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Operator product expansion coefficient functions in terms of composite
operators only: Singlet case
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A method for calculating coefficient functions of the operator product expansion, which was previously
derived for the nonsinglet case, is generalized for the singlet coefficient functions. The resulting formula
defines coefficient functions entirely in terms of corresponding singlet composite operators without
applying to elementary (quark and gluon) fields. Both “diagonal” and ‘“‘nondiagonal” gluon coefficient
functions in the product expansion of two electromagnetic currents are calculated in QCD. Their

renormalization properties are studied.
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I. INTRODUCTION

The light-cone (LC) operator product expansion (OPE)
[1] (see also [2,3]) permanently receives much attention,
since it enables us to separate contributions to cross sec-
tions coming from large and small distances in a variety of
processes. It was proposed as a generalization of the OPE
at short distances [4] in order to describe deep inelastic
scattering (DIS) of leptons off nucleons.

In Refs. [5] the T-product of two scalar currents near the
LC was defined in term of so-called bi-local light-ray

szm(x)ng(o) = _g,uv{ Z Z Cm l

m=2[=1

m=21=

where the dots denote contributions from other Lorentz
structures. This expansion contains both nonsinglet (triplet

3,m,l 8,m,l .
ONS .., and octlet ONSuy,) comp0s1te operators and
m :
singlet (quark Op', , ~and gluon OV wr.,) composite

operators. The quantities C), Ch , and Cy,, are called
coefficient functions (CFs) of the OPE.

As a rule, the internal sums in / are omitted in (1) since
neglected terms do not contribute to DIS structure func-
tions (see, for instance, [3]). Below we will discuss this
point in more detail.

The standard approach to calculations of the OPE CFs is
to apply for perturbation theory by considering the scatter-
ing of leptons off elementary (quark and gluon) off-shell
fields. In Ref. [7] a new method for calculating CFs was
proposed which does not explicitly depend on elementary
fields, but instead defines the CFs entirely in terms of
Green functions of the currents and/or composite
operators.
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composite fields. Later on it was shown that the local LC
expansion can be obtained by performing a Taylor expan-
sion of the nonlocal one [6]. The nonlocal expansion is
more general, but in the present paper we restrict ourselves
to considering standard local OPE.

The OPE for the T-product of two electromagnetic
currents is of particular importance to practical application.
It can be written in the form (see, for instance, [7]):

Il am L pgm
_x,le XMME[O?VS;L] Mm(o)+\/_§0§;\’/5,,}1141.~//«m(0)]

o m—1

o0+> Y C,Y,,,(xz)’;—!xm Xk O #,,,(0)]}+---, (1)

m=2 [=1

In our previous paper [7] the nonsinglet case was
studied. In the present paper we generalize our results for
the singlet case. In Sec. 11 we derive a closed representation
for the singlet CFs in terms of vacuum matrix elements of
the composite operators. In Sec. III we calculate the singlet
CFs in perturbative QCD and demonstrate that our main
formula not only reproduces well-known expression for the
gluon CF, but enables us to obtain the CFs of all gradient
singlet operators in the OPE. The renormalization of
singlet quark and gluon composite operators and their
CFs is considered in Sec. IV. A number of useful mathe-
matical formulas is collected in Appendix A (integrals) and
Appendix B (sums).

I1. OPE COEFFICIENT FUNCTIONS AND VACUUM
MATRIX ELEMENTS OF COMPOSITE
OPERATORS

The cross section of deep inelastic lepton-nucleon scat-
tering (DIS) is related with the hadronic tensor (see, for
instance, [3])
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FIG. 1. Feynman rules for the quark composite operators Ofo‘ u, in the leading (zero) order in strong coupling a;.

W, (pq) = 27 [ dxet (pITIm (IO p).  (2)

Here |p) means a nucleon state, and J§"(x) is an electro-
magnetic current:

I (x) = ¥ (x)y,0¥(x), 3)

where W(x) is a quark field. The electric charge operator
in (3),

“

obeys the equation

(A)n‘k

Hyensbin

k k—p

(pn)n—k—l(kn)k—l
X[=gu kn(k — p)n — nyn, k(k — p) + nuk, (k — p)n + (k — p)un, kn]

(71)n—k’—l(pn)rz—k'—l(k.n)k'—l
X[=gu kn(k + p)n — nyn, k(k +p) + nuk, (k+p)n+ (k + p)un, kn)

FIG. 2. Feynman rules for the gluon composite operators

OZf‘ u, in the leading (zero) order in strong coupling a;.

&)

were A (a=1,2,...8) are the Gell-Mann matrices,
Sp(A9) = 0, Sp(A®AP) =26,,, and A° is the identity
matrix.

For DIS of a charged lepton, the hadronic tensor (2) has
two independent tensor structures [3]:

qudr) 1
W0.0) = (=2 + 223%) 5 Fi 0. 09

2xp
+ (pu - qﬂ%)(py - QV%)ZQLsz(xB, %),
(6)
where Q% = —¢?,
xp = 0%/2pq @)

is the Bjorken variable, and structure functions F;, F,
depend on these invariant variables. In the Bjorken limit,
Q? — 0, xp is fixed, the structure functions F, ,(Q?, x) are
defined via one-nucleon matrix elements of the composite
operators which enter OPE (1).

Near the light-cone, leading contributions to matrix
elements come from twist-2 operators. In QCD, the non-
singlet quark twist-2 (traceless) gauge-invariant operators'
are of the form (1 = [ = m):

a,m,l
ONS,m.--um (x)
=i"180,, .9, W)y, Dy, ...D,u AW ()

+ (terms proportional to g, K ),

8)

"Non-gauge-invariant composite operators in the OPE will be
discussed in the end of Sec. IV.
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where operator S means a complete symmetrization in
Lorentz indices,

D, =d, tigtAy 9

is a covariant derivative, and A (x) is a gluon field. The
singlet quark twist-2 operators (1 = [ = m),

Om,l

F’Ml".ﬂm(x) =i""189 ..8Mm\i’(x)yM1DM...DM\P(x)

(10)

Mi+r”

+ (terms proportional to g, M/_),

can mix with the gluon twist-2 operators (1 =/ =m — 1)

p R
n,k
Ol"lv-wﬂn
—gt*nan(pn)"F
. klp Y (pn)
1
a, o

—gt®ngn(pn)"F

Feynman rules for the quark composite operators
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Or"}:ﬁl’]"-”’m (x)
— l'm*ZSSpa . auquma(x)Dl'«z . "DMIF?L”(X)

In

Mty ©
+ (terms proportional t0 g, ,, )-

Feynman rules for these composite operators which will be
used for our further calculations are presented in Figs. 1-3.
They have to be considered as a generalization of well-
known Feynman rules [8] for the case p # 0.

