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A method for calculating coefficient functions of the operator product expansion, which was previously

derived for the nonsinglet case, is generalized for the singlet coefficient functions. The resulting formula

defines coefficient functions entirely in terms of corresponding singlet composite operators without

applying to elementary (quark and gluon) fields. Both ‘‘diagonal’’ and ‘‘nondiagonal’’ gluon coefficient

functions in the product expansion of two electromagnetic currents are calculated in QCD. Their

renormalization properties are studied.
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I. INTRODUCTION

The light-cone (LC) operator product expansion (OPE)
[1] (see also [2,3]) permanently receives much attention,
since it enables us to separate contributions to cross sec-
tions coming from large and small distances in a variety of
processes. It was proposed as a generalization of the OPE
at short distances [4] in order to describe deep inelastic
scattering (DIS) of leptons off nucleons.

In Refs. [5] the T-product of two scalar currents near the
LC was defined in term of so-called bi-local light-ray

composite fields. Later on it was shown that the local LC
expansion can be obtained by performing a Taylor expan-
sion of the nonlocal one [6]. The nonlocal expansion is
more general, but in the present paper we restrict ourselves
to considering standard local OPE.
The OPE for the T-product of two electromagnetic

currents is of particular importance to practical application.
It can be written in the form (see, for instance, [7]):

TJem� ðxÞJem� ð0Þ¼�g��
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m¼2

Xm
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im
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x�1 . . .x�m
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ð0Þþ X1
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Xm�1

l¼1

CV
m;lðx2Þ

im
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þ��� ; (1)

where the dots denote contributions from other Lorentz
structures. This expansion contains both nonsinglet (triplet

O3;m;l
NS;�1...�m

and octet O8;m;l
NS;�1...�m

) composite operators and

singlet (quark Om;l
F;�1...�m

and gluon Om;l
V;�1...�m

) composite

operators. The quantities CNS
m;l, C

F
m;l and CV

m;l are called

coefficient functions (CFs) of the OPE.
As a rule, the internal sums in l are omitted in (1) since

neglected terms do not contribute to DIS structure func-
tions (see, for instance, [3]). Below we will discuss this
point in more detail.

The standard approach to calculations of the OPE CFs is
to apply for perturbation theory by considering the scatter-
ing of leptons off elementary (quark and gluon) off-shell
fields. In Ref. [7] a new method for calculating CFs was
proposed which does not explicitly depend on elementary
fields, but instead defines the CFs entirely in terms of
Green functions of the currents and/or composite
operators.

In our previous paper [7] the nonsinglet case was
studied. In the present paper we generalize our results for
the singlet case. In Sec. II we derive a closed representation
for the singlet CFs in terms of vacuum matrix elements of
the composite operators. In Sec. III we calculate the singlet
CFs in perturbative QCD and demonstrate that our main
formula not only reproduces well-known expression for the
gluon CF, but enables us to obtain the CFs of all gradient
singlet operators in the OPE. The renormalization of
singlet quark and gluon composite operators and their
CFs is considered in Sec. IV. A number of useful mathe-
matical formulas is collected in Appendix A (integrals) and
Appendix B (sums).

II. OPE COEFFICIENT FUNCTIONS ANDVACUUM
MATRIX ELEMENTS OF COMPOSITE

OPERATORS

The cross section of deep inelastic lepton-nucleon scat-
tering (DIS) is related with the hadronic tensor (see, for
instance, [3])
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W��ðp; qÞ ¼ 2�2
Z

d4xeiqxhpjTJem� ðxÞJem� ð0Þjpi: (2)

Here jpi means a nucleon state, and Jem� ðxÞ is an electro-

magnetic current:

Jem� ðxÞ ¼ ��ðxÞ��Q̂�ðxÞ; (3)

where �ðxÞ is a quark field. The electric charge operator
in (3),

Q̂ ¼ 1

2

�
�3 þ 1ffiffiffi

3
p �8

�
; (4)

obeys the equation

Q̂ 2 ¼ 1

6

�
�3 þ 1ffiffiffi

3
p �8

�
þ 2

9
�0; (5)

were �a (a ¼ 1; 2; . . . 8) are the Gell-Mann matrices,
Spð�aÞ ¼ 0, Spð�a�bÞ ¼ 2�ab, and �0 is the identity
matrix.
For DIS of a charged lepton, the hadronic tensor (2) has

two independent tensor structures [3]:

W��ðp;qÞ¼
�
�g��þ

q�q�

q2

�
1

2xB
F1ðxB;Q2Þ

þ
�
p��q�

pq

q2

��
p��q�

pq

q2

�
2xB
Q2

F2ðxB;Q2Þ;

(6)

where Q2 ¼ �q2,

xB ¼ Q2=2pq (7)

is the Bjorken variable, and structure functions F1, F2

depend on these invariant variables. In the Bjorken limit,
Q2 ! 1, xB is fixed, the structure functions F1;2ðQ2; xÞ are
defined via one-nucleon matrix elements of the composite
operators which enter OPE (1).
Near the light-cone, leading contributions to matrix

elements come from twist-2 operators. In QCD, the non-
singlet quark twist-2 (traceless) gauge-invariant operators1

are of the form (1 � l � m):

Oa;m;l
NS;�1...�m

ðxÞ
¼ im�1S@�lþ1

. . .@�m

��ðxÞ��1
D�2

. . .D�l
�a�ðxÞ

þðterms proportional tog�i�j
Þ; (8)

FIG. 1. Feynman rules for the quark composite operators On;k
�1...�n

in the leading (zero) order in strong coupling �s.

FIG. 2. Feynman rules for the gluon composite operators
On;k

�1...�n
in the leading (zero) order in strong coupling �s.

1Non-gauge-invariant composite operators in the OPE will be
discussed in the end of Sec. IV.
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where operator S means a complete symmetrization in
Lorentz indices,

D� ¼ @� þ igtaA
a
� (9)

is a covariant derivative, and Aa
�ðxÞ is a gluon field. The

singlet quark twist-2 operators (1 � l � m),

Om;l
F;�1...�m

ðxÞ¼ im�1S@�lþ1
. . .@�m

��ðxÞ��1
D�2

. . .D�l
�ðxÞ

þðterms proportional tog�i�j
Þ; (10)

can mix with the gluon twist-2 operators (1 � l � m� 1)

Om;l
V;�1...�m

ðxÞ
¼ im�2SSp@�lþ1

. . . @�m�1
F�1�ðxÞD�2

. . .D�l
F�
�n
ðxÞ

þ ðterms proportional to g�i�j
Þ: (11)

Feynman rules for these composite operators which will be
used for our further calculations are presented in Figs. 1–3.
They have to be considered as a generalization of well-
known Feynman rules [8] for the case p � 0.
If the OPE (1) is applied to DIS, only operators of the

type

Oa;m
NS;�1...�m

ðxÞ ¼ im�1S ��ðxÞ��1
D�2

. . .D�m
�a�ðxÞ

þ ðterms proportional tog�i�j
Þ; (12)

FIG. 3. Feynman rules for the quark composite operators On;k
�1...�n

in the first order in strong coupling �s.
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Om
F;�1...�m

ðxÞ ¼ im�1S ��ðxÞ��1
D�2

. . .D�m
�ðxÞ

þ ðterms proportional to g�i�j
Þ; (13)

Om
V;�1...�m

ðxÞ¼ im�2SSpF�1�ðxÞD�2
. . .D�m�1

F�
�m

ðxÞ
þðterms proportional to g�i�j

Þ (14)

are relevant. It is due to the fact that any composite

operator Om;l
A;�1...�m

(A ¼ NS, F, V) with at least one full

derivative2 gives no contribution to a forward matrix ele-

ment hpjOm;l
A;�1...�m

jpi. In our notation,

Oa;m
NS;�1...�m

¼ Oa;m;m
NS;�1...�m

;

Om
F;�1...�m

¼ Om;m
F;�1...�m

;

Om
V;�1...�m

¼ Om;m�1
V;�1...�m

:

(15)

In what follow, the operators (15) will be called ‘‘major’’ or
‘‘diagonal’’ composite operators, while the quark operators
with 1 � l � m� 1 and gluon operators with 1 � l �
m� 2 will be referred to as ‘‘nondiagonal’’ composite
operators. Correspondingly, we define:

CNS
m ¼ CNS

m;m; CF
m ¼ CF

m;m; CV
m ¼ CV

m;m�1: (16)

For nonforward matrix elements (for instance, describ-
ing deeply virtual Compton scattering), all composite op-
erators contribute. Namely, we have the relations3:

hpþ�jOa;m;l
NS;�1...�m

jpi¼��lþ1
. . .��m

hpþ�jOa;l
NS;�1...�l

jpi;
hpþ�jOm;l

F;�1...�m
jpi¼��lþ1

. . .��m
hpþ�jOl

F;�1...�l
jpi;

hpþ�jOm;l
V;�1...�m

jpi¼��lþ1
. . .��m�1

hpþ�jOl
V;�1...�l

jpi:
(17)

The major operators in the RHS of Eq. (17) are defined
above in Eq. (15).

