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We assume that the most important quark correlations are pairwise at all baryon densities. We introduce

correlated pairs by means of Bogoliubov transformations which are functions of time and spatial gauge

fields, in the formalism of the transfer matrix with lattice regularization. The dependence on time and

gauge fields allows us to enforce gauge invariance and other symmetries in the transformed quantities in

the same way as in the original ones. We derive the quark contribution to the free energy at finite chemical

potential in a certain approximation. Its expression cannot be evaluated analytically, but it has a definite

sign.
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I. INTRODUCTION

Our understanding of QCD, at least in the nonperturba-
tive regime for the gauge coupling constant, strongly relies
on numerical simulations which, indeed, have become
more and more performing over the years. However, we
would like to construct an approximate description which
respects first principles and captures what we believe are
the essential features. This initial approximation should be
the first step of a perturbative scheme able to produce
systematic improvements.

This kind of approach becomes more appealing when we
wish to investigate QCD at finite chemical potential, be-
cause the numerical simulations of the fermion sector are
plagued by the infamous sign problem. For example, in the
fermion contribution to the free energy, this difficulty is
revealed by the large accuracy needed in the evaluation of
terms which (almost) cancel out among themselves1.

We suspect that the fermion contributions affected by
sign fluctuations are due to states of high energy. In such a
case, since these contributions to the free energy (almost)
cancel out, an approximation which retains only the more
stable fermion states, for any gauge-field configuration,
would reasonably solve the problem, simply because it
neglects these fluctuations altogether.

There are several indications which might help in select-
ing such fermion states. At low baryon density, many
authors think that diquarks are important substructures in
hadrons. Actually, in a historical perspective, baryonic
constituents with diquark quantum numbers were already
hypothesized by Gell-Mann [7], but as elementary constit-
uents. Later, with various motivations, models of baryons
constructed in terms of one quark and one diquark have

been investigated [8–15], and the diquark was regarded as
a really composite state, even though, in practice, it was
often treated as elementary. Subsequently, diquarks played
an increasingly relevant role in the interpretation and ex-
planation of several properties of mesons [16–20].
Also at very high baryon density diquarks appear of

fundamental importance as the various phases of color
superconductivity can be understood in terms of their
condensation [21–24].
A relatively smaller amount of work has been done at

intermediate densities, where, however, it has been sug-
gested that the structure of condensed diquarks might
change with decreasing baryon density, while their size
might shrink down to a dimension comparable with the
average interquark distance. This could explain the cross-
over from color superconductivity to Bose-Einstein con-
densation of molecular diquarks [25–28].
In conclusion, we deem that the results reported above2

strongly suggest that two-quark correlations are very im-
portant at all baryon densities. In the following we shall
take seriously this hint and we will assume that fermion
states which are energetically stable, should always con-
tain diquarks, in a condensed phase at high baryon density,
accompanied by unpaired quarks at low baryon density.
We must emphasize that when we talk about a diquark

we mean only a pair of correlated quarks. Therefore, the
simple presence of diquarks does not necessarily imply the
existence of real or virtual bound states of two quarks, as
the molecular diquarks of a Bose-Einstein condensate or
the Cooper pairs of a color superconductive phase. Only
above some critical values of the chemical potential such
states can, eventually, appear.
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1For attempts to tackle this problem one can see [1–6].

2The quoted references are only a sample of a vast literature,
chosen to support our arguments. We apologize to authors whose
important contributions have not been acknowledged here.
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At a formal level, we will adopt the lattice regularization
and use the Kogut-Susskind formulation for fermions.

As a first step, we need to identify positive and negative
energy states of the Dirac lattice Hamiltonian. For this
purpose we perform a first Bogoliubov transformation,
which is equivalent to a Foldy-Wouthuysen transformation
[29]. Bare fermions are replaced by quasiparticles in pres-
ence of a background field. Such a structured state should
involve a stationary fermion configuration. Stationarity of
the fermions demands stationarity of the bosonic fields
with which they interact. In the case of gauge fields, in
the gauge U0 ¼ 1, stationarity implies that the spatial
components are constant in time. It follows that the chro-
momagnetic fields are constant in time and the chromo-
electric fields vanish. For such gauge-field configurations
we have been able to solve the gap equations of our first
Bogoliubov transformation. We remark that the above
framework is well suited to study also the effect of an
intense background magnetic field on strong interactions,
a problem considered of interest both at the level of the
cosmological electroweak phase transition and for the
heavy-ion collisions. Indeed, numerical simulations have
already been performed both in the quenched approxima-
tion (see, for example, [30]) and with dynamical fermions
(see [31] which contains also a detailed bibliography), in
order to try to understand magnetic catalysis, i.e. the
increase of chiral symmetry breaking induced by the mag-
netic background field.

Afterwards, in this paper, we introduce diquarks by
means of a second Bogoliubov transformation, so that
diquarks will appear as Cooper pairs of quasiparticles.