If the OPE (1) is applied to DIS, only operators of the

type

ONS o (X) = " 'S¥(x)y, D,,...D, A"¥(x)

+ (terms proportional t0g,,, ),  (12)

> [(k = Dn) (kn)F=2

=0

(=1 gt () 5 [k = D (k)2

k=2

[0k -+ L p)n (O + )

(1) gt pn)" S [+ 1= pyl [k = p)n)=>

On,k

"i\..u, in the first order in strong coupling a;.
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OF o, () = 0" 1S\If(x)7m w Dy P
+ (terms proportional to g, , ).  (13)
rVH:MlmMm (x) - im_zSSpFﬂla(x)Dﬂz ,U«m 1 Mm ()C)
+ (terms proportional to g, #/_) (14)

are relevant. It is due to the fact that any composite

operator OZ’IZLI o (A= NS, F, V) with at least one full

derivative® gives no contribution to a forward matrix ele-

ment (pIOX’L]“_ ... |P). In our notation,
a,m — a,m,m
ONS MM ONS pee Mo’
m J— m,m
OFMl Hm 0F.”~| B’ 15)
_ m,m—1
Vuul"'”‘ Ovlul Mom®

In what follow, the operators (15) will be called “major” or
“diagonal” composite operators, while the quark operators
with 1 =/ =m — 1 and gluon operators with 1 =1/ =
m — 2 will be referred to as ‘“‘nondiagonal” composite
operators. Correspondingly, we define:

CV — CV

R =Chn  CL=Chn wom—1- (16)

For nonforward matrix elements (for instance, describ-
ing deeply virtual Compton scattering), all composite op-
erators contribute. Namely, we have the relations™:

lf«,,,lp):A,U«lﬂ'“A <p+A|0;</,.lS,ul...p,,|p>’
(p-f-A|0F'ul ) lpy=A4,. ..A, <p+A|OFM] M1|p)

<p+A|0V,U«1 Mo |p>=AM1+1 ,U«n 1<p+A|OVM1 ,u,lp>
7)

(p+Aloge,

The major operators in the RHS of Eq. (17) are defined
above in Eq. (15).

As usual, we assume that C’, (x?) are tempered gener-
alized functions (this is explicit in perturbative calcula-
tions), so the symbolic relation

R q:u'] . qlu“m 2 ( a )m

xt oyt = (=2)" ———(— ¢ )" — 18

(2 S (o) a®)

holds in connection with the Fourier transform in (1).
The approach, developed in our previous paper [7] for

the nonsinglet CFs, should be generalized for the singlet

case. To do this, let us

2As one can see from Egs. (8), (10), and (11), the total number
of full derivatives is equal to m — [ or m — [ — 1 for the quark or
gluon composite operator, respectively.
3Here (pl and |p + A) are one-particle states with 4-momenta
g and (p +4),.
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(1) take T-product of both sides of the OPE (1) by a
singlet composite operator 0%, (z), withA = F
orV,

(2) imbed all resulting operator products between vac-
uum states.

As a result, we obtain from Eq. (1) the following relation

between vacuum matrix elements of the operator products
and OPE coefficient functions:

f 4 xeidr _[ d*ze P(TT () TSm0 0%, (2)

= —gw{ i sz

2)m CF l(q2)
m=01[=

x [azer oy, |, 005, @)
+ Z Z 2171 Z)m

4 i m,l
where C4, (¢%) is a Fourier transform of C7, ,(x?),

C4 (g% = !( q2)'"< ) f d*xe'*Ch (x?), (20)

Xl,l(qz)

L 008 @)+ (19)

and a new notation,

Jem(x) = W(x)y, A°W(x), (1)
is introduced. In other words, only a singlet part of
the product of two electromagnetic currents [see Egs. (3)
and (5)] gives a contribution to (19).

Let n, be a light-cone 4-vector not orthogonal to

4-momentum p,,:

nZ =0,

i pn # 0. (22)

Throughout the paper, we will work in the limit
p? <. (23)

Let us underline that the limit p> — 0 does not assume

p—0,

the limit p, — 0. On the contrary, given n, =

— pud*/lpa +(pg)* — p*q*], one gets pn = pq at
2 ~ 0
P .
It is useful to convolute vacuum matrix elements with
the projector

n"...n"
(pn)"

and define the following invariant structure,

, (24)

n*

noeeent [ d*xe's* [ d*zeP(TTEM(x)J5m(0)0%Y, , (2)
(pn)" o

4 n
= §g,wFA'k(w, o%LpH)+.... (25)
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It depends on invariant variables p?, O and dimensionless
variable

w = 1/x3 =2pq/0* (26)

The vacuum matrix element of the T-product of two
composite operators has the following Lorentz structure
(A,B=F,V):

/ dze (TR (00, (@)

=2, Py Py - P, (OB OGN (P?)
+ (terms proportional to g, ,,. P 8o, P g v, o).
(27
Equation (27) means:
nV| V,, 4
o Jaeraon, 008, @
=2pu, - Pu, (OR O D). (28)

Note that both FZ’k(w, 02
mensionless quantities.

Let us note that at p?> — 0 vacuum matrix elements of
composite operators of higher twists are suppressed by
powers of p? with respect to the vacuum matrix elements
of twist-2 operators (28). Thus, our approach enables us to
isolate a contribution from twist-2 operators.

