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The microscopic spectral density of the Wilson Dirac operator for two-flavor lattice QCD is analyzed.
The computation includes the leading order a® corrections of the chiral Lagrangian in the microscopic
limit. The result is used to demonstrate how the Sharpe-Singleton first order scenario is realized in terms
of the eigenvalues of the Wilson Dirac operator. We show that the Sharpe-Singleton scenario only takes
place in the theory with dynamical fermions whereas the Aoki phase can be realized in the quenched as
well as the unquenched theory. Moreover, we give constraints imposed by ys Hermiticity on the additional
low energy constants of Wilson chiral perturbation theory.
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I. INTRODUCTION

In the deep chiral limit, with almost massless quarks,
lattice QCD with Wilson fermions has a highly nontrivial
phase structure. As in continuum QCD, it is the deep
chiral limit which reveals the spontaneous breaking of
chiral symmetry on the lattice. In addition, the interplay
between the continuum and the chiral limit in lattice
QCD with Wilson fermions leads to new phase structures
known as the Aoki phase [1] and the Sharpe-Singleton
scenario [2]. These phases have no direct analogs in the
continuum theory and dominate if the chiral limit is
performed prior to the continuum limit. While this at
first may seem like a highly undesirable artifact of
Wilson fermions it can in fact be turned to our advan-
tage: The Aoki phase is reached through a second order
phase transition and at the boundary of this transition the
pions are massless. This opens the possibility to study
nonperturbative QCD at extremely small pion masses
even at a nonzero lattice spacing. On the contrary the
Sharpe-Singleton scenario is a first order phase transition
in which the pions are massive even in the chiral limit at
nonzero lattice spacing.

These phase structures of lattice QCD with Wilson
fermions can be described within the framework of
Wilson chiral perturbation theory [2-8]. This low energy
effective theory of lattice QCD with Wilson fermions
describes discretization effects by means of additional
terms in the chiral Lagrangian (see [9,10] for reviews).
Each of these new terms comes with a new low energy
constant. The sign and magnitude of these constants reflect
whether lattice QCD with Wilson fermions will enter the
Aoki phase or the Sharpe-Singleton scenario. Considerable
progress, both analytically [11-16] and numerically
[17-23], has been made recently in the determination of
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these constants. However, a complete picture has not yet
emerged. For example, the observation that quenched lat-
tice simulations consistently observe the Aoki phase
[24-27], while in unquenched simulations both the Aoki
and the Sharpe-Singleton scenario [20,23,28-37] has been
observed, remains a puzzle.

The spontaneous breaking of chiral symmetry is tightly
connected to the smallest eigenvalues of the Dirac operator
[38,39]. Moreover, the Aoki phase manifests itself in the
smallest eigenvalues of the Wilson Dirac operator [11,40].
Here we show that the behavior of the smallest eigenvalues
of the Wilson Dirac operator is also directly related to the
Sharpe-Singleton scenario. In particular, we explain that in
the Sharpe-Singleton scenario the Wilson Dirac eigenval-
ues undergo a collective macroscopic jump as the quark
mass changes sign. Moreover, we show that this collective
jump only occurs in the presence of dynamical fermions.
The quenched theory has no analog of this and hence the
Sharpe-Singleton scenario is not possible in the quenched
theory. This conclusion is verified by a direct computation
of the microscopic quenched and unquenched -chiral
condensate.

In order to establish these results we explicitly derive the
unquenched microscopic spectral density of the Wilson
Dirac operator. This calculation makes use of both
Wilson random matrix theory as well as Wilson chiral
perturbation theory. By means of an underlying Pfaffian
structure we uncover a compact factorized form of the
exact unquenched microscopic eigenvalue density. This
form makes it possible to understand the full dependence
of the eigenvalue density on the low energy constants. We
analyze this dependence in the mean field limit which can
also be directly derived from Wilson chiral perturbation
theory.
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The mean field limit of the microscopic spectral density
corresponds to the leading order result of Wilson chiral
perturbation theory in the p regime. This will allow us to
close the circle by explaining the original p-regime results
of Sharpe and Singleton in terms of the behavior of the
Wilson Dirac eigenvalues. In particular, we will explain
how the nonzero minimal value of the pion mass in the
Sharpe-Singleton scenario is connected to the collective
jump of the Wilson Dirac eigenvalues.

The approach to the Wilson Dirac spectrum followed
in this paper has been applied previously in
Refs. [11,12,15-17,41-46] and results from these studies
will be used.

The study of the smallest eigenvalues of the Wilson
Dirac eigenvalues not only explains the way in which the
Aoki phase and the Sharpe-Singleton scenarios are real-
ized, it also gives direct information on the sign and
magnitude of the low energy constants of Wilson chiral
perturbation theory. We will show that the spectral proper-
ties of the Wilson Dirac operator determine the sign of all
three additional low energy constants of the leading order
chiral Lagrangian of Wilson chiral perturbation theory in
the microscopic limit.

The results for the unquenched spectral density of the
Wilson Dirac operator presented here also offer a direct
way to measure the low energy constants of Wilson chiral
perturbation theory by matching the predictions against
results from lattice QCD. The first quenched studies of
this nature appeared recently [21,22].

This paper is organized as follows. After a brief presen-
tation of the properties of the Wilson Dirac operator in
Sec. II we recall the basics of Wilson chiral perturbation
theory in Sec. III. In Sec. IV we determine constraints on
the additional low energy parameters of Wilson chiral
perturbation theory in terms of the spectral properties of
the Wilson Dirac operator. The unquenched microscopic
spectrum of the Wilson Dirac operator is analyzed in
Sec. V. Finally, the realization of the Sharpe-Singleton
scenario is the topic of Sec. VI. Section VII contains our
summary and conclusions. Wilson random matrix theory,
the factorization properties of the spectral density, and the
details of the mean field calculation are discussed in
Appendixes A, B, and C, respectively.

II. THE WILSON DIRAC OPERATOR

Here we recall a few basic properties of the Wilson Dirac
operator. The Wilson term in the lattice discretized cova-
riant derivative

1 ar

breaks the anti-Hermiticity as well as the axial symmetry
of the continuum Dirac operator. However, Dy is
vs Hermitian

YsDwys = D?v ()
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and the product with ys, Ds(m) = ys(Dy, + m) is there-
fore Hermitian.

The eigenvalues, z;, of Dy, consists of complex conju-
gated pairs as well as exactly real eigenvalues [47]. Only
the real eigenmodes have nonzero chirality and determine
the index, v, of the Wilson Dirac operator,

v =" sign((klys|k)). 3)
k

Here |k) denotes the kth eigenstate of Dy,. The eigenvalues,
A3, of Ds(m) are unpaired when a # 0.

In Sec. IV we will use these properties to constrain the
parameters of Wilson chiral perturbation theory.

II1. WILSON CHIRAL PERTURBATION THEORY

In the microscopic limit at nonzero lattice spacing where
(m is the quark mass, { the axial quark mass, z an eigen-
value of Dy, and a is the lattice spacing)

mV, (V, zV, and a*V 4

are kept fixed as V — oo, the microscopic partition func-
tion of [48] extends to [11]

Zy, (m, £;a) = f

U(Ny)

dUdet’ UeSU], )

where the action S[ U] for degenerate quark masses is given
by [2-4]

S = %EVTr(U + Ut + gEVTr(U — Ut
— PVW[Tr(U + UY P — a>VW,[Tr(U — UNH P
— VW Tr(U? + UT). (6)

In addition to the chiral condensate, 3, the action also
contains the low energy constants Ws, W, and Wy as
parameters.'