As usual, we assume that CA
m;lðx2Þ are tempered gener-

alized functions (this is explicit in perturbative calcula-
tions), so the symbolic relation

x�1 . . . x�m ¼ ð�2iÞm q�1 . . . q�m

ð�q2Þm ð�q2Þm
�
@

@q2

�
m

(18)

holds in connection with the Fourier transform in (1).
The approach, developed in our previous paper [7] for

the nonsinglet CFs, should be generalized for the singlet
case. To do this, let us

(1) take T-product of both sides of the OPE (1) by a

singlet composite operator On;k
A;�1...�n

ðzÞ, with A ¼ F

or V,
(2) imbed all resulting operator products between vac-

uum states.

As a result, we obtain from Eq. (1) the following relation
between vacuum matrix elements of the operator products
and OPE coefficient functions:Z

d4xeiqx
Z

d4zeipzhT~Jem� ðxÞ~Jem� ð0ÞOn;k
A;�1...�n

ðzÞi

¼�g��

�X1
m¼0

Xm
l¼1

2m
q�1 . . .q�m

ð�q2Þm
~CF
m;lðq2Þ

�
Z

d4zeipzhTOm;l
F;�1...�m

ð0ÞOn;k
A;�1...�n

ðzÞi

þ X1
m¼0

Xm�1

l¼1

2m
q�1 . . .q�m

ð�q2Þm
~CV
m;lðq2Þ

�
Z

d4zeipzhTOm;l
V;�1...�m

ð0ÞOn;k
A;�1...�n

ðzÞiþ . . . ; (19)

where ~CA
m;lðq2Þ is a Fourier transform of CA

m;lðx2Þ,
~CA
m;lðq2Þ ¼

1

m!
ð�q2Þm

�
@

@q2

�
m Z

d4xeiqxCA
m;lðx2Þ; (20)

and a new notation,

~J em
� ðxÞ ¼ ��ðxÞ���

0�ðxÞ; (21)

is introduced. In other words, only a singlet part of
the product of two electromagnetic currents [see Eqs. (3)
and (5)] gives a contribution to (19).
Let n� be a light-cone 4-vector not orthogonal to

4-momentum p�:

n2� ¼ 0; pn � 0: (22)

Throughout the paper, we will work in the limit

p ! 0; p2 < 0: (23)

Let us underline that the limit p2 ! 0 does not assume

the limit p� ! 0. On the contrary, given n� ¼
q� �p�q

2=½pqþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpqÞ2 �p2q2
p �, one gets pn ’ pq at

p2 ’ 0.
It is useful to convolute vacuum matrix elements with

the projector

n�1 . . . n�n

ðpnÞn ; (24)

and define the following invariant structure,

n�1 . . . n�n

ðpnÞn
Z

d4xeiqx
Z

d4zeipzhT~Jem� ðxÞ~Jem� ð0ÞOn;k
A;�1...�n

ðzÞi

¼ � 4

9
g��F

n;k
A ð!;Q2; p2Þ þ . . . : (25)

2As one can see from Eqs. (8), (10), and (11), the total number
of full derivatives is equal to m� l or m� l� 1 for the quark or
gluon composite operator, respectively.

3Here hpj and jpþ�i are one-particle states with 4-momenta
p� and ðpþ�Þ�.
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It depends on invariant variables p2, Q2 and dimensionless
variable

! ¼ 1=xB ¼ 2pq=Q2: (26)

The vacuum matrix element of the T-product of two
composite operators has the following Lorentz structure
(A, B ¼ F, V):Z

d4zeipzhTOm;l
B;�1...�m

ð0ÞOn;k
A;�1...�n

ðzÞi

¼ 2p�1
. . .p�m

p�1
. . .p�n

hOm;l
B On;k

A iðp2Þ
þ ðterms proportional to g�i�j

p2; g�i�j
p2; g�i�j

p2Þ:
(27)

Equation (27) means:

n�1 . . . n�n

ðpnÞn
Z

d4zeipzhTOm;l
B;�1...�m

ð0ÞOn;k
A;�1...�n

ðzÞi

¼ 2p�1
. . .p�m

hOm;l
B On;k

A iðp2Þ: (28)

Note that both Fn;k
A ð!;Q2; p2Þ and hOm;l

B On;k
A iðp2Þ are di-

mensionless quantities.
Let us note that at p2 ! 0 vacuum matrix elements of

composite operators of higher twists are suppressed by
powers of p2 with respect to the vacuum matrix elements
of twist-2 operators (28). Thus, our approach enables us to
isolate a contribution from twist-2 operators.

At fixed Q2 and p2, 3-point Green function

hTJem� Jem� On;k
A i has a discontinuity in the variable

ðqþ pÞ2 for ðqþ pÞ2 � 0 (that is, for ! � 1). By using

the dispersion relation for Fn;k
A ð!;Q2; p2Þ,

Fn;k
A ð!;Q2; p2Þ

¼ 1

�

Z 1

1

d!0

!0 �!
ImFn;k

A ð!0; q2; p2Þ

¼ 1

2�i

X1
m¼0

!m
Z 1

1
d!0!0�m�1 disc!F

n;k
A ð!0; q2; p2Þ;

(29)

one can derive from Eqs. (19), (25), and (28):�Xm
l¼1

~CF
m;lðQ2=�2ÞhOm;l

F On;k
A iðp2=�2Þ

þ Xm�1

l¼1

~CV
m;lðQ2=�2ÞhOm;l

V On;k
A iðp2=�2Þ

�
p2!0

¼
�

1

2�i

Z 1

0
dxBx

m�1
B

�discðpþqÞ2F
n;k
A ðxB;Q2=p2;p2=�2Þ

�
p2!0

: (30)

Strictly speaking, possible divergencies must be subtracted
from the dispersion relation (29). However, it does not alter

our scheme provided the integrals in the r.h.s. of Eq. (30)
converge (remember that m � 2).
In (30) we took into account that both matrix elements of

renormalized composite operators and CFs depend on the
renormalization scale �. In what follows, we take � to be
equal to the regularization scale ��, which arises in dimen-
sional regularization [9], when one changes an integration

volume, d4k ! ��ð4�DÞdDk.
Neither side of Eq. (30) has dependence on n except

for the trivial factor ð�1Þn. By setting k ¼ 1; 2; . . . 2m� 1,
we thus obtain a set of 2m� 1 algebraic equations for

the singlet OPE CFs ~CF
m;l (1� l�m) and ~CV

m;l

(1 � l � m� 1).4

Formula (30) gives an operator definition of the OPE
CFs in term of vacuum matrix elements of composite
operators.5 It is important to stress that our definition of
the OPE CFs is unambiguous and it does not lean on a
notion of quark and gluon distributions. The latter are
defined via nucleon matrix elements of the quark or gluon
composite operator, while the coefficient functions are
independently defined via vacuum matrix elements of the
product of composite operators.

III. CALCULATIONS OF SINGLET COEFFICIENT
FUNCTIONS IN PERTURBATIVE QCD

The formula (30) is a generalization of a corresponding
formula for a nonsinglet case which was derived in our
previous paper [7]:�Xm

l¼1

~CNS
m;lðQ2=�2ÞhOm;l

NSO
n;k
NSiðp2=�2Þ

�
p2!0

¼
�

1

2�i

Z 1

0
dxBx

m�1
B

�discðpþqÞ2F
n;k
NSðxB;Q2=p2;p2=�2Þ

�
p2!0

: (31)

By using this formula, the following expressions for the
nonsinglet CFs were calculated in QCD [7]:

½ ~CNS
m;m�ð0Þ ¼ 1

2½1þ ð�1Þm�; (32)

and

½ ~CNS
m;l�ð0Þ ¼

1

2
ð�1Þl m

l

� �
; (33)

for l ¼ 0; 1; . . . ; m� 1.6 Here and in what follows super-
script ‘‘(0)’’ means that a corresponding quantity is calcu-
lated in zero order in strong coupling.
In the next order in �s, we obtained the following

expressions [7]:

4Since n � k, the index n must be chosen larger than 2m� 1.
5The electromagnetic current (3) is a particular case of a quark

composite operator with zero anomalous dimension.
6Everywhere ðnmÞ denotes a binomial coefficient.
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½ ~CNS
m;mðQ2=�2Þ�ð1Þ ¼ �s

8�
CF ln

�
Q2

�2

�
½1þð�1Þm�

�
�
�4

Xm
j¼2

1

j
�1þ 2

mðmþ1Þ
�
; (34)

and

½ ~CNS
m;lðQ2=�2Þ�ð1Þ ¼ �s

4�
CF ln

�
Q2

�2

��
1

2
ð�1Þl

�
m� 1

l� 1

�

�
�
�4

Xl
j¼2

1

j
� 1þ 2

lðlþ 1Þ
�

þ
�

1

m� l
� 1

mþ 1

�
þ Xm

k¼lþ1

ð�1Þk

�
�
m� 1

k� 1

��
1

k� l
� 1

kþ 1

��
; (35)

for l ¼ 0; 1; . . . ; m� 1. Here and in what follows super-
script ‘‘(1)’’ means that a corresponding quantity is calcu-
lated in the first order in strong coupling constant.