At fixed Q? and p?, 3-point Green function
<TJ;mJﬁm0Z’k> has a discontinuity in the variable
(g + p)? for (g + p)*> = 0 (that is, for @ = 1). By using
the dispersion relation for F Z’k(a), 0% p?),

p?) and (O 05 (p?) are di-

Fi o, 02, p?)
1 [00 dw'
mJ W —

1 & 0
— Z wmf do'w' "1 dischX’k(a)’, q% p?),
1= 1

ImF (', g2 p?)
w

(29)
one can derive from Egs. (19), (25), and (28):
[ > ¢t.02 /w0y 0w /)
m—1
+ 3 €10 w0y} Y0/ O
P
[ m—1
[27”,/0 dxpx}y
X disc( g0 Fy (xp 0%/ p2 p?/ Mz)] , (30)
P2

Strictly speaking, possible divergencies must be subtracted
from the dispersion relation (29). However, it does not alter

PHYSICAL REVIEW D 85, 094022 (2012)

our scheme provided the integrals in the r.h.s. of Eq. (30)
converge (remember that m = 2).

In (30) we took into account that both matrix elements of
renormalized composite operators and CFs depend on the
renormalization scale w. In what follows, we take u to be
equal to the regularization scale i, which arises in dimen-
sional regularization [9], when one changes an integration
volume, d*k — a“ P dPk.

Neither side of Eq. (30) has dependence on n except
for the trivial factor (—1)". By settingk = 1,2, ...2m — 1,
we thus obtain a set of 2m — 1 algebraic equations for
the singlet OPE CFs Ch, (1=I=m) and Cj,
A=l=m-1*

Formula (30) gives an operator definition of the OPE
CFs in term of vacuum matrix elements of composite
operators.” It is important to stress that our definition of
the OPE CFs is unambiguous and it does not lean on a
notion of quark and gluon distributions. The latter are
defined via nucleon matrix elements of the quark or gluon
composite operator, while the coefficient functions are
independently defined via vacuum matrix elements of the
product of composite operators.

III. CALCULATIONS OF SINGLET COEFFICIENT
FUNCTIONS IN PERTURBATIVE QCD

The formula (30) is a generalization of a corresponding
formula for a nonsinglet case which was derived in our
previous paper [7]:

I:ZCNS(QZ/Mz)(OmlO" O/ ]

[ 1 [ld m—1
=|— XpX
2mi )y BB

X disc(,+ g9 Fiys(xp 0%/ p% pz//ﬁ)] ;6D
e

p*—0

By using this formula, the following expressions for the
nonsinglet CFs were calculated in QCD [7]:

[Cm m](O) 1[1 + (_ l)m]: (32)
and
- 1
[CN510 = —(—1)1( " ) (33)
’ 2 I
for {=0,1,...,m — 1.° Here and in what follows super-

script ““(0)”” means that a corresponding quantity is calcu-
lated in zero order in strong coupling.

In the next order in «,;, we obtained the following
expressions [7]:

Slnce n = k, the index n must be chosen larger than 2m — 1.
>The electromagnetic current (3) is a particular case of a quark

Compome operator with zero anomalous dimension.
®Everywhere (') denotes a binomial coefficient.
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ANS (27,2711 — Fs Q_z _1\ym
[EX802/ w2 = 2t 5)1+ (1))
Uiy 2
><[-4j§;—1+—m(m+l)], (34)

and

[CXS(02/ ud)] = %cF 1n(§_z>{%(_1)l(n;_—11>

k=I+1
m—1 1 1
X - -
(k—l)(k—l k+1)}’ (35)
for /=0,1,...,m — 1. Here and in what follows super-

script ““(1)”” means that a corresponding quantity is calcu-
lated in the first order in strong coupling constant.

Let us stress that we did not demand from the very
beginning that the major CF, C‘f,,’?m, should be equal to
zero for odd m [see Eqs. (32) and (34)]. On the contrary,
it is a consequence of the fact that electromagnetic inter-
actions conserve P-parity. Remember that DIS structure
function F,(xp, Q?) is an even function of Bjorken variable
xp, and its nonzero moments, F,(n, Q?), are defined by
quantities €2 ,(Q%/u?)(plO™" | p)(u?), with even n. That
is why we expect that the gluon major CF should be also
proportional to the factor [1 4+ (—1)"] [see (57) below].

For a convenience, let us for a moment rewrite our main
relation (31) in symbolic form:

<JJ0A> = CF<0F0A> + CV<OV0A>~ (36)
Then we get from (36):
[(JTONI® = [CT1OH0F 0N + [CVTO(0y0)]°.
(37)

Since [(0y 0] = [(J70y)]O = 0, while [(OyOy)]”
is nonzero, we get

m—1
[C), 1OKOy 0910 = 0. (38)
=1

Equality (38) is valid for all integer m, n, and 1 = k =
n — 1. Thus, we conclude that

[C) 10 =0, (39)

for all integer m,and | =l =m — 1.
Analogously, we obtain from (36):

[(JJ0F>](O) = [CF](O)[<0F0F>](O) + [CV](O)<0V0F>](O),
(40)

PHYSICAL REVIEW D 85, 094022 (2012)
[(JTOR]YV = [CFIOK0r0)]V + [CFIV(0F0)]
+[CY]OK0y ORI + [CV](0, 0]

(41)

Taking into account that [CY]? =0 (39) and
[{(0,0:)]© = 0, we find:

(170 = [CF OO0, (42)

[(JTONY = [CFIOK0r0pIY + [CF1(0F 0]
(43)

These equations are identical to those derived for the non-
singlet quark CF in our paper [7]. As a result, we find that
the singlet quark CFs coincide with the corresponding
nonsinglet quark CFs in zero and first order in a,’:

[C00 = [E10,  [Ch10 =[C10, @)

with [C$]© and [CY$]V) given by expressions (32)~(35).

Now let us turn to QCD calculations of the gluon CFs in
the first order in strong coupling constant by using our
main formula (30). We work in the dimensional regulari-
zation [9] and use the MS-scheme to renormalize ultravio-
let divergences. All results of our calculations are gauge-
invariant since we sum all diagrams in each order of
perturbation theory. Let us remember that in order to find
the OPE CFs, we have to retain only leading terms in the
limit p> — 0. This significantly simplifies the calculations.
We will restrict ourselves by considering leading terms in
In(Q?/ u?), although our main formula (30) enables one to
calculate subleading terms as well. In other words, along
with the limit p?> — 0, we are interested in large values of
variable Q2.