In order to lighten the notation we introduce the re-
scaled, dimensionless variables

2=zVS, and = (V3.

(7)

The generating functional for the eigenvalue density of
Dy, in the complex plane is the graded extension of Eq. (5).
Because of the non-Hermiticity of Dy, the graded exten-
sion

a?=a’Vw, m=mV3,

v 5 5% al I A
Zy o8 25,2, 28 s dy) (®)
requires an extra pair of conjugate quarks with masses Z
and 2%, as well as a conjugate pair of bosonic quarks, with
masses 2 and 2 [49]. The graded mass term becomes

'Note that we use the convention of [11,12] for the low energy
constants Wy, W5, and Wy. In [4] these constants are denoted by
—W{, —W., and —W{, respectively.
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Trg(MU + MU™") with
M= diag(ﬁil, ...,ﬁ/lN/, 2, 2*, 2l, 2/*); (9)

where Trg denotes the graded trace TrgA = Tr(A) —
Tr(Ap), with A, the fermion-fermion block of A and A,
its boson-boson block. The eigenvalue density of Dyy in the
complex plane is

s hm d:logZ? b

Ny +2|2(Z’ y <y 2/*, ﬁ’l, &1)

Py, (62 sa) =
(10)

The sign and magnitude of Wy, W5, and Wy determine
the phase structure at small mass [2]: for Wg + 2W >0
the Aoki phase dominates if [m|2 < 8(Wyg + 2W;)a? while
for Wg + 2W; <0 the Sharpe-Singleton scenario takes
place. It is therefore of considerable interest to understand
if it is possible to determine the signs of the additional low
energy constants. In the next section we show how these
signs follow from the s Hermiticity of the Wilson Dirac
operator.

IV. CONSTRAINTS ON W, W,, AND Wy DUE TO
vs HERMITICITY

In Refs. [12,13,16] it was shown that properties of the
partition function and the correlation functions due to
vs Hermiticity lead to bounds on Wy, W5, and Wg. The
bounds that were found are [12,13] Wg > 0 (independent
of the value of W and W, [13]) and [12,16] Wg — Wy —
W;>0. In addition it was argued in [16] that W5 +2Wg >0
provided that disconnected diagrams are suppressed. Note
that lattice studies [18] have found that disconnected dia-
grams can have a significant contribution.

Here we show that the signs of Wy and W, can be
determined from ys Hermiticity if we consider the spectral
properties of the Wilson Dirac operator. There are two
implicit assumptions that have been well established in
the study of Dirac spectra. First, that for a given value of
the low-energy constants the chiral Lagrangian can be
extended to partially quenched QCD with the same low-
energy constants. Second, there is a one-to-one relation
between spectral properties in the microscopic domain and
the partially quenched chiral Lagrangian.

Let us first recall why 7ys Hermiticity implies that
Wg >0 when Wg = W, = 0 [12]. As shown by explicit
calculations in [11,12,42,43] the microscopic graded gen-
erating functional corresponding to

LU)=Im3Tr(U + UY) + {3 Te(U - UT)
— Wy Tr(U? + UT) (11)

with Wy > 0 gives predictions for the spectrum of the
v5 Hermitian Dy, and the Hermitian Ds. This was further
confirmed by its equivalence to a ys-Hermitian Wilson
random matrix theory.
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On the contrary if Wg <0, it was explicitly shown in
[12] that the graded generating functional corresponding to
Eq. (11) is the generating functional for the spectral
fluctuations in a lattice theory with iWilson fermions de-
fined as

Dy = %yﬂ(vu + V) — i V Vi (12)

wV o

which is anti-Hermitian rather than ys; Hermitian. This
conclusion was again confirmed by the equivalence to an
anti-Hermitian iWilson random matrix theory. Note that
Dy and D,y only differ by a factor of i in the Wilson term,
and that D,y is not y5 Hermitian.

Therefore we understand the effective theory, Eq. (11),
for both signs of Wy and that the Hermiticity properties of
the Wilson Dirac operator determine this sign. For Wilson
fermions we have Wg > 0, whereas for iWilson fermions
the constraint is Wg < 0. This is fully consistent with the
results from QCD inequalities [12,13].

Let us now extend the argument to also include Wy and
W,. We will show that Wilson chiral perturbation theory
with Wg < 0, W; <0, and Wy > 0 gives predictions for the
spectrum of a s Hermitian Dy,. On the contrary Wilson
chiral perturbation theory with Wg >0, W; >0, and
Wg < 0 gives predictions for the spectrum of D;y,.

The fact that all three signs are reversed when changing
between Wilson and iWilson fermions is not accidental.
Since the Wilson term and the iWilson term break chiral
symmetry in exactly the same way, the respective low
energy effective theories must have the same symmetry
breaking terms in the chiral Lagrangian. Moreover, since
the explicit symmetry breaking terms at order a” have their
origin in the Wilson term, the two effective fermionic
Lagrangians are related by a combined change of sign of
W, W+, and Wg.?

In order to see which sign of Wy and W; corresponds to
Wilson fermions let us rewrite the trace squared terms in
Wilson chiral perturbation theory as

Z5, (i, & g, s, as)

Ve 3
1wmwf %”m[m% wﬂ]

X Z§ (i = ys, { —y7:46=0,4;=0,a5),  (13)

valid for Wy < 0 and W5 <0 and

>This duality of the Wilson and iWilson fermion lattice
theories is due to the fact that the two are related by an axial
transformation and an interchange m < i{ and { < im: The
axial transformation R = exp(m'/ 4) and L = exp(—im/4) takes
Dy +m+ {ys— D,y +il+ zmyS The Correepondmg trans-
formation on the Goldstone field is U — RUL' = iU.
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Z5, i, & ag, a3, ag)

1 o0 Ve 3
- dved __Je )7
1671ag07] /_m Y6 y7eXp[ 161a2] 16|&%|]

X Z§ (h = iy, = iy7:86 = 0,47 = 0,85),  (14)

valid for Wy > 0 and W, > 0.

Let us first consider the case W; = 0. A negative value
of W corresponds to a Dirac operator that is compatible
with the ys Hermiticity of the Wilson Dirac operator. The
additional fluctuations can be interpreted as collective
fluctuations of the eigenvalues, z;, of Dy, parallel to the
real z axis. To see this, extend Eq. (13) to the graded
generating functional, Eq. (8), and include yg in the graded
mass matrix

M — ys = diag(i; = s, .-, "Aizvf — Yo

2= Y62 =62 —v6 2" —ye) (15)

[see Eq. (21) for further details]. Such fluctuations are
allowed for Wilson fermions since the eigenvalues of Dy,
come in pairs (z, z*) or are strictly real. This is illustrated in
the left-hand panel of Fig. 1.

