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We study the radiative B ! K�ð0Þ� decays, which are important to investigate CP violation, and are

also relevant to assess the role of the exclusive modes induced by the b ! s� transition to saturate the

inclusive B ! Xs� decay rate. Moreover, these channels do not display the same hierarchy as B ! K�ð0Þ

modes, for which the decay into �0 is enhanced with respect to one into �. The three-body radiative

decays reverse the role: we find that this experimentally observed behavior (although affected by a large

uncertainty in the case of the �0) is reproduced in the theoretical analysis. We compute a B� ! K form

factor, needed for this study, using light cone QCD sum rules, and discuss a relation expected to hold in

the large energy limit for the light meson. Finally, we examine B ! K�� in two extensions of the

standard model with universal extra dimensions, to investigate the sensitivity of this rare mode to such a

kind of new physics effects.
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I. INTRODUCTION

The decay processes driven by the flavor changing neu-
tral current (FCNC) b ! s transitions provide efficient
tests of the standard model (SM) and can display devia-
tions signaling new physics (NP) phenomena. Among such
processes, the b ! s induced decays of B mesons are the
best studied and experimentally investigated; several of
them have been observed through dedicated experimental
analyses which have produced measurements of a variety
of observables useful, on the basis of information on both
inclusive and exclusive channels, to confirm the SM and
constrain NP scenarios [1].

The radiative b ! s� transition, on which we focus
here, is particularly relevant. Branching fractions have
been measured for the inclusive B ! Xs� mode, as well
as for several exclusive channels, namely B ! K�ð892Þ�,
B ! K1ð1270Þ�, B ! K�

2ð1430Þ�, B ! K��, B !
K�0�, B ! K��, B ! K�ð892Þ��, and B ! K���,
both for neutral and charged B mesons [2]. The observed
exclusive modes do not saturate the inclusive rate, there-
fore the scrutiny of the exclusive transitions is mandatory
in view of understanding the hadronization process for this
class of channels. This is one of the motivations of the

present analysis of the three-body B ! K�ð0Þ� modes.
Moreover, there are other features making the multibody
decays induced by b ! s� interesting to be studied. First,
the time-dependent CP asymmetry in the neutral modes

B0 ! K0
S;L�

ð0Þ� is sensitive to NP, which may also mani-

fest itself in producing right-handed photons; indeed, in the
SM the photons produced in the b ! s� transition are
mainly left-handed, the amplitude for emitting right-
handed photons being suppressed by the quark mass ratio
ms=mb [3]. Furthermore, the branching fractions of B !
K�� and B ! K�0� do not obey the same hierarchy as in
the two-body decays B ! K� and B ! K�0, the last

process being enhanced with respect to the former one.
The enhancement of two-body hadronic transitions with �0
in the final state is common to several B andD decays, and

is not yet fully understood. In the case of Ds ! �ð0Þ�,
�ð0Þ�, the gluon content of the �0 has been indicated as
playing an important role [4]. For B ! K� and B ! K�0,
a possible explanation of the hierarchy between the two
decay rates has been found in the destructive interference
among the penguins contributions [5], and, modulo large
uncertainties, this has been numerically reproduced in the
framework of QCD factorization [6]. On the contrary, the
radiative modes B ! K�� and B ! K�0� show the op-
posite trend, as one can infer from the results provided by
Belle [7,8] and BABAR collaborations [9,10], and col-
lected in Table I: such an outcome deserves investigations.
From the experimental side, the BABAR collaboration has
also measured the mixing induced (S) and direct (C) CP
asymmetries in the B0 ! K0

S�� transition. At present they

are both compatible with zero: S ¼ �0:18�0:49
0:46 �0:12

and C ¼ �0:32�0:40
0:39 �0:07 [10].

The processes B ! K�ð0Þ� have been studied in
Ref. [11] considering exclusively the regions of the phase
space where one of the two pseudoscalar mesons in the
final state is soft, while the photon is hard. Describing the
amplitudes as taking contributions only from virtual inter-
mediate B� and B�

s , the heavy quark effective theory to-
gether with the light meson chiral perturbation theory
(�HQET) has been employed to describe the decays in
corners of the Dalitz plot; moreover, the�� �0 mixing has
been described in the octet-singlet mixing scheme. As a
result, a fraction of about 10% of the measured B ! K��
branching ratio has been obtained.
In the present study we improve the analysis in many

respects. We take into account several possible underlying
transitions, depicted in Fig. 1, observing that, in addition
to b ! s�, the transition b ! s �qq can contribute to the
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processes. In particular, the explicit calculation shows that
the diagram (1) with intermediate virtual K� is important,
together with diagrams (3) and (4), while the one with
intermediate K�

2ð1430Þ and the other diagrams in Fig. 1
are smaller. Furthermore, we do not confine ourselves to
portions of the phase space, but we extend the study to the
full three-body Dalitz plot. This requires new information,
namely, the B� ! K and B�

s ! � form factors, which we
compute by light cone QCD sum rules for a physical value
of the beauty quark mass and for a wide range of four-
momentum transferred. Finally, we consider the �� �0
system in the flavor basis, in which the mixing is described
by a single mixing angle experimentally determined with
high accuracy by the KLOE collaboration from radiative

� ! �ð0Þ� decay data. In this way, results for the SM can
be obtained, and the effects of NP extensions, such as
scenarios with universal extra dimensions (UED), can be
examined.

All these topics are described in the forthcoming
sections. In particular, in Sec. II we set up the stage of
our calculation, considering the diagrams taken into ac-

count in the theoretical description of B ! K�ð0Þ�. We
provide the expressions of the various amplitudes and
identify the quantities necessary for their evaluation.
Section III is devoted to the light cone QCD sum rule

determination of the form factor TB�!K
1 , which enters in

the analysis of B ! K�ð0Þ� transitions; we collect in the
Appendix the definitions of the needed kaon light cone

distribution amplitudes (LCDA). The computation of the
decay rates is carried out in Sec. IV in the SM; the
sensitivity to NP effects of one and two universal extra
dimension scenarios is also investigated. Section V con-
tains our conclusions.

II. THE DECAYS B ! K�ð0Þ�

We consider the transitions �B0ðpÞ ! �K0ðpKÞ�ð0Þ�
ðp�ð0Þ Þ�ðq; �Þ, where p, pK, and p�ð0Þ are the four momenta

of B, K, and �ð0Þ, respectively, while q and � are the photon
four momentum and polarization vector. Although we refer
to the decays of the neutral �B0, in the following we omit the
charge adopting a simpler notation; at the end of our study
we shall comment on the charged B meson decays. The
three-body transitions can be described as proceeding
through intermediate states: The ones that we take into
account are displayed in Fig. 1. The first two diagrams (1)
and (2) take contribution from intermediate K�ð892Þ and
K�

2ð1430Þ, respectively, which have width: �ðK�0ð892ÞÞ ¼
48:7� 0:8 MeV and �ðK�

2ð1430ÞÞ ¼ 98:5� 2:9 MeV [2].
Higher kaon excitations are expected to give a smaller
contribution, due to their larger widths and to the suppres-
sion provided by their propagators in the corresponding
diagrams. The two diagrams (3) and (4) have B� or B�

s as
intermediate states, which are very narrow so that we
neglect their widths. The diagram (5) takes contribution

from the intermediate �ð1020Þ decaying to �ð0Þ� and hav-
ing �ð�ð1020ÞÞ ¼ 4:26� 0:04 MeV; B� is the intermedi-
ate state also in the last diagram, which involves the
radiative B�B� vertex.
To calculate the amplitudes corresponding to the dia-

grams in Fig. 1 we need the effective weak Hamiltonian
describing the b ! s� and b ! sgluon transition. In the
SM this reads [12]:

Heff ¼�GFffiffiffi
2

p VtbV
�
ts

�X6
i¼1

CiOiþC7�O7�þC8GO8G

�
: (1)

FIG. 1. Some diagrams contributing to the decays �B0 ! �K0�ð0Þ�. The dots indicate em and strong couplings; the squares indicate
weak vertices.

