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In the paper Phys. Rev. D 83, 054008 (2011) we constructed the �� scattering amplitude T0
0 with

regular analytical properties in the s complex plane, describing both experimental data and the results

based on chiral expansion and Roy equations. Now the results obtained during development of our work

are presented. We dwell on questions dealing with the low �� f0 mixing, inelasticity description and the

kaon loop model for � ! �ð�þ f0Þ reaction, and show a number of new fits. In particular, we show that

the minimization of the �� f0 mixing results in the four-quark scenario for light scalars: the �(600)

coupling with the K �K channel is suppressed relatively to the coupling with the �� channel, and the

f0(980) coupling with the �� channel is suppressed relatively to the coupling with the K �K channel. The

correct analytical properties of the �� scattering amplitude are reached with the help of rather

complicated background function. We also suggest much more simple background parameterization,

practically preserving the resonance features, which is comfortable for experimental data analysis, but

allows to describe the results based on chiral expansion and Roy equations only on the real s axis.

DOI: 10.1103/PhysRevD.85.094016 PACS numbers: 12.39.�x, 13.40.Hq, 13.66.Bc

I. INTRODUCTION

Study of light scalar resonances is one of the central
problems of nonperturbative QCD; it is important for
understanding the chiral symmetry realization way result-
ing from the confinement physics.

In 2006, we described the high-statistics KLOE data on
the � ! �0�0� decay [1] in the frame of the kaon loop
model � ! KþK� ! ðf0 þ �Þ� ! �0�0� [2–6] simul-
taneously with the data on the�� scattering and the�� !
K �K reaction [7]. The chiral shielding of the �ð600Þ meson
[8,9] and the �� f0 mixing were taken into account; the
analysis testified to the four-quark nature of the�ð600Þ and
f0ð980Þ.

At the same time in Ref. [10] the �� scattering ampli-
tude in the s complex plane was calculated with the help of
chiral expansion and Roy equations. The � pole was
obtained at

M� ¼ 441þ16
�8 � i272þ9

�12:5 MeV: (1)

To compare the results of our approach and Ref. [10], we
built up the S-wave �� scattering amplitude T0

0 (with

I ¼ 0) with correct analytical properties in the complex s
plane [11]. In our model the S matrix of the �� scattering
is the product of the ‘‘resonance’’ and ‘‘elastic back-
ground’’ parts:

S00 ¼ S0back0 S0res0 ; (2)

and we introduced the special S0back0 parametrization to

obtain the correct T0
0 analytical properties (S

0res
0 had correct

analytical properties in Refs. [7] already). In Ref. [11] we
successfully described the experimental data and the
Ref. [10] results on the real s axis using the constructed

�� amplitude, while the� pole was located rather far from
the Ref. [10] result.
In this paper we present the enlarged data analysis. We

dwell on the minimization of the �� f0 mixing that leads
to the four-quark scenario for light scalars: the �ð600Þ
coupling with the K �K channel is suppressed relatively to
the coupling with the �� channel, and the f0ð980Þ cou-
pling with the �� channel is suppressed relatively to the
coupling with the K �K channel [12]. Inelasticity is also
crucial for the analysis. Here we describe the peculiar
behavior of the data up to 1.2 GeV.
InRefs. [7,11]weused the factorPK, caused by the elastic

K �K background phase, that allows to correct the kaon loop
model, suggested in Ref. [2], under the K �K threshold. Now
we investigate how small this correction may be.
The set of new fits (Figs. 1–7 and tables (Tables I, II, and

III) is presented in Sec. II. The residues of the �� scatter-
ing amplitude and its resonance part in resonance poles are
presented for the first time. The modification of the K �K
background phase is also described in this section.
As the analytical background S0back0 is a rather compli-

cated function, in Sec. III we suggest much more simple
background parameterization, practically preserving the
resonance features, which is comfortable for experimental
data analysis, though allows to describe the results of
Ref. [10] only on the real s axis.
The conclusion is in Sec. IV.
Note that the S0res0 parameterization and the ‘‘compli-

cated’’ background parameterization are the same as in
Ref. [11], Secs. II and III correspondingly. All the formulas
and constants, that are not defined here, may be found in
Ref. [11]. Namely, the masses mR and coupling constants
gRab of resonances are defined in Eqs. (8) and (13) of
Ref. [11], and at the end of page 2 together with the
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coefficients xf0 and x�. The constant Cf0� is defined there

after Eq. (7). The additional phase � is found in Eq. (3), and
the a00 is the �� scattering length. Parameters of the

complicated background ai, �i, ci, mi, gi are defined in
Eqs. (36), (39), and (40) of Ref. [11], and the ones�, k2,�,
�i, miA, giA are defined in Eqs. (40), (43), and (46).

