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By requiring the correct Regge behavior in both meson and nucleon sectors, we determine the infrared

asymptotic behavior of various background fields in the soft-wall anti-de Sitter/QCD model, including the

dilaton, the warp factor, and the scalar vacuum expectation value. We then use a simple parametrization

which smoothly connects these IR limits and their usual UV limits. The resulting spectrum is compared

with experimental data, and the agreement between them is good.
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I. INTRODUCTION

Quantum chromodynamics (QCD) has been established
as the genuine theory of strong interaction for nearly 40
years. Quarks and gluons are identified as the fundamental
degrees of freedom. QCD is asymptotically free in the
UV limit, so people can use standard techniques of pertur-
bation theory to study the processes with large momentum
transfer, like deep inelastic scatterings, etc. In the IR
region, however, the coupling constant becomes strong.
Now, the effective participants of strong interactions are
various hadrons, like�, �,N, etc., while quarks and gluons
are confined inside these particles. Perturbation theory
cannot be directly used here. People need to develop
various effective models to describe the low-energy hadron
physics.

Anti-de Sitter (AdS)/QCD is one of them and has been
densely researched for the last several years. This method-
ology stems from the idea of the large N expansion due to
’t Hooft [1] and is directly motivated by the AdS/conformal
field theory correspondence [2–4] in string theory. AdS/
QCD is a bottom-up approach. It associates QCD opera-
tors, like chiral currents and the quark condensate, to bulk
fields propagating in a five-dimensional (5D) space, which
tends to AdS5 as the fifth coordinate z goes to zero. There
are mainly two versions: the hard-wall model [5–7] and the
soft-wall model [8]. The former can correctly describe the
chiral symmetry breaking (�SB) and low-lying hadron
states. The latter is developed for the purpose of realizing
the meson Regge behavior due to the linear confinement in
QCD. People find that it is necessary to introduce the
dilaton background which is quadratic growth in the deep
IR region z ! 1. It is further studied in Ref. [9] in order to
correctly incorporate the �SB. AdS/QCD also has interest-
ing relations with the light-front dynamics [10]. The UV
limits of various background fields can be easily fixed. For
instance, the warp factor should tend to that of the AdS
space in order to reflect the conformal invariance of the
high-energy fixed point of QCD, and the UV behavior of
the vacuum expectation value (VEV) of the bulk scalar is
determined by the pattern of �SB. Therefore, works on

soft-wall models mainly focus on various improvements in
the IR region. However, it still seems arbitrary to some
extent.
The main result of this paper is a way to fix the IR

asymptotic behavior of various background fields: the
dilaton �ðzÞ, the warp factor aðzÞ, and the scalar VEV
vðzÞ. We achieve this just by requiring the model has the
correct Regge-type spectrum in both meson and nucleon
sectors. Nucleons can also be realized [11] in the frame-
work of AdS/QCD by introducing 5D Dirac spinors which
correspond to the baryon operators. In Ref. [12], nucleons
are extended to the soft-wall model with an asymptotically
linear spectrum in both meson and nucleon sectors. Some
other works considering mesons and baryons at the same
time can be found in Refs. [13–15]. The main drawback of
the model in Ref. [12] is that, although both mesons and
nucleons have linear spectra, the spectral slopes of vec-
tors and that of axial vectors are different, which is
inconsistent with experimental data. Actually, we can
argue that it is impossible to improve this if only adjusting
the form of the potential and the scalar VEV. The way
around this is to allow—actually we have to allow, for
being consist with data—the mass of a bulk field being
z-dependent. This idea has also been suggested in the
literature, e.g. Refs. [16,17]. Except for conserved cur-
rents, a generic operator will have nonzero anomalous
dimension, which is scale-dependent due to the running
coupling constant of QCD. According to the well-known
dimension-mass relation, the mass of the corresponding
bulk field should be z-dependent, since the fifth coordi-
nate z can be interpreted as the inverse of the four-
dimensional (4D) energy scale. What we find is that, by
requiring the Regge-type spectrum is properly realized
in both meson and nucleon sectors, the IR asymptotic
behaviors of various background fields are totally fixed.
Then, using a simple parametrization which smoothly
connects these IR limits and their usual UV limits,
we can make predictions and compare them with the
observed data. Our philosophy is to reduce the uncer-
tainty of the model as much as possible by the use of
known facts.
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II. THE MODEL AND CONSTRAINTS