TABLE I. Experimental results for the B ! K�ð0Þ� branching
fractions (� 106) from Belle and BABAR. The upper limits are
at 90% C.L.

Mode Belle collaboration BABAR collaboration

Bþ ! Kþ�� 8:4� 1:5�1:2
0:9 [7] 7:7� 1:0� 0:4 [10]

B0 ! K0�� 8:7�3:1
2:7 �1:9

2:6 [7] 7:1�2:1
2:0 �0:4 [10]

Bþ ! Kþ�0� 3:6� 1:2� 0:4 [8] 1:9�1:5
1:2 �0:1 (< 4:2) [9]

B0 ! K0�0� <6:4 [8] 1:1�2:8
2:0 �0:1 (<6:6) [9]
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GF is the Fermi constant and Vij are elements of

the Cabibbo-Kobayashi-Maskawa mixing matrix; we ne-
glect terms proportional to VubV

�
us since the ratio

jðVubV
�
usÞ=ðVtbV

�
tsÞj is of Oð10�2Þ. Ci are Wilson coeffi-

cients, while Oi are local operators written in terms of
quark and gluon fields:

O1 ¼ ð�sL��	bL�Þð �cL
�	cL
Þ;
O2 ¼ ð�sL��	bL
Þð �cL
�	cL�Þ;
O3 ¼ ð�sL��	bL�Þ½ð �uL
�	uL
Þ þ . . .þ ð �bL
�	bL
Þ�;
O4 ¼ ð�sL��	bL
Þ½ð �uL
�	uL�Þ þ . . .þ ð �bL
�	bL�Þ�;
O5 ¼ ð�sL��	bL�Þ½ð �uR
�	uR
Þ þ . . .þ ð �bR
�	bR
Þ�;
O6 ¼ ð�sL��	bL
Þ½ð �uR
�	uR�Þ þ . . .þ ð �bR
�	bR�Þ�;
O7� ¼ e

16�2
½mbð �sL��	�bR�Þ þmsð�sR��	�bL�Þ�F	�;

O8G ¼ gs
16�2

mb

�
�sL��

	�

�
a

2

�
�


bR


�
Ga

	�: (2)

�, 
 are color indices, bR;L ¼ ½ð1� �5Þ=2�b, and �	� ¼
ði=2Þ½�	; ���; e and gs are the electromagnetic and the
strong coupling constant, respectively, mb and ms are the
beauty and the strange quark masses, while F	� inO7� and

Ga
	� in O8� denote the electromagnetic and the gluonic

field strength tensors. a are the Gell-Mann matrices.
The Wilson coefficients appearing in (1) have been

computed at next-to-next-to-leading order in the standard
model [13]. The most relevant contribution to b ! s�
comes from the operatorO7�, which is a magnetic penguin

specific of such a transition and originates from the mass
insertion on the external b-quark line in the QED penguin.
The term proportional toms contributes much less than the
one proportional to mb, and this is the reason for which the
emission of left-handed photons dominates over that of
right-handed ones in the SM. Since the coefficient C7�

depends on the regularization scheme, it is convenient to
consider at leading order a combination that is regulariza-
tion scheme independent [14]:

Cð0Þeff
7� ð	bÞ¼�ð16=23ÞCð0Þ

7�ð	WÞþ 8
3ð�ð14=23Þ��ð16=23ÞÞ

�Cð0Þ
8Gð	WÞþCð0Þ

2 ð	WÞ
X8
i¼1

hi�
ai ; (3)

where � ¼ ½�sð	WÞ�=½�sð	bÞ� and Cð0Þ
2 ð	WÞ ¼ 1 (the

superscript (0) stays for leading log approximation); fur-
thermore,

a1 ¼ 14

23
; a2 ¼ 16

23
; a3 ¼ 6

23
; a4 ¼ � 12

23
;

a5 ¼ 0:4086; a6 ¼ �0:4230; a7 ¼ �0:8994; a8 ¼ 0:1456;

h1 ¼ 2:2996; h2 ¼ �1:0880; h3 ¼ � 3

7
; h4 ¼ � 1

14
;

h5 ¼ �0:6494; h6 ¼ �0:0380; h7 ¼ �0:0185; h8 ¼ �0:0057:

(4)

The effective weak vertex O7� contributes to the diagrams
(1–4) in Fig. 1 through hadronic matrix elements that we
define below. However, before doing that, we turn to the
�� �0 system.

The �� �0 mixing is usually described in two different
schemes, adopting either the singlet-octet or the quark
flavor (QF) basis, and in each scheme two mixing angles
are involved [15]. Here we adopt the quark flavor basis
defining

j�qi ¼ 1ffiffiffi
2

p ðj �uui þ j �ddiÞ;

j�si ¼ j�ssi;
(5)

so that the �-�0 system can be described in terms of the
mixing angles ’q and ’s:

j�i ¼ cos’qj�qi � sin’sj�si;
j�0i ¼ sin’qj�qi þ cos’sj�si:

(6)

The difference between ’q and ’s is due to OZI-violating

effects and is experimentally found to be small
(’q � ’s < 5�), so that it has been proposed that the

approximation of describing the �� �0 mixing in the QF
basis and a single mixing angle is suitable [15]. The
simplification ’q ’ ’s ’ ’ is supported by a QCD sum

rule analysis of the � ! �� and � ! �0� decays [16]. A
precise determination of the �� �0 mixing angle has been
obtained by the KLOE collaboration measuring the ratio
½�ð�!�0�Þ�=½�ð�!��Þ� in the flavor basis with a
single mixing angle, with the result: ’ ¼ ð41:5� 0:3stat �
0:7syst � 0:6thÞ� [17]. This analysis has been improved

performing a global fit of the transitions V ! P� and P !
V� (V ¼ �, !, �, and P ¼ �0, �, �0), allowing a gluo-
nium content in the �0 and including the measurement of
the ratio ½�ð�0 ! ��Þ�=½�ð�0 ! ��Þ� [18]. The outcome
is that, even though the gluonium content of the �0 is
significant, the result for the �� �0 mixing angle is only
negligibly affected. Therefore, we set’ to the value quoted
above.
Let us now consider in turn the various diagrams in

Fig. 1.
(i) Diagrams 1 and 2.—The corresponding amplitudes

read:
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A1¼AðB!K��Þ i

s�m2
K� þ imK��K�

AðK�!K�ð0ÞÞ;

(7)

A2¼AðB!K�
2�Þ

i

s�m2
K�

2
þ imK�

2
�K�

2

AðK�
2 !K�ð0ÞÞ;