For a positive value of Wy the corresponding Dirac
operator is in a different Hermiticity class than the
Wilson Dirac operator and will have different spectral
properties. Therefore, we necessarily have Wy < 0 for the
Wilson Dirac operator. For the iWilson-lattice theory on
the other hand, we have that D;rW = —D;y and conse-
quently purely imaginary eigenvalues. Moreover, since
the eigenvalues are not paired with equal and opposite
sign (for a # 0) the spectrum of iDy, can fluctuate along
the imaginary axis; see the right-hand panel of Fig. 1 for an
illustration. The Dirac operator corresponding to W > 0 is
hence in the Hermiticity class of Dy, in perfect agreement
with the above conclusion for Wilson fermions and the fact
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that the two effective theories should have opposite signs
for all three W,;’s.

The story for W is analogous: A negative value of W,
corresponds to real fluctuations of the axial quark mass,
which are compatible with the Hermiticity properties of the
Wilson Dirac operator. These fluctuations can be inter-
preted as collective fluctuations of the eigenvalues, A3, of
Ds = y5(Dy, + m) parallel to the real A> axis. Such fluc-
tuations are allowed for Wilson fermions since Ds is
Hermitian and the symmetry (A%, —A%) is violated when
a # 0.

For iWilson fermions the product ysD;y has complex
eigenvalues which come in pairs with opposite real part (or
are strictly imaginary), hence their fluctuations can only
take part in the imaginary direction. This is consistent with
W5 > 0 in the chiral Lagrangian for iWilson fermions and
in perfect agreement with the fact that this sign should be
opposite to that of the chiral Lagrangian for Wilson
fermions.

Finally, when W, and W, have opposite signs the
Hermiticity properties of the shifted Dirac operator always
differ from the one realized at Wy = W; = 0. The corre-
sponding Dirac operator therefore is neither ys; Hermitian
nor anti-Hermitian. The same is true if all W, have the same
sign.

In conclusion, we explained that the signs of the low
energy constants of Wilson chiral perturbation theory fol-
low from the ys Hermiticity of the Wilson Dirac operator.
We have Wg <0, W; <0, and Wg > 0. Note that both
the Aoki phase with Wg + 2Wg >0 and the Sharpe-
Singleton scenario with Wg + 2W¢ <0 are allowed by
vs Hermiticity.

In the reminder of this paper we will work with Wy <0,
W, <0, and Wg > 0. Moreover, since the low energy
constant W5 does not affect the competition between the
Aoki phase and the Sharpe-Singleton scenario we will set
W7 = 0.

FIG. 1 (color online).

X Im(z) D Im(z)
W b,
X
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X X ‘
X X
Re(z) Re(z)
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X
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8a?W, /5 W, <0

Illustration of the fluctuations of the Dirac eigenvalues. Left panel: A negative value of W¢ corresponds to a

vs-Hermitian Wilson Dirac operator, i.e. with eigenvalues that are either real or come in complex conjugate pairs. Right panel: The
Dirac operator corresponding to Wy > 0 is in the Hermiticity class of D;y with purely imaginary eigenvalues.
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In Sec. VI we show how a collective effect on the
eigenvalues of Dy, induced by Wg <0 leads to a shift
between the Aoki and the Sharpe-Singleton scenario. To
establish this result we will first derive the unquenched
microscopic eigenvalue density of Dy, .

V. THE UNQUENCHED SPECTRUM OF Dy,

In this section we calculate the microscopic spectral
density of the Wilson Dirac operator, Dy, in the presence
of two dynamical flavors. We first carry through the
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calculation with Wg = W; = 0 and subsequently introduce
the effects of Wy. In order to derive the microscopic
spectral density of Dy, it is convenient to use Wilson chiral
random matrix theory introduced in [11], which is re-
viewed in Appendix A for completeness.

We start from the joint eigenvalue probability distribu-
tion of the random matrix partition function Eq. (A6). To
obtain the eigenvalue density in the complex plane we
integrate over all but a complex pair of eigenvalues.
Using the properties of the Vandermonde determinant we
obtain (£ = % + iy)

[9le*%

16(27)%/ 2244

Zy( 27,

_22/(81'3%) n,
Z5 (i, 1

(2 = 2 — i

16
7 (16)

8)

This amazingly compact form can be simplified further. In [46] it was shown that the four-flavor partition function Z} can
be expressed in terms of two-flavor partition functions. A proof in terms of chiral Lagrangians is given in Appendix B. This

pen,=(3 2 ag) = e

leads to the final form for the microscopic spectral density of Dy, with two dynamical flavors

v (55 i dg) = e~ F/80) |$le 44 702, 51 ag)
=\, 2, m;dg) = e L=y S L7540
Peny=2 s 16272245 s
“ (1 1 sl 282 i ag)1Z5(2, s dg) — Z3(2 s Gg) 0, [ 252", m;agﬂ) an
2iy Zy (i, iiv; ag) 23 (2, 2% ag) ’
where the two-flavor partition function is given by [43]
4&2 . .
etls oo foo is; —is .
Z}(lf:z("hly s dg) = a2 / [ dsldsz%(isl)”(isz)”zg(isl, isy; dg = 0)
moag —o00 J —o0 mp my
1
X eXPI:_—Az (s + imy)* + (s + i’hz)z]], (18)
16ag
with
Z5(x1, 33 a3 = 0)

_ 2
xVxy (x5 — x?)

L(x))  xi0,0,(xy)

, (19
1,(xy)  xo0,11(xp)

and we have introduced the notation Zz”(ﬁil,ﬁiz;&g) =
(i) — 1ip) Z5 (siy, 1i1y; Gg).

The expression in the first line of Eq. (17) is the
quenched eigenvalue density of Dy, [44]. The correction
factor in the second line is responsible for the eigenvalue
repulsion from the quark mass. A plot of the eigenvalue
density of the Wilson Dirac operator in the complex plane
for two dynamical flavors is given in Fig. 2.

Note the strong similarity with the result for the eigen-
value density of the continuum Dirac operator at nonzero
chemical potential in phase quenched QCD [50]. In that
case the eigenvalue density follows from the integrable
Toda lattice hierarchy [51]. The analytical form of the
eigenvalue density of the Wilson Dirac operator, Eq. (16),
strongly suggests that a similar integrable structure is
present in the microscopic limit of the Wilson lattice
QCD partition function.

FIG. 2 (color online). The microscopic spectral density of the
Wilson Dirac operator for Ny = 2 flavors of equal mass /i = 2
and ag = 0.8 (@g = a7 = 0) in the sector » = (. The eigenval-
ues form a strip centered on the imaginary axis. Note the
repulsion of the eigenvalues from the quark mass.
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As pointed out in [12] the graded generating function for
the eigenvalue density can be extended to include the effect
of We and W, by a Gaussian integral as in Eq. (13). Since
this works for the graded generating functional it also
works for the spectral density itself [12]. In the unquenched
case, however, one must be careful with the normalization
factor 1/Z1’(, (/1 ag).

Let us start with the case where Wy = W; = 0. Then the
density of Dy in the complex plane is obtained from the
graded generating function as follows:

pen, (& 25 ag, dg) = 8~ﬁ11m6 :logZ?

Ny 2@ 2

PHYSICAL REVIEW D 85, 094011 (2012)

PZ,Nf(i 2 i ag) = 32*2; +2|2(2’ &, i ag)

—awhma :logZ% [

Ny +2|2(Z: 3 <5< 7h &8);

(20)

where the graded generating functional, Zy,+2p2> Was in-

troduced in Eq. (8).