The soft-wall AdS/QCD model is defined in a five-
dimensional bulk with the metric

ds2 ¼ GMNdx
MdxN ¼ a2ðzÞð���dx

�dx� � dz2Þ;
0< z <1: (2.1)

The factor aðzÞ is called a warp factor, which tends to z�1

as z ! 0. There is also a background dilaton�ðzÞ which is
assumed to be Oðz2Þ as z ! 1, in order to have a Regge-
type spectrum in the meson sector [8]. According to the
general rules of the gauge/gravity duality, there are two 5D
gauge fields, La

M and Ra
M, which correspond to 4D chiral

currents J
a�
L ¼ �qL�

�taqL and J
a�
R ¼ �qR�

�taqR. The

quark bilinear operator �qiLq
j
R is also an important 4D

operator for �SB. Its holographic dual is a 5D 2� 2
matrix-valued complex scalar field X ¼ ðXijÞ, which is in
the bifundamental representation of the 5D gauge group
SUðNfÞL � SUðNfÞR, with Nf being the number of quark

flavors. The bulk action for the meson sector is

SM ¼
Z

d4x dz
ffiffiffiffi
G

p
e�� Tr

�
� 1

4g25
ðF2

L þ F2
RÞ

þ jDXj2 �m2
XjXj2

�
: (2.2)

By matching with QCD, g25 ¼ 12�2=Nc ¼ 4�2. The co-

variant derivative of X is DMX ¼ @MX � iLMX þ iXRM.
FL and FR are the field strengths of the gauge potentials L
and R, respectively. The generator ta is normalized by
TrðtatbÞ ¼ 1

2�
ab.

The bulk scalar X is assumed to have a z-dependent
VEV: hXi ¼ 1

2vðzÞ. The function vðzÞ satisfies the equation
of motion

@zða3e��@zvÞ � a5e��m2
Xv ¼ 0: (2.3)

The mass-square m2
X may be z-dependent due to a possible

anomalous dimension of �qLqR. From Eq. (2.3), we can
express m2

X as

m2
X ¼ v00 þ ð��0 þ 3a0=aÞv0

a2v
: (2.4)

To describe vector mesons, define VM ¼ ðLM þ RMÞ=2,
and use the axial gauge V5 ¼ 0. Expand the field V�

in terms of its Kaluza-Klein modes V�ðx; zÞ ¼P
n�

ðnÞ
� ðxÞfðnÞV ðzÞ, with fðnÞV ðzÞ being eigenfunctions of

�@5ðae��@5f
ðnÞ
V Þ ¼ ae��MðnÞ2

V fðnÞV . After integrating out
the z-coordinate, we get an effective 4D action for a tower

of massive vector fields �ðnÞ
� ðxÞ, which can be identified as

the fields of � mesons with MðnÞ
V being their masses. By

setting fðnÞV ¼ e!=2c ðnÞ
V , the equation of eigenfunctions can

be transformed to a Schrödinger form�c ðnÞ00
V þ VVc

ðnÞ
V ¼

MðnÞ2
V c ðnÞ

V with the potential

VV ¼ 1
4!

02 � 1
2!

00; (2.5)

where ! ¼ �� loga. Similarly, for axial-vectors, define
AM ¼ ðLM � RMÞ=2. Also, use the axial gauge A5 ¼ 0,

expand A�ðx; zÞ ¼
P

na
ðnÞ
� ðxÞfðnÞA ðzÞ, and transform the

eigenvalue problem for fðnÞA ðzÞ into the Schrödinger form.

The resulting potential VA for axial-vector mesons is

VA ¼ 1
4!

02 � 1
2!