(8)

with

AðB ! K�
ð2Þ�Þ

¼ C��	½ðmb þmsÞhK�
ð2ÞðpK; ~�Þj�s�	�q

�bjBðpÞi
þ ðmb �msÞhK�

ð2ÞðpK; ~�Þj �s�	�q
��5bjBðpÞi�;

to be computed for an on-shell (q2 ¼ 0) photon,

defining s ¼ ðp� qÞ2 ¼ M2
K�ð0Þ . The factor C isC ¼

4ðGF=
ffiffiffi
2

p ÞVtbV
�
tsC

ðeffÞ
7 ½e=ð16�2Þ�. The hadronic ma-

trix elements of weak Hamiltonian operators are
parametrized in terms of form factors:

hK�
ð2ÞðpK; ~�Þj�s�	�q

�bjBðpÞi

¼ i�	��
~�
��p�p


K2T
B!K�

ð2Þ
1 ðq2Þ; (9)

hK�
ð2ÞðpK; ~�Þj�s�	�q

��5bjBðpÞi
¼ ½~��	ðM2

B � sÞ � ð~�� � qÞðpþ pKÞ	�T
B!K�

ð2Þ
2 ðq2Þ

þ ð~�� � qÞ
�
q	 � q2

M2
B � s

ðpþ pKÞ	
�
T
B!K�

ð2Þ
3 ðq2Þ;

(10)

with ~� denoting the polarization vector of the K�
ð2Þ

mesons; in the case of K�
2ð1430Þ, which is a spin 2

particle, the polarization is described by a two in-
dices symmetric and traceless tensor, therefore in (9)
and (10) it is understood that ~�� ¼ ~��


p


MB
. The

condition holds: T
B!K�

ð2Þ
1 ð0Þ ¼ T

B!K�
ð2Þ

2 ð0Þ. The vari-
able s in the definition of the hadronic matrix
elements takes into account that the K�

ð2Þ mesons

are off-shell, and is needed to ensure gauge invariant
amplitudes.
In the same diagrams strong vertices also appear,
which are defined as follows:

AðK� ! K�ð0ÞÞ ¼ gK�K�ð0Þ ~� � p�ð0Þ (11)

AðK�
2 ! K�ð0ÞÞ ¼ gK�

2
K�ð0Þ ~��
p�ð0Þ�p�ð0Þ
: (12)

Within the flavor scheme for the �� �0 mixing the

relations gK�K� ¼ ðcos’þ ffiffiffi
2

p
sin’ÞgK�þKþ�0 and

gK�K�0 ¼ ðsin’� ffiffiffi
2

p
cos’ÞgK�þKþ�0 can be worked

out. Assuming the width of K�þ saturated by the two
modes K�þ ! Kþ�0, K0�þ, and using the rela-

tion gK�þK0�þ ¼ ffiffiffi
2

p
gK�þKþ�0 , from �ðK�þÞ ¼

50:8� 0:9 MeV we obtain gK�þKþ�0 ¼ 6:5� 0:06.
The strong coupling gK�

2
K� can be estimated,

although with a large uncertainty, using the measure-
ment BðK�

2 ! K�Þ ¼ ð1:5�3:4
1:0Þ � 10�3 [2] to-

gether with �ðK�
2Þ, obtaining: gK�

2
K� ¼ 1:43�

1:60 GeV�1. On the other hand, no information is
available for gK�

2
K�0 ; however, since, as we shall see,

the contribution of this diagram is small in the case
of �, it is reasonable to neglect it also in the case of
the �0 in the final state.

(ii) Diagrams 3 and 4.—The two amplitudes read:

A3 ¼ AðB ! B��ð0ÞÞ i

t�m2
B�
AðB� ! K�Þ; (13)

A4 ¼ AðB ! B�
sKÞ i

u�m2
B�
s

AðB�
s ! �ð0Þ�Þ; (14)

with

AðB�!K�Þ
¼C���½ðmbþmsÞhKðpKÞj�s�	�q

�bjB�ðp0;~�Þi
þðmb�msÞhKðpKÞj �s�	�q

��5bjB�ðp0;~�Þi�;
AðB�

s !�ð0Þ�Þ
¼C���½ðmbþmsÞh�ð0Þðp�ð0Þ Þj�s�	�q

�bjB�
sðp0;~�Þi

þðmb�msÞh�ð0Þðp�ð0Þ Þj �s�	�q
��5bjB�

sðp0;~�Þi�;

and

hKðpKÞj �s�	�q
	bjB�ðp0; ~�Þi

¼ i����
~�
�p0�p


K2T
B�!K
1 ðq2Þ; (15)

hKðpKÞj�s�	�q
	�5bjB�ðp0; ~�Þi

¼ ½~��ðt�m2
KÞ � ð~� � qÞðp0 þ pKÞ��TB�!K

2 ðq2Þ

þ ð~� � qÞ
�
q� � q2

t�m2
K

ðp0 þ pKÞ�
�
TB�!K
3 ðq2Þ;

(16)

h�ð0Þðp�ð0Þ Þj�s�	�q
	bjB�

sðp0; ~�Þi
¼ i����
~�

�p0�p


�ð0Þ2T
B�
s!�ð0Þ

1 ðq2Þ; (17)
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h�ð0Þðp�ð0Þ Þj �s�	�q
	�5bjB�

sðp0;~�Þi
¼½~��ðu�m2

�ð0Þ Þ�ð~��qÞðp0þp�ð0Þ Þ��TB�
s!�ð0Þ

2 ðq2Þ

þð~��qÞ
�
q�� q2

u�m2
�ð0Þ

ðp0þp�ð0Þ Þ�
�
T
B�
s!�ð0Þ

3 ðq2Þ:

(18)

(p0, ~�) denote the four momentum and the polariza-

tion vector of the B�
ðsÞ; moreover TB�!K

1 ð0Þ ¼
TB�!K
2 ð0Þ and the same for �ð0Þ. The variable

t ¼ ðqþ pKÞ2 takes into account the off-shellness
of the B� in diagram (3), while the variable u ¼
ðp�ð0Þ þ qÞ2 accounts for the off-shellness of the B�

s

in diagram (4); obviously, sþ tþ u ¼ M2
Bþ

m2
K þm2

�ð0Þ .

As for the strong vertices appearing in the two am-
plitudes, we define

AðB ! B��ð0ÞÞ ¼ gB�B�ð0Þ ~�� � p�ð0Þ ; (19)

AðB ! B�
sKÞ ¼ gB�

sBK
~�� � pK: (20)

The two couplings gB�B�ð0Þ and gB�
sBK can be ob-

tained, invoking SUð3ÞF symmetry, from the analo-
gous quantity gB�B�: gB�B� ¼ cos’gB�B�q

¼
cos’gB�B�, gB�B�0 ¼ sin’gB�B�q

¼ sin’gB�B�,

and gB�
sBK ¼ gB�B�. As for gB�B�, it can be related

to a low-energy parameter g that describes the cou-
pling of heavy mesons belonging to the doublet of
heavy-light quark states with spin-parity JP ¼
ð0�; 1�Þ to light pseudoscalar states in the frame-
work of the �HQET [19]: gB�B� ¼ ½ð2MBÞ=f��g.
There are several theoretical determinations of g
spanning the range ½0:2; 0:5� [20]. However, g can
be extracted from the measured decay width of
D�þ ! D0�þ [21], obtaining g ¼ 0:59� 0:01�
0:07 [22]. We use this value in our analysis.