II. DATA ANALYSIS, BACKGROUND WITH THE
CORRECTANALYTICAL PROPERTIES

(COMPLICATED BACKGROUND)

The measure of the �� f0 mixing intensity is the
deviation from the ideal picture, when the �� scattering
phase �0

0 is equal to 90
� at the �ð600Þ mass m�, and equal

to 270� at the f0ð980Þ mass mf0 . We require these phases,

�0
0ðm�Þ and �0

0ðmf0Þ, to be close to their ‘‘ideal’’ values.

We remind that the background phase of the K �K scat-

tering, �K �K
B , changes the modulus of the K �K ! �0�0

amplitude under the K �K threshold, at m< 2mK, in the
amplitude� ! K �K ! �0�0� [13]. In Ref. [11] we define

PK ¼
�
ei�

K �K
B m � 2mK;

analytical continuation ofei�
K �K
B m < 2mK:

(3)

In the present paper we investigate the influence of PK

on the � ! ðf0 þ �Þ� amplitude in the f0ð980Þ region,
m> 850 MeV. We upgrade the parametrization of the

�K �KðmÞ, used in Refs. [7,11]. Now the �K �K
B is parametrized

in the following way:

e2i�
K �K
B ¼ 1þ i2pKfKðm2Þ

1� i2pKfKðm2Þ ; pK ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 4m2

Kþ

q
;

fKðm2Þ ¼ �
�
1� wþ w

ðm�m2Þ2=�2
2

1þ ðm�m2Þ2=�2
2

�

�
arctanðm2�m2

1

�2
1

Þ ��0

�K

: (4)

Note that the PK also provides pole absence in the analyti-
cal continuation of the � ! ðf0 þ �Þ� amplitude under
the �� threshold; see Ref. [7].
The experimental data on the inelasticity �0

0, see Fig. 4,

favor the low value near 1.01 GeV and sharp growth up to
1.2 GeV. Below it is shown that it is possible to reach such
a behavior.
Our results for Fits 1–5 are shown in Tables I, II, and III

and Figs. 1–7. Note that the background parameters are

TABLE I. Properties of the resonances and main characteristics are shown. The resonance masses mR and widths �RðmRÞ (which
may be called Breit-Wigner masses and widths) are parameters in the resonance propagators; see Ref. [11]. They have clear physical
meaning in contrast to the resonance poles in the complex plane.

Fit 1 2 3 4 5

mf0, MeV 978.30 974.78 981.49 979.85 980.40

gf0KþK� , GeV 3.54 4.34 5.01 5.01 7.33

g2
f0K

þK�=4�, GeV2 1 1.5 2 2 4.2782

gf0�þ�� , GeV �1:3924 �1:6150 �1:9836 �1:6455 �2:5874

g2
f0�

þ��=4�, GeV2 0.154 0.208 0.313 0.215 0.533

xf0 0.6367 0.6039 1.1701 0 1.1972

�f0 ðmf0 Þ, MeV 56.7 76.6 114.8 79.1 195.5

m�, MeV 479.40 471.89 470.87 472.87 469.94

g��þ�� , GeV 2.6676 2.6614 2.7190 2.7093 2.7362

g2
��þ��=4�, GeV2 0.564 0.569 0.588 0.584 0.596

g�KþK� , GeV 0.553 0.101 0.279 0.274 0.149

g2
�KþK�=4�, GeV2 0.001 0.048 0.006 0.006 0.002

x� 1.1822 0.9187 1.7336 0 1.6291

��ðm�Þ, MeV 362.1 363.2 379.5 376.0 384.7

Cf0� , GeV
2 0.05120 0.04465 0.01307 0.00167 0.03345

�, � �64:69 �58:7 �64:6 �55:4 �44:0
a00, m

�1
� 0.223 0.220 0.224 0.223 0.225

Adler zero in �� ! �� ð93:5 MeVÞ2 ð85:6 MeVÞ2 ð96:8 MeVÞ2 ð94:6 MeVÞ2 ð92:3 MeVÞ2
�0res
0 ðm�Þ, � 91.8 94.1 91.0 90.6 92.3