Let us stress that we did not demand from the very

beginning that the major CF, ~CNS
m;m, should be equal to

zero for odd m [see Eqs. (32) and (34)]. On the contrary,
it is a consequence of the fact that electromagnetic inter-
actions conserve P-parity. Remember that DIS structure
function F2ðxB;Q2Þ is an even function of Bjorken variable
xB, and its nonzero moments, F2ðn;Q2Þ, are defined by

quantities ~CA
n;nðQ2=�2Þhpj ^On;n

A jpið�2Þ, with even n. That
is why we expect that the gluon major CF should be also
proportional to the factor ½1þ ð�1Þm� [see (57) below].

For a convenience, let us for a moment rewrite our main
relation (31) in symbolic form:

hJJOAi ¼ CFhOFOAi þ CVhOVOAi: (36)

Then we get from (36):

½hJJOVi�ð0Þ ¼ ½CF�ð0Þ½hOFOVi�ð0Þ þ ½CV�ð0ÞhOVOVi�ð0Þ:
(37)

Since ½hOVOFi�ð0Þ ¼ ½hJJOVi�ð0Þ ¼ 0, while ½hOVOVi�ð0Þ
is nonzero, we get

Xm�1

l¼1

½ ~CV
m;l�ð0Þ½hOm;l

V On;k
V i�ð0Þ ¼ 0: (38)

Equality (38) is valid for all integer m, n, and 1 � k �
n� 1. Thus, we conclude that

½ ~CV
m;l�ð0Þ ¼ 0; (39)

for all integer m, and 1 � l � m� 1.
Analogously, we obtain from (36):

½hJJOFi�ð0Þ ¼ ½CF�ð0Þ½hOFOFi�ð0Þ þ ½CV�ð0ÞhOVOFi�ð0Þ;
(40)

½hJJOFi�ð1Þ ¼ ½CF�ð0Þ½hOFOFi�ð1Þ þ ½CF�ð1ÞhOFOFi�ð0Þ
þ ½CV�ð0Þ½hOVOFi�ð1Þ þ ½CV�ð1ÞhOVOFi�ð0Þ:

(41)

Taking into account that ½CV�ð0Þ ¼ 0 (39) and

½hOVOFi�ð0Þ ¼ 0, we find:

½hJJOFi�ð0Þ ¼ ½CF�ð0Þ½hOFOFi�ð0Þ; (42)

½hJJOFi�ð1Þ ¼ ½CF�ð0Þ½hOFOFi�ð1Þ þ ½CF�ð1ÞhOFOFi�ð0Þ:
(43)

These equations are identical to those derived for the non-
singlet quark CF in our paper [7]. As a result, we find that
the singlet quark CFs coincide with the corresponding
nonsinglet quark CFs in zero and first order in �s

7:

½ ~CF
m;l�ð0Þ ¼ ½ ~CNS

m;l�ð0Þ; ½ ~CF
m;l�ð1Þ ¼ ½ ~CNS

m;l�ð1Þ; (44)

with ½ ~CNS
m;l�ð0Þ and ½ ~CNS

m;l�ð1Þ given by expressions (32)–(35).

Now let us turn to QCD calculations of the gluon CFs in
the first order in strong coupling constant by using our
main formula (30). We work in the dimensional regulari-

zation [9] and use the MS-scheme to renormalize ultravio-
let divergences. All results of our calculations are gauge-
invariant since we sum all diagrams in each order of
perturbation theory. Let us remember that in order to find
the OPE CFs, we have to retain only leading terms in the
limit p2 ! 0. This significantly simplifies the calculations.
We will restrict ourselves by considering leading terms in
lnðQ2=�2Þ, although our main formula (30) enables one to
calculate subleading terms as well. In other words, along
with the limit p2 ! 0, we are interested in large values of
variable Q2.
Starting from (36), we can schematically write:

½hJJOVi�ð1Þ ¼ ½CF�ð0Þ½hOFOVi�ð1Þ þ ½CV�ð1ÞhOVOVi�ð0Þ:
(45)

In full detail, Eq. (45) looks like the following:�
1

2�i

Z 1

0
dxBx

m�1
B ½discðpþqÞ2F

n;k
V ðxB;Q2=p2;p2=�2Þ�ð1Þ

�
p2!0

¼
�Xm
l¼1

½ ~CF
m;l�ð0Þ½hOm;l

F On;k
V iðp2=�2Þ�ð1Þ

þXm�1

l¼1

½ ~CV
m;lðQ2=�2Þ�ð1Þ½hOm;l

V On;k
V iðp2=�2Þ�ð0Þ

�
p2!0

:

(46)

The quantities ½ ~CF
m;l�ð0Þ are already known [see (44), (32),

and (33)], while the other terms in (46) should be
calculated.

7Note, however, that ½ ~CF
m;l�ðnÞ � ½ ~CNS

m;l�ðnÞ, for n � 2.
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The propagator of the gluon composite operator is
shown in Fig. 4, and one gets8:

hOn;k
V Om;l

V ið0Þðp2=�2Þ

¼ ið�1Þnþ1 1

8�2
ln

�
�2

�p2

�
Bðkþ 2; lþ 2Þ: (47)

The vacuummatrix element of the product of two singlet
composite operators is given by the diagram in Fig. 5. The
calculations result in the following expression:

hOn;k
V Om;l

F ið1Þðp2=�2Þ

¼ ið�1ÞnCF

�s

4�3

�
ln

�
�2

�p2

��
2
��
2

k
� 2

kþ 1
þ 1

kþ 2

�
�
�

1

kþ lþ 2
� Bðkþ 3; lÞ

�
� 1

k

�
1

kþ lþ 1
� Bðkþ 2; lÞ

�
�
�
1

k
� 2

kþ 1
þ 1

kþ 2

�
l� 1

lðlþ 1Þ
�
; (48)

Now we are able to calculate the second term in Eq. (46):

Xm
l¼1

½ ~CF
m;l�ð0ÞhOn;k

V Om;l
F ið1Þðp2=�2Þ

¼ ið�1ÞnCF

�s

32�3

�
ln

�
�2

�p2

��
2 1

mðmþ 1Þðmþ 2Þ
�
��
m� 2

k
þ 2ðmþ 2Þ

ðkþ 1Þðkþ 2Þ þ
mðmþ 1Þ þ 2

kþmþ 2

� mðmþ 2Þ
kþmþ 1

�
� ½ðm� 2ÞBðk;mþ 3Þ

þmðmþ 2ÞBðkþ 1; mþ 2Þ�
�
; (49)

Summation in l was made with the help of Eqs. (B1)–(B8)
from Appendix B. The relation between beta-functions
(integer k, m),

�
2

k
� 2

kþ 1
þ 1

kþ 2

�
Bðkþ 3; mÞ � 1

k
Bðkþ 2; mÞ

¼ � 1

mðmþ 1Þðmþ 2Þ ½ðm� 2ÞBðk;mþ 3Þ
þmðmþ 2ÞBðkþ 1; mþ 2Þ�; (50)

was also used.
The diagrams which contribute to vacuum matrix ele-

ment with two currents are shown in Fig. 6. Omitting
details of calculations, let us give the result:

1

2�i

Z 1

0
dxxm�1discðpþqÞ2hJJOn;k

V ið1ÞðxB;Q2=p2;p2=�2Þ

¼ ið�1ÞnCF

�s

32�3
ln

�
Q2

�p2

�
ln

�
�2

�p2

�
� 1

mðmþ1Þðmþ2Þ
��
m�2

k
þ 2ðmþ2Þ
ðkþ1Þðkþ2Þ

þmðmþ1Þþ2

kþmþ2
�mðmþ2Þ
kþmþ1

�
�½ðm�2ÞBðk;mþ3Þþmðmþ2ÞBðkþ1;mþ2Þ�

�
;

(51)

In order to obtain Eqs. (47)–(51), we used integrals
(A1)–(A3) from Appendix A.
Equations (46)–(51) result in a set of equations for the

gluon CFs. Namely, for any integer m � 2 we obtain

algebraic equations for ½ ~CV
m;lðQ2=�2Þ�ð1Þ, with 1 � l �

m� 1:

Xm�1

l¼1

½ ~CV
m;lðQ2=�2Þ�ð1ÞBðkþ 2; lþ 2Þ

¼CF

�s

4�
ln

�
Q2

�2

�
1

mðmþ 1Þðmþ 2Þ
��
m� 2

k

þ 2ðmþ 2Þ
ðkþ 1Þðkþ 2Þþ

mðmþ 1Þþ 2

kþmþ 2
� mðmþ 2Þ
kþmþ 1

�
�½ðm� 2ÞBðk;mþ 3Þþmðmþ 2ÞBðkþ 1;mþ 2Þ�

�
:

(52)

Note that these equations hold for all integer k � 1, but for
our purposes it is enough to consider onlym� 1 equations
corresponding to k ¼ 1; 2; . . .m� 1.9

The solution of Eqs. (52) is a sum of two terms one of
which is nonzero only for evenm, while another is nonzero
only for odd m:

FIG. 4. The diagrams for the propagator of the gluon compos-
ite operator hOn;k

V Om;l
V ið0Þ in zero order in strong coupling �s.

8Everywhere Bðx; yÞ means beta-function.

9The other equations which correspond to k � m will be also
satisfied, as one could see from an explicit expression for our
solution (53)–(55).
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½ ~CV
m;lðQ2=�2Þ�ð1Þ ¼ ½1þ ð�1Þm�

2
½ ~CV

m;lðQ2=�2Þ�ð1Þeven

þ ½1� ð�1Þm�
2

½ ~CV
m;lðQ2=�2Þ�ð1Þodd:

(53)

The first term in (53) is defined for 1 � l � m� 1

½ ~CV
m;lðQ2=�2Þ�ð1Þeven

¼ CF

�s

4�
ln

�
Q2

�2

���
1

m
� 2

mþ 1
þ 2

mþ 2

�
�
�
ð�1Þl

�
m

lþ 1

�
� ðm� lÞ

�
� 1

mþ 1

�
�
ð�1Þl

�
m� 1

lþ 1

�
� ðm� l� 1Þ

��
; (54)

while the second term in (53) is nonzero for 1 � l �
m� 2:

½ ~CV
m;lðQ2=�2Þ�ð1Þodd

¼CF

�s

4�
ln

�
Q2

�2

�
1

mðmþ1Þðmþ2Þ
�
�
ð�1Þl½ðl�mþ1Þðmþ2Þþmðmþ1Þþ2�

� m

lþ1

 !
�½ðl�mþ1Þðm�2Þþmðmþ1Þþ2�

�
:

(55)

Note that ð ~CV
m;lÞodd (55) gives no contribution to ~CV

m;l (53)

for l ¼ m� 1 due to relation ½ð�1Þm�1�½ð�1Þmþ1�¼0.
It is rather easy to demonstrate that (53) does obey set of

Eqs. (52) for any m � 2, k � 1, if one uses formulas
(B9)–(B12) from Appendix B. Indeed, these formulas
lead us to the relations:Xm�1

l¼1

½ ~CV
m;lðQ2=�2Þ�ð1ÞevenBðkþ2; lþ2Þ

¼ Xm�1

l¼1

½ ~CV
m;lðQ2=�2Þ�ð1ÞoddBðkþ2; lþ2Þ

¼CF

�s

4�
ln

�
Q2

�2

�
1

mðmþ1Þðmþ2Þ
��
m�2

k

þ 2ðmþ2Þ
ðkþ1Þðkþ2Þþ

mðmþ1Þþ2

kþmþ2
�mðmþ2Þ
kþmþ1

�
�½ðm�2ÞBðk;mþ3Þþmðmþ2ÞBðkþ1;mþ2Þ�

�
;

(56)

In particular, it follows from Eqs. (53) and (54), that

½ ~CV
m;m�1ðQ2=�2Þ�ð1Þ

¼CF

�s

4�
ln

�
Q2

�2

�
½1þð�1Þm�

�
1

m
� 2

mþ1
þ 2

mþ2

�
: (57)

As one can see, major CF (57) is defined by well-known
anomalous dimension [10]10

�m
FV ¼ �s

�
CF

ðmþ 1Þ2 þ ðmþ 1Þ þ 2

mðmþ 1Þðmþ 2Þ : (58)

Thus, we have reproduced the standard expression for

the major CF, ~CV
m;m�1ðQ2=�2Þ, and, which is more impor-

tant, have calculated ‘‘gradient’’ gluon CFs, ~CV
m;lðQ2=�2Þ

(l¼1;2: . . .m�2), in the first order in strong coupling �s.

IV. RENORMALIZATION OF SINGLET
COMPOSITE OPERATORS AND
COEFFICIENT FUNCTIONS

Let us consider in more detail products of renormalized
composite operators and corresponding renormalized CFs
which enter the OPE of two electromagnetic currents (1).

FIG. 6. The diagrams for the matrix element hJJOn;k
V ið1Þ in the

first order in strong coupling �s.

FIG. 5. The diagrams for the mixing of the composite operators hOn;k
V Om;l

F ið1Þ in the first order in strong coupling �s.

10In order to obtain the expression for �n
FV in standard nota-

tions, one has to replace index m by (n� 1) in (58).
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Both singlet composite operators,Om;l
F andOm;l

V , depend on
the renormalization scale �0, and mix with each other
under rescaling �0 ! �:

Om;k
F ð�2

0Þ ¼
Xk
l¼1

ðẐFFÞkl ð�2
0=�

2ÞOm;l
F ð�2Þ

þ Xk�1

l¼1

ðẐFVÞkl ð�2
0=�

2ÞOm;l
V ð�2Þ;

Om;k
V ð�2

0Þ ¼
Xkþ1

l¼1

ðẐVFÞkl ð�2
0=�

2ÞOm;l
F ð�2Þ

þXk
l¼1

ðẐVVÞkl ð�2
0=�

2ÞOm;l
V ð�2Þ; (59)

where Ẑ are the matrices of a finite renormalization of the
composite operators. In its turn, (59) means that

~CV
m;m�1ðQ2=�2Þ ¼ ~CF

m;mðQ2=�2
0ÞðẐFVÞmm�1ð�2

0=�
2Þ

þ ~CV
m;m�1ðQ2=�2

0ÞðẐVVÞm�1
m�1ð�2

0=�
2Þ;

(60)

and

~CV
m;lðQ2=�2Þ ¼ Xm

k¼lþ1

~CF
m;kðQ2=�2

0ÞðẐFVÞkl ð�2
0=�

2Þ

þXm
k¼l

~CV
m;kðQ2=�2

0ÞðẐVVÞkl ð�2
0=�

2Þ;

(61)
for l ¼ 1; 2; . . .m� 2.