(iii) Diagram 5.—The contribution of the intermediate
�ð1020Þ is represented by the amplitude

A5 ¼ AðB ! K�Þ i

u�m2
� þ im���

Að� ! �ð0Þ�Þ:

(21)

Adopting factorization, the first amplitude in (21)
can be written as

AðB ! K�Þ
¼ GFffiffiffi

2
p VtbV

�
tsawhKðpKÞj�s�	ð1� �5ÞbjBðpÞi

� h�ðp�; ~�Þj �s�	sj0i; (22)

where aw is an effective Wilson coefficient that we
set to the value aw ¼ 0:064� 0:009 from the

experimental branching fraction Bð �B0 ! �K0�Þ ¼
ð8:6�1:3

1:1Þ � 10�6 [2]. Furthermore, we use the pa-

rametrizations

hKðpKÞj�s�	ð1� �5ÞbjBðpÞi
¼ fB!Kþ ðq2Þðpþ pKÞ	 þ fB!K� ðq2Þðp� pKÞ	

� h�ðp�~�Þj�s�	sj0i ¼ f�m�~�
�
	: (23)

When these two definitions are inserted in (22) only
the form factor fB!Kþ contributes, and we adopt for
it the determination in Ref. [23]. The value f� ¼
ð0:232� 0:002Þ GeV comes from the experimental
datum Bð� ! eþe�Þ ¼ ð2:954� 0:030Þ � 10�4.

Following Ref. [16], the amplitudes Að� ! �ð0Þ�Þ
can be written as

Að� ! �ð0Þ�Þ
¼ � e

3
F�!�ð0Þ�ðq2Þ���
����ðp�Þ�ðp�Þ
~��:

(24)

The form factors F�!�ð0Þ�ðq2Þ were determined
using QCD sum rules, providing their values at
q2 ¼ 0 (multiplied by the strange quark charge
in units of e): jg���j ¼ ð1=3ÞF�!��ð0Þ ¼ ð0:66�
0:06Þ GeV�1 and jg��0�j ¼ ð1=3ÞF�!�0�ð0Þ ¼
ð1:0� 0:2Þ GeV�1 [16], results used in our
analysis.

(iv) Diagram 6.—It is possible to show that the diagram
(6) provides a tiny contribution with respect to the
others. Let us discuss this in the case of the �. The
amplitude can be written in terms of AðB� ! B�Þ
and AðB� ! K�Þ. In order to understand how
large this contribution is, we can invoke naive

factorization, writing AðB�!K�Þ¼ðGF=
ffiffiffi
2

p Þ�
V�
ubVusa

eff
2 hKj�s�	ð1��5ÞjB�ih�j �u�	ð1��5Þuj0i,

with aeff2 ’ �0:286 an effective Wilson coefficient
for color suppressed decays. The �-current vacuum
matrix element involves (in the flavor basis for the
�� �0 mixing) the constant fq� ¼ fq cos� with

fq ’ f�: h�j �u�	ð1� �5Þuj0i ¼ ði= ffiffiffi
2

p Þfq�ðp�Þ	.
On the other hand, the matrix element hKj�s�	�
ð1� �5ÞjB�i can be decomposed in terms of sev-
eral form factors; however, when contracted with
ðp�Þ	, only one of such form factors contributes,

usually denoted as A0ðm2
�Þ, which in the large

energy limit of the final light meson coincides

with TB�!K
1 computed in the next section. The other

ingredient is the radiative amplitude AðB� ! B�Þ,
which can be written as AðB�ðp0;~�Þ!
BðpÞ�ðq;�ÞÞ¼e½ðeb=�bÞþðeq=�qÞ���
�����~�
�
p�p0�, with eb (eq) the b (q ¼ d) quark charge in

units of e. A determination of the mass parameters
�b and �q can be found in [24]: �b ¼ 4:93 GeV
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(close to the b quark mass) and�q ¼ 0:59 GeV. As

a result, the contribution of the diagram (6) to the
branching fraction is Oð10�13Þ. Therefore, in the
following we neglect this amplitude.
As it emerges from the above discussion, important
quantities are the form factors appearing in the
diagrams (1–4). In the next section we compute

TB�!K
1 ðq2Þ by light cone QCD sum rules [25].

SUð3ÞF symmetry and the QF �� �0 mixing

scheme allow also to fix: T
B�
s!�

1 ð0Þ ¼
� sin’TB�!K

1 ð0Þ and TB�
s!�0

1 ð0Þ ¼ cos’TB�!K
1 ð0Þ.

As for TB!K�
1 , several determinations can be found

in the literature; we use the light cone QCD sum

rule result TB!K�
1 ð0Þ ¼ 0:333� 0:028 [27], to be

consistent with the determination of TB�!K
1 . This

value is compatible with the one obtained by three-
point QCD sum rules based on the short-distance

expansion [28]. Finally, for T
B!K�

2

1 we use

T
B!K�

2

1 ð0Þ ¼ 0:17� 0:03� 0:04 [29].
There is a remark concerning the relative strong
phases among the various amplitudes. While the
sign between the amplitudes (3) and (4) can be fixed
invoking � HQET and the flavor symmetry, the
relative phase between, e.g., (1) and (3) do not
follow from theoretical arguments. Therefore, we
consider it as a parameter to be determined empiri-
cally from the experimental data. The phases ap-
pearing in the other amplitudes do not play a role in
the branching ratio due to the small size of such
diagrams.

III. FORM FACTOR TB�!K
1 ðq2Þ BY

LIGHT CONE QCD SUM RULES

To compute the form factor TB�!K
1 ðq2Þ by light cone

QCD sum rules (LCSR) we consider the two-point corre-
lation function with the external kaon state

�	�ðp0; qÞ ¼ i
Z

d4xeiq�xhKðp0ÞjTfJ	ðxÞ; V�ð0Þgj0i;
(25)

where J	 ¼ �s��	q
�b is the quark current appearing in the

matrix element (15). V� ¼ �b��q is the vector current with
the quantum numbers of the B� meson (q ¼ u, d), and its
matrix element between the vacuum and the B� state is
parametrized in terms of the decay constant fB� ,

hB�ðp0 þ q; ~�Þj �b��qj0i ¼ fB�mB� ~���: (26)

The LCSR method consists in expressing the correlation
function Eq. (25) both in QCD and in terms of a hadronic
representation. �	� can be decomposed in independent

Lorentz structures, one of which can be used to compute

TB�!K
1 :

�	�ðp0; qÞ ¼ i�	���q
�p0��ððp0 þ qÞ2; q2Þ

þ other structures: (27)

In terms of hadronic states, the correlation function in (25)
can be written as

�HAD
	� ðp0;qÞ¼hKðp0ÞjJ	jB�ðp0 þq;~�ÞihB�ðp0 þq;~�ÞjV�j0i

m2
B� �ðp0 þqÞ2

þX
h

hKðp0ÞjJ	jhðp0 þqÞihhðp0 þqÞjV�j0i
m2

h�ðp0 þqÞ2

and consists in the contribution of the B� meson and of the
higher resonances and of the continuum of states h. The
first term in (28) contributes to the invariant function
�ððp0 þ qÞ2; q2Þ, since

hKðp0ÞjJ	jB�ðp0 þ q; ~�ÞihB�ðp0 þ q; ~�ÞjV�j0i
m2

B� � ðp0 þ qÞ2

¼ i�	���q
�p0� 2T

B�!K
1 ðq2ÞfB�mB�

m2
B� � ðp0 þ qÞ2 : (28)