�0res
0 ðmf0 Þ, � 250.1 250.1 260.1 255.1 258.7

�0
0ð1010 MeVÞ 0.55 0.52 0.51 0.51 0.51

	2
phase (44 points) 53.1 48.9 42.0 40.0 55.1

	2
sp (18 points) 21.2 20.8 21.3 17.0 12.6
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located in the Appendix. Fits 1–5 show that the allowed
range of �ð600Þ and f0ð980Þ parameters is rather wide. For
example, g2

f0K
þK�=4� is 1 GeV2 in Fit 1 and more than

4 GeV2 in Fit 5. This result may be important for coordi-
nation of the g2

f0K
þK�=4� and g2

a0K
þK�=4� [14].

Note that in Fit 4 the �ð600Þ and f0ð980Þ are coupled
only with the �� channel and the K �K channel (xf0 ¼
x� ¼ 0). As seen from Table I and Figs. 1–7, Fit 4 is in
excellent agreement with the data and the [10] results.

As it was found a long time ago, the sharp bend of the
inelasticity near �� threshold is caused by the f0ð980Þ
coupling to the �� channel [15], and this is supported by
our analysis. Rather large couplings of the f0 to the �

0� or
�0�0 are seen only indirectly (virtually) in different quan-
tities, because the f0 is far below their thresholds (1.5 GeV
and 1.9 GeV). In our case gf0��0 and gf0�0�0 contribute to

�� f0 mixing and propagators. In addition, in the well-

known �0 ! ��� decay the tail of f0ð980Þ gives contri-
bution due to gf0��0 . Note that in the q �q model f0 has

rather large coupling to the �0� and �0�0, too.
We introduce 56 parameters, but for restrictions (ex-

pressing 5 parameters through others) and parameters (or
their combinations) that go to the bound of the permitted
range (9 effective links), the effective number of free
parameters is reduced to 42. However, it is significant that
fits describe as the experimental data (65 points), as well as
the �� amplitude from [10] in the range �5m2

� < s<
0:64 GeV2, which is treated along with experimental data.
As in [11] we show resonance poles of the T0

0 on some

unphysical sheets of its Riemannian surface, depending on
sheets of the polarization operators�ab

R ðsÞ. For this choice
of sheets the imaginary parts of pole positions MR would
be connected to the full widths of the resonances
(2 ImMR ¼ �R ¼ P

ab�ðR ! abÞ) in case of metastable

TABLE II. The � (600) poles (in MeV), the residues of T0
0 , Res T

0
0 , and of the resonance part T0 Res

0 , Res T0 Res
0 , (in 0:01 GeV2) in

this pole on different sheets of the complex s plane depending on sheets of polarization operators
Q

ab (s) are shown.

Sheets of
Q

ab Fit I Fit 5Q
��

Q
K �K

Q
��

Q
��0 Q

�0�0 � pole Res T0
0 Res T0 Res

0 � pole Res T0
0 Res T0 Res

0

II I I I I 565� 204i �2þ 14i �22� 11i 566� 201i �1þ 13i �20� 12i
II II I I I 612� 346i 5þ 3i �18þ 14i 569� 267i 3þ 10i �26� 1i
II II II I I 542� 396i �1þ 3i �16� 3i 522� 379i �2þ 3i �14� 6i
II II II II I 577� 522i 0:2þ 1i �15� 1i 612� 626i 0:3þ 0:4i �15� 4i
II II II II II 633� 534i 1þ 1i �23þ 2i 644� 651i 0:5þ 0:3i �19� 4i