00 þ g25a
2v2: (2.6)

The corresponding eigenvalue is the mass-square MðnÞ2
A of

the a1 mesons. Note that there is an additional term
g25a

2v2, which guarantees the axial-vector resonance is

heavier than the vector one with the same radial quantum
number.
The spin-1=2 nucleon can also be realized in the AdS/

QCD framework by introducing two 5D Dirac spinors
�1;2, which are charged under the gauge fields LM and

RM, respectively. The nucleon sector action is [11,12]

SN ¼
Z

d4x dz
ffiffiffiffi
G

p ðLK þLIÞ;
LK ¼ i ��1�

MrM�1 þ i ��2�
MrM�2 �m�

��1�1

þm�
��2�2;

LI ¼ �gY ��1X�2 � gY ��2X
y�1:

(2.7)

Here, �M ¼ eMA �
A ¼ z�M

A �
A, and f�A;�Bg ¼ 2�AB with

A ¼ ða; 5Þ. We choose the representation as �A ¼
ð�a;�i�5Þ with �5 ¼ diagðI;�IÞ. The covariant deriva-
tives for spinors are rM�1 ¼ @M�1 þ 1

2!
AB
M �AB�1 �

iLM�1 and rM�2 ¼ @M�2 þ 1
2!

AB
M �AB�2 � iRM�2.

The only nonzero components of the spin connection
!AB

M is !a5
� ¼ �!5a

� ¼ 1
z �

a
�. The LI part introduces the

effects of �SB into the nucleon sector. In Eq. (2.7), we also
allow m� being z-dependent due to a possible anomalous
dimension of the baryon operator. Similar to the meson
sector, we expand two spinors �a¼1;2 in terms of its

Kaluza-Klein modes

�aðx; zÞ ¼
P
n
NðnÞ

L ðxÞfðnÞaLðzÞ
P
n
NðnÞ

R ðxÞfðnÞaRðzÞ

0
BB@

1
CCA: (2.8)

The 4D spinors NðnÞ ¼ ðNðnÞ
L ; NðnÞ

R ÞT are interpreted as nu-
cleon fields. The internal wave functions f’s satisfy four
coupled 1st-order differential equations. By acting one
more derivative and eliminating two right-handed f’s, we
get a coupled Sterm-Liouville eigenvalue problem for

fðnÞL � ðfðnÞ1L ; f
ðnÞ
2L ÞT. Define �ðnÞ

L ¼ a2fðnÞL ; the coupled

Schrödinger equation for �ðnÞ
L is ��ðnÞ00

L þ VN�
ðnÞ
L ¼

MðnÞ2
N �ðnÞ

L . The potential matrix VN is

VN ¼ m2
�a

2 þ ðm�aÞ0 þ u2 u0

u0 m2
�a

2 � ðm�aÞ0 þ u2

 !
;

(2.9)
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with uðzÞ ¼ 1
2gYav. The eigenvalue MðnÞ2

N is the mass-

square of nucleon and its radial excitations.
Now, we start to analyze the asymptotic behavior of

various background fields in the model, i.e. the dilaton
�ðzÞ, the warp factor aðzÞ, and the scalar VEV vðzÞ. The
UV limit is relatively simple to argue. For the warp factor

aðzÞ � L

z
; z ! 0: (2.10)

This is because of the conformal invariance of the UV fixed
point. So, the bulk space should be asymptotic 5D AdS.
The value of the characteristic length L does not affect the
resulting spectrum. For the scalar VEV

vðzÞ � Azþ Bz3; z ! 0: (2.11)

The linear term corresponds to the explicit �SB due to the
quark mass, while the cubic term describes the spontane-
ous breaking by the nonzero quark condensate. Unlike the
warp factor and the scalar VEV, the UV limit of the dilaton,
however, cannot be uniquely fixed. The reason is as fol-
lows. Since QCD is asymptotically free, the conformal
dimension of any operator, at the UV fixed point, is just
its classical value, which is 3 for �qLqR. Therefore, by the
mass-dimension relation m2

X ¼ �ð�� 4Þ, we have

m2
XðzÞ � �3; z ! 0: (2.12)

From the expression (2.4), we can see that the above
equation (2.12) holds if and only if �ðzÞ � z	 as z ! 0
with	> 0. Actually, the UV limit of the dilaton could also
depend on the form of the scalar potential in the bulk action
[9,12]. So, it is, generally speaking, model-dependent.