In the fermion contribution to the free energy, at fixed
stationary gauge-field configuration, we can distinguish, in
our formalism, a contribution Sbo from the vacuum, which
we call bosonic, from the fermonic action of the remaining
quasiparticles. At low temperature Sbo is dominating and
becomes exactly the whole free energy at zero temperature.
At vanishing chemical potential �, it takes the form

S bo ¼ �L0

2
tr ln �Q ¼ �L0

2

X
i

lnQi; (1.1)

where L0 is the size in the temporal direction of the lattice,
and is therefore the inverse temperature, and L0=2 is the
number of blocks in which we have to divide the time
direction. The operator �Q is related, as we shall see later, to
the operator N [see its explicit form in (3.6)] appearing in
the definition of the transfer matrix of the quarks, and the
Qi (respectively Ni) are its gauge-independent eigenvalues
corresponding to eigenstates that we enumerate by using
the index i. More precisely,

Qi ¼ 1þ 1
2

�
jNij2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jNij4 þ 4jNij2

q �
; (1.2)

a relation which can be put in the parametric form

Qi ¼ e2�i ; jNij ¼ 2 sinh�i; (1.3)

where �i is of the order of the lattice spacing and becomes
in the formal continuum limit the energy of the i-th state.
For all states i the eigenvalues Qi are, by inspection, real
and larger than unity; that is �i � 0. The result (1.1)
coincides with what we got without the introduction of
diquarks [32].
Let us now introduce a positive chemical potential. We

find that Sbo decreases according to:

S bo � �L0

�X
i

�i �
X
i2P

ð�i ��Þ
�
; (1.4)

where the set P denotes quasiparticles states i such that
�i < �. The above estimate has been derived by assuming
that diquarks are formed by quasiparticles in P with a
simple pairing structure, namely, for each i 2 P there is
one and only one conjugate state pðiÞ 2 P, and �pðiÞ ¼ �i.

As the eigenvalues �i’s do not depend on the chemical
potential, the fermonic number nF, defined by

nF ¼ � 1

L0

@Sbo

@�
; (1.5)

exactly counts the number of paired quark states of the
ensemble P. Thanks to the introduction of diquarks we
have taken into account in the bosonic action the non-
vanishing fermionic number. At increasing chemical po-
tential the background field is depleted because of Pauli
blocking. A short account of this analysis has already been
presented in [33].
To derive (1.4) we computed the bosonic contribution to

the vacuum after the two Bogoliubov transformations
which introduce, respectively, the background and the
diquark field. If, on one hand, (1.4) is recovered by the
fields which satisfy a variational principle, the general
expression, on the other hand, can be used to study multi-
quark mesons and baryons as quark-diquark composites by
taking into account the fluctuations of the background and
diquark fields, along the lines of the expansion presented in
[34].
For each fixed stationary gauge-field configuration we

get from the condition lnQi < 2� a sharp Fermi surface.
After the integration on gauge-field configurations we ex-
pect that the Fermi surface should be smoothed out. This is
confirmed by a perturbative calculation in the gauge cou-
pling constant that we performed for large values of the
chemical potential. In this case we get also a gap equation
compatible with that obtained by standard methods [35].
We think it is useful to compare our results with the

nonrelativistic ones. From the technical point of view our
formalism is a fermion number conserving extension of the
theory of superconductivity developed by Bogoliubov and
Valatin [36,37], which violates this symmetry. The en-
forcement of fermion conservation in many-body theories
can indeed be achieved by allowing time dependence of the
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Bogoliubov transformation [38]. In the saddle point
approximation, however, one gets a formulation close to
the quasichemical equilibrium theory of superconductors
developed by the Sydney group [39], in which fermion
number is explicitly preserved. Since the latter approach is
in our opinion more transparent than that of BCS and
Bogoliubov-Valatin from a physical point of view, estab-
lishing a connection between superconductivity and super-
fluidity, we report a brief account of both methods in
Appendix A.

The plan of the work is as follows. In Sec. II we report
some considerations about the fermion determinant. In
Sec. III we report the definitions and notations we will
use and in Sec. IV the time-dependent gauge-field depen-
dent Bogoliubov transformations. In Sec. V we discuss the
nilpotency expansion and we write and solve the saddle
point equations. In Sec. VI we perform the perturbative
expansion in the gauge coupling constant for large chemi-
cal potential and we conclude with some remarks in
Sec. VII.

II. THE SIGN PROBLEM

In this section we will review the well known sign
problem which affects numerical simulations in presence
of fermions in many problems and in the particular case
which is interesting for us, namely, QCD at finite density.

We begin from the expression of the grand-canonical
partition function of QCD directly in continuous space-
time. Formally it can be represented as a path integral in
euclidean space

Z ¼
Z
½dA� expð�SG½A�ÞZF½A�; (2.1)

where A represents the gauge fields, SG is their pure action,
and the fermion partition function is given by a Berezin
integral,

Z F½A� ¼
Z
½dc d �c � expð�SF½A�Þ; (2.2)

where the fermion action SF½A� is bilinear in the
Grassmann variables �c , c .

The explicit integration on the fermion fields provides
the so-called fermion determinant

Z F½A� ¼ det½r þmþ��0� (2.3)

where r is the contraction of the covariant derivative,
which depends on the gauge fields, with the Dirac
�-matrices, m is the fermion mass, and � is the chemical
potential.

Remark that as

ðr þmþ��0Þy ¼ �rþmþ���0; (2.4)

�5ðr þmþ��0Þ�5 ¼ �rþm���0; (2.5)

the fermion partition function is necessarily real both when
� is vanishing or purely imaginary, because under these
conditions

Z F½A� ¼ det�5½r þmþ��0��5

¼ det½r þmþ��0�y ¼ Z�
F½A�: (2.6)

In the Weyl (chiral) representation for �-matrices

�0 ¼
0 1

1 0

 !
; ~� ¼ 0 �i ~�

i ~� 0

 !
; (2.7)

where ~� are the Pauli matrices, the relevant matrix takes a
partitioned form,

rþmþ��0 ¼
m r0 þ�� i ~� � ~r

r0 þ�þ i ~� � ~r m

0
@

1
A;

(2.8)

which is particularly suitable to reduce the evaluation of
the determinant to a space of half dimension, indeed,