Since the quantity �0 is an arbitrary scale, one can put
�2

0 ¼ Q2 in (60) and (61), and obtain:

~CV
m;m�1ðQ2=�2Þ¼ ~CF

m;mð1ÞðẐFVÞmm�1ðQ2=�2Þ
þ ~CV

m;m�1ð1ÞðẐVVÞm�1
m�1ðQ2=�2Þ; (62)

and

~CV
m;lðQ2=�2Þ ¼ Xm

k¼lþ1

~CF
m;kð1ÞðẐFVÞkl ðQ2=�2Þ

þ Xm�1

k¼l

~CV
m;kð1ÞðẐVVÞkl ðQ2=�2Þ; (63)

for l ¼ 1; 2; . . . ; m� 2. As a result, we find equations for
the leading parts of the gluon CFs in the first order in the
strong coupling (1 � l � m� 1):

½ ~CV
m;lðQ2=�2Þ�ð1Þ ¼ Xm

k¼lþ1

½ ~CF
m;k�ð0Þ½ðẐFVÞkl ðQ2=�2Þ�ð1Þ: (64)

In deriving relation (64), we took into account that

½ ~CV
m;l�ð0Þ ¼ 0 for all m and 1 � l � m� 1 (39). By using

explicit form of ½ ~CF
m;k�ð0Þ [see (44) and (32)], these equa-

tions can be written as follows (1 � l � m� 1):

½ ~CV
m;lðQ2=�2Þ�ð1Þ
¼ ½1þ ð�1Þm�½ðẐFVÞml ðQ2=�2Þ�ð1Þ

þ Xm�1

k¼lþ1

ð�1Þk m� 1

k� 1

 !
½ðẐFVÞkl ðQ2=�2Þ�ð1Þ: (65)

Note that the last term in (65) is identically zero at
l ¼ m� 1.
The mixing of singlet quark operators (10) and gluon

operators (11) is defined by the set of diagrams presented in
Fig. 7.11 The sum of divergent parts of these diagrams is
given by the expression:

½�g��knðkþpÞn�n�n�kðkþpÞþn�k�ðkþpÞnþk�n�kn�CF

�s

8�

1

"

�
�2

�p2

�
"Xk�1

l¼0

ð�1Þn�l�1ðknÞl�1ðpnÞn�l�1

�
��
1

k
� 2

kþ1
þ 2

kþ2

�
ðk� lÞ� 1

kþ1
ðk� l�1Þ�ð�1Þl

��
1

k
� 2

kþ1
þ 2

kþ2

�
k

lþ1

 !
� 1

kþ1

�
k�1

lþ1

���
: (66)

FIG. 7. The diagrams which give contribution to the renormal-
ization of the quark composite operator On;k

F in the first order in

strong coupling �s.

11The expressions for unrenormalized singlet quark and gluon composite operators are presented in Figs. 1 and 2, respectively.
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In deriving (66), basic integrals (A4)–(A7) from
Appendix A were used. Let us remember the Feynman
rule for the unrenormalized gluon operator On;k

V (see
Fig. 2):

ð�1Þn�k�1ðknÞk�1ðpnÞn�k�1½�g��knðkþ pÞn
� n�n�kðkþ pÞ þ n�k�ðkþ pÞnþ k�n�kn�: (67)

As a result, the matrix of the finite renormalization in
Eq. (64) has the following form (1 � l � k� 1):

½ðẐFVÞkl ðQ2=�2Þ�ð1Þ

¼ CF

�s

8�
ln

�
Q2

�2

���
1

k
� 2

kþ 1
þ 2

kþ 2

�
ðk� lÞ

� 1

kþ 1
ðk� l� 1Þ � ð�1Þl

��
1

k
� 2

kþ 1

þ 2

kþ 2

�
k

lþ 1

 !
� 1

kþ 1

k� 1

lþ 1

 !��
: (68)

In particular, it follows from (68):

½ðẐFVÞkk�1ðQ2=�2Þ�ð1Þ

¼CF

�s

8�
ln

�
Q2

�2

�
½1þð�1Þk�

�
1

k
� 2

kþ1
þ 2

kþ2

�
: (69)

As one can see from (69), ½ðẐFVÞkk�1�ð1Þ ¼ 0, for k ¼ 1. It is
a consequence of the fact that the singlet operator
��ðxÞ���ðxÞ do not mix with the gluon operators.12

From (65) and (69), the expression for the major gluon
CF (57) follows which was obtained in the previous section
by solving set of Eqs. (52). In order to obtain

½ ~CV
m;lðQ2=�2Þ�ð1Þ for 1 � l � m� 2, one should calculate

the sum in k in Eq. (65). It can be done with the help of
formulas (B13)–(B19) from Appendix B. As a result, we
come to expressions (53)–(55), derived above on the basis
of our main formula (30).

Finally, by using Eqs. (B9)–(B12) fromAppendix B, one
can obtain:

Xm�1

l¼1

½ ~CF
m;m�ð0Þ½ðẐFVÞml ðQ2=�2Þ�ð1ÞBðkþ 2; lþ 2Þ

¼ CF

�s

4�
ln

�
Q2

�2

�
½1þ ð�1Þm� 1

mðmþ 1Þðmþ 2Þ
�
��
m� 2

k
þ 2ðmþ 2Þ

ðkþ 1Þðkþ 2Þ þ
mðmþ 1Þ þ 2

kþmþ 2

� mðmþ 2Þ
kþmþ 1

�
� ½ðm� 2ÞBðk;mþ 3Þ

þmðmþ 2ÞBðkþ 1; mþ 2Þ�
�
: (70)

Correspondingly, with the help of formulas (B13)–(B19)
and (B9)–(B12), we are able to find:

Xm�1

l¼1

Xm�1

k¼lþ1

½ ~CF
m;k�ð0Þ½ðẐFVÞkl ðQ2=�2Þ�ð1ÞBðkþ 2; lþ 2Þ

¼ CF

�s

4�
ln

�
Q2

�2

�
½1� ð�1Þm� 1

mðmþ 1Þðmþ 2Þ
�
��
m� 2

k
þ 2ðmþ 2Þ

ðkþ 1Þðkþ 2Þ þ
mðmþ 1Þ þ 2

kþmþ 2

� mðmþ 2Þ
kþmþ 1

�
� ½ðm� 2ÞBðk;mþ 3Þ

þmðmþ 2ÞBðkþ 1; mþ 2Þ�
�
: (71)

Thus, we have successfully reproduced Eqs. (54) and (55).
It is well known that any Green function with an

insertion of one composite operator is multiplicatively
renormalized [11], while Green functions with insertion
of two (or more) composite operators need additive coun-
terterms [12]. Nevertheless, as was shown in [7], renor-
malization group equations for the CFs have no additive
terms, provided the corresponding composite operators
have zero vev.13

It was found that some gauge-invariant singlet compos-
ite operators can mix with gauge-variant ones under
renormalization [14]. This problem is present for the sim-
plest of these operators, the energy-momentum tensor ���,

already in the leading order in strong coupling.
Let O and N represent a set of gauge-independent and

non-gauge-independent operators, respectively. It was
proven that renormalized and unrenormalized operators
of these types are related by a triangular matrix [14]:

O

N

 !
R ¼ ZOO ZON

0 ZNN

� �
O
N

� �
U
; (72)

where ZAB are matrices. In other words, gauge-variant
operators do not mix with gauge-invariant operators under
the renormalization. Correspondingly, anomalous dimen-
sions of gauge-independent operators can be determined
from matrix ZOO alone. Moreover, in so-called physical
(axial) gauge, n�A

� ¼ 0, n� being a constant light-like

vector [15], a renormalization procedure does not require
gauge-variant counterterms for the gauge-invariant com-
posite operators at all [16].
It follows from (72) that in the OPE renormalized CFs of

gauge-independent operators change under rescaling of
renormalization mass, �0 ! �, as follows:

COð�2Þ ¼ COð�2
0ÞẐOOð�2

0=�
2Þ; (73)

12Obviously, it should takes place in all orders in �s.

13The renormalization properties of the composite operators
with nonzero vev were studied in [13].
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where ẐOO is a matrix of finite renormalization. All physi-
cal matrix elements of gauge-variant operators vanish
[14].14 Using a complete set of hadronic states jni, we
find that

hNOi ¼ X
n

hNjnihnjOi ¼ 0: (74)

Thus, a presence of gauge-variant composite operators in
the OPE (1) have no influence on our method of determin-
ing CFs in terms of vacuum matrix elements. Indeed,
multiplying elements of the sum

P
m½Cm

OOm þ Cm
NNm� by

one of the gauge-invariant operators, On, and putting them
between vacuum states, we exclude a contribution from the
gauge-variant operators to our main equation (30).

Taking all said above into account, we did not include
gauge-dependent composite operators in the OPE (1).

V. CONCLUSIONS AND DISCUSSIONS

As it was shown in the present paper, the singlet CFs of
the OPE of two currents can be explicitly expressed in
terms of the Green functions of the corresponding com-
posite operators without explicit use of the elementary
(quark and gluon) fields. Our main equation (30) is a
generalization of an analogous formula which was previ-
ously obtained for the singlet case [7]. It is necessary to
stress that our formula holds in any renormalization
scheme in contrast with other prescriptions (see, for
instance, [19]).

As an illustration of a validity of our scheme, the gluon
CFs were calculated in QCD in the first order of the strong
coupling constant. It is important to note that both diagonal

CFs, ~Cg
m;m�1ðQ2=�2Þ (57), and nondiagonal CFs,

~Cg
m;lðQ2=�2Þ (1 � l � m� 2) (53)–(55), were simulta-

neously obtained. The renormalization of these composite
operators and their CFs were also considered.