Having studied the UV behavior, we now turn to the IR.
For the dilaton, it must be

�ðzÞ �Oðz2Þ; z ! 1; (2.13)

which guarantees MðnÞ2
V �OðnÞ as n ! 1 for vector me-

sons [8]. Suppose aðzÞ �Oðz�Þ as z ! 1,1 we always
have ðlogaÞ0 �Oðz�1Þ for any power �. Therefore, from
the expression (2.5) of the potential, only considering
vector mesons cannot give any constraint on the IR behav-
ior of the warp factor aðzÞ. One of the key observations of
this paper is that we can fix that by the nucleon sector. Look
at the nucleon potential matrix (2.9), please. At the IR fixed
point, QCD becomes a strongly coupled, but well-defined,
conformal field theory. So, the dimension of the baryon
operator should be finite, which means thatm�, although it
may be z-dependent, must tend to a finite constant as z !
1. Consider the diagonal terms of Eq. (2.9) first. m2

�a
2

must dominate �ðm�aÞ0 when z is large. However, which
one is dominant between the 1st term m2

�a
2 and the 3rd

term u2 is a crucial issue. We determine this by reduction to
the absurd. Suppose u2 / a2v2 dominates; then, the
asymptotic linearity of nucleon spectrum forces a2v2 �
Oðz2Þ in the IR. However, note that u2 / a2v2 also appears
in the axial potential (2.6), there will be anotherOðz2Þ term
in addition to the 1st term in VAðzÞ. Then, this implies the
axial-vector spectrum, although still linear, has a different
slope with vector mesons, which is inconsistent with ex-
perimental data. Therefore, the conclusion is that m2

�a
2

dominates u2. Again, by the spectral linearity of nucleons,
we obtain the desired IR limit of the warp factor as

aðzÞ �OðzÞ; z ! 1: (2.14)

By requiring vectors and axial-vectors have the same spec-
tral slopes, we only know vðzÞ �Oðz1�"Þ at IR for some
positive ". To further constrain it, we suppose the chiral
symmetry is not asymptotically restored [18].2 This means
that VA � VV / a2v2 should tend to some nonzero con-
stant as z ! 1. Therefore, the IR behavior of the scalar
VEV is

vðzÞ �Oðz�1Þ; z ! 1: (2.15)

As a cross check, we find that u0 / ðavÞ0 tends to zero in
the deep IR region. Two Schrödinger equations for nucle-
ons decouple with each other, which means the mass
difference between a nucleon state and its parity partner
becomes smaller and smaller.3 This is consistent with the
observed data.
Additionally, it can be shown that, with these IR limits,

the scalar and pseudoscalar mesons also have asymptoti-
cally linear spectral trajectories parallel to those of vectors
and axial-vectors. By directly applying the method of
Ref. [8], it can be further shown that the relation between
the mass-square and the total angular-momentum quantum
number J for higher spin mesons is indeed Regge-type.
These facts exhibit the consistency of the AdS/QCD model
and our asymptotic relations (2.14) and (2.15), which are
our main results in the present work.

III. A SIMPLE PARAMETRIZATION

Having determined various asymptotic behaviors of
background fields, we will use simple parametrizations
which smoothly connect these asymptotes from UV to
IR. First, we simply choose

� ¼ 
2z2: (3.1)

It is shown in Ref. [22] that the sign of the dilaton should be
positive to avoid a spurious massless state in the vector

1If we assume a nonpower function, e.g. a� ez, it will destroy
the linear spectrum in the nucleon sector.

2There are some controversies about this issue among experts,
see, e.g., Ref. [19] for the opposite opinion.