Z F½A�¼ det½m2�ðr0þ�þ i ~� � ~rÞðr0þ�� i ~� � ~rÞ�:
(2.9)

It soon follows that, in the case of � vanishing or purely
imaginary, not only the determinant is real, but it is also
nonnegative. Indeed, if we set

X ¼ ir0 þ i�þ ~� � ~r; (2.10)

then

Z F½A� ¼ detðm2 þ XyXÞ � detXyX � 0; (2.11)

where the first inequality becomes an equality for vanish-
ing mass and the second whenever X has a vanishing
eigenvalue.
However, for real, nonvanishing, chemical potential the

fermion determinant appears, in general, to be complex. A
more detailed analysis can show that it is possible to
combine gauge configurations in pairs so that the sum of
the determinants be real [40], but this is not enough. In
dynamic Monte Carlo simulations only a positive weight
can drive the importance sampling of configurations.
Therefore, if a negative factor comes out from the fermion
integration, the final numerical integration on gauge fields
becomes cumbersome.

III. DEFINITIONS AND NOTATIONS

The partition function of lattice QCD can be written as

Z ¼
Z
½dU� expð�SG½U�ÞZF½U�; (3.1)

where ½dU� is the Haar measure over the Wilson link
variables U, that lives in the gauge group, SG is the
Wilson action for the gauge fields, and ZF½U� is the
fermion determinant. For our purposes we shall make use
of the operator formulation, so that
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Z F ¼ TrF
YL0=2�1

t¼0

T t;tþ1: (3.2)

In the above equation L0 is the size extension of the lattice
in the temporal direction, so that it is also the inverse
temperature, T is the fermion transfer matrix which acts
in the Fock space of fermions, and TrF is its trace. We shall
make use of the Kogut-Susskind formulation for lattice
fermions, so that fermion fields live on blocks of size twice
the lattice spacing. The index t labels the blocks along the
temporal direction.

The expression of the transfer matrix in the gauge
U0 ¼ 1, but for Wilson fermions and in the particular
case r ¼ 1 for the Wilson parameter, was given by
Lüscher [41], who proved also its positivity. See also
[42,43] for the generalization to different values of the
parameter r. The extension to Kogut-Susskind fermions,
in the so-called spin basis, was given in [44,45]. We shall
use, instead, the flavor basis because a simpler transfer
matrix is available for this formulation [46].

Without fixing the gauge, the transfer matrix, at nonzero
chemical potential �, can be written as

T t;tþ1 :¼ T̂y
t V̂t expð2�n̂ÞT̂tþ1; (3.3)

where n̂ is the fermion-number operator

n̂ :¼ ûyû� v̂yv̂; (3.4)

(the sum on all the indices is understood) with ûy and v̂y,
creation operators of fermions and antifermions, obeying
canonical anticommutation relations and

T̂t ¼ exp½v̂Ntû�;
V̂t ¼ exp½ûy lnU0;tûþ v̂y lnU�

0;tv̂�: (3.5)

The matrices Nt are functions of the spatial-link variables
at time t. More precisely

N ¼�2ð�0 � 1Þ
�
mþX3

j¼1

ð�j � 1Þ½Pð�Þ
j rðþÞ

j þPðþÞ
j rð�Þ

j �
�
;

(3.6)

where

Pð�Þ
j ¼ 1

2ð1 � 1� �j�5 � t5tjÞ (3.7)

are projection operators, �� and t� are Dirac and taste

matrices,

rðþÞ
j ¼ 1

2ðUjT
ðþÞ
j � 1Þ; rð�Þ

j ¼ 1
2ð1� Tð�Þ

j Uy
j Þ (3.8)

are covariant derivatives, Tð�Þ
j are forward/backward trans-

lation operators of one block of size twice the lattice

spacing, and Uj is the j-th component of ~U, the spatial-

link variables associated to the blocks.
The operators

P� ¼ 1
2ð1 � 1	 �0�5 � t5t0Þ (3.9)

project on the components of the fermion field which
propagate forward or backward in time

u ¼ Pþc ; vy ¼ P�c : (3.10)

The symbol ‘‘tr’’ denotes the trace over fermion-
antifermion internal quantum numbers and spatial coordi-
nates (but not over time). We introduce the notation, which
we will use for any matrix �

tr�� :¼ trðP��Þ: (3.11)

Finally we will denote by Tð�Þ
0 the forward and backward

translation operators of one block, that is two lattice spac-
ing, in the time direction

½Tð�Þ
0 �t1;t2 ¼ �t2;t1�1: (3.12)

IV. TIME-DEPENDENT BOGOLIUBOV
TRANSFORMATIONS

We evaluate the trace of the fermion transfer matrix in a
basis obtained by performing Bogoliubov transformations
on the coherent states

j�;�i ¼ expð��ûy � �v̂yÞj0i; (4.1)

where the �, � are Grassmann fields.
In a first transformation, we introduce quasiparticles

operators �̂, �̂ that have the same fermion number as the
original operators û, v̂

�̂ ¼ Rð1=2Þðû�F yv̂yÞ; �̂ ¼ ðv̂þ ûyF yÞR

1=2

;

(4.2)

where

R ¼ ð1þF yF Þ�1; R

 ¼ ð1þFF yÞ�1: (4.3)

The upperscript circle denotes the involution defined by the
above equations. The new operators satisfy canonical com-
mutation relations for any choice of the matrix F . The
vacuum of the new operators is a condensate of a compos-
ite boson

jF i ¼ expðF̂ yÞj0i; (4.4)

where

F̂ y ¼ ûyF yv̂y: (4.5)

By a second Bogoliubov transformation, we introduce
new quasiparticle operators �̂ which have the same fer-
mion number as û

�̂ ¼ r1=2ð�̂�Dy�̂yÞ; (4.6)

where

r ¼ ð1þDyDÞ�1 (4.7)

and the bosonic field represented by the antisymmetric
matrix D has fermion number two. The corresponding
operator
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D̂ y ¼ �̂yDy�̂y (4.8)

will represent diquarks.
The vacuum of the new operators is

jD;F i ¼ exp

�
1
2D̂

y
�
expðF̂ yÞj0i

¼ exp

�
1
2�̂

yDy�̂y
�
expðûyF yv̂yÞj0i; (4.9)

namely, a condensate of diquarks (made of quasiparticles)
in a background field.