Starting from (36), we can schematically write:

[JI0N = [CFIOK 00 + [CY](0y0y)]?.
(45)
In full detail, Eq. (45) looks like the following:

I [ —1ras
{2—771,/; dxpxy l[dlsc(p+q)2F$k(xB, Qz/l?zrpz/,u«z)](l)}

2

p—0

={ﬁ[éﬁi,,]<°>[<o;1’10”v”‘><p2m2>]<1>
=1

m—1
* Z[CX,AQZ/M)](”[<o@””0'¢’<><p2/u2>]<°)} -
=1 p>—

(46)

The quantities [65, ]©) are already known [see (44), (32),
and (33)], while the other terms in (46) should be
calculated.

"Note, however, that [CE 1™ # [CNS]™, for n = 2.
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k
p P
An,k Am,1
ON17-~~7Hn OV17 “Vm
k—p

FIG. 4. The diagrams for the propagator of the gluon compos-
ite operator (O%:X0"Y©) in zero order in strong coupling a,.

The propagator of the gluon composite operator is
shown in Fig. 4, and one getsS:

(OO (2 )
1
n+l
=i(—1)"* 3 ln( )B(k+ 2,1+ 2). 47)

The vacuum matrix element of the product of two singlet
composite operators is given by the diagram in Fig. 5. The
calculations result in the following expression:

(03 0V (p*/ )

e[ 2 )

X|—m — Bk +
[k+l+2 (k 3’1)]

1 1
e [ +

k[k+l+1 Bk 2’1)]

1 2 1 -1
—=- +

(k k+1 k+2) 11+ 1)}’ 48)

Now we are able to calculate the second term in Eq. (46):

> [C, 10V 0V (p?/ )
=1

=«—WQ3;JF($JTMm+$m+m

m—2 2(m + 2) mm+1)+2
X{[ k +(k+1)(k+2) k+m+2
m(m + 2)

k+m+1

][m—nm&m+$
+mm+mmmqm+m¢ (49)

Summation in / was made with the help of Eqgs. (B1)-(B8)
from Appendix B. The relation between beta-functions
(integer k, m),

8Everywhere B(x, y) means beta-function.
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2 2 1
- . + ~ Bk +
(k P 2)B(k 3,m) — B(k 2, m)

1
= — lm + Dm 2)[(m —2)B(k, m + 3)
+m(m +2)B(k+ 1, m + 2)], (50)

was also used.

The diagrams which contribute to vacuum matrix ele-
ment with two currents are shown in Fig. 6. Omitting
details of calculations, let us give the result:

2771/ dxx™~ 1dlsc(p+q)z<JJO”k>(1)(xB,Q2/P p*/u?)

=i(— 1)"CF3zs 1n< Q; )1n<_p2)

2(m+2)
(k+ 1) (k+2)

% 1 {[m 2
m(m+1)(m+2) k
m(m+1)+2_m(m+2):|

k+t+m+2 k+m+1

—Rm—ﬁﬂkm+$+m@ﬁiB&+Lm+ﬁw

(D

In order to obtain Eqgs. (47)—(51), we used integrals
(A1)—(A3) from Appendix A.

Equations (46)—(51) result in a set of equations for the
gluon CFs. Namely, for any integer m = 2 we obtain
algebraic equations for [C‘X,Z(Qz/,u%](l), with 1 ==
m— 1:

m—1
D C) (Q*/ )] VB(k +2,1+2)
=1

= CF47T (Qz)m(m + 11)(m + 2){[m 1? -

2(m+2) mm+1)+2  m(m+2)
(k+1)(k+2) k+m+2 k+m+1:|

—Um—mm&m+a+mmuamm+Lm+mﬂ

(52)

Note that these equations hold for a/l integer k = 1, but for
our purposes it is enough to consider only m — 1 equations
corresponding to k = 1,2,...m — 1.°

The solution of Egs. (52) is a sum of two terms one of
which is nonzero only for even m, while another is nonzero
only for odd m:

°The other equations which correspond to kK = m will be also
satisfied, as one could see from an explicit expression for our
solution (53)—(55).
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1 k
p p
[ vk_] [
An,k A\m,]
O Ol m
I+p k+p

FIG. 5. The diagrams for the mixing of the composite operators <0"§k O’ﬁ">(1) in the first order in strong coupling «.

ey 0x/uen =L e o2,
S CW ey 02/,
(53)

The first term in (53) is defined for 1 =l =m — 1

[Chr /(0% 12)]Nen

- CF%H“(%){(%_mi 1 +miZ>
x[(_l)l(1T1>_(m_l)]_ml i

+
m—1
X 1\ — Y
[co( ) -m--n]h 6w
while the second term in (53) is nonzero for 1 =1 =
m—2:

[C,‘;[ QZ/MZ)]E)Id)d

a0 1
B CFEm(P)m(m +1)(m+2)

x {(—1)’[(l—m+ D) (m+2)+ m(m + 1) +2]

X(lfl)—[(l—va1)(m—2)+m(m+1)+2]}.

(55)

Note that (CN‘,‘; odad (55) gives no contribution to f‘,‘; ; (53)
for I = m — 1 due to relation [(=1)" = 1][(=1)"+1]=0.
It is rather easy to demonstrate that (53) does obey set of

FIG. 6. The diagrams for the matrix element (JJO%*)" in the
first order in strong coupling «;.