To extend this to Wg << 0 we first note that the Gaussian
trick, Eq. (13), also works for the graded generating func-
tional. Using this we find

/\* A/ Al%

, 27, 1 ag, ag)

=0z l,ifflaz logj[dy]zfvﬁm(f — 32—y =y =y — y;ag)
7

= m [[dy]Z” (f = 33 88)05 25 (2 =, 2" =y, 10 = y;dg)
1
= m [[d)’]ZN (i — y,as)PLN (=2 —ym—yag), (21)
|
where we will recall the notation: [dy] = dy/(4/mlagl) X For the unquenched chiral condensate we reach an iden-

exp(—y2/(161a21)).

In order to understand the effect of W¢ on the un-
quenched spectral density of Dy, we will analyze the
mean field limit of Eq. (21). As shown in the next section
the factor of Zy in the integrand is essential for the

realization of the Sharpe-Singleton scenario.

VI. THE SHARPE-SINGLETON SCENARIO IN THE
SPECTRUM OF Dy,

Here we show that the Sharpe-Singleton scenario can be
understood in terms of a collective effect of the eigenvalues
of Dy, induced by W < 0 when the quark mass changes
sign. The Sharpe-Singleton scenario is therefore not real-
ized in the quenched theory even if Wy + 2Wg < 0.

Before we give the proof let us first consider an electro-
static analogy which can help set the stage. The quenched
chiral condensate

[dz pr o(z, 7% a) 22)

can be thought of as the electric field (in two dimensions)
created by positive charges located at the positions of the
eigenvalues z of Dy, and measured at the position m (which
can be thought of as a test charge). At the point where the
quark mass hits the strip of eigenvalues of Dy, centered on
the imaginary axis, the mass dependence of the chiral
condensate (electric field) shows a kink. As the quark
mass is lowered further (the test charge passes through
the strip of eigenvalues) the condensate (electric field)
drops linearly to zero at m = 0. The drop is linear because
the eigenvalue density is uniform.

tical conclusion provided that the quark mass (test charge)
only has a local effect on the eigenvalues, i.e. it only affects
eigenvalues close to the quark mass. This is the case for the
Aoki phase when the quark mass is inside the strip of
eigenvalues of Dy,.

On the contrary, in order to realize the first order Sharpe-
Singleton scenario the quark mass must have a collective
effect on the eigenvalues of Dy, such that the strip of
eigenvalues is entirely to the left of the quark mass for
small positive values of m. And then at m = 0 the strip
collectively jumps to the opposite side of the origin such
that for small negative values of the quark mass the strip of
eigenvalues is to the right of m. The collective jump of the
eigenvalues at m = 0 flips the sign of the chiral condensate
(electric field) in agreement with the Sharpe-Singleton
scenario.

In order to show that the Sharpe-Singleton scenario is
indeed realized in terms of the eigenvalues of Dy, in the
manner described above let us analyze the effect of Wg <0
on the eigenvalues of Dyy.

A. The mean field eigenvalue density of Dy,

In the mean field limit the density of eigenvalues of Dy,
at ag = 0 is simply given by a uniform strip of half width
8a3/2 centered on the imaginary axis (the derivation of
this result is analogous to the one for nonzero chemical
potential, see [49,52])

PN o(5, s ag) = 6(8aF — |5]). (23)

This result is identical to the quenched mean field spectral
density since the correction factor in the second line of
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Eq. (17) only has an effect on the microscopic scale (the
direct repulsion of the eigenvalues from the quark mass has
a microscopic range).

To include the effect of as we use the Gaussian trick
discussed in Eq. (21). The simplest way to proceed is to
take the mean field limit before the yq integration, we find

1
ZYE (s ag, ag)
X deGe yZ/mlaZIZMF(m YVes dsg)
X 0(8a3 — 1% — yel). (24)

Note the essential way in which the two-flavor partition
function enters both in the numerator and the denominator.
This is what separates the mean field calculation with
dynamical fermions from the quenched analog.

PN, 2%, 11 g, Gg) =

1
ZEAF(H%; d, ag)

X{ 2m+16|d2| 4“80(8

+ e72m+16|&2| 4“80(8

+ 6(8(a2 + 242) — |ﬁ1|)0<8&2 -

A derivation of this result which includes the fluctuations
around the saddle points is given in Appendix C.

In order to access the Sharpe-Singleton scenario let
us consider the case where 7z is small compared to
16]a2| — 842 which is taken large and positive.

The terms in the second line of Eq. (27) give rise to a
strip of eigenvalues of half width 8a2/3 centered at
—16|a 2| /2 while the term in the third line gives rise to a
strip of eigenvalues of half width 8a2/3 centered at
16/a2|/>. The relative height of the two strips is
exp(4rir). Therefore even though the magnitude of 7 is
relatively small it has a dramatic effect: As the sign of
changes from positive to negative values the entire strip of
eigenvalues jumps from its position around —16]az|/> to
the new position around 16|a2|/=. For a plot see Fig. 3.
Because of the exponential suppression of one of the strips,
the jump of the support of the spectrum occurs on a scale of
m~ O(1) or m ~1/VY and leads to the first order dis-
continuity of the chiral condensate at m = 0 as predicted
by the Sharpe-Singleton scenario.

In the continuum limit the chiral condensate also jumps
from 2 to —2 onascale of i1 ~ O(1) orm ~ 1/VX, butin
this case the difference in the potential between the two
minima is of O(s#) as opposed to O(a2) for the Sharpe-
Singleton scenario.

The terms in the mean field two-flavor partition func-
tion, see Eq. (25), are directly responsible for the jump of
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The mean field result for the two-flavor partition func-
tion with dg = 0 is given by
ZgAF(m;&g) = =4y 4 ,~2m—Aag
+ 0(8a2 — |ml)e™ /34 (25)
The a¢ dependence can again be restored by means of

introducing an additional Gaussian integral. In the mean
field limit this results in

M (1; g, ) = p2it16laZ|—4az 4 ,—2i+16|a2|—4ak
+ 0(8(a3 + 2a2) — |i|)e™ /3@ —2lagh+4a;,
(26)
Note that when 2 < 0 the term in the second line of

this equation is absent The final result for the mean field
two-flavor eigenvalue density of Dyy is

— |% + 16]agl*))

— & — 16lael*1)

2)ag |2

It
| (a2 — 2lagl?

)em2/8(ﬁ2 2|a2|)+408} (27)

|

the eigenvalue density at i1 = 0 in the theory with dynami-
cal quarks. In the corresponding quenched computation we
simply have

ch _o(&; dg, ag) = fdy e~ Ve/16lag |0(8&§ — 12 = ygl),

(28)
which leads to a single strip of eigenvalues centered at the
imaginary axis independent of the value of Wy

PME _o(%; dg, a5) = (823 — |5]). (29)

B. The connection to the mean field results of Sharpe
and Singleton

From the results of the previous section we see that the
gap from the quark mass to the edge of the strip of
eigenvalues of Dy is given by

|m| — 8(Wyg + 2W¢)a?/>. (30)

In [2] it was found that the pion masses for |m|>>
8(Wg + 2We)a? are given by

m sz — |3 — 8(Wy + 2W,)a2. 31)