If we perform a gauge transformation

ĉ ðxÞ ! ĉ 0ðxÞ ¼ gðxÞĉ ðxÞ; (4.10)

both components û and v̂y transform in the same way,
that is

ûðxÞ ! û0ðxÞ ¼ gðxÞûðxÞ;
v̂yðxÞ ! v̂0yðxÞ ¼ gðxÞv̂yðxÞ:

(4.11)

In order to get that also �̂ transforms in the same way we
need, because of (4.2), that the matrix appearing in the first
transformation at time t transforms according to

ðF y
t Þx;y ! ðF 0y

t Þx;y ¼ gðt;xÞðF y
t Þx;ygyðt; yÞ: (4.12)

This would make F̂ and the states jF i be gauge invariant.
If we now demand that also �̂ transforms as �̂ we need,

because of (4.6), that the matrix appearing in the second
transformation at time t transforms according to

ðDy
t Þx;y ! ðD0y

t Þx;y ¼ gðt;xÞðDy
t Þx;ygTðt; yÞ; (4.13)

which also implies that D̂ is gauge invariant. Therefore
under the conditions (4.12) and (4.13) all the states jD;F i
would be gauge invariant. We will see below how such
conditions can be realized.

After the first transformation the partition function was
represented in [29,32] as a Berezin integral, with the result

Z F ¼
Z
½d�d��d�d���e�SmeðF Þ�Sqpð�;�;F Þ; (4.14)

where the Grassmann variables ��, �, ��, � satisfy anti-
periodic boundary conditions in time. In the above equa-
tion Sqpð�;�;F Þ, which is the action of quasiparticles,

takes the form

Sqpð�;�;F Þ¼�2
XL0=2�1

t¼0

½�tþ1I
ð2;1Þ
tþ1 �tþ1þ��

t I
ð1;2Þ
t ��

t

þ��
t ðrt�H tÞ�tþ1��tþ1ðr




t�H



tÞ��
t �;

(4.15)

where the covariant derivatives are defined as

rt :¼ 1
2ðe2�U0;t � Tð�Þ

0 Þ; r


t :¼ 1

2ðe�2�Uy
0;t � TðþÞ

0 Þ;
(4.16)

and Tð�Þ
0 are translation operators of one time block defined

in (3.12). The presence of the factors 2 is related to the fact
that neighboring blocks stay at two lattice spacings. The
explicit expressions for the mesonic action SmeðF Þ, for the
Hamiltonians of the fermions and the antifermionsH t and

H



t, and for the mixing terms between quasiparticles and

quasiantiparticles Ið2;1Þtþ1 and Ið1;2Þt will be reported in the next

section.
After the second Bogoliubov transformation the parti-

tion function takes the form (derived in Appendix B)

Z F ¼
Z
½d�d��d�d���e�SboðF ;DÞ�S0qpð�;�;F ;DÞ; (4.17)

where S0qpð�;�;F ;DÞ is a quadratic function of the qua-

siparticles fields (whose expression will not be used in the
present work) and

SboðF ;DÞ ¼ SmeðF Þ þ SdqðF ;DÞ (4.18)

is defined by

e�SboðF ;DÞ ¼ YL0=2�1

t¼0

hDt;F tjT t;tþ1jDtþ1;F tþ1i
hDt;F tjDt;F ti : (4.19)

It is the purely bosonic part of the action and is obtained by
neglecting the contributions from the quasiparticles. The
new term Sdq, that we call the diquark action, reads

Sdq ¼ 1
2

XL0=2�1

t¼0

trþflnð1þDtD
y
t Þ

� lnð1þ e4�DtQ
�1
tþ1;tD

y
tþ1Q

�T
tþ1;tÞg: (4.20)

The matrix Q�1
tþ1;t is defined by

Q�1
tþ1;t

:¼ U0;t � 2e�2�H t; (4.21)

and we denote by Q�T
tþ1;t the transpose of the inverse of the

matrix Qtþ1;t.

At this point F and D appear as external fields depen-
dent on time. How can they transform to have gauge
covariance of the Bogoliubov transformations?
For the first transformation this can be obtained by

making F a function of the gauge fields. Indeed it is
enough to allow a dependence of F from the spatial-link
variables Uk;t such that, under a gauge transformation,

F y
t ½Uk;t� ! F 0y

t ½U0
k;t� ¼ F y

t ½U0
k;t� (4.22)

with

ðF y
t ½U0

k;t�Þx;y ¼ ðF y
t ½gtUk;tg

y
t �Þx;y

¼ gðt;xÞðF y
t ½Uk;t�Þx;ygyðt; yÞ: (4.23)
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This means that the matrix elements ðF tÞx;y depend on

strings �tðCx;yÞ of products of link variables at time t along

paths Cx;y between the positions x and y, which realize the

parallel transport and transform according to

�tðCx;yÞ ! gðt;xÞ�tðCx;yÞgyðt; yÞ: (4.24)