Sheets of
Q

ab Fit 3 Fit 4Q
��

Q
K �K

Q
��

Q
��0 Q

�0�0 � pole Res T0
0 Res T0 Res

0 � pole Res T0
0 Res T0 Res

0

II I I I I 572� 206i �2þ 14i �21� 12i 579� 216i �3þ 15i �23� 12i
II II I I I 572� 279i 3þ 10i �26þ 2i 579� 273i 1þ 12i �27� 1i
II II II I I 526� 395i �2þ 2i �12� 5i � � � � � � � � �
II II II II I 623� 651i 0:3þ 0:3i �14� 3i � � � � � � � � �
II II II II II 683� 679i 1þ 0:1i �19� 4i � � � � � � � � �

TABLE III. The f0 (980) poles (in MeV), the residues of T0
0 , Res T

0
0 , and of the resonance part T0 Res

0 , Res T0 Res
0 , (in 0:01 GeV2) in

this pole on different sheets of the complex s plane depending on sheets of polarization operators
Q

ab (s) are shown.

Sheets of
Q

ab Fit 1 Fit 5Q
��

Q
K �K

Q
��

Q
��0 Q

�0�0 f0 pole Res T0
0 Res T0 Res

0 f0 pole Res T0
0 Res T0 Res

0

II I I I I 986� 26i 6� 2i �7þ 2i 986� 21i 5� 1i �6þ 0:1i
II II I I I 913� 302i 10þ 5i �19� 19i 1575� 553i �8� 4i �21� 23i
II II II I I 966� 450i 3� 1i �12� 10i 2101� 1065i 0:1þ 5i �28� 10i
II II II II I 962� 465i 3� 0:3i �12� 12i 2173� 1158i 1þ 5i �25� 11i
II II II II II 954� 586i 1þ 0:4i �3� 14i 2452� 1570i 3þ 3i �22� 10i

Sheets of
Q

ab Fit 3 Fit 4Q
��

Q
K �K

Q
��

Q
��0 Q

�0�0 f0 pole Res T0
0 Res T0 Res

0 f0 pole Res T0
0 Res T0 Res

0

II I I I I 986� 23i 6� 1i �6þ 1i 985� 20i 5� 1i �5þ 1i
II II I I I 1149� 485i 3� 6i �14� 16i 1187� 618i 0:5� 2i �11� 9i
II II II I I 1441� 835i �3þ 0:4i �20� 7i � � � � � � � � �
II II II II I 1469� 885i �2þ 0:4i �16� 9i � � � � � � � � �
II II II II II 1607� 1182i �1þ 1i �11� 8i � � � � � � � � �
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states, decaying to several channels. Note also that we do
not show poles for Fit 2.

One can see that the obtained �ð600Þ pole positions lie
rather far from Eq. (1) as in our previous paper [11].

As it was shown in the SUð2Þ � SUð2Þ linear � model,
Ref. [9], the residue of the � pole in the amplitude of the
�� scattering can not be connected to coupling constant in
the Hermitian (or quasi-Hermitian) Hamiltonian for it has a
large imaginary part. Here we calculate the residues of the
amplitude T0

0 in the�ð600Þ pole (see Table II) and illustrate
this fact in our case. Note that large imaginary part is both
in the residues of the full amplitude T0

0 and its resonance

part T0Res
0 . So, considering the residue of the � pole in T0

0

or T0Res
0 as proportional to the square of its coupling

constant to the �� channel is not a clear guide to under-
standing the � meson nature.
The point is that there is the � field (blurred package),

and the mass and width of the �ð600Þ are defined from the
zero of the real part of the � propagator denominator, and
width is obtained from the imaginary part of this denomi-
nator in this point. This is a reasonable generalization of
the ‘‘Breit-Wigner’’ masses and widths for the wide reso-
nances. It is clear that the phase of the propagator passes
90� at the Breit-Wigner mass. One can see from Table I
that Breit-Wigner masses of � and f0 are stable from Fit 1
to Fit 5.

FIG. 1. The �0�0 spectrum in the � ! �0�0� decay, theoretical curves, and the KLOE data (points) [1] are shown: (a) Fits 1 (solid
line), 5 (short-dashed line); (b) Fits 3 (solid line), 4 (short-dashed line), 6 (dashed line). Note that Fit 2 and Fit 1 curves are very close.