For further discussion, let us rewrite a set of equations
for the singlet quark and gluon CFs in the following
symbolic form:

hJJOqi ¼ CqhOqOqi þ CghOgOqi;
hJJOgi ¼ CqhOqOgi þ CghOgOgi:

(75)

These equations must be considered as the set of matrix
equations (for simplicity, summations in l are omitted). It is
also assumed that the procedure described in details in
Section II is applied to all matrix elements in (75).15

Let us define ‘‘reduced’’ matrix elements of the quark
and gluon composite operators in the n-th order of pertur-
bation theory (n � 1):

h dOAOqiðnÞ ¼ hOAOqiðnÞ½hOqOqið0Þ��1;

h dOAOgiðnÞ ¼ hOAOgiðnÞ½hOgOgið0Þ��1;
(76)

where A ¼ q, g (see Figs. 8 and 9). Analogously, we can
define reduced matrix elements which contain both com-
posite operators and electromagnetic currents (n � 0):

hdJJOqiðnÞ ¼ hJJOqiðnÞ½hOqOqið0Þ��1;

hdJJOgiðnÞ ¼ hJJOgiðnÞ½hOgOgið0Þ��1
(77)

FIG. 8. The redefinition of the matrix element of the quark
composite operators in the first order in strong coupling �s.

FIG. 9. The redefinition of the matrix elements of the quark
and gluon composite operators in the first order in strong
coupling �s.

14The calculations made in [17] contradict this result. However,
it was shown by explicit calculations [18] that the proof in [17]
breaks down, and conclusions of paper [14] remain true.
15See derivation of formula (30).
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(see Figs. 10 and 11). Note that each of the matrix elements

hOAOBiðnÞ and hJJOAiðnÞ has a divergency related with a
divergency of a corresponding Feynman graphs as a
whole.16 However, these divergences cancel in the reduced

matrix elements h dOAOBiðnÞ and h dJJOAiðnÞ.
From (75) we get

hJJOqið0Þ ¼ Cð0Þ
q hOqOqið0Þ þ Cð0Þ

g hOgOqið0Þ;
hJJOgið0Þ ¼ Cð0Þ

q hOqOgið0Þ þ Cð0Þ
g hOgOgið0Þ:

(78)

Since hJJOgið0Þ ¼ hOgOqið0Þ ¼ hOqOgið0Þ ¼ 0, while

hOgOgið0Þ � 0, we immediately obtain in the leading

(zero) order in the strong coupling �s:

Cð0Þ
g ¼ 0; (79)

Cð0Þ
q ¼ hdJJOqið0Þ: (80)

In the first order in �s, we derive the following expres-
sions for the singlet quark and gluon CFs:

Cð1Þ
q ¼ hdJJOqið1Þ � hdJJOqið0Þh dOqOqið1Þ; (81)

Cð1Þ
g ¼ h dJJOgið1Þ � h dJJOqið0Þh dOqOgið1Þ: (82)

The first-order contributions to the singlet CFs are pre-
sented in Figs. 12 and 13, respectively. In the next order the
singlet quark CF looks like

FIG. 10. The redefinition of the matrix element hJJOqi in zero
order in strong coupling �s.

FIG. 11. The redefinition of the matrix elements hJJOqi and
hJJOgi in the first order in strong coupling �s.

FIG. 12. The singlet quark coefficient function of the OPE in
the first order in strong coupling �s.

FIG. 13. The gluon coefficient function of the OPE in the first
order in strong coupling �s.

16Note that zero-order matrix elements hOqðpÞOqð�pÞið0Þ,
hOgðpÞOgð�pÞið0Þ, and discðpþqÞ2 hJðqÞJð�ðpþ qÞÞOqðpÞið0Þ
are proportional to lnð1=p2Þ at p2 ! 0.

A. V. KISSELEV PHYSICAL REVIEW D 85, 094022 (2012)

094022-12



Cð2Þ
q ¼ hdJJOqið2Þ � ½hdJJOqið1Þ � hdJJOqið0Þh dOqOqið1Þ�

� h dOqOqið1Þ � ½hdJJOgið1Þ � hdJJOqið0Þh dOqOgið1Þ�
� h dOgOqið1Þ � hdJJOqið0Þh dOqOqið2Þ: (83)

Correspondingly, the gluon CF has the form:

Cð2Þ
g ¼ hdJJOgið2Þ � ½hdJJOqið1Þ � hdJJOqið0Þh dOqOqið1Þ�

� h dOqOgið1Þ � ½hdJJOgið1Þ � hdJJOqið0Þh dOqOgið1Þ�
� h dOgOgið1Þ � hdJJOqið0Þh dOqOgið2Þ: (84)

In the same way, singlet quark and gluon CFs can be
calculated at any order.

One more advantage of our approach is that it treats
uniformly the CFs of light quarks (q ¼ u, d, s) and CFs of
heavy quarks (Q ¼ c, b). For instance, singlet heavy quark
CF, CQ, is given by the same formulas (81) and (83). At the

same time, the so-called double counting problem does not
arise at all.17

The leading parts of the first terms in Eqs. (81)–(84),

hdJJOAiðnÞ (A ¼ q, g) are proportional to lnnðQ2=p2Þ,
while the leading parts of the matrix elements h dOAOBiðnÞ
(A, B ¼ q, g) are proportional to lnnð�2=p2Þ. Thus, the
role of all terms in the r.h.s. of Eqs. (81)–(84), except the
first one, is to cancel p2-dependence in the final expression
for the singlet CFs:

Cð1Þ
A ¼ Nð1Þ

A

�
ln

�
Q2

p2

�
� ln

�
�2

p2

��
¼ Nð1Þ

A ln

�
Q2

�2

�
; (85)

Cð2Þ
A ¼Nð2Þ

A

�
ln2
�
Q2

p2

�
�2ln

�
Q2

p2

�
ln

�
�2

p2

�
þ ln2

�
�2

p2

��
¼Nð2Þ

A ln2
�
Q2

�2

�
; (86)

where constants NðnÞ
A are known from explicit calculations.

An analogy can be drawn between our formulas
(81)–(84) and diagram approach to calculating CFs.18

Namely, the quantity hdJJOAi should be associated with
the amplitude shown in Fig. 14, with A being the type of
off-shell parton with 4-momentum p. The n-th order con-
tribution to the imaginary part of this amplitude grows as
lnnðQ2=p2Þ at p2 ! 0 (or, equivalently, at Q2 ! 1). The
detailed diagram analysis can be found in Ref. [21], where
it was shown that the �2-dependence drops out if a gauge-
invariant set of QCD diagrams is taken into account in each
order of perturbation theory.

The quantity h dOAOBi should be associated with the so-
called cut vertex [22] depicted in Fig. 15, where upper
(lower) lines in Fig. 15 correspond to partons of type AðBÞ.
Being integrated in 4-momentum k of the upper parton, this
diagram in the n-th order has a singularity lnnð�2=p2Þ at
p2 ! 0.
Our results can be applied to studying generalized par-

ton distributions (GPDs)19 [23–26] which permanently
attract a great amount of interest.20 They parameterize
nonperturbative parton correlation functions in the nucle-
ons and interpolate between the ordinary parton distribu-
tion functions (PDFs), which can be measured in DIS, and
the elastic form factors. GPDs appear in cross sections of
deeply virtual Compton scattering (DVCS), hard leptopro-
duction of vector mesons, as well as in diffractive
Z0-production in ep-collision. They were also introduced
in the context of the spin structure of the nucleons [25].
If the OPE (1) is applied to DIS, only diagonal operators

of the type Om
F;�1...�m

¼ Om;m
F;�1...�m

(Om
V;�1...�m

¼ Om;m�1
V;�1...�m

)

are important, since the forward matrix elements of these
operators with 1 � l � m� 1 (1 � l � m� 2) are zero.
However, for DVCS and other processes mentioned
above, all operators contribute proportionally to
ðp� p0Þ�lþ1

. . . ðp� p0Þ�m
. The invariant structures of ma-

trix elements of these operators related to the GPDs. Thus,
our scheme of calculating CFs of the nondiagonal com-

posite operators Om;l
A;�1...�m

(A ¼ F, V) becomes quite

important.
For the first time, the very notion of nonforward distri-

bution function was introduced in Ref. [28], in which the
statement was made that its Fourier transformation ‘‘can be
interpreted as the distribution of partons in momentum

FIG. 14. The hadronic part of the amplitude of deep inelastic
lepton scattering off a parton with 4-momentum p (p2 < 0). The
dotted line means that the imaginary part of the amplitude should
be taken.