An attempt to proceed in the same way with D, how-
ever, does not work. Let us consider, as an example for
the case in which the gauge group is SUð3Þ, the simple
proposal

ðDy
t Þa;bx;y ¼ �a0b0cð�a0a

t ðCw;xÞ�b0b
t ðCw;yÞ

� �a0b
t ðCw;yÞ�b0a

t ðCw;xÞÞdcðt;wÞ; (4.25)

whereD is explicitly antisymmetric, as it must be, and we
have also indicated the gauge-group indices. The gauge-
invariance condition (4.13) forces dcðt;wÞ to transform,
under gauge transformations, as a quark field. Therefore
dc must necessarily be made dynamical. This can be
obtained by integrating in the partition function this field
with an invariant probability measure, which is arbitrary
because ZF does not depend on it. More generally we will
write

Z F ¼
Z

d�ðF y;F ;Dy;DÞ

� ½d�d��d�d���e�SboðF ;DÞ�S0qpð�;�;F ;DÞ: (4.26)

Since the measure is gauge invariant, a gauge transforma-
tion on the fermion fields can be compensated by an
appropriate change of variables on the structure functions
F ;D. Therefore, they act as compensating fields, accord-
ing to the general discussion on symmetry breaking we
presented in [32].

A. Expressions for the mesonic and
quasiparticles action

By using the matrix F , which defines the first
Bogoliubov transformation, and the matrix N, which
appears in the definition of the transfer matrix (3.5), we
introduce the shorthands

F N;t :¼ 1þ Ny
t F t; F



N;t :¼ 1þF tN

y
t (4.27)

in terms of which we define the expressions

Etþ1;t :¼ F y
N;tþ1U

y
0;tF N;t þF y

tþ1U
y
0;tF t; (4.28)

E



t;tþ1 :¼ F


N;tU0;tðF



N;tþ1Þy þF tU0;tðF tþ1Þy: (4.29)

We shall adopt the convention that the inverse of an op-
erator with indices t; tþ 1 will take indices tþ 1; t. With

the help of the definitions of R


and R, given in (4.3), we

report now the expression for the Hamiltonians for the
fermions and the antifermions

H t :¼ 1
2e

2�ðU0;t � R�ð1=2Þ
t E�1

tþ1;tR
�ð1=2Þ
tþ1 Þ; (4.30)

H



t :¼ 1
2e

�2�ðUy
0;t � R


�ð1=2Þ
tþ1 E


�1

tþ1;tR

�ð1=2Þ
t Þ; (4.31)

and for the mesonic action

SmeðF Þ :¼ � XL0=2�1

t¼0

trþ lnðRtEtþ1;tÞ

¼ � XL0=2�1

t¼0

trþ lnQtþ1;t; (4.32)

where we used the definition (4.21), and for the terms
which mix quasiparticles with quasiantiparticles

Ið2;1Þt :¼ 1
2R

 ð1=2Þ
t ½R
 t � E


�1

t;t�1F


N;t�1U0;t�1�F y�1

t Rð1=2Þ
t ;

(4.33)

Ið1;2Þt :¼ 1
2R

ð1=2Þ
t F�1

t ½R
 t �U0;tðF


N;tþ1ÞyE


�1

tþ1;t�R

 ð1=2Þ
t :

(4.34)

As a consequence of the definitions (4.21) and (4.30) we
get the relation

Qtþ1;t :¼ Rð1=2Þ
tþ1 Etþ1;tR

ð1=2Þ
t : (4.35)

V. NILPOTENCY EXPANSION

The nilpotency expansion has been outlined in previous
papers [34,47] and applied to a four-fermion model at zero
and finite fermion density reproducing the correct results.
It consists in the following procedure. One determines the
minimum of the free energy with respect to the structure
functions introduced by the Bogoliubov transformations,

F and D in the present case. Let us denote by �F and �D
the solutions of this problem. This saddle point calculation
provides the zero order or leading approximation. Next we

write F ¼ �F þ �F and D ¼ �Dþ �D and expand with
respect to the fluctuations �F , �D. The terms of the
expansion can be classified according to powers of the
inverse of the index of nilpotency, that counts the number
of fermionic states in the structure functions.
In the case of the four-fermion model, the quadratic

fluctuations in �F , �F y, produce the Lagrangian of the
free scalar field that replaces the fermionic degrees of
freedom.
In the present case at zero chemical potential, for in-

stance, we do not expect condensation of diquarks, �D ¼ 0,
so that the contribution of diquarks is entirely due to their
fluctuations D ¼ �D. The first order in the nilpotency
expansion of the diquark action is therefore given by

Sdq � 1
2

XL0=2�1

t¼0

trþfDtD
y
t �DtQ

�1
tþ1;tD

y
tþ1Q

�T
tþ1;tg: (5.1)
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At this approximation, by adding an analogous antidiquark
action, we could study multiquark mesons. Because the
total action contains also �-quasiparticles and their cou-
pling to the diquark field, we could then investigate the
dynamics of baryons as bound states of a �-quasiparticle
and a diquark.

In this work we confine ourselves to the investigation of
the ground state of QCD at finite chemical potential and
zero temperature in the saddle point approximation.
Assuming that the quasiparticle spectrum has a gap we
can neglect the term S0qpð�;�;F ;DÞ which is instead

important at finite temperature and in the construction of
baryons. Both arguments will be the subject of a following
paper.