Hence the gap from the quark mass to the edge of the strip
of eigenvalues of Dy, can be thought of as the effective
quark mass that enters the standard form of the
Gell-Mann-Oakes-Renner relation. In particular, note
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I T I T T A . . .
I ) again in perfect agreement with the leading order p-regime
m=+5, a=i3, a ;=3 .
1k i computation of [2].
By
> 08 7 C. Direct computation of the quenched
E o6 and unquenched condensate
\E\ From the essential part played by the dynamical fermion
& 04 - determinant in the realization of the Sharpe-Singleton
1SN scenario in terms of the eigenvalues of the Wilson Dirac
02 - operator we conclude that the Sharpe-Singleton first order
scenario only takes place in the theory with dynamical
O _2(‘)0 ‘ g 2‘00 ‘ 200 quarks. Here we explif:itly compute the quenchqd and
=V unquenched microscopic chiral condensate and directly
‘ : ‘ : verify that the first order jump of the chiral condensate at
m= -5, a=i3, a,=3 m =0 only takes place in the theory with dynamical
1} : quarks.
o The unquenched microscopic chiral condensate is ob-
o 08 7 tained from the microscopic partition function by
g
HE 06 -
S| | R 1 1 d o n
= N, i 8) = —— —— ——Z}, (i ;). (33)
FS . 04 - - Nf ZK/j dm f
~ ] |
02 - | '
Specifically, for two mass degenerate flavors we have [11]
0 L | L 2 L L L
-400 -200 0 200 400 1

o . .
xXV 4 m, m;d; _ d0,dB,|er — ¢'02|?
fymah i) =5 7 o [ e |
FIG. 3 (color online). The Wilson Dirac spectrum for the

0,+0
Sharpe-Singleton scenario: Shown is the mean field spectral X e 2)(00501 +cost,)

density of the Wilson Dirac operator for N, = 2 with d = 3i X exp[Mi(cosh; + cosh,)

and dg = 3 (@; = 0) as a function of £ = Re[Z] (the mean field —” 5

density is independent of § = Im[Z]). The choice of d, and dg — 4ag(cost; + cosb,)

corresponds to a negative value of Wy + 2Wy and hence the — 2&%(003(201) + c0s(26,))] (34)

Sharpe-Singleton scenario. The two flavors have equal mass

m =35 (top panel) and /i = —5 (bottom panel). Even though

the quark mass, marked by X on the x axis, only changes by a with

small amount compared to the size of the gap the entire strip of

eigenvalues jumps to the opposite side of the origin. This leads to - _ ' '

the first order jump of the chiral condensate at m = 0. Z}(,fzz(rh; a;) = [ d6,df,|e’?t — eif2|2e(01+02)
-1

X explr(cosf; + cosd
that for Wg + 2W¢ < 0 the mass never reaches the strip of plrin( 1 2)

eigenvalues. Correspondingly, the minimal value of the — 4ag(cost, + cosb,)*
pion mass is given by — 233(c0s(26,) + cos(26,))]. (35)
2 2
Ml — (W + 2We)a?, (32)

The quenched condensate was derived in [12,22]

N _olmsa;) = [ dc[ —— sin(0)e' =" exp[ — i sin(f) — irr sinh(s) — € coshs + 4a2(—isin(f) + sinh(s))?
+ 4a3(cos(8) — cosh(s))? + 2a3(cos(26) — cosh(2s))](— — sin(6) + 15 sinh(s)

. . 1
— 4(a2 + a2)(sin%(#) + sinh?(s)) + 2a3(cos(26) + cosh(2s) + €0*% + ¢71075) + 5) (36)
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FIG. 4 (color online).
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1 E T T T T T T ]

— a=00 agl

— agF=i05 ags=l
— ag=il0 agl

0.5

v=0
= L(mia)
o

-0.5

mXxV

The Sharpe-Singleton first order phase transition is due to dynamical quarks and is not present in the quenched

case even if Wy + 2Wy < 0. Shown is the microscopic chiral condensate as a function of the quark mass for @g = 1 and a¢ = 0, 0.5i
and i corresponding to Wg + 2Wq >0, Wy + 2Wg = 0, and Wy + 2Wg <0, respectively. Left Ny = 0: In the quenched case there is
hardly any effect of W < 0. Right Ny = 2: For two flavors the increasingly negative W, drives the system from the Aoki phase to the
Sharpe-Singleton scenario as can be seen by the formation of the discontinuity of the chiral condensate on a scale of m ~ 1/V.

In Refs. [12,22], its imaginary part was studied since it is
directly related to the real eigenvalues of Dy,. Here we are
after the quenched condensate itself which is given by its
real part. Figure 4 compares the behavior of the quenched
chiral condensate and the chiral condensate for N, = 2 for
three sets of values of Wy and Wg. While the first order
jump forms in the thermodynamic limit for the condensate
with dynamical quarks when Wy + 2Wj turns negative the
kink in the mass dependence of the quenched condensate
remains. This directly verifies that the Sharpe-Singleton
scenario is absent in quenched theory independent of the
value of W.

Note that the authors of [6] concluded that both the Aoki
phase and the Sharpe-Singleton scenario are possible in the
quenched theory. They reached this conclusion because
they worked in the large N, limit in which Wy and W,
vanish, and because the constraint on the sign of Wg was
not known at the time.

VII. CONCLUSIONS

The first order scenario of Sharpe and Singleton for
lattice QCD with Wilson fermions has been studied from
the perspective of the eigenvalues of the Wilson Dirac
operator. The behavior of the Wilson Dirac eigenvalues
not only gives constraints on the additional low energy
parameters of Wilson chiral perturbation theory (Wy < 0,
W, <0, and Wg > 0), it also allows us to explain the way
in which the first order discontinuity of the chiral conden-
sate is realized. In particular, we have shown that the
associated collective jump of the spectrum of the Wilson
Dirac operator only occurs in the theory with dynamical
quarks. The Sharpe-Singleton scenario is therefore not
realized in the quenched theory which enters in the Aoki
phase at sufficiently small quark mass. By a direct compu-
tation of the quenched microscopic chiral condensate we

verified that the second order phase transition occurs in the
quenched theory even if Wg + 2Wy < 0. This explains the
puzzle why the Aoki phase dominates in the chiral limit of
quenched lattice simulations while both the Aoki phase
and the Sharpe-Singleton scenario have been observed in
lattice QCD with dynamical Wilson fermions.

The above conclusion was made possible by the com-
putation of the exact analytical result for the microscopic
spectral density of the Wilson Dirac operator in lattice
QCD with two dynamical flavors. The explicit form of
the microscopic expression allowed us to compute the
mean field eigenvalue density and in turn make a direct
connection to the original leading order p-regime results of
Sharpe and Singleton.

It would be most interesting to test the predictions
presented in this paper against dynamical lattice QCD
simulations. Since the effects of Wy and Wg on the spec-
trum of Dy, in the unquenched theory are drastically differ-
ent this offers a direct way to determine the values of these
low energy constants. An early lattice study of the Wilson
Dirac eigenvalues in dynamical simulations with light
quarks appeared in [53].

Finally, since the additional low energy constants of
Wilson chiral perturbation theory parametrize the discreti-
zation errors, it is also most interesting to consider the
effects of improvements of the lattice action on the un-
quenched spectrum of the Wilson Dirac operator [54].
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APPENDIX A: WILSON RANDOM
MATRIX THEORY

In order to derive the microscopic spectral density of Dy,
it is convenient to use Wilson chiral random matrix theory
introduced in [11].

