use the normalization ImTðt ¼ 0Þ ¼ s�tot.
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2 ImTð�Þ ¼ jTð�Þj2 þGinelð�Þ; (5)

with �t ¼ q2t , while Ginel denotes the contribution of all
inelastic channels. The solution of (5) reads

Tð�Þ ¼ ið1� expð��ð�; sÞ=2ÞÞ: (6)

In terms of Tð�Þ the total and elastic cross sections and the
elastic slope can be written as

�tot ¼ 2
Z

ImTð�Þd2�; (7)

�el ¼
Z

jTð�Þj2d2�; (8)

Belðt ¼ 0Þ ¼
R
�2Tð�Þd2�

2
R
Tð�Þd2� ¼ h�2i=2: (9)

When the optical (parton) density, i.e. the opacity �ð�; sÞ,
becomes too large we have to account for the multiple
interactions which are described by the multi-Pomeron
diagrams. Similar to the case of nuclear-nuclear AA
collisions, where few nucleon-nucleon pairs can interact
simultaneously and screen each other, the corresponding
absorptive corrections terminate the growth of elastic am-
plitude near the black disk limit, when in the impact
parameter representation the imaginary part of the elastic
scattering amplitude ImTð�Þ ! 1.4

Note that while at the center of the disk (small �) the
amplitude saturates at ImT ¼ 1, it still continues to rise
with energy at the periphery (large �), leading to the
increase of the mean interaction radius and, thus, to
the growth of the elastic slope Bel. Another way to see
the energy variation of Bel is to consider the two first
diagrams—the one-Pomeron exchange and the two-
Pomeron cut. As compared to the one-Pomeron exchange,
the two-Pomeron contribution slowly falls down with �t.
This is because when using the two (few) Pomerons we can
distribute the whole transferred momentum more homoge-
neously between the components (partons) of the initial
hadron. However the two-Pomeron amplitude describes
the absorptive correction which has the sign opposite to
that of the one-Pomeron exchange. Therefore the t depen-
dence of the whole amplitude becomes steeper, and the
slope Bel increases in the case of �Pð0Þ> 1, when at larger
energies the relative contribution of the two-Pomeron cut
increases.

Therefore, the effective shrinkage of the diffractive cone
is described by the value of �0eff

P which accounts for both
the growth of the radius of individual Pomeron (�0

P of the
‘‘bare’’ Pomeron trajectory) and the decrease (slower in-
crease in comparison with the periphery) of the optical

density in the center of the disk due to the absorptive
effects which lead to the radius growth with energy. So
�0eff
P > �0

P.

III. THE INCREASE �0eff
P WITH THE

COLLISION ENERGY

Let us emphasize that since the absolute value of the
amplitude Tð�Þ is limited (jTð�Þj< 2) by the unitarity
condition (5), at asymptotically high energies the elastic
slope Bel cannot grow more slowly than the total cross
section. In particular, in the case of a step function Tð�Þ ¼
i�ðR� �Þ from (7) and (9) we obtain �tot ¼ 2�R2 and
Bel ¼ R2=4, that is Bel ¼ �tot=8�. At present energies we
are not reaching the black disk limit yet, and thus there
should be the inequality Bel >�tot=8�.
It is evident that the conventional formula for the

slope (3) with a constant �0eff
P is inconsistent with the

high energy behavior of the pp cross section, which is
described either by the power, �tot ¼ �0ðs=s0Þ:08 [5], or by
the logarithmic,

�tot ¼ �0 þ c1 lnðs=s0Þ þ c2ln
2ðs=sÞ (10)

(see e.g. [6]), s dependence. Therefore, we have to expect
that the value of �0eff

P increases with energy.
Figure 1 shows the measured values of the elastic t slope

BelðsÞ (NA8-Gatchina-Cern [2], ISR [4], UA4 [7], CDF
[8]), including the new TOTEM result [9].5

One can clearly see that the value of �0eff
P does grow with

energy. Such a feature was already mentioned in the CDF
[8] publication.
In spite of the fact that the elastic proton-proton ampli-

tude does not reach the black disk limit, the cross section is
well described by the logarithmic formula (10) which,
contrary to the power behavior [5], satisfies the Froissart
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FIG. 1 (color online). The existing measurements of the dif-
fractive cone slope Bel. Results of the data fit with the formulae
Bel ¼ B0 þ b2ln

2ðs=s0Þ are also shown: the full line reflects the
fit with all available data, and broken line corresponds to the fit
without TOTEM point.

4These multi-Pomeron diagrams are generated just by the
s-channel two particle unitarity; the value of � is described by
the one-Pomeron (ladder) exchange.
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(unitarity) limit. Therefore, we are fitting the energy
dependence of the elastic slope, BelðsÞ by the second order
polynomial

Bel ¼ B0 þ b1 lnðs=s0Þ þ b2ln
2ðs=s0Þ: (11)

Asymptotically, the leading ln2ðs=s0Þ term reflects the
growth of the interaction radius, R ¼ R0 þ cR lnðs=s0Þ, of
the step function ImTð�Þ ¼ �ðR� �Þ, while the linear,
b1 lnðs=s0Þ and the constant pre-asymptotic terms account
for the starting value, R0, and the ‘‘diffusion’’ form of edge
of our ‘‘step function.’’ Recall that the coefficient b2 (and
the analogous coefficient c2 in the expression for the total
cross section in Sec. IV) does not depend on the value of s0.
Changing s0 we only redefine the coefficients B0 and b1.
Moreover, at a given beam energy the value of 2�0eff

P ¼
dBel=dðlnðs=s0ÞÞ is also independent of the scale s0.