We determine the values of the background and diquark
fields by minimizing the bosonic part of the effective
action. The stationarity equations are

@

@F t
Sbo ¼ @

@Dt

Sbo ¼ 0: (5.2)

We remark that in the nilpotency expansion we have to
integrate, on an arbitrary measure, both on the background
and the diquark fields. Then stationarity equations become
saddle point equations in the nilpotency expansion. There
is a subtlety. In the latter case we should also add the
equations

@

@F y
t

Sbo ¼ @

@Dy
t

Sbo ¼ 0: (5.3)

and consider the fields and their Hermitian conjugates
independent in the variations. It will turn out that the
solutions are Hermitian fields, so it will be enough to
consider the solutions of (5.2) by keeping fixed the
Hermitian conjugate fields.

A. The saddle point in the absence of the diquark field

In the absence of the diquark field, that is whenever
Dt ¼ 0 for every time t, the background field has already
been determined [32]. We outline its derivation. We look
for solutions stationary in time, as appropriate to the vac-
uum. If F is stationary, the elementary bosonic fields
coupled to the fermions which enter its expression should
also be stationary. In gauge theories F must certainly
depend on spatial-link variables Ukðt;xÞ. Stationarity in
time for gauge fields can be formulated in a gauge cova-
riant way by requiring that these fields evolve according to
gauge transformations, that is

Ukðt;xÞ ¼ Wy
t;xUkð0;xÞWt;xþk̂: (5.4)

As a consequence, the chromomagnetic contribution to the
pure gauge-field action, namely, the trace of spatial pla-
quettes, does not depend on time.

Accordingly, the matrices F t and Nt are related to those
at time t ¼ 0, that is, if F 0 ¼ F and N0 ¼ N then

F t ¼ Wy
t FWt; Nt ¼ Wy

t NWt: (5.5)

We still wish to set the contribution of the chromoelectric
field to the gauge-field action, namely, the trace of space-
time plaquettes, to be independent on time. We have been
able to arrive at a stationary solution for F only with the
particular choice

Wtþ1;x ¼ U0ð0;xÞU0ð1;xÞ . . .U0ðt;xÞ; (5.6)

which lets the contribution from the chromoelectric field
vanish at all times.
Under these conditions the saddle point equations for the

background field become independent of time

F ¼ N þF ðF NÞ�1: (5.7)

The relevant extremal solution for the background field is

�F ¼ Nð2NyNÞ�1½NyN þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNyNÞ2 þ 4NyN

q
�: (5.8)

We emphasize that it satisfies the gauge-covariant condi-
tion (4.12). This is also the solution of the equations [29]

Ið2;1Þt ¼ Ið1;2Þt ¼ 0: (5.9)

This means that at the minimum of the vacuum energy
there is no quasiparticle-antiquasiparticle mixing, in
closing analogy to the case of the Bogoliubov transforma-
tion in the BCS theory, as explained in Appendix A.
However, needless to say, unlike the latter, these terms
do not violate any symmetry. Hence at the saddle point,
the effect of the Bogoliubov transformations (4.2) is analo-
gous to that of the Foldy-Wouthuysen transformations
which separate positive from negative energy states in
the Dirac Hamiltonian [29].
The time evolution of the quasiparticle Hamiltonians is

slightly different:

H t ¼ Wy
t HWtþ1; H



t ¼ Wy

tþ1H


Wt; (5.10)

and similarly

Q�1
t;tþ1 ¼ Wy

t Q
�1Wtþ1; (5.11)

where Q ¼ Q1;0. At the saddle point, the quasiparticle and

antiquasiparticle Hamiltonians at time t ¼ 0, respectively

�H and �H


, are simply related, for example when U0 ¼ 1,

by

2e�2� �H ¼ 2e2� �H



¼ 1� �Q�1 ¼ 1� �F�1
N : (5.12)

They are Hermitian functions of NyN, and the vacuum
energy is

�Sme ¼ �L0

2
trþ ln �Q; (5.13)

and, because of (5.12), (5.8), and (4.27), we derive the
expression reported in (1.2) for the eigenvalues of �Q.
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B. The saddle point in the presence of the diquark field

Now we rewrite the diquark field action exploiting the
time dependence (5.4) of the spatial-link variables, but we
will not need the explicit expression of the background
field. So we will write

D t ¼ WT
t DWt; (5.14)

where D ¼ D0. Then the time dependence disappears
from the bosonic action

Sbo ¼ L0

2
trþ

�
� lnQþ 1

2
lnð1þDyDÞ

� 1

2
lnð1þ e4�DQ�1DyQ�TÞ

�
: (5.15)

We first remark that the dependence on the background
field F appears only in Q, so that

@Sbo
@F

¼ @Sbo
@Q

@Q

@F
¼ 0: (5.16)

As the equation

@Q

@F
¼ 0 (5.17)

does not involve the diquark field D and its relevant

solution for F is exactly the �F given in (5.8), the back-
ground field does not depend on the diquark one.

The stationarity equation for the diquark field is

D ¼ e4�Q�TDQ�1: (5.18)

As the bosonic action is gauge invariant, but the field D is
not, the stationarity equation determines only the class of
D equivalent under gauge transformations.

In order to analyze the solutions of (5.18) we construct
the diquark structure function in the basis of eigenstates of
the quasiparticle Hamiltonian for given gauge-field con-
figurations, which according to (5.12) are also eigenstates
of �Q

�Qjii ¼ Qijii: (5.19)

Remarking that, although the operator Q is nonlocal, its
eigenvalues are simply related to those of the local operator
N, as shown in (1.2). This explicit relation shows also that
they are all real and greater than unity.