Egs. (52) for any m =2, k=1, if one uses formulas
(B9)-(B12) from Appendix B. Indeed, these formulas
lead us to the relations:

m—1
S [CY (0% ) Wen Bk +2,1+2)
=1

m—1

= S [CY (Q*/ p) Bk +2,1+2)
=1

=Crys 1“($)m(m T 11)(m T 2>{[m =

2(m+2) mm+1)+2  m(m+2)
k+1)(k+2) k+m+2 k+m+l]

[ = 2)Bk m + 3) + m(m + 2Bk + 1, m + 2)]},

(56)
In particular, it follows from Egs. (53) and (54), that
[Chm1 (Q2/ )]
a, (0? 1 2 2
=Cr—Inl=[1+-D)")————+——=).
Ly “(,ﬂ)[ =1) ](m mt 1 m+2) 7

As one can see, major CF (57) is defined by well-known
anomalous dimension [10]°

7 m+12+(m+1)+2
Yev TR m(m + 1)(m + 2)

(58)

Thus, we have reproduced the standard expression for
the major CF, C}, ,,_,(Q*/u?), and, which is more impor-
tant, have calculated “gradient” gluon CFs, C}, ,(0%/u?)
(I=1,2....m—2), in the first order in strong coupling «;.

IV. RENORMALIZATION OF SINGLET
COMPOSITE OPERATORS AND
COEFFICIENT FUNCTIONS

Let us consider in more detail products of renormalized
composite operators and corresponding renormalized CFs
which enter the OPE of two electromagnetic currents (1).

'In order to obtain the expression for %, in standard nota-
tions, one has to replace index m by (n — 1) in (58).
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Both singlet composite operators, O}” and 0?’,”1, depend on
the renormalization scale u,, and mix with each other
under rescaling g — w:

k
O (ug) = Y. (2N (ug/ w0 (u?)
=1
k—1
+ Y (23 nD) O (),
=
k+1
O (ud) = D (2" (/w0 (u?)
=1

k
+ 2 (2" (kg ) ov (), (59)
=1

where Z are the matrices of a finite renormalization of the
composite operators. In its turn, (59) means that

Cr (0¥ u?) = Ch (0% ud)ZFV ) (ud/1?)
+C) o Q2 )2V )= (3 ),
(60)

and

Ch(Q*/u?) = Z Ch (O ud)(ZFV YK (g )

k=I1+1

+ Z Ch (O wd)(ZYV)E (3] ),

(61)
forl=12...m—2.
Since the quantity u is an arbitrary scale, one can put
wu3 = 0% in (60) and (61), and obtain:
m m— 1(Q2/M2) = ng m(l)(ZFV)m 1(Q2/M2)

+Cpr i (DEZY)Z1(Q/ 1?), (62)

and
CLQ /) = Y Ch (O u)
k=1+1
+ Z CraMZHQY 1), (63)
for | =1,2,...,m — 2. As a result, we find equations for

the leading parts of the gluon CFs in the first order in the
strong coupling (1 =/ =m — 1):

PHYSICAL REVIEW D 85, 094022 (2012)

FIG. 7. The diagrams which give contribution to the renormal-
ization of the quark composite operator O%k in the first order in
strong coupling ;.

[C), /(@ u?)]V = Z [CE JOLZ)HQ?/ )M, (64)

k=I1+1

In deriving relation (64), we took into account that
[C) ]9 =0forall mand 1 =[=m—1(39). By using
explicit form of [C’Zk](o) [see (44) and (32)], these equa-
tions can be written as follows (1 =1 =m — 1):

[Ch(Q/ )]V
= [1+ (=" LZ)pe?/ wH™

P 1>k( 11)[<2FV>;<<Q2/M2>]<'>. (65)

k=I1+1

Note that the last term in (65) is identically zero at
l=m—1.

The mixing of singlet quark operators (10) and gluon
operators (11) is defined by the set of diagrams presented in
Fig. 7."' The sum of divergent parts of these diagrams is
given by the expression:

[—guvkn(k+ p)n—n,n,k(k+ p)+n,k,(k+ p)n+k,n kn]CFa :;( ) Z( DY kn)! = (pn)r !

Ae)
K k+l k42 K+ 1

(—l)——(k—l—l)—( !

(66)

[(k kilJr%)(lfl)_ﬁ(]l{;ll)]}

""The expressions for unrenormalized singlet quark and gluon composite operators are presented in Figs. 1 and 2, respectively.
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In deriving (66), basic integrals (A4)-(A7) from
Appendix A were used. Let us remember the Feynman
rule for the unrenormalized gluon operator O"';k (see
Fig. 2):

(=D * Y kn)*Y(pn)" ¥ [—g ., kn(k + p)n
—nyn,k(k + p) + n,k,(k + p)n + k,n,kn].  (67)

As a result, the matrix of the finite renormalization in
Eq. (64) has the following form (1 =/ =k — 1):

[(Z™)[(Q*/ uh)]V
e

1 1 2
N LRl

o)) el @

In particular, it follows from (68):
(2P (/w1
! 2 1 2
= cFiln(Q—Q)[l +(- 1)k](— -
87 \u

e ©9)

k+ 2)'
As one can see from (69), [(ZAFV)’,E_I]“) = 0, fork = 1.1tis
a consequence of the fact that the singlet operator
P(x)y »'V(x) do not mix with the gluon operators.'?

From (65) and (69), the expression for the major gluon
CF (57) follows which was obtained in the previous section
by solving set of Egs. (52). In order to obtain
[Cy, ,(Q*/u*)]W for 1 == m — 2, one should calculate
the sum in k in Eq. (65). It can be done with the help of
formulas (B13)—-(B19) from Appendix B. As a result, we
come to expressions (53)—(55), derived above on the basis
of our main formula (30).

Finally, by using Egs. (B9)-(B12) from Appendix B, one
can obtain:

m—1

> ICEIOUZ )@ w)IVB(k + 2,1+ 2)
=1

oy 1n(ff—§)[1 (= 1)
X {[m I: 2
~ m(m +2)

k+m+1

1
m(m + 1)(m + 2)
mim+1)+2

k+m-+2

2(m + 2)
(k+ Dk +2)

] —[m - 2Bk m + 3)

+mm+2)Bk+1,m+ 2)]} (70)

'20bviously, it should takes place in all orders in «,.