17One possible solution of double counting problem, which
appears in deriving CFs of heavy quarks at the diagram level,
was proposed in [20].
18At the moment, we restrict ourselves by the diagonal CFs
which survive in DIS.

19Also called off-forward or nonforward PDs.
20For the first time, nonforward QCD planar ladder diagrams
were studied in [27].
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fraction x and in impact parameter b?.’’ Later on, it was
shown that GPDs in the limit when the momentum transfer
is purely transverse describe the distributions of unpolar-
ized (polarized) partons in the transverse plane [29].
Impact parameter dependent PDFs satisfy positivity con-
straints which justify their physical interpretation as proba-
bility densities [29].

In conclusion, let us stress again that Eq. (30), which
defines the singlet CFs in term of the Green functions of the
composite operators, does not apply to perturbation theory
at all. Therefore, our results can be used for calculating
CFs of the OPE by nonperturbative methods.

All Feynman graphs presented in the present paper
(Figs. 1–15) were prepared with the use of Axodraw pack-
age [30] and JaxoDraw graphical user interface [31].
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APPENDIX A

In this Appendix we have presented several basic
D-dimensional integrals (D ¼ 4� 2") which are needed

for our calculations. Light-cone 4-vector n� is defined in

the main text (22). Only divergent parts of the integrals are
shown.

ð�2Þ"
Z dDk

ð2�ÞD
ðknÞm

k2ðkþpÞ2¼
i

16�2

1

"

�
�2

�p2

�
" ð�1Þm
mþ1

ðpnÞm;
(A1)

ð�2Þ"
Z dDk

ð2�ÞD
ðknÞm

ðkþpÞ2ðk� lÞ2

¼ i

16�2

1

"

�
�2

�ðlþpÞ2
�
" ð�1Þm
mþ1

Xm
p¼0

ð�1ÞpðlnÞpðpnÞm�p;

(A2)

ð�2Þ"
Z dDk

ð2�ÞD
ðknÞm½ðkþ pÞn�n

k2ðkþ pÞ2

¼ i

16�2

1

"

�
�2

�p2

�
"ð�1ÞmðpnÞmþnBðmþ 1; nþ 1Þ;

(A3)

where Bðx; yÞ is the beta-function, and m � 0. In the next
four integrals m � 1 is assumed:

ð�2Þ"
Z dDk

ð2�ÞD
k�ðknÞm
k2ðkþ pÞ2

¼ i

16�2

1

"

�
�2

�p2

�
" ð�1Þm�1

mþ 2
ðpnÞm�1

�
�
�n�

m

2ðmþ 1Þp
2 þ p�ðpnÞ

�
; (A4)

ð�2Þ"
Z dDk

ð2�ÞD
k�ðknÞm

k2ðkþ pÞ2ðk� lÞ2

¼ i

32�2

1

"

�
�2

�ðlþ pÞ2
�
" ð�1Þm�1

mþ 1
n�

� Xm�1

p¼0

ð�1ÞpðlnÞpðpnÞm�p�1; (A5)

ð�2Þ"
Z dDk

ð2�ÞD
k�ðknÞm

ðkþpÞ2ðk� lÞ2¼
i

16�2

1

"

�
�2

�ðlþpÞ2
�
" ð�1Þm
mþ1

�
1

2
n�ðlþpÞ2

�Xm�1

p¼0

ð�1Þpðpþ1ÞðlnÞpðpnÞm�p�1

� 1

mþ2

Xm�1

p¼0

ð�1Þpðpþ1Þðpþ2ÞðlnÞpðpnÞm�p�1

�

þðl�þp�Þ 1

mþ2

Xm
p¼0

ð�1Þpðpþ1ÞðlnÞpðpnÞm�p�p�

Xm
p¼0

ð�1ÞpðlnÞpðpnÞm�p

�
; (A6)

FIG. 15. The partonic cut vertex. The solid lines represent
quarks or gluons fields. The ‘‘target’’ parton is off-shell,
p2 < 0. Integration in 4-momentum k is made.
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ð�2Þ"
Z dDk

ð2�ÞD
k�k�ðknÞm

k2ðkþ pÞ2ðk� lÞ2 ¼
i

32�2

1

"

�
�2

�ðlþ pÞ2
�
" ð�1Þm
ðmþ 1Þðmþ 2Þ

�
g��

Xm
p¼0

ð�1ÞpðlnÞpðpnÞm�p

� ðl�n� þ n�l�Þ
Xm�1

p¼0

ð�1Þpðpþ 1ÞðlnÞpðpnÞm�p�1

þ ðp�n� þ n�p�Þ
Xm�1

p¼0

ð�1Þpðm� pÞðlnÞpðpnÞm�p�1

� 1

2
n�n�

�
k2

Xm�2

p¼0

ð�1Þpðpþ 1ÞðlnÞpðpnÞm�p�2

þ p2
Xm�2

p¼0

ð�1Þpðm� p� 1ÞðlnÞpðpnÞm�p�2

þ ðlþ pÞ2 Xm�2

p¼0

ð�1Þpðpþ 1Þðm� p� 1ÞðlnÞpðpnÞm�p�2

�)
(A7)

APPENDIX B

In this Appendix we collected formulas which are
needed for calculating sums presented in the text and

getting compact expressions.21 Everywhere below
n
m

� �
denotes a binomial coefficient, and Bðx; yÞ beta-function.
For integer m, n � 0, one has

B ðmþ 1; nþ 1Þ ¼
�
ðmþ nþ 1Þ mþ n

n

� ���1
:

Let us first consider summation in index l:

Xm�1

l¼1

ð�1Þl m� 1
l� 1

� �
Bðkþ 3; lÞ

¼ �ð�1ÞmBðkþ 3; mÞ � 1

kþmþ 2
; (B1)

Xm�1

l¼1

ð�1Þl m� 1
l� 1

� �
1

lþ 1
Bðkþ 1; lþ 2Þ

¼ �ð�1Þm 1

mþ 1
Bðkþ 1; mþ 2Þ

� 1

ðkþmþ 1Þðkþmþ 2Þðkþ 1Þ ; (B2)

Xm�1

l¼1

ð�1Þl m� 1
l� 1

� �
1

ðlþ 1Þðlþ 2ÞBðk; lþ 3Þ

¼ �ð�1Þm 1

ðmþ 1Þðmþ 2ÞBðk;mþ 3Þ

� 1

ðkþmþ 1Þðkþmþ 2Þkðkþ 1Þ ; (B3)

Xm�1

l¼1

ð�1Þl m� 1
l� 1

� �
1

lðlþ 1Þðlþ 2ÞBðk; lþ 3Þ

¼ �ð�1Þm 1

mðmþ 1Þðmþ 3ÞBðk;mþ 3Þ

� 1

ðkþmþ 2Þkðkþ 1Þðkþ 2Þ ; (B4)

Xm�1

l¼1

ð�1Þl m� 1

l� 1

 !
1

lþ k

¼ �Bðkþ 1; mÞ � ð�1Þm 1

mþ k
: (B5)

In particular, we get from (B5):

Xm�1

l¼1

ð�1Þl m� 1
l� 1

� �
1

l
¼ � 1

m
½1þ ð�1Þm�; (B6)

Xm�1

l¼1

ð�1Þl m� 1
l� 1

� �
1

lþ 1
¼ � 1

m
þ 1

mþ 1
½1� ð�1Þm�;

(B7)

Xm�1

l¼1

ð�1Þl m� 1

l� 1

 !
1

lþ 2

¼ � 1

mþ 2
ð�1Þm � 2

mðmþ 1Þðmþ 2Þ : (B8)
21All the formulas collected in this section were derived by
using several table sums with binomial coefficients [32].
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Next four sums in l contain the same beta-function
Bðkþ 2; lþ 2Þ:

Xm�1

l¼1

ð�1Þl m
lþ 1

� �
Bðkþ 2; lþ 2Þ

¼ � mðm� 1Þ
ðkþmþ 2Þðkþ 2Þðkþ 3Þ ; (B9)

Xm�1

l¼1

ð�1Þl m
lþ 1

� �
ðm� l� 1ÞBðkþ 2; lþ 2Þ

¼ � mðm� 1Þðm� 2Þ
ðkþmþ 1Þðkþ 2Þðkþ 3Þ ; (B10)

Xm�1

l¼1

Bðkþ 2; lþ 2Þ ¼ �Bðkþ 1; mþ 2Þ

þ 2

ðkþ 1Þðkþ 2Þðkþ 3Þ ; (B11)

Xm�1

l¼1

ðlþ2ÞBðkþ2; lþ2Þ

¼�Bðk;mþ3Þ�ðmþ2ÞBðkþ1;mþ2Þ
þðmþ1ÞBðkþ2;mþ1Þþ 6

ðkþ1Þðkþ2Þðkþ3Þ :
(B12)

The following four sums in k are also used during
calculations. The Kronecker symbols �n;m guarantee that

all the sums are equal to zero for l ¼ m� 1:

Xm�1

k¼lþ1

ð�1Þl m
k� 1

� �
1

k

k
lþ 1

� �
¼ �ð�1Þm 1

m

m
lþ 1

� �
½1� �0;m�l�1�; (B13)
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 !�
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m
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�
: (B16)

Note that the latter sum is equal to zero both for l ¼ m� 1
and l ¼ m� 2.
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ð�1Þl m

k� 1

 !
1
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¼ � 1

m

�
ð�1Þl m� 1
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(B18)
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Geyer, and D. Robaschik, Nucl. Phys. B 560, 283 (1999).