Fitting the lns dependence of Bel by the second order
polynomial (11) we arrive at b1 ¼ ð�:22� :17Þ GeV�2

and b2 ¼ ð:037� :006Þ GeV�2 with a good �2=NoF ¼
7:5=5, while the fit with the linear function is unacceptable
�2=NoF ¼ 37:8=6. In all fits we use s0 ¼ 1 GeV2.

Note that in the case of s0 ¼ 1 GeV2 the value of b1 is
consistent with zero. The exclusion of this parameter and
the fit with the function

Bel ¼ B0 þ b2ln
2ðs=s0Þ (12)

gives

b2 ¼ ð0:028 60� 0:000 50Þ GeV�2 (13)

and does not change the statistical significance: �2=NoF ¼
9:2=6 against of �2=NoF ¼ 7:5=5.

The energy dependence of the 2�0eff
P ¼ dBel=dðlnðs=s0ÞÞ

is shown in Fig. 2.

IV. FROISSART LIMIT FOR THE DIFFRACTIVE
CONE SHRINKAGE

Let us compare the behavior of the slope Bel and that of
the total pp cross section in the asymptotic black disk
(Froissart) limit, when �tot ¼ 2�R2 and Bel ¼ R2=4
(here R is the black disk radius).
The recent fit �tot ¼ �0 þ c1 lnðs=s0Þ þ c2ln

2ðs=s0Þ
gives c2 ¼ ð0:2817� 0:0064Þ mb (see Table 1 of [10]),
while from b2 ¼ 0:037 GeV2 we get c2ðBelÞ ¼ 0:375 mb
and from b2 ¼ ð0:0286� 0:0005Þ GeV2, obtained in the
two-parameter fit, we get a very close value—c2ðBelÞ ¼
ð0:294� 0:005Þ mb. This demonstrates the current uncer-
tainty in the coefficient c2 extracted from the elastic slope
behavior. Of course, even at the LHCwe are rather far from
the complete black disk limit. The proton is still relatively
transparent, and the cross section �tot is less than its
geometric value 2�R2.
However, it is interesting that both the elastic t slope and

the total cross section reveal the same ln2s high energy
behavior. Starting from the elastic slope we find from the
coefficient b2 the value of c2, which is close to that
obtained from the total cross sections.
The nontrivial fact is that at

ffiffiffi
s

p ¼ 24 GeV the values
of 2�0eff

P ¼ ð0:26� 0:17Þ GeV�2 for the 3-parameters fit
or 2�0eff

P ¼ ð0:364� 0:003Þ GeV�2 for the two-parameter
fit are similar to 2�0

P ¼ ð0:28� 0:03Þ GeV�2 found in the
Regge Poles analysis of the ‘‘low energy’’ elastic scattering
[2].
One could argue, that our conclusion about the nonlinear

lnðsÞ behavior of the elastic slope, Bel, is based (besides the
Regge theory) on the only one measurement TOTEM [9].
However, the 2-parameter (constant and ln2ðsÞ) fit of the
data without the TOTEM point describes the data very well
(�2=NoF ¼ 4:3=5) with b2 ¼ ð0:0257� 0:0013Þ GeV�2.
The 2-parameter fit with the linear lnðsÞ describes the data
with similar statistical confidence (�2=NoF ¼ 3:9=5) with
b1 ¼ ð0:556� 0:030Þ GeV�2. It is just the new TOTEM
(LHC) data which justify the presence of the ln2s term and
exclude the linear lns dependence of the slope Bel. This
indicates that in the energy region

ffiffiffi
s

p ¼ 2–7 TeV the role
of multi-Pomeron contributions strongly increases.
The multi-Pomeron effects should reveal themselves not

only in the elastic scattering but also in the multiparticle
production (see the discussion in [11]).
Recall that the recent Donnachie-Landshoff fit [12] in-

cludes two Pomeron poles. The pole with high intercept
� ¼ 0:362 and the pole with � ¼ 0:093. Each of these
‘‘effective’’ poles should produce its own secondaries,
and it would be important to observe the two different
power of s in the behavior of the inclusive cross sections,
d�=d3p, and in the two-particle correlations, including the
Bose-Einstein correlations where these two poles will act
as two different sources of secondary mesons. Since the
slope of the trajectory with a higher intercept is smaller
than that for the pole with � ¼ 0:093, we expect that the

-2 Log(s/s0) , s0 = 1 GeV
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FIG. 2 (color online). The energy dependence of 2�0eff
P .

5The NA8 and ISR experiments performed measurements at
very small jtj (less than :05 GeV2). The t range of UA4 and
TOTEM was wider (jtjmin � :02 GeV2). However, it was proven
that the t dependence of the elastic cross section is well
described by the simple exponent / expðBeltÞ.
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emission size corresponding to the pole with � ¼ 0:362
should be smaller as well. The authors [12], however, have
mentioned that their description of ‘‘the TOTEM elastic
scattering data is not perfect.’’

Only the LHC can investigate this energy region per-
forming the energy scan in the way previously realized
at the Sp �pS collider. We have to measure the total,

total-inelastic and elastic cross sections, together with the
real part of the elastic scattering amplitude at jtj ¼ 0 and
the slope of the diffractive cone. Such measurements
are being planned, but one should stress that such high
precision experiments have to be done at several values offfiffiffi
s

p
, starting from 900 GeV up to the highest energy

possible.
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