PHYSICAL REVIEW D 85, 094022 (2012)

Correspondingly, with the help of formulas (B13)—-(B19)
and (B9)—(B12), we are able to find:

S S € 0N O Bk + 2,1+ 2)
=1 k=I[+1
— aS Q2 _(—1\m 1
N CFHT ln(ﬁ)[l =1 ]m(m + 1)(m +2)
m—2 2(m + 2) mm+1)+2
x{[ k +(k+1)(k+2) k+m+?2
- %] ~[m - 2Bk m +3)
+m(m +2)B(k+ 1, m + 2)]}. (71)

Thus, we have successfully reproduced Egs. (54) and (55).

It is well known that any Green function with an
insertion of one composite operator is multiplicatively
renormalized [11], while Green functions with insertion
of two (or more) composite operators need additive coun-
terterms [12]. Nevertheless, as was shown in [7], renor-
malization group equations for the CFs have no additive
terms, provided the corresponding composite operators
have zero vev.'?

It was found that some gauge-invariant singlet compos-
ite operators can mix with gauge-variant ones under
renormalization [14]. This problem is present for the sim-
plest of these operators, the energy-momentum tensor 6,
already in the leading order in strong coupling.

Let O and N represent a set of gauge-independent and
non-gauge-independent operators, respectively. It was
proven that renormalized and unrenormalized operators
of these types are related by a triangular matrix [14]:

(9)e= (% 22Y©2), o

where Z,p are matrices. In other words, gauge-variant
operators do not mix with gauge-invariant operators under
the renormalization. Correspondingly, anomalous dimen-
sions of gauge-independent operators can be determined
from matrix Z,, alone. Moreover, in so-called physical
(axial) gauge, n,A* =0, n, being a constant light-like
vector [15], a renormalization procedure does not require
gauge-variant counterterms for the gauge-invariant com-
posite operators at all [16].

It follows from (72) that in the OPE renormalized CFs of
gauge-independent operators change under rescaling of
renormalization mass, pug — w, as follows:

Co(p?) = Co(ud)Zoo(p3/ 1), (73)

3The renormalization properties of the composite operators
with nonzero vev were studied in [13].
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where 200 is a matrix of finite renormalization. All physi-
cal matrix elements of gauge-variant operators vanish
[14].14 Using a complete set of hadronic states |n), we
find that

(NO) = Y (NIn)(n|0) = 0. (74)

Thus, a presence of gauge-variant composite operators in
the OPE (1) have no influence on our method of determin-
ing CFs in terms of vacuum matrix elements. Indeed,
multiplying elements of the sum Y, [C/O,, + C}N,,] by
one of the gauge-invariant operators, O,,, and putting them
between vacuum states, we exclude a contribution from the
gauge-variant operators to our main equation (30).
Taking all said above into account, we did not include
gauge-dependent composite operators in the OPE (1).

V. CONCLUSIONS AND DISCUSSIONS

As it was shown in the present paper, the singlet CFs of
the OPE of two currents can be explicitly expressed in
terms of the Green functions of the corresponding com-
posite operators without explicit use of the elementary
(quark and gluon) fields. Our main equation (30) is a
generalization of an analogous formula which was previ-
ously obtained for the singlet case [7]. It is necessary to
stress that our formula holds in any renormalization
scheme in contrast with other prescriptions (see, for
instance, [19]).

As an illustration of a validity of our scheme, the gluon
CFs were calculated in QCD in the first order of the strong
coupling constant. It is important to note that both diagonal
CFs, C%, (0*/u?) (57), and nondiagonal CFs,
C‘fM(QZ/,uQ) (1 =1=m-—2) (53)-(55), were simulta-
neously obtained. The renormalization of these composite
operators and their CFs were also considered.

For further discussion, let us rewrite a set of equations
for the singlet quark and gluon CFs in the following
symbolic form:

(JJO,) = CL0,0,) + C,(0,0,),

75

(JJO,) = C0,0,) + C(0,0,). )

These equations must be considered as the set of matrix

equations (for simplicity, summations in / are omitted). It is

also assumed that the procedure described in details in
Section II is applied to all matrix elements in (75).'?

Let us define “‘reduced” matrix elements of the quark

and gluon composite operators in the n-th order of pertur-

bation theory (n = 1):

“The calculations made in [17] contradict this result. However,
it was shown by explicit calculations [18] that the proof in [17]
breaks down, and conclusions of paper [14] remain true.

15Gee derivation of formula (30).

PHYSICAL REVIEW D 85, 094022 (2012)

O

Oq O(I Oq

FIG. 8. The redefinition of the matrix element of the quark
composite operators in the first order in strong coupling «.

<0A0q>(n) = <OA Oq>(n)[<0q0q>(0)]_l’
A

<0 0g>(n) = <0A0g>(n)[<0g0g>(0)]_1)

(76)

where A = ¢, g (see Figs. 8 and 9). Analogously, we can
define reduced matrix elements which contain both com-
posite operators and electromagnetic currents (n = 0):

0" = 100,00
<U’bg)(”) = (JJ0,)YW[(0,0)0]"!

o >§
0, >gq 0, 0,
0

@ )

q
O(l OQ

<

FIG. 9. The redefinition of the matrix elements of the quark
and gluon composite operators in the first order in strong
coupling «.
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FIG. 10. The redefinition of the matrix element (JJO,) in zero
order in strong coupling «;.

)

FIG. 11. The redefinition of the matrix elements (/JO,) and
(JJO,) in the first order in strong coupling a,.

(see Figs. 10 and 11). Note that each of the matrix elements
(0,05)"™ and (JJO,)™ has a divergency related with a
divergency of a corresponding Feynman graphs as a
whole.'® However, these divergences cancel in the reduced
matrix elements (O:BBW) and <J75A>(”).

From (75) we get

(170 )0 = (0,00 + cP(0,0,),

(78)
(JJ0NO = 40,00 + CP(0,0,)0.
Since  (JJO)O =(0,0,)? =(0,0,)? =0, while

<0g0g>(°) # 0, we immediately obtain in the leading
(zero) order in the strong coupling a:

cY =, (79)
CO = (J70,)0. (80)

1%Note that zero-order matrix elements (0,(p)O,(— pH©,
(04(p)O(=p), and  disc(,, 2 (T ()T (—(p + 9))O, (P
are proportional to In(1/p?) at p> — 0.