In a one� resonanceþ continuum formulation, the had-
ronic representation of the function �ððp0 þ qÞ2; q2Þ can
be written as

�HADððp0 þ qÞ2; q2Þ ¼ 2TB�!K
1 ðq2ÞfB�mB�

m2
B� � ðp0 þ qÞ2

þ
Z 1

s0

ds
�hðs; q2Þ

s� ðp0 þ qÞ2 ; (29)

where higher resonances and the continuum of states are
described in terms of the spectral function �hðs; q2Þ, which
contributes starting from a threshold s0.
The QCD expression of the correlation function is given

by

�QCDððp0 þ qÞ2; q2Þ ¼ 1

�

Z 1

m2
b

ds
Im�QCDðs; q2Þ
s� ðp0 þ qÞ2 : (30)

This expression comes from an operator product expansion
(OPE) of the T-product in Eq. (25) on the light cone, which
produces a series of operators, ordered by increasing twist,
the matrix elements of which between the vacuum and the
K [required to evaluate Eq. (25)] are parametrized in terms
of K LCDAs. The equality of the hadronic and QCD
representations of the correlation function, Eqs. (29) and

(30), does not yet allow us to derive the TB�!K
1 form factor,

since the hadronic spectral function �h is unknown.
However, we can invoke global quark-hadron duality
above the threshold s0 [26], which amounts to identify
integrals of the spectral function �h with corresponding
integrals of �QCD ¼ ð1=�Þ Im�QCD, and in particular

Z 1

s0

ds
�hðs; q2Þ

s� ðp0 þ qÞ2 ¼
1

�

Z 1

s0

ds
Im�QCDðs; q2Þ
s� ðp0 þ qÞ2 : (31)
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Using global duality, together with the equality

�HAD
	� ðp0; qÞ ¼ �QCD

	� ðp0; qÞ, from Eqs. (29) and (30) the

equation follows:

2TB�!K
1 ðq2ÞfB�mB�

m2
B� � ðp0 þ qÞ2 ¼ 1

�

Z s0

m2
b

ds
Im�QCDðs; q2Þ
s� ðp0 þ qÞ2 : (32)

The subtraction of the continuum and of the higher-twist
contributions, leading to (32), can be optimized, following
the QCD sum rule procedure, by a Borel transformation of
the hadronic and of the QCD expressions of the correlation
function, hence of the two sides in Eq. (32). This trans-
formation, which applied to a function F ðQ2Þ (with
Q2 ¼ �q2) is defined as

B½F ðQ2Þ� ¼ limQ2!1;n!1;ðQ2=nÞ¼M2

1

ðn� 1Þ! ð�Q2Þn

�
�

d

dQ2

�
n
F ðQ2Þ; (33)

where M2 is the Borel parameter, produces the equality

B
�

1

ðsþQ2Þn
�
¼ expð�s=M2Þ

ðM2Þnðn� 1Þ! : (34)

This operation improves the convergence of the OPE series
by factorials of the power n, and for suitably chosen values

of M2, enhances the contribution of the low lying states to
the hadronic expression of the correlation function.
Applying the Borel transformation to both �HAD and
�QCD we obtain:

2TB�!K
1 ðq2ÞfB�mB� exp

�
�m2

B�

M2

�

¼ 1

�

Z s0

m2
b

ds exp

�
� s

M2

�
Im�QCDðs; q2Þ: (35)

The calculation of �QCD, based on the expansion of the
T-product in (25) near the light cone, involves matrix
elements of nonlocal quark-gluon operators. The final

sum rule for TB�!K
1 has the form:

2TB�!K
1 ðq2ÞfB�mB�e�ðm2

B�=M
2Þ ¼ �̂QCDð0Þ þ �̂QCDð1Þ;

(36)

where the symbol �̂ indicates that Borel transformation
and the continuum subtraction have been performed.

�̂QCDð0Þ gets contribution only from two-particle distribu-

tion amplitudes, while �̂QCDð1Þ is written in terms of the
three-particle ones, all collected in the Appendix. Their
expressions are:

�̂QCDð0Þ ¼fK
Z 1

u0

du

u
e�ððm2

b
�ð1�uÞq2Þ=ðuM2ÞÞ

�
mb�KðuÞþ m2

K

msþmq

�
u�PðuÞþ1

6
��ðuÞ

��

þmbfK

�
1

M2

Z 1

u0

du

u
e�ððm2

b
�ð1�uÞq2Þ=ðuM2ÞÞ�4KðuÞþe�ðs0=M2Þ

ðs0�q2Þ�4Kðu0Þ
�

�m3
b

4
fK

�
1

M4

Z 1

u0

du

u3
�4KðuÞe�ððm2

b
�ð1�uÞq2Þ=ðuM2ÞÞþ e�ðs0=M2Þ

ðm2
b�q2Þ2

�
�4Kðu0Þ

�
1þs0�q2

M2

�
�u0�

0
4Kðu0Þ

��
; (37)

�̂QCDð1Þ ¼
Z u0

0
d�1

Z 1��1

u0��1

d�3

Z 1

u0��1=�3

dve
�m2

b
�ð1�UÞq2

UM2

�
�
vf3K

�3Kð�1;1��1��3;�3Þ
U3

�
U�ðm2

b�q2Þ
M2

�
þmbfK
U2M2

�’?ð�1;1��1��3;�3Þ

þ2mbfk
U3M2

�̂ð�1;1��1��3;�3Þ
�
1�ðm2

b�q2Þ
2UM2

��
þmbfK

e�ðs0=M2Þ

ðm2
b�q2Þ

�Z 1

0

d�3

�3

�̂ðu0;1�u0��3;�3Þ

�
Z u0

0

d�1

u0��1

�̂ð�1;1�u0;u0��1Þ
�
þe�ðs0=M2ÞZ u0

0
d�1

Z 1��1

u0��1

d�3

�3

�
�f3K

u0��1

u0�3

�3Kð�1;1��1��3;�3Þ

þ mbfK
m2

b�q2
�’?ð�1;1��1��3;�3Þ�mbfk

u20M
2
�̂ð�1;1��1��3;�3Þ

�

þ2mbfk
M2

Z 1

1�u0

d�3

Z 1�u0=�3

0
dvve

�m2
b
�ð1�wÞq2

wM2
�̂ð�3Þ
w3

�
1�m2

b�q2

2wM2

�

þmbfKe
�ðs0=M2Þ

�
�̂ð1�u0Þ
u0ð1�u0Þ�

Z 1

1�u0

d�3

�2
3

�̂ð�3Þ
�

1

m2
b�q2

þ1�u0
u20M

2

��
: (38)

In the previous equations we have defined u0 ¼ ðm2
b � q2Þ=ðs0 � q2Þ, U ¼ �1 þ v�3, w ¼ 1� v�3. Furthermore, the

LCDAs have been combined as follows:
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�̂ð�1; 1� �1 � �3; �3Þ ¼ �
Z �1