The saddle point equations then become

D ij ¼ e4�Q�1
i DijQ

�1
j : (5.20)

First we notice that these equations can only determine
jDijj because any possible phase factor cancels from both

sides and we can restrict to the case in which Dij is a

nonnegative real number. Apart from the trivial solution
Dij ¼ 0, the saddle point equations are satisfied for arbi-

trary Dij provided Qi ¼ e4�Q�1
j , in which case the con-

tribution to the action vanishes. The relevant minima of the

action are then reached on the boundary of the range of the
jDijj, namely, when these are zero or infinity. In the first

case the Bogoliubov transformation is the identical one, in
the second case it interchanges creation with annihilation
operators.
So we must determine in which way to choose between

zero or infinity for the matrix elements Dij. As D is

antisymmetric its spectrum contains pairs of opposite ei-
genvalues, with the exception of the odd-dimensional case
where there is an additional unpaired zero eigenvalue. It
can always be written in the form

D ¼ U�UT; (5.21)

where U is unitary,

�ij ¼ JijDi ¼ JijDj; (5.22)

where Di ¼ Di�1 for each i even, and J has the block
diagonal form

J ¼

0 1

�1 0
0 � � � 0

0
0 1

�1 0
� � � 0

..

. ..
. . .

. ..
.

0 0 � � � 0 1

�1 0

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

(5.23)

with an extra zero block in the odd-dimensional case. The
couple of quasiparticle states with indices ði� 1; iÞ with i
even andDi � 0 are said to be paired. For each index j we
shall denote by pðjÞ the corresponding paired index.
By an appropriate unitary transformation we can always

reduce D to the canonical form

D ij ¼ JijDi; (5.24)

which in the many-body language is called simple pairing.
Therefore pairing can be simple only in a given gauge. A
simple consequence of simple pairing is that

ðDyDÞij ¼ ðDDyÞij ¼ 1ijjDij2: (5.25)

We will denote by P the set of the states i for which
jDij ¼ 1. It follows that if i 2 P also pðiÞ 2 P.
Therefore

Sbo ¼ L0

2

�
�X

i

lnQi þ 1

2

X
i2P

½lnjDij2

� lnðe4�jDij2Q�1
i Q�1

pðiÞÞ�
�

¼ L0

�
�X

i

�i þ
X
i2P

ð�i ��Þ
�
; (5.26)

assuming �i ¼ �pðiÞ, at least when i 2 P. For given chemi-

cal potential this action is minimal if �i < � for each state
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i 2 P. The contribution originating from diquarks in the
states i 2 P cancels the contribution to the action Sbo of
the corresponding components of the background field.
This has a simple physical interpretation: because of
Pauli blocking the states occupied by diquarks are not
accessible to fermions in the background field. At � ¼ 0
as �i > 0 for each state i, the set P is empty, so thatDi ¼ 0
for any i. Increasing �, P starts to be populated, so that
jDij ! 1 for the states i 2 P. For these states

�̂ i ! �̂y
pðiÞ; �̂pðiÞ ! �̂y

i ; (5.27)

where we are neglecting a possible phase factor. If we look
directly at the normalized vacuum in the fermion Fock
space, we see that

j �D; �F iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h �D; �F j �D; �F i

q ¼
�Y
i2P

jDij�1 exp

�
1

2
�y
i Di�

y
pðiÞ

��

� j �F iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h �F j �F i

q ; (5.28)

!
�Y
i2P

�y
i

� j �F iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h �F j �F i

q ; (5.29)

¼
�Y
i2P

uyi
� j �F PcViffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h �F PcV j �F PcVi
q ; (5.30)

where Pc ¼ V n P is the subspace complement to the sub-
space generated by the states in P in the whole set of states

V, and �F PcV is the restriction of the matrix �F to raws in the
subspace Pc (on columns there is no restriction as V is the
whole space on which the matrix acts). That is, at increas-
ing chemical potential, the number of couples uyvy in the
background field is progressively depleted and replaced by
quarks.

We remind that the eigenvalues �i are functions of the
gauge fields. When we shall take the expectation value,
with respect to the pure gauge fields probability distribu-
tion, we will smooth out the distribution of the eigenvalues
of jDij which is a step function at fixed gauge-field
configuration.

C. Variational character of the saddle
point approximation

It is important to notice that the expression of the
bosonic action can be obtained by evaluating the partition
function in a Fock space which contains only the state

j �D; �F i. At zero chemical potential, �D ¼ 0, a variational
calculation was performed in [34] and, subsequently, it was
recognized to provide the vacuum contribution obtained by
a suitable Bogoliubov transformation [47]. Here we sketch
the proof of this property in the more general case.

Let us start from the expression (3.2) for the fermion
determinant and choose the gauge U0 ¼ 1, imposing the

gauge-invariance constraint on the states by means of the
Gauss projector PG. Under stationarity conditions for the
gauge-field configurations we get

Z
½dU0�ZF ¼

Z
½dU0�TrF

YðL0=2Þ�1

t¼0

T t;tþ1

¼ TrFPGðT ðL0=2ÞÞU0¼1; (5.31)

where we do not need to remember anymore the time
indices for the transfer matrix. Formally the Gauss projec-
tor acts on our coherent states according to

P Gj�;�;D;F i ¼
Z

dgjg�;�gy; �gDgy; gFgyi;
(5.32)

where dg is the Haar measure on the gauge transforma-
tions, and the dynamical fields D and F enter in the
previous expression as external parameters. If we also
gauge transform them, as we are allowed to do in the total
partition function, we get

P Gj�;�;D;F i ¼
Z

dgjg�;�gy;D;F i: (5.33)

In particular, the vacuum is gauge invariant

P Gj �D; �F i ¼ j �D; �F i: (5.34)