PHYSICAL REVIEW D 85, 094022 (2012)

Oq
+ ee

FIG. 12. The singlet quark coefficient function of the OPE in
the first order in strong coupling «;.

In the first order in «,, we derive the following expres-
sions for the singlet quark and gluon CFs:

CP = JI0 N = (JJ0)(0,0)V,  (81)

CY = JT0HY = (JTON(0,0)V.  (82)

The first-order contributions to the singlet CFs are pre-
sented in Figs. 12 and 13, respectively. In the next order the
singlet quark CF looks like

L _

FIG. 13. The gluon coefficient function of the OPE in the first
order in strong coupling «.
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CP = JI0N? = [(JIOHY = (J10,)(0,0,)M]
X (0,0)V = [(JTOHV —(J10,)(0,0,)"V]
X {0,0,)V —(1J0,)*{0,0,)?. (83)
Correspondingly, the gluon CF has the form:

CP = (J10 ) = [(JIO )V = (J10,)9(0,0,)"]
X (0,0, = [(TTOHV — (JTO )0, 0,)"]
X (0,00 = (JT0,)0,0,)?. (84)

In the same way, singlet quark and gluon CFs can be
calculated at any order.

One more advantage of our approach is that it treats
uniformly the CFs of light quarks (¢ = u, d, s) and CFs of
heavy quarks (Q = c, b). For instance, singlet heavy quark
CF, Cy, is given by the same formulas (81) and (83). At the
same time, the so-called double counting problem does not
arise at all."”

The leading parts of the first terms in Egs. (81)-(84),

<JJ’\0A>(") (A=gq, g) are proportional to In"(Q%/p?),

while the leading parts of the matrix elements <0:53>(”)
(A, B = q, g) are proportional to In"(u?/p?). Thus, the
role of all terms in the r.h.s. of Egs. (81)-(84), except the
first one, is to cancel p*-dependence in the final expression
for the singlet CFs:

c = Ng1>[1n<§—22) - 1n<’;—22)] = N ln<§—z), (85)
= ()2 ()) )]

QZ
=N/(f)ln2<?), (86)

where constants NX‘) are known from explicit calculations.
An analogy can be drawn between our formulas
(81)—(84) and diagram approach to calculating CFs.'8

Namely, the quantity (JJO,) should be associated with
the amplitude shown in Fig. 14, with A being the type of
off-shell parton with 4-momentum p. The n-th order con-
tribution to the imaginary part of this amplitude grows as
In"(Q?/p?) at p> — 0 (or, equivalently, at Q> — o). The
detailed diagram analysis can be found in Ref. [21], where
it was shown that the u?-dependence drops out if a gauge-
invariant set of QCD diagrams is taken into account in each
order of perturbation theory.

7One possible solution of double counting problem, which

appears in deriving CFs of heavy quarks at the diagram level,
was proposed in [20].

" At the moment, we restrict ourselves by the diagonal CFs
which survive in DIS.

PHYSICAL REVIEW D 85, 094022 (2012)

Q Q

D p

FIG. 14. The hadronic part of the amplitude of deep inelastic
lepton scattering off a parton with 4-momentum p (p? < 0). The
dotted line means that the imaginary part of the amplitude should
be taken.

The quantity <0:53> should be associated with the so-
called cut vertex [22] depicted in Fig. 15, where upper
(lower) lines in Fig. 15 correspond to partons of type A(B).
Being integrated in 4-momentum k of the upper parton, this
diagram in the n-th order has a singularity In"(u?/p?) at
p*—0.

Our results can be applied to studying generalized par-
ton distributions (GPDs)' [23-26] which permanently
attract a great amount of interest.”’’ They parameterize
nonperturbative parton correlation functions in the nucle-
ons and interpolate between the ordinary parton distribu-
tion functions (PDFs), which can be measured in DIS, and
the elastic form factors. GPDs appear in cross sections of
deeply virtual Compton scattering (DVCS), hard leptopro-
duction of vector mesons, as well as in diffractive
Z%-production in ep-collision. They were also introduced
in the context of the spin structure of the nucleons [25].

If the OPE (1) is applied to DIS, only diagonal operators
of the type OF BB - O?Z Mom (01‘1/1 Hioblm 0’3/’:’1 ]/-Lm)
are important, since the forward matrix elements of these
operators with 1 =/ =m — 1 (1 =1 = m — 2) are zero.
However, for DVCS and other processes mentioned
above, all operators contribute proportionally to
(p =Py, ---(p = pP)y,- The invariant structures of ma-
trix elements of these operators related to the GPDs. Thus,
our scheme of calculating CFs of the nondiagonal com-
posite operators O'}" (A=F, V) becomes quite

important.

For the first time, the very notion of nonforward distri-
bution function was introduced in Ref. [28], in which the
statement was made that its Fourier transformation ““can be
interpreted as the distribution of partons in momentum

AMM

1()Also called off-forward or nonforward PDs.
*OFor the first time, nonforward QCD planar ladder diagrams
were studied in [27].
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p p

FIG. 15. The partonic cut vertex. The solid lines represent
quarks or gluons fields. The “target” parton is off-shell,
p? < 0. Integration in 4-momentum k is made.

fraction x and in impact parameter b | .”’ Later on, it was
shown that GPDs in the limit when the momentum transfer
is purely transverse describe the distributions of unpolar-
ized (polarized) partons in the transverse plane [29].
Impact parameter dependent PDFs satisfy positivity con-
straints which justify their physical interpretation as proba-
bility densities [29].

In conclusion, let us stress again that Eq. (30), which
defines the singlet CFs in term of the Green functions of the
composite operators, does not apply to perturbation theory
at all. Therefore, our results can be used for calculating
CFs of the OPE by nonperturbative methods.