0
dt½’?ðt; 1� t� �3; �3Þ þ ’kðt; 1� t� �3; �3Þ�

�̂ð�3Þ ¼ �
Z �3

0
dt�̂ð1� t; 0; tÞ

~̂�ð�1; 1� �1 � �3; �3Þ ¼ �
Z �1

0
dt½~’?ðt; 1� t� �3; �3Þ þ ~’kðt; 1� t� �3; �3Þ�

~̂�ð�3Þ ¼ �
Z �3

0
dt ~̂�ð1� t; 0; tÞ

�’?ð�1; 1� �1 � �3; �3Þ ¼ ’?ð�1; 1� �1 � �3; �3Þ � ~’?ð�1; 1� �1 � �3; �3Þ
�̂ð�1; 1� �1 � �3; �3Þ ¼ �̂ð�1; 1� �1 � �3; �3Þ � ~̂�ð�1; 1� �1 � �3; �3Þ

�̂ð�3Þ ¼ �̂ð�3Þ � ~̂�ð�3Þ: (39)

The distribution amplitudes entering in the previous rela-
tions can be classified according to the twist: �K is a
distribution amplitude of twist 2; �P, ��, and �3K are
twist 3; and �4K, c 4K, ’k, ’?, ~’k, ~’? are twist four. We
have used the definitions of various matrix elements defin-
ing the LCDAs as well as the updated numerical values for
their parameters in Ref. [30]. We use the value MB� ¼
5:325 GeV, and the quark mass mb ¼ 4:8 GeV which also
enters in the calculation of the SM effective Hamiltonian in
the next section.

Equations (36), (38), and (39) allow us to compute

TB�!K
1 once the threshold s0 and the Borel parameter M2

are fixed. The threshold is set to s0 ¼ ð33� 2Þ GeV2, a
value appearing also in QCD sum rules involving the B�
meson [31], which is close to the estimated mass squared
of the first radial excitation of B�. For each value of

squared momentum transfer q2, the form factor TB�!K
1

also depends of the Borel parameter M2, which can be
fixed requiring stability against variations of M2. In Fig. 2

we depict the dependence of the TB�!K
1 ð0Þ on the Borel

parameter M2. The band reflects the uncertainties on the
other quantities entering in the calculation, including the
uncertainties on the LCDAs parameters quoted in [30], on
the threshold s0 and on fB� for which we use the value
computed by QCD sum rules in [31]: fB� ¼ 0:195�
0:035 GeV. Although the results are quite stable with

M2, in the numerical analysis we fix the stability window
in the range M2 ¼ ð17� 3Þ GeV2.
For all values of q2 in the range ½0; 20� GeV2 the com-

puted form factor is plotted in Fig. 3. The functional q2

dependence is obtained fitting the sum rule result by a
single pole parametrization:

TB�!K
1 ðq2Þ ¼ TB�!K

1 ð0Þ
1� q2

M2
P

(40)

with

TB�!K
1 ð0Þ ¼ 0:30� 0:0662; MP ¼ 5:767 GeV:

(41)

The uncertainty of TB�!K
1 ð0Þ also accounts for the variation

of the Borel parameter within the stability window.
We conclude this section with a comment about the

relations among the form factors that parametrize the B
to a light meson L matrix elements. As shown in Ref. [32],
when the energy of L in the rest frame of the decaying B
meson is large, the form factors describing the B to L
transitions can be related among each other. Considering
also the heavy quark limit, it is possible to relate the B ! L
form factors to the B� ! L ones, as shown in [33], where
also the perturbative corrections to the large energy rela-
tions have been worked out. In particular, the relation

TB�!K
1 ¼ fB!Kþ should hold for large kaon energy, where
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FIG. 2 (color online). Dependence of TB�!K
1 ð0Þ on the Borel

parameter M2.
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FIG. 3 (color online). q2 dependence of the form factor
TB�!K
1 ðq2Þ.
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fþ parametrizes the matrix element of the quark vector
current �s�	b between the kaon and the B meson as in the

first equation in (23). Since large kaon energy means q2

close to q2 ¼ 0, one might exploit the relation TB�!K
1 ð0Þ ¼

fB!Kþ ð0Þ, as done in [11]. Our computed form factor

TB�!K
1 , together with fB!Kþ ð0Þ ¼ 0:331� 0:041 deter-

mined by LCSR [23], fulfills the relation within the
uncertainties.

IV. B ! K�ð0Þ� DECAY RATES
AND PHOTON SPECTRA

In Secs. II and III we have collected the quantities
necessary to evaluate the amplitudes corresponding to the
diagrams in Fig. 1. Input parameters are the quark masses,
mb already fixed and ms ¼ 0:130 GeV [25], and the CKM
matrix elements Vtb ¼ 0:99, Vts ¼ 0:04 [2]. We do not
include the uncertainties on these parameters because
they are small with respect to the uncertainties of the other
input quantities; moreover,ms plays a negligible role in the
final result. We set the renormalization scale at which we

compute the coefficient CðeffÞ
7� to 	 ¼ 5 GeV, close to the

b mass.
We can now discuss the branching fraction and the

photon spectrum of B ! K�� and B ! K�0� in the SM
and in two new physics models with universal extra dimen-
sions described below. We anticipate that such new physics
scenarios belong to the class of minimal flavor violation
models, therefore the only modification with respect to the
SM consists in a different value of theWilson coefficients in
the effective weak Hamiltonian. Therefore, the three cases,
the SM and the two UEDs, share common features, namely,
the hierarchy among the various decay amplitudes and the
shape of the photon spectrum.

For what concerns the intermediate states in the B !
K�ð0Þ� decay amplitudes, the most important contributions
are represented by the diagrams (1), (3), and (4) in the case
of the �, while for �0 the first diagram contributes much
less than diagrams (3) and (4). This is due to the coupling
gK�K� which is much larger than gK�K�0 : indeed, from the

relations in Sec. II we get gK�K� ¼ 11� 0:1 and gK�K�0 ¼
�2:57� 0:19. We only consider a phase � between the
sum of the first two amplitudes and A3 þ A4; the fifth
diagram turns out to be much smaller than the others, hence
we assign to it the same phase as A3 and A4 since a wide
change of its phase does not modify the result. In the case
of�0 we do not consider the contribution ofK�

2 , and � is the
phase between A1 and A3 þ A4 þ A5. From the calculation
ofBðB ! K��Þwe shall see that there is a range of values
of � allowing to reproduce experimental data in Table I.
Let us start from the standard model.

A. B ! K�ð0Þ� in the standard model

The plot of the computedBðB ! K��Þ as a function of
the strong phase � is depicted in Fig. 4. The experimental

results in Table I can be obtained for � ¼ 1:8� 1:0 rad,
corresponding approximately to � ¼ ð7� 3Þ �

12 (we have

considered the range 0 � � � � since the plot is symmet-
ric with respect to � ¼ 0; indeed, in the branching ratio the
term proportional to sin� is 2 orders of magnitude smaller
than the one proportional to cos�). For the central value of
�, the photon spectrum is depicted in Fig. 5. It is peaked at
large photon energies and has a structure as the effect of the
virtual K�. The Dalitz plot in the plane ðM�K; E�Þ, dis-
played in Fig. 6, also shows the effect of the K� in B !
K��, at the limit of the phase space: it should be observed
in the data.
In the case of the �0, since the diagram (1) gives a small

contribution with respect to (3) and (4), strong phases do
not play any role. The result for the branching ratio is
BðB ! K�0�Þ ¼ ð2:78� 1:14Þ � 10�7, with the photon
spectrum depicted in Fig. 5 and the Dalitz plot shown in
Fig. 6. The theoretical result of the branching fraction for
the neutral mode is compatible with the experimental
datum in Table I, which is affected by a large uncertainty.
The experimental error is smaller in the charged mode: in
this case, while the BABAR result is compatible with the
calculation, the Belle measurement is larger. Before com-
menting on the charged mode, it is worth observing that,

for the B ! K�ð0Þ� three-body channels, the hierarchy
between the modes with � and �0, observed in data, is
reproduced by the theoretical calculation in the frame-
works of the QF scheme for the �� �0 mixing.
Let us discuss the differences between the neutral �B0 and

the charged B� radiative decays. The analysis of the
charged modes would be the same as the one we have
presented for the neutral modes, except for the contribution
of the inner bremsstrahlung diagrams with the photon
coupled to the charged initial Bþ and final Kþ mesons.
The kinematical region in which the bremsstrahlung could
be competitive with the other decay mechanisms is for soft
photons, due to the presence of a pole at vanishing photon

energy. To describe this contribution to the Bþ ! Kþ�ð0Þ�
decay, we invoke the Low theorem [34] which, for
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FIG. 4 (color online). Branching ratio Bð �B0 ! �K0��Þ as a
function of the strong phase � between A1 þ A2 and A3 þ A4 þ
A5. The horizontal band corresponds to the experimental result.
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scalar particles, allows to relate the amplitude of the
radiative mode with a soft photon to the amplitude

AðBþ ! Kþ�ð0ÞÞ:
AIBðBþðpÞ ! KþðpKÞ�ð0Þðp�ð0Þ Þ�ðq; �ÞÞ

¼ e

�
�� � pK

q � pK

� �� � p�ð0Þ

q � p�ð0Þ

�
AðBþ ! Kþ�ð0ÞÞ:

(42)

The two-body amplitudes in (42) can be determined
from the experimental branching fractions
BðBþ!Kþ�Þ¼ð2:33�0:33

0:29Þ�10�6 and BðBþ!Kþ�0Þ¼
ð7:06�0:25Þ�10�5 [2]. In the case of the �, the estimated
contribution of the inner bremsstrahlung diagram to the
decay rate is of order Oð10�8Þ; therefore, the rate of the
charged mode is not significantly affected by this effect, as
indeed observed in the data in Table I. The contribution is
more important for the �0: varying the relative phase �brem
between the bremsstrahlung amplitude and the other con-
sidered amplitudes, BðBþ ! Kþ�0�Þ varies between
ð2:3� 1:0Þ � 10�7 and ð3:8� 1:4Þ � 10�7. These results
are within 1� from the central value of the BABAR

measurement in Table I, while they deviate by about
2:5� from the Belle data. We do not further elaborate on
this point: if the deviation is confirmed (or strengthened)
by new measurements, the interesting issue of additional
contributions to the Bþ ! Kþ�0� amplitude must be
addressed.

B. Sensitivity of B ! K�� to two
new physics UED scenarios

It is worth investigating the sensitivity of the rare FCNC
B ! K�� transition to new physics effects. In particular, it
is important to establish which kind of improvement can be
achieved by a more precise determination of the branching
fraction. The considered new physics scenarios involve one
or two UEDs.
The scenario with a single universal extradimension is

the Appelquist-Cheng-Dobrescu (ACD) model [35],1 a
minimal extension of SM in 4þ 1 dimensions, with the
extra dimension compactified to the orbifold S1=Z2 and the
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FIG. 5 (color online). Photon spectrum in �B0 ! �K0�� (left panel) and �B0 ! �K0�0� (right panel). The phase � is set to � ¼ 1:8 rad.
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1One of the first proposals to introduce large (TeV) extra
dimensions in the SM was suggested in [36].
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fifth coordinate y running from 0 to 2�R, y ¼ 0, and
y ¼ �R being fixed points of the orbifold. All the fields
propagate in all 4þ 1 dimensions, therefore the model
belongs to the class of universal extra dimension scenarios;
one of its motivations is that it naturally provides candi-
dates for the dark matter.

In the ACD model the SM particles correspond to the
zero modes of fields propagating in the compactified extra
dimension. In addition to the zero modes, towers of
Kaluza-Klein (KK) excitations are predicted to exist, cor-
responding to the higher modes of the fields in the extra
dimension; such fields are imposed to be even under a
y ! �y transformation in the fifth coordinate. On the
other hand, fields which are odd under this transformation
propagate in the extra dimension without zero modes, and
correspond to particles without SM partners.

The masses of KK particles depend on the radius R of
the compactified extra dimension, the new parameter with
respect to SM. For example, the masses of the KK bosonic
modes are given by

m2
n ¼ m2

0 þ
n2

R2
n ¼ 1; 2; . . . (43)

m0 being the mass of the zero mode, so that for small
values of R, i.e. at large compactification scales, the KK
particles decouple from the low-energy regime. Another
property of the ACD model is the conservation of the KK
parity ð�1Þj, j being the KK number. KK parity conserva-
tion implies the absence of tree level contributions of
Kaluza-Klein states to processes taking place at low en-
ergy, forbidding the production of a single KK particle off
the interaction of standard particles. This permits to use the
electroweak measurements to provide a lower bound to the
compactification scale: 1=R 	 250� 300 GeV [37].
Moreover, this suggests the possibility that the lightest
KK particles, namely, the n ¼ 1 Kaluza-Klein excitations
of the photon and neutrinos, are among the dark matter
components [38,39].

Since KK modes affect the loop-induced processes,
flavor changing neutral current transitions can constrain
this new physics scenario. Indeed, many observables are
sensitive to the compactification radius in the case, e.g., of
processes involving B, Bs, and �b [40–45]. In the ACD
model no operators other than those in (3) contribute to
b ! s�, and the effects beyond SM are only encoded in the
Wilson coefficients of the effective Hamiltonian. The con-
tribution of KK excitations modifies, in particular, the
coefficient C7�, which acquires a dependence on the com-

pactification scale 1=R. For large values of 1=R, due to
decoupling of massive KK states, the coefficient C7�

(whose explicit expression can be found in [40]) reprodu-
ces the standard model value. For this scenario, the bound
1=R > 600 GeV has been established from exclusive [41]
and inclusive [43] radiative rare B decays.

The second scenario we consider involves two UEDs
[46]. In this case, the two extra dimensions are flat and

compactified on a (so-called chiral) square of side L: 0 �
x4, x5 � L, where x4 and x5 are the fifth and sixth extra
spatial coordinates. The compactification is performed
identifying two pairs of adjacent sides of the square:
ðy; 0Þ ¼ ð0; yÞ and ðy; LÞ ¼ ðL; yÞ, for all y 2 ½0; L�, which
amounts to folding the square along a diagonal. The fields
are decomposed in Fourier modes in terms of effective four
dimensional fields labeled by two indices ðl; kÞ. Hence, the
KK modes are identified by two KK numbers which de-
termine their mass in four dimensions: zero modes corre-
sponds to SM fields. The values of the fields in the points
identified through the folding are related by a symmetry
transformation. For example, for a scalar field, the field
values may differ by a phase. The choice of the folding
boundary conditions (and of the constraints on such
phases) is mostly important in the case of fermions, since
a suitable choice allows to obtain chiral zero modes, while
higher KK modes have masses determined (as for scalars)

by the relation: Ml;k ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ k2

p
Þ=R, where R ¼ L=� is

the compactification radius. The theory has an additional
symmetry, the invariance under reflection with respect to
the center of the square. Such a symmetry distinguishes
between the various KK excitations of a given particle. A
KK mode identified by the pair ðl; kÞ of indices changes
sign under reflection if lþ k is odd, while it remains
invariant if lþ k is even. As a consequence, the stability
of the lightest KK modes is guaranteed, and such modes
are good candidates for dark matter.
The model comprises the SM particles and their KK

excitations, together with new particles without a SM cor-
respondent, described by fields whose Fourier decomposi-
tion does not contain a zero mode. Examples are the mixing
of the fifth and fourth components of the vector fields and
the Higgs fields. All these new particles may contribute as
intermediate states in the FCNC loop diagrams and, as in the
single UED case, they modify the values of the Wilson
coefficient in the effective Hamiltonian (3) without intro-
ducing new operators. The explicit expression ofCeff