0.4 0.6 0.8 1 1.2
m, GeV

0

50

100

150

200

250

0.4 0.6 0.8 1 1.2
m, GeV

0

50

100

150

200

250

(a) (b)

FIG. 2. The phase �0
0 of the �� scattering (degrees) is shown: (a) Fits 1 (solid line), 5 (short-dashed line); (b) Fits 3 (solid line), 4

(short-dashed line), 6 (dashed line). Note that Fit 2 and Fit 1 curves are very close. The experimental data are from Refs. [16–20].

FIG. 3. The resonance phase of the �� scattering �0res
0 (degrees) is shown: (a) Fits 1 (solid line), 2 (short-dashed line), 5 (dashed

line); (b) Fits 3 (solid line), 4 (short-dashed line), 6 (dashed line).
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One can see from Fig. 6 that for Fits 2–5 with
g2
f0K

þK�=4� � 1:5 GeV2 the maximum of the jPKj2 is

close to 1 (about 1.2); this means that the correction to
the kaon loop model [2] is small. For lower g2

f0K
þK�=4�

the jPKj2 increases as a compensation; see Fit 1 and Fig. 6
(a). This results in a model dependence of the constant
determination. A precise measurement of the inelasticity
�0
0 would resolve this problem.

One can see from Table I that for all Fits 1–5 the
resonance phase �resðmÞ is close to 90� at m� and to
270� at mf0 ; see also Fig. 3.

III. SIMPLE BACKGROUND

The background function, suggested in Ref. [11] to
reach the correct analytical properties of the �� scattering
amplitude and used above, is rather complicated and costly
in computation. In this section we suggest much more
simple background parameterization, practically preserv-
ing the resonance features, which is comfortable for ex-
perimental data analysis and allows to describe the results
[10] on the real s axis.
This background function is an upgrade of the one used

in Ref. [7]:

FIG. 4. The inelasticity �0
0 is shown: (a) Fits 1 (solid line), 2 (short-dashed line), 5 (dashed line); (b) Fits 3 (solid line), 4 (short-

dashed line), 6 (dashed line). The experimental data is from Ref. [16].

FIG. 5. The phase ��K of the �� ! K �K scattering is shown: (a) Fits 1 (solid line), 2 (short-dashed line), 5 (dashed line); (b) Fits 3
(solid line), 4 (short-dashed line), 6 (dashed line). The experimental data are from Ref. [27].

FIG. 6. The jPKðmÞj2 is shown, see Eq. (7): (a) Fits 1 (solid line), 2 (short-dashed line), 5 (dashed line); (b) Fits 3 (solid line), 4
(short-dashed line), 6 (dashed line).
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tanð���
B Þ ¼ � p�

m�

b0 � b1
p2
�

m2
�
þ b2

p4
�

m4
�
þ b3

p6
�

m6
�
þ m

m�

�
c0 þ c1

p2
�

m2
�
þ c2

p4
�

m4
�
þ c3

p6
�

m6
�

�

ð1þ 4p2
�=�

�2
1 Þð1þ 4p2

�=�
�2
2 Þ : (5)

Here, p� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 4m2

�

p
=2. Note that in comparison with

Ref. [7] the function (5) has a left cut.
Let us build the 	2 function. It may be divided into 3

parts:

	2 ¼ 	2
data þ 	2

Roy þ 	2
restr;

where the first one is the usual 	2 function for the experi-
mental data, the second one provides the description of the
results [10], and the third one provides the restrictions.

The 	2
data is constructed with the help of the same data,

as in Ref. [11], except the �0
0 data in the region 2m� <

m< 800 MeV, where we use the [10] results. Note that in
Table I we show 	2

phase, obtained in the full region 2m� <

m< 1200 MeV with the ‘‘old data’’ [16–20].
The 	2

Roy is caused by the real and imaginary parts of the

T0
0ðmÞ contributions in the region �5m2

� < s < 4m2
�, and

the �0
0 contribution from the region 4m2

� < s <
ð800 MeVÞ2. Here for ReT0

0 and �0
0 we used points and

errors, and for ImT0
0 the approximate curve ImT0

0ðmÞ ¼
�0:0327ðm=2m�Þ3, obtained using Fig. 1 in Ref. [10],
providing us with central values, and the error is assumed
to be 25%. Note that for ImT0