[7] A. V. Kisselev and V.A. Petrov, Phys. Rev. D 71, 085020
(2005).

[8] E. G. Floratos, D.A. Ross, and C. T. Sachrajda, Nucl.
Phys. B 129, 66 (1977); 139, 545(E) (1978); 152, 493
(1979).

[9] G. t’Hooft and M. Veltman, Nucl. Phys. B 44, 189 (1972);
C. G. Bollini and J. J. Giambiagi, Nuovo Cimento Soc.
Ital. Fis. B 12, 20 (1972); G. Cicuta and Montaldi, Nuovo
Cimento Letters 4, 329 (1972).

[10] D. J. Gross and F. Wilczek, Phys. Rev. D 8, 3633
(1973); H. Georgi and H.D. Politzer, Phys. Rev. D 9,
416 (1974).

[11] W. Zimmermann, Ann. Phys. (Leipzig) 77, 536 (1973).
[12] J. C. Collins, Renormalization (Cambridge University

Press, Cambridge, 1984).
[13] G.M. Shore, Nucl. Phys. B 362, 85 (1991).
[14] S. Joglekar and B.W. Lee, Ann. Phys. (Leipzig) 97, 160

(1976); S. Joglekar, Ann. Phys. (Leipzig) 108, 233 (1977).
[15] A. Bassetto, G. Nardelli, and R. Soldati, Yang-Mills

Theories in Algebraic Non-Covariant Gauges:
Canonical Quantization and Renormalization (World
Scientific, Singapore, 1991).

[16] C. Acerbi and A. Bassetto, Phys. Rev. D 49, 1067 (1994).

[17] R. Hamberg and W. L. van Neerven, Nucl. Phys. B 379,
143 (1992).

[18] J. C. Collins and R. J. Scalise, Phys. Rev. D 50, 4117
(1994).

[19] K. G. Chetyrkin, S. C. Gorishny, and F. V. Tkachov, Phys.
Lett. B 119, 407 (1982); S. C. Gorishny, S. A. Larin, and
F. V. Tkachov, Phys. Lett. B 124, 217 (1983).

[20] A. V. Kisselev, Phys. Rev. D 60, 74001 (1999).
[21] D. J. Pritchard and W. J. Stirling, Nucl. Phys. B 165, 237

(1980).
[22] A. H. Mueller, Phys. Rev. D 18, 3705 (1978); Phys. Rep.

73, 237 (1981).
[23] D. Müller et al., Fortschr. Phys. 42, 101 (1994).
[24] A. V. Radyushkin, Phys. Lett. B 380, 417 (1996); 385, 333

(1996); Phys. Rev. D 56, 5524 (1997).
[25] X. Ji, Phys. Rev. Lett. 78, 610 (1997); Phys. Rev. D 55,

7114 (1997).
[26] P. Hoodbhoy, X. Ji, and W. Lu, Phys. Rev. D 59, 014013

(1998).
[27] J. Bartels and M. Loewe, Z. Phys. C 12, 263 (1982).
[28] A. V. Kisselev and V.A. Petrov, in Proc. XXIVth Recontres

de Moriond, edited by J. Tran Than Van (Editions
Frontières, Gif-sur Yvette, 1989), p. 213.

[29] M. Burkardt, Int. J. Mod. Phys. A 18, 173 (2003).
[30] J. A.M. Vermaseren, Comput. Phys. Commun. 83, 45

(1994).
[31] D. Binosi and L. Theussl, Comput. Phys. Commun. 161,

76 (2004); D. Binosi et al., Comput. Phys. Commun. 180,
1709 (2009).

[32] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev,
Elementary Functions, Integrals and Series Vol. 1
(Gordon and Breach Sci. Publ., New York, 1986).

OPERATOR PRODUCT EXPANSION COEFFICIENT . . . PHYSICAL REVIEW D 85, 094022 (2012)

094022-17

http://dx.doi.org/10.1103/PhysRev.179.1499
http://dx.doi.org/10.1016/0003-4916(78)90007-6
http://dx.doi.org/10.1016/0003-4916(78)90007-6
http://dx.doi.org/10.1023/B:TAMP.0000018453.92282.bb
http://dx.doi.org/10.1023/B:TAMP.0000018453.92282.bb
http://dx.doi.org/10.1007/BF01551803
http://dx.doi.org/10.1016/S0550-3213(99)00418-6
http://dx.doi.org/10.1103/PhysRevD.71.085020
http://dx.doi.org/10.1103/PhysRevD.71.085020
http://dx.doi.org/10.1016/0550-3213(77)90020-7
http://dx.doi.org/10.1016/0550-3213(77)90020-7
http://dx.doi.org/10.1016/0550-3213(79)90094-4
http://dx.doi.org/10.1016/0550-3213(79)90094-4
http://dx.doi.org/10.1016/0550-3213(72)90279-9
http://dx.doi.org/10.1103/PhysRevD.8.3633
http://dx.doi.org/10.1103/PhysRevD.8.3633
http://dx.doi.org/10.1103/PhysRevD.9.416
http://dx.doi.org/10.1103/PhysRevD.9.416
http://dx.doi.org/10.1016/0003-4916(73)90429-6
http://dx.doi.org/10.1016/0550-3213(91)90557-E
http://dx.doi.org/10.1016/0003-4916(76)90225-6
http://dx.doi.org/10.1016/0003-4916(76)90225-6
http://dx.doi.org/10.1016/0003-4916(77)90014-8
http://dx.doi.org/10.1103/PhysRevD.49.1067
http://dx.doi.org/10.1016/0550-3213(92)90593-Z
http://dx.doi.org/10.1016/0550-3213(92)90593-Z
http://dx.doi.org/10.1103/PhysRevD.50.4117
http://dx.doi.org/10.1103/PhysRevD.50.4117
http://dx.doi.org/10.1016/0370-2693(82)90701-8
http://dx.doi.org/10.1016/0370-2693(82)90701-8
http://dx.doi.org/10.1016/0370-2693(83)91439-9
http://dx.doi.org/10.1103/PhysRevD.60.074001
http://dx.doi.org/10.1016/0550-3213(80)90086-3
http://dx.doi.org/10.1016/0550-3213(80)90086-3
http://dx.doi.org/10.1103/PhysRevD.18.3705
http://dx.doi.org/10.1016/0370-1573(81)90030-2
http://dx.doi.org/10.1016/0370-1573(81)90030-2
http://dx.doi.org/10.1002/prop.2190420202
http://dx.doi.org/10.1016/0370-2693(96)00528-X
http://dx.doi.org/10.1016/0370-2693(96)00844-1
http://dx.doi.org/10.1016/0370-2693(96)00844-1
http://dx.doi.org/10.1103/PhysRevD.56.5524
http://dx.doi.org/10.1103/PhysRevLett.78.610
http://dx.doi.org/10.1103/PhysRevD.55.7114
http://dx.doi.org/10.1103/PhysRevD.55.7114
http://dx.doi.org/10.1103/PhysRevD.59.014013
http://dx.doi.org/10.1103/PhysRevD.59.014013
http://dx.doi.org/10.1007/BF01558265
http://dx.doi.org/10.1142/S0217751X03012370
http://dx.doi.org/10.1016/0010-4655(94)90034-5
http://dx.doi.org/10.1016/0010-4655(94)90034-5
http://dx.doi.org/10.1016/j.cpc.2004.05.001
http://dx.doi.org/10.1016/j.cpc.2004.05.001
http://dx.doi.org/10.1016/j.cpc.2009.02.020
http://dx.doi.org/10.1016/j.cpc.2009.02.020