3This asymptotic degeneracy of nucleon states in a parity
doublet does not necessarily imply, at least theoretically, the
chiral symmetry restoration; see, e.g., Refs. [20,21].
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sector. Since we allow m2
X to be z-dependent, the choice

(3.1) does not raise difficulties for the correct realization of
�SB [17]. We parametrize the warp factor and the scalar
VEV as

aðzÞ ¼ 1þ�z2

z
; (3.2)

vðzÞ ¼ Azþ Bz3

1þ Cz4
: (3.3)

We have chosen the characteristic length L ofAdS5 to be 1.
All of these three parametrizations have correct UVand IR
behaviors determined in the previous section. By use of
Eq. (2.4), the z dependence ofm2

X has been fixed. Since the
dilaton� has positive power, m2

X has the correct UV limit,
i.e.m2

X ��3. In the deep IR, it can be shown thatm2
X tends

to zero. With these parametrizations, we can numerically
solve the Schrödinger equation with the potentials VVðzÞ in
Eq. (2.5) and VAðzÞ in Eq. (2.6). By fitting the vector meson
masses and those of the axial-vectors, we choose the values
of the five parameters as follows


 ¼ 415:9 MeV; � ¼ 860:4 MeV;

A ¼ 2:1 MeV; B ¼ ð411:9 MeVÞ3;
C ¼ ð733:6 MeVÞ4:

(3.4)

Vector mesons and axial-vector mesons both have asymp-
totically linear mass-squares, with the same slope 4
2. The
resulting spectra together with the observed values are
listed in Table I and II, respectively. The agreement be-
tween them is good, especially for higher-resonance states.

For nucleons, we parametrize the bulk spinor mass
m� as

m� ¼
5
2 þ�1z

1þ�2z
: (3.5)

This parametrization gives the correct UV limit 5=2 which
corresponds to the classical dimension 9=2 of the baryon
operator by the mass-dimension relation for spinors m� ¼
�� 2. At IR, m� tends to a constant �1=�2 which,
together with the parameter � in the warp factor, deter-
mines the mass-square slope for nucleons. It is needed to
numerically solve the coupled Schrödinger equation with
proper boundary conditions [12]. We simply fix �1 ¼

1 GeV, while �2 and the Yukawa coupling constant gY
are chosen as

gY ¼ 9:2; �2 ¼ 4573 MeV: (3.6)

The calculated nucleon masses and the corresponding data
are listed in Table III. The agreement between them is also
reasonable.

IV. CONCLUSIONS

By requiring the model has correct Regge-type spectrum
in both meson and nucleon sectors, we determine the IR
behavior of various background fields in the soft-wall AdS/
QCD model, including the dilaton �ðzÞ, the warp factor
aðzÞ, and the scalar VEV vðzÞ. More precisely, our argu-
ments are mainly based on:

(i) M2
n �OðnÞ as n ! 1 for both mesons and nucleons.

(ii) The meson spectral slopes are asymptotically equal.

(iii) The distance between the mass-squares of a vector
resonance and the corresponding axial-vector reso-
nance tends to a finite nonzero constant.

We use simple parametrizations which smoothly connect
these IR limits with their usual UV limits. The agreement
between the predictive value and experimental data is
good. In the present work, we restrict ourself to the
lowest-order effective bulk action. Whether our arguments
could supply some constraints on higher-dimensional
terms, e.g. scalar potentials, is an interesting further issue.
There is another way [23], which is more economic theo-
retically, to realize baryon states in the framework of holo-
graphic QCD by a five-dimensional Skyrmion. It is
interesting to see how to realize the linear spectra for
baryons in this model and which constraints imposed on
various background fields.

TABLE II. The theoretical and experimental values of axial-
vector meson masses.

a1 0 1 2 3 4 5

mth (MeV) 1452 1646 1842 2022 2187 2340

mex (MeV) 1230 1647 1930 2096 2270 2340

error 18.1% 0.0% 4.6% 3.6% 3.7% 0.0%

TABLE III. The theoretical and experimental values of the
spin-1=2 nucleon masses.

N 0 1 2 3 4 5 6

mth(MeV) 937 1434 1583 1783 1842 2029 2065

mex(MeV) 939 1440 1535 1650 1710 2090 2100

error 0.2% 0.5% 3.2% 8.0% 7.7% 2.9% 1.7%

TABLE I. The theoretical and experimental values of vector
meson masses.

� 0 1 2 3 4 5 6

mth (MeV) 1003 1306 1550 1759 1947 2118 2276

mex (MeV) 775.5 1465 1570 1720 1909 2149 2265

error 29.3% 10.8% 1.3% 2.3% 2.0% 1.4% 0.5%
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