0 we used the ‘‘reper’’

points s ¼ �ð30 MeVÞ2, �ð50 MeVÞ2, �ð100 MeVÞ2,
�ð150 MeVÞ2, �ð200 MeVÞ2, �ð250 MeVÞ2,
�ð280MeVÞ2, �ð308:95 MeVÞ2. The last is the end of
the domain of validity of the Roy equations, connected
with the Lehmann-Martin ellipse; see [10].

We impose the following set of restrictions, contributing
to 	2

restr:

(1) 85� < �0res
0 ðm�Þ< 95� and 250� < �0res

0 ðmf0Þ<
290� to provide small �� f0 mixing, a kind of
diagonalization that results in the four-quark model
scenario.

(2) 1:2> jPKj2 > 0:8 for m> 850 MeV. The maxi-
mum is found dynamically (at every calculation of
the 	2 function); the minimum in our situation is at
850 MeV.

(3) �0:1> �>�1:5, trying to be not far from the
result [21].

(4) 0:1<w< 1; 0.1 GeV <m2 < 1:5 GeV; 0.5 GeV
<�1 < 2:2 GeV; 65 MeV<�2 to provide reason-
able form of the jPKj2.

To provide, for example, the condition � >�0:1, we
add to 	2

restr the term

T ¼ Wð��� 0:1þ j�þ 0:1jÞ2; (6)

where W is the big number. So till � >�0:1 the contribu-
tion T is equal to 0, but when �0:1> �, T becomes large
and allows to fulfill the requirement � >�0:1. Our 	2

restr is
the sum of contributions like Eq. (6).
Using the constructed 	2 function, we obtain Fit 6. One

can see that this fit perfectly describes the experimental
data and the results based on Roy equations on the real s
axis; see Table IV and Figs. 1–7. Note that in Table IV the
mf0 and g2

f0K
þK�=4� errors are adduced.

To illustrate the abilities of the background (5), we
perform Fit 7 with the same resonance parameters as for
Fit 3. Fit 7 provides practically the same experimental data
description as Fit 3. The theoretical curves for phase �0

0 are

shown in Fig. 8(a); they are practically the same. It is
obvious that both Fit 3 and Fit 7 provide practically iden-
tical mass spectrum in � ! �0�0� decay also. The in-
elasticity is exactly the same. Additionally, Fit 7 and Fit 3
provide indistinguishable curves for T0

0 at 4m2
� > s > 0;

see Fig. 8(b).

FIG. 7. (a) The phase �0
0 of the �� scattering is shown. The solid lines mark borders of the corridor [10], and points are the

experimental data from Refs. [16–20,28,29]. Fit 3 is shown with the short-dashed line, Fit 6 is shown with dashed line. Fits 1, 2, 4, 5 are
very close to Fit 3 curve; (b) The real and the imaginary parts of the amplitude T0

0 of the �� scattering are shown. The solid lines mark

borders of the real part corridor and the imaginary part for s < 0 [10]. Fit 3 is shown with the short-dashed line, Fit 6 is shown with
dashed line. Fits 1, 2, 4, 5 are very close to Fit 3 curve.
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IV. CONCLUSION

Our investigation shows that the scenario, based on the
four-quark model, completely agrees with the current ex-
perimental data and theoretical requirements. It is shown
that the requirement of the weak �ð600Þ � f0ð980Þmixing
leads to the g�KþK� and gf0�þ�� suppression that is pre-

dicted by the four-quark model; see Table I.
The small ratios ðg�KþK�=g��þ��Þ2 and ðgf0�þ��=

gf0KþK�Þ2 (see Table I) indicate that the q �q component is

less than 10% in �ð600Þ and less than 20% in f0ð980Þ, so
the current analysis support the conclusion of Ref. [11]
about the dominance of �u �dud in �ð600Þ and �s �dds in
f0ð980Þ.