7� in this

model can be found in Ref. [47]. It should only be men-
tioned that the sums over the KK modes entering in the
expression of the Wilson coefficients in the extra dimen-
sional framework diverge logarithmically, and should be cut
in correspondence of some values ofNKK ¼ lþ k, viewing
this theory as an effective one valid up to a some higher
scale. The condition NKK ’ 10 has been chosen in [47].
In order to disentangle the dependence of the rate

B ! K�� on the phase � and on the Wilson coefficient
C7 which encodes the new physics effects, we consider the
ratio ½BRð �B0 ! �K0��Þ�=½BRð �B0 ! Xs�Þ� versus �, with
the experimental datum of BRð �B0 ! Xs�Þ reported in [48]
and the theoretical expression that can be found, e.g., in
[49]. In this ratio, the dependence onC7 cancels out, so that
we can fix the range of allowed values of the phase depend-
ing on the experimental measurements with their own
accuracy. As depicted in Fig. 7(a), the data allow to
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determine a range for � (a strong interaction quantity): � ¼
2:19� 0:75 rad, which is compatible with the range deter-
mined in the previous section and can be reduced by im-
proved measurements of the decay rates. With � in this
range and the expression of Ceff

7� dependent in both the

models on the respective compactification radii, we can
compute BRð �B0 ! �K0��Þ versus 1=R. While for the case
of the ACDmodel no sensible bound on 1=R can beworked
out, in the case of two UEDs, as plotted in Fig. 7(b), the
constraint 1=R > 400 GeV can be derived. Although such a
constraint is weaker than the bound established from the
inclusive radiative rare B decay rate, 1=R > 650 GeV [47],
it represents an additional information that can be made
more precise, e.g., improving the experimental data.

V. CONCLUSIONS

B decays to two light pseudoscalar mesons and a photon
are interesting, as witnessed by the experimental efforts to

determine, for the modes B ! K�ð0Þ� considered here, the
branching fractions, and the CP asymmetry parameters.
We have studied such channels considering the contribu-
tion of amplitudes corresponding to several intermediate
states, K�ð892Þ and K�

2ð1430Þ, as well as B�, B�
s , and

�ð1020Þ. A light cone sum rule determination of the

form factor TB�!K
1 ðq2Þ has been performed: this form

factor is of interest since it also enters in other amplitudes

involving B� mesons. Introducing a strong phase � be-
tween the first two considered contributions and the other
three, we have shown that the measured B ! K�� branch-
ing fraction can be reproduced. On the other hand, the
experimental uncertainties in BðB ! K�0�Þ are large, so
that the comparison with the theoretical result does not
provide constraints, at present. In any case, the modes with
�0 in the final state are not enhanced with respect to those
with the �, as experimentally observed. The photon spec-
trum, as well as the Dalitz plots, are sensitive to the
intermediate contributions.
We have studied the radiative transitions in NP scenarios

with one and two universal extra dimensions, to study their
sensitivity to NP effects. We have found that, in the case of
two UEDs compactified on the chiral square, the bound
1=R > 400 GeV can be established from Bð �B0 ! �K0��Þ.

ACKNOWLEDGMENTS

We thank A. J. Buras and E. Scrimieri for useful dis-
cussions. This work is supported in part by the Italian
MIUR Prin 2009.

APPENDIX: LCDAS OF THE K MESON

Here we collect the matrix element defining the LCDAs
of the kaon used for the calculation of the form factor

TB�!K
1 ðq2Þ.

(i) Two-particle LCDAs.—

hKðp0Þj �sðxÞ�	�5qð0Þj0i ¼ �ip0
	

Z 1

0
dueiup

0�x½�KðuÞ þ x2

16
�4KðuÞ� � i

2
fK

x	

p0 � x
Z 1

0
eiup

0�xc 4KðuÞ;

hKðp0Þj�sðxÞi�5qð0Þj0i ¼ fKm
2
K

ms þmq

Z 1

0
dueiup

0�x�PðuÞ;

hKðp0Þj�sðxÞ�	��5qð0Þj0i ¼ iðp0
	x� � p0

�x	Þ fKm
2
K

6ðms þmqÞ
Z 1

0
dueiup

0�x��ðuÞ:
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FIG. 7 (color online). Ratio of the experimental branching fractions ½Bð �B0 ! �K0��Þ�=½Bð �B0 ! Xs�Þ� as a function of the phase �
(left panel), and branching fraction Bð �B0 ! �K0��Þ computed in the model with two universal extra dimensions as a function of the
inverse of the compactification radius (in GeV) and for the phase in the range fixed in (a) (right panel). The horizontal bands
correspond to the experimental data.
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(ii) Three-particle LCDAs.—

hKðp0Þj �sðxÞgsG������5qð0Þj0i ¼ if3K½ðp0�p0
�g

�
� �p0�p0

�g
�
�Þ� ðp0�p0

�g
�
� �p0�p0

�g
�
�Þ�

�
Z

D�i�3Kð�1;�2;�3Þeip0�xð�1þv�3Þ;

hKðp0Þj�sðxÞgsG���c�5qð0Þj0i ¼ fK

�
p0�

�
g�c � x�p0c

p0 � x
�
�p0�

�
g�c � x�p0c

p0 � x
��Z

D�ie
ip0�xð�1þv�3Þ’?ð�1;�2;�3Þ

þ fK
p0c

p0 � x ðp
0�x� �p0�x�Þ

Z
D�ie

ip0�xð�1þv�3Þ’kð�1;�2;�3Þ;

hKðp0Þj �sðxÞgs ~G���c qð0Þj0i ¼ fK

�
p0�

�
g�c � x�p0c

p0 � x
�
�p0�

�
g�c � x�p0c

p0 � x
��Z

D�ie
ip0�xð�1þv�3Þ ~’?ð�1;�2;�3Þ

þ fK
p0c

p0 � x ðp
0�x� �p0�x�Þ

Z
D�ie

ip0�xð�1þv�3Þ ~’kð�1;�2;�3Þ:

The following definitions have been used: D�i ¼ d�1d�2d�3�ð1� �1 � �2 � �3Þ and ~G�
 ¼ ð1=2Þ��
��G��. The
expressions of the LCDAs listed above, together with the numerical values of the parameters entering in such expressions,
can be found in [30]. For the sake of clarity, we report below the correspondence between the LCDAs used in this paper and
those in [30]:

�K ! �2;K; �4K ! �4;K; c 4K ! c 4;K;

�P ! �p
3;K; �� ! ��

3;K; �3K ! �3;K;

’k ! �4;K; ’? ! �4;K; ~’k ! ~�4;K; ~’? ! ~�4;K:
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