The partition function of Wilson chiral random matrix
theory is defined as

N;

Zy = f dAdBdW}[[l det(Dy + if) P(A, B, W). (Al)

The matrix integrals are over the complex Haar measure.

The random matrix analog of the Wilson Dirac operator
is

PHYSICAL REVIEW D 85, 094011 (2012)

are (n + v) X (n+ v») and n X n complex matrices, re-
spectively, and W is an arbitrary complex (n + v) X n
matrix. Finally, the weight is

P(A B W)= exp[— % Ti[A? + B?] — % Tr[WW*]:I,
(A4)

where N = 2n + v.

As shown in Ref. [12], the Wilson random matrix par-
tition function matches the microscopic partition function
of Wilson chiral perturbation theory in the limit N — oo
with N and Na? fixed provided that we identify

~ [ aA iw . Na&?
Dy = (iWT iB ), (A2) N = mXV, e = a’WgV. (A5)
where
; ; An eigenvalue representation of the partition function
A=A" and B'=B (A3) was derived in [44]
J
B n n+v n v
ZK// = /dZA2n+V(Z) l_[(zar - m)Nf l_[(zbl - m)Nf l_[ gZ(Zal; Zar) l_[ ZZ;lgl(Zhl): (A6)
a=1 b=1 a=1 b=1
where Z = (21, ..., Zup 210 - - -» Zu+0,1) are the 2n + v eigenvalues of Dy, and
_ " noo
81(2) = \,m exp[— 272" ]5()’)y (A7)
and
n’ s n(x; +x)*  nly —y)?
, = — - 5 (7, — 7
$20a %) = T T — ol [EXP[ 42 4 ] (@~ 2)
1 n n Jn(l + a2
+ 3 expl:— 4—52()61 +x)* + Z(xl - xz)z]erfc[T) ) — X2|]5(J’1)5(J’2):|- (A8)

Finally, A(Z) is the Vandermonde determinant of the
2n + v eigenvalues.

In Sec. V we use this eigenvalue representation to derive
the general form of the unquenched spectral density of Dyy.

APPENDIX B: SIMPLIFICATION OF THE
PARTITION FUNCTION

In this Appendix we express the general partition func-
tion with even N in terms of a Pfaffian of two-flavor
partition functions. This Pfaffian form was first given in
[46]. Here we give a proof in terms of chiral Lagrangians
rather than random matrix theories. In particular, we ex-
plicitly express the four-flavor partition function entering
Eq. (16) in terms of two-flavor partition functions.

We start from the general N, microscopic partition
function, Eq. (5), with @g¢ = a@; = 0 and make use of the
identity

|
explaz Tr(U? + U~?)]
=exp[2Na3 + a3 Tr(U — U~ 1)?],
- Tro? i
— ce2Vs@ deeXp[ng§+£Tra(U - U*l):l’ (B1)

where o is an Ny X N, anti-Hermitian matrix and ¢ a
normalization constant. After a shift of o by M we obtain

Z§, (M ag) = ce?™r% f do f dUdet"(iU)
Tr(oc — M)* i
X — 4+ _Tre(U-UMY|
xp [ 1642 5 Trot )]
(B2)

The next step is to decompose o = uSu~' with S a diago-
nal matrix and perform the integration over u by the
Itzykson-Zuber integral. We find
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Z}, (M: &) =

2N A(S) Tr(S — M)>?
(167 AZ)Nf/zf 9K © [ 1622

The Vandermonde determinant is defined by

Alxy, ..., x,) = l_[(xk - X)),

k=1
and an explicit expression for the partition function at ag = 0 is given by

! )”det[uk)“zyﬂ_l(xk)y

Zy (xy, .. xy 05 = 0) = c| — 5 5
f f° l—lk;l X A(xl’ ...,fo)

We have that

N R A(xy)
v7v . —_— =
A(xk)lkl(xk) ZNf(xk’QS =0) A(x%)

which we will denote by the symbol D. We now express D as a Pfaffian.
By using recursion relations for Bessel functions, D can be rewritten as

— A(xy)
A(xp)

detx} "1, - (xp),

detxl 17,4 p—1)(xp),

|Gs0r22, sk as = 0
k

(B3)

(B4)

(B5)

(B6)

(B7)

where P(k) = (1 — (—1)¥)/2. Writing the determinant as a sum over permutations and splitting the permutations into
permutations of odd integers 7, even integers 7, and the mixed permutations of even and odd integers 77¢°, we obtain

A y oo
- (Xk)z,( 17 ZZ( D7t l_[ ol me) l_[ Xyl o)

=0 od [=0even

The permutation over the even and odd integers can be resummed into a Vandermonde determinant

n—1

l—[ (_l)aoxi-l()(l)lv(xw”(l)) = A(X%O) l—[ Iv(xk"):

m° [=0odd k° odd
Z l_[ (—1)7x 21e+(11)1y+1(x7rf(/)) = A(xie) n L1 ().
¢ [=0even k¢ even

Next we combine the Vandermonde determinants as

A(x%,,)A(x%g)A(xk) _ A(xke)A(xk")F(xk":xkf) (xk”)A(xk”) 1
A(.X%) F(X%g, xze) F(xko xk") Xgo + Xje

with

U i) = l_[(xk =)

kil
The combination D can thus be written as

D= Z( l)gwd tI (xk”)xl"IVJrl(xlf).

Xku "F xle

(B8)

(B9)

(B10)

(B11)

(B12)

The determinant is a sum over permutations of even and odd integers which together with 77°° can be combined into a sum

over all permutations

D = Z(_l)()’ IV(xﬂ'(k))xﬂ'(l)IVJrl(xﬂ-(l))
Xak) T Xa()

s

which is equal to the Pfaffian

D= Pfl:ly(xk)xlly+l(xl) - I,,(xl)xklvﬂ(xk)],

Xk + X
where we have recovered the Pfaffian structure of [46]. This leads to [46]
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R 1
ZN,(M; ag) = AM) Pf[(iir; — 1y, )ZNf L (i, s ag)); =t Ny (B15)
The alternative proof given here shows that the result is manifestly universal.
For the four-flavor partition function entering Eq. (16) the Pfaffian structure yields
A oAk A s LA Z5(2, 25 ag) Z5 (13, iy @ ZY(Z, sy ag)ZY (2", iy a
Z]I(/- :4(Z,Z',m3, m4; ag) = _ AQ( - AS) 3»( 3 - 4 A*S) _ —— A*Z(A 3,\ S)A*Z( : 4A 8) _
4 (2 = 1z (2 — ) (2" — i) (2" — ig) (2 = 27)(E& — 1) (2" — 1in3) (g — 1iy)
o B a)Zy iy B16)
(2 = 2)(2 — ming) (2" — ring) (g — 1iny)
The latter two terms form a derivative in the limit 713 — rily = m
20 5 v s dg) — Z5(2, 2%, 48)Z8 (i, i Ag) 9 ,4[ 252, s ag) 1258, s ag) — Z3 (2, m;ag)am[z(z*,m;ag)]_ BI7

(& — m)*(&" — m)?

With this we have succeeded in expressing the four-flavor
partition function in terms of the two-flavor partition func-
tion. This form inserted in Eq. (16) leads to Eq. (17).