The behavior of the factor PKðmÞ, which corrects the
kaon loop model, is model dependent. We show that for

large enough g2
f0K

þK�=4� constant (for example,

1:5 GeV2) the current data (including the Ref. [10] results)
may be well-described with this factor close to 1 at
850 MeV<m, but for smaller values of this constant
(for example, 1 GeV2) the correction increases. New pre-
cise data on the �� ! K �K reaction and the inelasticity
(�0

0) of the �� scattering would give an ability to under-

stand more about this factor and reduce the region of
possible values of parameters.
Note that the Roy equations are not exact in principle,

also as the equations for distribution functions in statistics,
obtained by truncation of the Bogolyubov chain, or equa-
tions for amplitudes (Green’s functions, vertices), obtained
by truncation of the Schwinger-Dyson connected equa-
tions, are not exact in principle. For example, Sudakov’s
equation for vertex in quantum electrodynamics. The Roy

FIG. 8. The comparison of Fit 3 and Fit 7 (with the same resonance parameters, but the background parameterization (5)): (a) the
phase �0

0; (b) the amplitude T0
0 under the �� threshold. Solid lines are Fit 7, dashed lines are Fit 3, points are the experimental data.

The curves are practically the same.

TABLE IV. Parameters of the Fit 6 [with simple background Eq. (5)].

Fit 6

mf0, MeV 981:80� 1:8 �K, GeV 0.8803

gf0KþK� , GeV 7.3612 �1, MeV 490.24

g2
f0KþK�=4�, GeV2 4:3120� 1:0 �2, MeV 154.08

gf0�þ�� , GeV �2.3865 m1, MeV 754.53

g2
f0�þ��=4�, GeV2 0.453 m2, MeV 422.14

xf0 0.9875 w, MeV 0.999

�f0ðmf0Þ, MeV 166.1 �0 0.787

m�, MeV 572.25 b0 1.41426

g�0�þ�� , GeV 2.91216 b1 0.97324

g2
�0�þ�� , GeV2 0.675 b2 �1:09477

g�KþK� , GeV 0.4583 b3 �0:21134

g2
�KþK�=4�, GeV2 0.017 c0 2.48601

x� 1.01775 c1 1.02050

��ðm�Þ, MeV 387.4 c2 0.45705

Cf0�, GeV2 0.06582 c3 0.12373

�, � �5.8 ��
1 160.84

a00, m
�1
� 0.220 ��

2 522.98

Adler zero in �� ! �� ð89:8 MeVÞ2 �0 res
0 ðm�Þ, 93.1

	0
phase (44 points) 39.4 �0 res

0 ðmfoÞ, 251.4

	2
sp(18 points) 13.9 �0

0 (1010 MeV) 0.45
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equation is one-channel and has a solution with the
two-sheeted Riemannian surface, that is, different from
solution of the exact problem, which should have an
infinity-sheeted Riemannian surface.

The determination of the pole positions and their resi-
dues do not give us practically any information on the light
scalars nature, because they can not be connected to cou-
pling constants in the Hermitian (or quasi-Hermitian)
Hamiltonian (see also Ref. [9]), because of large imaginary
parts. Besides, the residue of the amplitude in the pole is
strongly distorted by the background part of the amplitude;

see Tables II and III, that give an essential contribution
even for relatively narrow f0ð980Þ.
Let us dwell on the results presented in Table III.

Reminding that for a stable particle with the mass m0 there
is the pole in the amplitude

T ¼ �g2=16�

s�m2
0

at s ¼ m2
0, the residue of the amplitude ResT is connected

to the coupling constant (g) of the stable particle with the
�� channel.
One can see that the real part of the T0

0 residue in the

f0ð980Þ pole is positive, so the coupling constant should be
practically pure imaginary, which is physically meaning-
less. Note that the residue of the amplitude resonance part
T0Res
0 is good. That is why the best way for understanding

the nature of the light scalars is the investigation of their
production mechanisms in physical processes.
The simple background parameterization, suggested in

Sec. III, may be used for experimental data analysis and the
description of the Ref. [10] results for real s. It is shown
that the resonance features are practically preserved;
moreover, one can see that for even more simple back-

TABLE V. Parameters of the K �K background phase, �K �K
B , are

shown.