All Feynman graphs presented in the present paper
(Figs. 1-15) were prepared with the use of Axodraw pack-
age [30] and JaxoDraw graphical user interface [31].
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APPENDIX A

In this Appendix we have presented several basic
D-dimensional integrals (D = 4 — 2¢) which are needed

(e U+ pP

=
+2

QmP (k+ p2(k—1? 1672e

+ (1, +p#

. [ d°k k,, (kn)™ i1 w? (=1)m
2) I: ] m+1

PHYSICAL REVIEW D 85, 094022 (2012)

for our calculations. Light-cone 4-vector n,, is defined in
the main text (22). Only divergent parts of the integrals are
shown.

dk  (kn)" i 1 Iu,z e(—1)m .
e /(27T)l)l<2(k+p)2 16ﬂ2§<—p2) e G
(A1)
( 2)8 de (kn)m
# Qm)P (k+ p)*(k—1)*
. i 1 qu g(_l)m m B .
_16725[—(14-1,)2] m“pZ:o( DP(In)? (pn)"~7,
(A2)
waye [k G+ pin
# emP Kk + p)?
i1

( ) (= 1)"(pr)™ "B(m + 1, n + 1),

(A3)

1677' €

where B(x, y) is the beta-function, and m = 0. In the next
four integrals m = 1 is assumed:

APk k, (kn)"
QmP 12k + p)?

: ( p2) - 1)m 1(Pn)'” !

161 e

X [—n#ﬁpz + pﬂ(pn)],

(u?)®

(A4)

dPk K, (kn)™
QmP 12(k + p)*(k — 1)?

(u?)®

i 1 [ MZ ] ( l)m 1
= - n
N7 el—-U+p?l m+1 *

m—1
X Y (=1)P(In)r(pn)"r~1, (A5)
p=0

{2 M(z+p>2[z< D?(p+ (i) (pryr=—r~!

0

Z( D?(p+ 1)(p +2)(In)P(pn)"—r~ 1]

Z( D2 (p +1)(In)? (pn)™~ P—p,LZ( DP(In)? (pny™= P} (A6)
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dPk k, k,(kn)™" i1 u? & (=1)m e
2)e Z —1)?(In)? m—p
W | omp 2+ P2k—12 Rale [—(z ¥ p)Z] (m + D(m +2) {gf”;)( ) n) (pn)
m—1
— (Lyn, +n,L) Y (=1D)P(p + 1)(In)r (pr) 7!
p=0
m—1
+ (puny + n,p,) D (=1)P(m = p)(In)? (pn) 7!
p=0
1 m—2
= 3 3 7+ D
p=
m—2
+p? Y (=1)P(m = p = D)(In)? (pn)" 772
p=0
m—2
+(L+p)? Y (=P (p+D(m—p-— 1)(ln)”(pn)m‘p‘2]} (A7)
p=0
[
m—1 -1 1
1) ——— Bk, [+3
APPENDIX B Z( ( )(l + 1D +2) ( :
In this Appendix we collected formulas which are — (=1 1 Bk m + 3)
needed for calculating sums presented in the text and o (m+ )(m +2) I
. L2l n
getting compact expressions.” Everywhere below (m) _ 1 (B3)
denotes a binomial coefficient, and B(x, y) beta-function. (k+m+ 1)k +m+2k(k + 1)
For integer m, n = 0, one has |
-1
1 ’( )7B k1+3
Z( ) I+ DI +2) ( )
+n\T!
B(m+1,n+1)=[(m+n+1)<m )] . 1
= —(—=1)" B(k,m + 3
" T Dm 3 Blm+d
- , (B4)
Let us first consider summation in index [ (k+m+2klk+ 1)(k+2)
-1 1
m—1 Z( 1)1( )
Z( 1)( )B(k+3l) [+ k
1
1 =-Bk+1,m)—(—=1)" . (B5)
= —(~1"B(k +3,m)———, (Bl m+k
k+m+2 In particular, we get from (BS5):
m—1 _ 1 1
ST ) = @6
=1 =11 m
-1
Z( 1)( > Bk+1,1+2) m_l m—1\ 1 1
[+1 1) =4
1=Zl( 1)<l—1)l+1 m
= (1" Bk + 1,m +2) (B7)
- ! (B2) nl m—1Y\ 1
+m+ +m+ +1) —-1)! —
(k+m+ Dk +m+2)(k+ 1) 1221( )(l_1>l+2
2L All the formulas collected in this section were derived by =———— (-1 — 2 (BY)
using several table sums with binomial coefficients [32]. m m(m + 1)(m + 2)
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Next four sums in [ contain the same beta-function
Bk+21+2):

m—1

(—1) Bk+21+2)
>, 1)

o m(m — 1)
 k+m+2)k+2)(k+3) (B9)

m—1
(—1)! (m—1—DB(k+21+2)
lzzl (1+1)m

o m(m — 1)(m — 2)
 (k+m+ Dk +2)k+3) (B19)

m—1
D Blk+21+2)=
=1

—Bk+1,m+2)

2
- (k+ 1Dk +2)(k +3)’

(B11)

m—1
> (1+2)B(k+2,1+2)
=1

=—Bkm+3)—(m+2)B(k+1,m+2)
6
(k+D(k+2)(k+3)
(B12)

The following four sums in k are also used during
calculations. The Kronecker symbols 8, ,, guarantee that
all the sums are equal to zero for [ = m — 1:

S )

+(m+1D)Bk+2,m+1)+

== (= See) @1
f ™Y L F
kz/;—l( 1)( 1>k+l<l+1>
1 1
=—(=1) (l-i— 1)[ 1 _ZB(),mflfl:I
1
+(_1)1m(m+ 1)’ B
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1 k
2o )l
1 1
=—(—-1 (l_i_])[m—a%mll]

[+2
m(m + 1)(m + 2)’

m—1 1 k—1
2ol

+2(—=1)!

(B15)

m—1
- <z+1)
[+2
A [TH S| (BIO

Note that the latter sum is equal to zero both for/ = m — 1
and [ =m — 2.

m— 1( ) 1
1 —
2l

—%[(—1)’(ml_l)+<—1>m],

m—1 m 1
00 e

m m—1 1
— (1) [m+1<l+ )—( l )]—(—1) —,
S e

(B18)
(%)
ey I+ 2
- 1)[m+2(n;:21>_mil<14n—12>
Sl )l o

(B17)

(B19)
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