APPENDIX C: MEAN FIELD INCLUDING
FLUCTUATIONS

Here we compute the mean field eigenvalue density of
Dy, including the fluctuations about the saddle points.
In Appendix C 1 we derive the mean field limit of the

(2= 29E — )& — m)?

two-flavor partition function. A mean field approximation
for the four-flavor partition function that enters in the
spectral density, (21), is given in Appendix C 2, and the
mean field result for the spectral density is derived in
Appendix C 3. We discuss the explicit dependence on the
low energy constants Wy and Wy and give the result both
for the Aoki phase and the Sharpe-Singleton scenario. As
explained in Sec. IV we have Wg < 0 and Wy > 0.

1. The two-flavor partition function

We consider the two-flavor partition function

Zy(i; dg, ag) = [ exp[% Tr(U + U™Y) + |agl’[Tr(U + U HP — a3Tr(U? + U~2)]det” Ud u(U)
UQ2)

1
2772

,/;02 ; explr(cosp; + cosg,) + 4|ag|*(cosp, + cose,)?]

X exp[—4a3(cos> | + cos’g,) + 4azle” ¢t ¢)sin? (ng 5 qu)d[ ]

__1
2772

X exp[—2&§(cos¢l — cosg,)? + 4a3

From the exponent we recognize that in the mean field
limit we always have

COSQ; = COSQ,. (C2)
For a3 + 2a2 < 0 the solution of
m
cosp; + cosgp, = (C3)

4(a} — 2lagl?)

[ eXPI:_2(5l§ - 2|&6|2)(cosgol + cosg,
[0,27]*

— $)2]e”’(¢1+¢2)
4(ag — 2laql*)
~2

m . P11 — P2
+ 2 dl o]
8(a2 — 2|616|2)]Sln ( 2 ) L¢]

(CDH

is a minimum and does not contribute in the mean field
limit (this is the case of the Sharpe-Singleton scenario).
Therefore the maxima can only come from

sing; = sing, = 0. (C4)

In combination with Eq. (C2) this yields the two solutions
cos@| = cosg, = *1.
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We make the following expansion:

(+) (+) — 1 _ 152 (=) — =) — _ 15,2
P = 0®1/2, cosg, » = 1 25‘P1/z’ @y =T + 001, CosQy 5 = 1+ §6¢1/2. (CS5)

The maximum of the two points is at cosg;, = sign/i. Thus we obtain the two-flavor partition function

S 1 . . . |1it . .
2Y i, ) = expl2lin] + 161ag —4a3] [ expl ~(*5 + 8lacl — 43)(3¢% + 5¢3) |(S¢1 — dardl5e)

_exp[2lm| + 16]agl* — 4a3]
27 (|| + 16]agl> — 8a3)?

(Co)

for a2 + 2a2 < 0.

For a3 + 2a2 > 0 (i.e. in the Aoki phase) the saddle point given in Eq. (C3) is a maximum. Hence we have to take it into
account in the saddle point analysis if the right-hand side of Eq. (C3) is in the interval [ —2, 2]. Thereby we recognize that
there are actually four saddle points fulfilling both conditions (C2) and (C3). The two angles may have the same sign or the
opposite one. Those with the same sign are algebraically suppressed by the sin® in the measure.

Let ¢y = arcos(/(8a3 — 16|dgl?)). The expansion about = ¢y is given by

A

(+) _ (+) — m =
Py =Teot @i, cose, ) 342 — 16]agP’ + singd @ 2, -
) _ - ) _ 1 -
= +6 , = >+ o .
€12 + @ P12 Cosey, 8&% — 16|&6|2 SIN@oo @/
The simplified integral which we have to solve is
1
>3 / exp[—2(a2 — 2|agl*)sin®@y(8¢; — S¢,)Je¢1F¢?)
27 JR2
mQ
X epr:—Z&Zsinzgo (8@, + 8¢y)? + 4a2 + %:Isinzgo d[S¢]
LT T s@g - 2lagh
1 i’
8myfa2(a2 — 2lagl) 8(a5 — 2lagl")

Hence the two-flavor partition function is given by

,,h2

exp[2lm| + 16]ag|* — 4a3] N 1
8(‘% - 2|516|2)

ZIZVIF ﬁ’l, &6’ C,\lg) ==

exp[4a§ 4 ]0(8&§ — 16lagl? — )

(€9

for ag + 2a% > 0. Please notice that the second term results from two saddle points at = ¢, and only appears in a certain
range of the quark mass. Moreover the result (C9) is also valid for 4§ + 2a2 < 0 since the Heaviside distribution vanishes
in this regime.

2. The modified four-flavor partition function

We consider the four-flavor partition function which for Wy < 0 can be written as
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~2 ~ 12
in e o n o NAg T2l i (G—ye? . R .
Zi(z,z,m;ae,ag)=7|yllz—m|4jwdyﬁe>ﬂp[— 6 - ‘ —4a§:|ZZ(z—y6,

~— 1 ~ = 25— Ve, M — g3 d
4. /m|aglag 16]ae)? 8a3 Ye Vo3 ds)

1
= |9l|z — r?z|4f CXP[E Tr diag(i, i, 2, 2°)(U + U™') — a3 Tr(U* + Ufz)]
u4)

4lagla3 iy R
— S (_Tr(U+U")— - —4az |det"Udu(U
exp[ TP 6|2( ( ) 8) 38 ag:l et’Udu(U)

64 . - .
:l77'4$1gn(y)j;0277]4 dl¢] l_[ sm( )exp[—4a§Zcosz¢j+8a§]

I=i<j=4 j=1
4laq|*az 2 32 4 ]
X ex cos — —4az +1v i
p[ + 2| 6|2 (Z ¢J AZ) 8&% 8 jZ ¢]

det[exp[m cosg;], cosp;explrcose;], exp[Zcose;], exp[Z* cose;]]
l-[1<l<]<4(cos¢l COS¢])

32 (i — @
=" exp[442 [ d smz(y)eW(@ﬁwﬁ«Jﬁw)
v pl4dag] - [¢] l_[ 5

1=i<j=4

expl —245(cos @, (1) — COS@,2)” — 235(coS@,3) — 08P, (4)°]

X
wES(4) (COSP (1) = COSP,(3)) (COSP (1) — COSP 4,(4))(COSP 4y (2) — COSP ,(3))(COSPy(2) — COSP (4))

% sin[[$](cose ) — cos@ )]
COSP (3) — COSPy(4)

X exp[—

exp[(4lagl* — 2a3)(cos@ (1) + COS@ ,(2))* + M(COS@ (1) T €08, )]
1

—_[%+8|ag|*(cos + cos —442(cos + cos 2]. C10

5@ T 2|&6|2)[ gl *(cose ) Puw) §(cos@,3) Pu@)] (C10)

The permutation group of four elements is denoted by S(4).
In the mean field limit we have to expand the partition function about the maxima of the exponent. Omitting the
permutations we identify two immediate conditions,

(0)

cosgo(]o) = cos¢, and cosgo(go) = cosqof‘o). (C11)

This is solved by
g0(10> _ _¢(20) and <P(0) - _%0)' (C12)

Other choices are suppressed by the Vandermonde determinant. Hence we have to maximize the function

[2 + 16]ag|? cose, — 8a3 cos¢3]2]. (C13)