Fit 1 2 3 4 5

�K, GeV 0.975 1.245 1.375 1.450 1.894

�1, MeV 381.56 404.49 387.56 412.43 322.93

�2, MeV 83.113 81.137 86.246 65.000 68.041

m1, MeV 827.48 823.54 801.40 791.48 808.17

m2, MeV 909.17 923.55 911.59 970.52 963.55

w, MeV 0.471 0.618 0.492 0.750 0.750

�0 �0.299 0.021 0.153 0.271 0.622

TABLE VI. Parameters of the first background (P�1) (see Ref. [11]) are shown.

Fit 1 2 3 4 5

a1 �2.767 �1.997 �2.727 �3.152 �2.320

a2 0.00997 0.02824 0.01228 0.00995 0.00987

a3 0 0 0 0 0

a4 2.4774 1.1655 1.9460 3.6119 1.9579

a1, GeV
2 430.875 �3.472 299.566 187.438 230.647

a2, GeV
4 1038.375 802.006 1006.643 924.912 876.525

a3, GeV
6 853.500 810.211 840.573 805.455 805.900

a4, GeV
8 237.251 239.362 232.860 225.823 233.065

a5, GeV
10 25.3514 25.4850 24.8635 24.9756 25.2960

a6, GeV
12 0.248630 0.218526 0.225182 0.240893 0.224103

c1, GeV 504.558 680.672 543.245 499.429 557.733

c2, GeV
3 �2745.58 �2246.19 �2532.80 �2395.72 �2484.57

c3, GeV
5 132.007 176.850 226.617 256.520 191.569

c4, GeV
7 390.262 379.216 399.808 404.615 394.230

c5, GeV
9 50.6689 51.7071 50.4545 49.8151 51.4728

c6, GeV
11 �0.612729 �0.636956 �0.633709 �0.711296 �0.646822

m1, MeV 921.52 766.81 1049.46 1088.06 915.18

g1, MeV 301.06 302.40 302.30 333.34 330.83

m2, MeV 1395.84 937.07 970.74 1104.06 1025.77

g2, MeV 367.05 305.90 310.37 421.12 324.93

m3, MeV 1208.42 1432.57 1098.81 1125.51 1330.56

g3, MeV 335.62 304.46 388.57 378.42 301.39

m4, MeV 1078.40 898.85 1053.21 1162.64 907.71

g4, MeV 395.12 429.54 403.00 388.93 437.65

m5, MeV 1011.58 991.70 1017.19 1051.17 1008.35

g5, MeV 499.99 503.50 507.03 500.41 502.24

m6, MeV 932.07 1240.82 1174.80 1154.23 1264.43

g6, MeV 535.90 616.91 574.55 542.66 629.02
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ground, used in Ref. [7], they changed not so much, though
the Ref. [10] results were not included.

In this investigation we paid more attention to the
inelasticity �0

0, namely, we tried to reproduce the pecu-

liar behavior near the threshold indicated by the experi-
mental data. This behavior was discussed quite widely in
Ref. [15] for the first time and then in later works, for
example, in Ref. [22]. Unfortunately, the current data
have large errors, so the precise measurement of the
inelasticity �0

0 near 1 GeV in �� ! �� would be very

important.
To reduce (if not avoid) an effect of heavier isosinglet

scalars, we restrict ourselves to the analysis of the mass
region m< 1:2 GeV, where, as one may expect, an effect
of heavier scalars would not be essential. As to mixing
light and heavier isosinglet scalars, this question could not
be resolved once and for all at present, in particular,
because their properties are not well-established up to
now. A preliminary consideration (without taking into
account the mixing due to common decay channels) was
carried out in Ref. [23], where, in particular, it was shown

that the mixing could affect the mass difference of the
isospinor and isovector.
The nature of heavy scalars (f0ð1370Þ, a0ð1450Þ) is a

hard question; apparently they are q �q states (see
Refs. [23,24]), but it should be noted that their features
are not well-established, and the authors of Ref. [25] even
question the very existence of such a state as f0ð1370Þ.
Note that the preliminary consideration of this question
may be found, for example, in Ref. [26].
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APPENDIX

Tables V, VI, and VII show the background parameters.
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