N N . 1
f(x, QDI) = exp[8(2|a6|2 - aé)COSZQDl + 2m Cosqol]exp[— m

We consider the case a3 + 2A2 < 0 (the Sharpe-Singleton scenario). Therefore the extremum for cos¢; is a minimum
and not a maximum. The 51tuat10n would be completely different for a3 + 242 > 0; see the discussion after Eq. (C22).
The maximum of f(x, ¢;) for all x is given by

mea[égf(x, ®1) = exp[8(2|ag|* — a3)cos’ @, + 2 cosg, |- (C14)
X

This result takes its maximum at cosgo( ) = = signm yielding

o) = 16la¢)2 — 842 + 2|m]. Cl15
xeR,I:}laé)Eo,zﬂf(x @) = exp[16]a| ag + 2|ml] (C15)

In the integral (C10) this maximum should be inside the interval

£ € [—8a3 — 16|ag|*signim, 843 — 16|ae|*signim]. (C16)
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The condition for the second integral is then

£ + 16]ag|*signm

0) _
cos = C17
o % (C17)
We make the following expansion:
1 — signm signmi 1 — signm
@ :Tg77+5§01, Cosp| = signi — s S¢1, Py = _Tgﬂ""&oz,
signim
cosg, = signm — & 690%, @3 = 90(30) + S¢3, cospz = cosgogo) - singog0)5g03,

Q4 = —<ng) + O¢u, cospy = cosgogo) + sin<pgo)6<p4. (C18)

This expansion is substituted into Eq. (C10) and we omit the sum since each term gives the same contribution and the
degeneracy of the maximum,

()

- 2\4 1 — signii
ZEAF@ 2, m; g, ag) = 24(;) exp[4€1§] fw d[5¢]sin2¢§°)sin8(%ﬂ - %)(5901 - 5@2)2

exp[—2a2sin2 o (8¢ + 8¢,4)?] sin[[9]singY (8¢5 + 5¢4)]
(signit — (& + 16laq|’signim) /8a5)*  sine V(8¢5 + S¢y)

X exp[—<@ + 8lagl? — 4a§)(5¢$ + 8¢3) + 2|m| + 16]ag|* — Sag]
2a3

8 6

X exp[—

This integral decouples into two twofold integrals. We need the following integral for large |y|,

sin([9]A) 91 Jis1>1
exp[ =282 A2 —=2d) = 7T€I'f|: ] = C20
[ exel-2aa1 ™ A (20)
where erf is the error function and use the identity
(1 —sigmi P\ 1 1 — sign o\
sinf( ——=—m— =) =3 1 — cos s T ¢
1
= 1—6(1 — signi cos<p§0))4
1
= E(signn% — (& + 16]ag|*signr) /8a3)*. (C21)

Then the final result for the partition function is given by

. 2\3/24/a3 + 2lagl? 20l + 16la.? — 442
ZME(z, 2% s dg —3(—) i expl2i| Ala,fl 98 08a2 — [% + 16lag)signiml)  (C22)
ag (I]/2 + 8lael* — 4ag)

for a3 + 2a2 < 0 (in the Sharpe-Singleton scenario).
In the Aoki phase, a2 + 2&% > (0, the extremum for cos¢; is a maximum; cf. Eq. (C13). However it will only
contribute if

|| = 8aZ — 16]agl? (C23)
8

and
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2|agl*m
p+—0 <= ga C24
T 2l | T (€29
Then the saddle point changes to
m X agl*m
cosgp(lo) = cosg0(30) = + 14| (C25)

8a2 — 16]ag)*’ 842 4a2(a2 — 2lagl)’

Hence the expansion about the saddle points is given by

@ = gD(lo) + 8¢y, cosp; = cosgo(lo) - singo(o)ﬁgoz, @y = _¢(10) + 5¢,, COSp, = cosgo(l) + singo(o)é‘goz,
@3 = (0) + 63, cosgp3 = cosg0(30) — sing; )5%, Q4= —gpgo) + 6@y, cosQ, = cosgo(;)) + 51nq0(0)5g04.
(C26)

The degeneracy of this maximum is four which results in the integral

10 (0)

5 0 O 4 L0
3 exp[4a ] [ d[ 8 ¢]sin® go(lo)sm 90(30) sin (%)Sin“(%)

 expl—2agsin’ e (B¢, + 5¢o)? — 2a3sin’ el (33 + S¢)?] sin[lj] s1ngo<°><a¢3 + 5¢4)]

(cosg” — COSgD(O))4 sing; O(sps + 8p,)

"0
X exp| (4lae]? — 2a2)sin20Q(S0; + 8@,)? + —— ]
P[( |ael ag)sin“p;” (8¢, ®2) 842 — 16]a, ]2

2 .
X exp[—mﬁlaslzsm@] (8¢ — 8¢,) — aEsing (53 — 3404)]2]

2\3/2 1 |aZ + 2lael? 72
:6(—) m/ |“6|2e p[ B +4a§:|. (C27)
w) a3 — 2|agl 8ag — 16|al

Combining this with the result (C22) for a3 + 242 < 0 we find

(2)3/2 Va3 + 2lagl® expl2lml + 16]ag|> — 442
’7T

ZMF(2, 2%, i dg, Gg) = 3 0(8a3 — | + 16]ag|*signs
a2 25, i de, ag) % (Iil/2 + 8lagl? _4&3)2 (843 | |ae |*signsi])
2\3/2 1 |az ~|—2|d6|2 m?
+e(Z) = 4A2]08A2—16A2—A
2 2
X 0(8&§ — &+ % ) (C28)
(ag - 2|a6| )

This formula applies to both scenarios since the Heaviside distribution puts the second term to zero in the Sharpe-Singleton
scenario.

3. The unquenched level density

Combining the mean field limit of the numerator and denominator of Eq. (21) given by Egs. (C9) and (C28),
respectively, we obtain

PME (&, 1 dg, dg) = 1 ZY¥ (2, 2%, h; G, ds)
=X, M; dg, dg) = R
e 32(2w)5/2,/a2 2o 2" UM as)
3 o S
(277.)3 -3 [0(2|a6|2 a3)0(8ai — |% + 16|aglsignsl)

2| ag |

0882 — 16lag)? — |rh|)0(8&2 - |x L
’ ° ’ (a3 — 2lagl?)

)] (C29)

094011-16



REALIZATION OF THE SHARPE-SINGLETON SCENARIO

independent of the value of Wg. The first term will drop out
if we are in the Aoki phase whereas the second term
vanishes in the Sharpe-Singleton scenario. However the
reason for this mechanism is quite different in the two
cases. In the Aoki phase the first term is exponentially
suppressed in comparison to the second one which results
from the extremum (C25). In the Sharpe-Singleton sce-
nario the saddle point is a minimum and enters a priori not
in the saddle point analysis. Hence we have to look at the
boundaries of the four-dimensional box spanned by the
four cosinus; see the discussion in Appendix C 2.

PHYSICAL REVIEW D 85, 094011 (2012)

This mechanism explains why we find a second order
transition in the Aoki phase and a first order transition in
the Sharpe-Singleton scenario. The extremum (C25) can
cross the four-dimensional box with varying quark mass 1
and eigenvalue X. Hence we have a continuous process
from one boundary to the other in the Aoki scenario. When
this extremum is excluded as in the Sharpe-Singleton
scenario, the maximum has to jump from one boundary
to the other. This manifests itself in the sign of the mass in
the Heaviside distribution of the first term and the mass
itself in the other one.
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