Our transfer matrix T at U0 ¼ 1 is positive definite, in-

deed T jU0¼1 � T̂yT̂, and we simply get the inequalityZ
½dU0�ZF > 0: (5.35)

Thanks to the positivity of the transfer matrix we shall now
use the inequality

Tr FPGðT ðL0=2ÞÞU0¼1 �
�hAjðT ÞU0¼1jAi

hAjAi
�ðL0=2Þ

(5.36)

valid for any gauge invariant state jAi in the fermion Fock

space. By choosing jAi ¼ j �D; �F i we get
Z
½dU0�ZF �

�h �D; �F jT jU0¼1j �D; �F i
h �D; �F j �D; �F i

�ðL0=2Þ

¼ exp½�Sboð �D; �F Þ� � exp½�Smeð �F Þ�;
(5.37)

which shows that the fermion determinant is bounded from
below by the exponential of minus the bosonic action Sbo,
which is always greater than the exponential of minus the
mesonic action, obtained by putting D ¼ 0 in Sbo.

VI. PERTURBATIVE EXPANSION IN THE GAUGE
COUPLING CONSTANT

It is commonly assumed that at sufficiently high chemi-
cal potential an expansion in the gauge coupling constant
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can be justified. In this section we shall sketch how a
perturbative expansion in the gauge-field fluctuations can
be taken into account. They give rise to a smoothing on the
condition for the pairing and to a gap equation. We remind
that we use the label i for all quasiparticle labels, that is the
position vector x, the Dirac �, the flavour f and the color a
indices. As a concrete example of simple pairing for the
case of 2 flavors we can assume

D x;�;f1;a;y;�f2;b ¼ �f1f2�3ab����x;yDx: (6.1)

The diquark effective action does not depend on the tem-
poral links, but it depends on the spatial ones through the
matrix F which appears in Q and the diquark structure
functions D. In order to determine D variationally, we

choose F ¼ �F as a function of the link variables and
expand them in powers of the gauge coupling-constant,
that is, we set

Uk ¼ eagAk � 1þ agAk þ 1
2a

2g2A2
k þOða3g3Þ; (6.2)

where each anti-Hermitian matrix Ak lives in the corre-
sponding Lie algebra and can be expanded on the gener-
ators �I’s according to

Ak ¼X
I

�IA
I
k: (6.3)

We arrive at an expression of the form

Q�1 � 1þ Aþ gBþ g2C (6.4)

where, for example, the resulting coefficient B looks like

Bx;�;f1;a;y;�;f2;b ¼X
k;I

ð�IÞabðBkÞx;�;f1;y;�;f2ðAI
kÞy (6.5)

and similarly C. We introduce also the matrices

� :¼ DyD
1þDyD

; c :¼ D
1

1þDyD
; (6.6)

and by expanding Sbo, with respect to lattice spacing and
gauge coupling constant, we get

Sbo � �L0

2
tr

�
lnQþ �ðAþ gBþ g2CÞ � 1

2
g2�B�B

þ 1

2
g2cBc yBT

�
: (6.7)

Notice that c is antisymmetric. The above expression is
essentially identical to that of the many-body theory re-
ported in Appendix A in (A7), in which the various terms
can be understood, respectively, as the vacuum energy
(which is independent on the chemical potential), the
kinetic energy, the density-density interaction, and the
interaction between fermions in the same Cooper pair.
Such close correspondence exists because we constructed
the diquark field in terms of quasiparticles.

At this point we assume simple pairing, so that

�ij ¼ 1ij�i; c ij ¼ Jijc i (6.8)

with

�i ¼ jDij2
1þ jDij2

; c i ¼ 1

1þ jDij2
Di: (6.9)

The effective action now becomes

Sbo � �L0

2

X
i

�
lnQi þ �iðAþ gBþ g2CÞii

� 1

2
g2�i

X
j

Bij�jBji þ 1

2
ðc �

i�i þ��
i c iÞ

�
; (6.10)

where

�i ¼ 1
2g

2
X
j

Jij
X
k;s

JksBikBjsc k (6.11)

is the celebrated gap function. Usually in many-body
problems the density-density interaction is small but com-
plicates the variational equation, and for this reason it is
accounted for renormalizing phenomenologically the
chemical potential [39]. We will adopt this criterion.
Then we will integrate over the gauge fields with the
pure gauge measure, and we will denote such average by
h�i. Note that in the expansion we have disregarded the
dependence of the diquark structure functions on the gauge
fields. This can be justified only if the diquark is approxi-
mately pointlike, namely, if its mean square radius is much
smaller that the average interquark distance (see Ref. [22]).
We will say a little more about this in the last section.
Bearing in mind that hBi ¼ 0 because B is linear in the
gauge fields, we define

Ki ¼ �eff þ ðAþ g2hB2iÞii � 1
2

X
k

g2�khBikBkii: (6.12)

The averaged effective action is

hSboi � �L0

2

X
i

�
lnQi þ �iðKi ��effÞ

þ 1

2
ðh��

i ic i þ c �
i h�iiÞ

�
: (6.13)

Variation with respect to D (omitting the symbol of aver-
age on �) gives

2ðKi ��effÞDi þ 1
2ðD2

i � 1Þ�i ¼ 0; (6.14)

which has the solutions

c i ¼ � �i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðKi ��Þ2 þ j�ij2

p : (6.15)

Inserting them into the definition of the gap function (6.11)
we get the gap equation

�i ¼ � 1

2
g2
X
k

�kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðKk ��Þ2 þ j�kj2
p X

j;s

JijJkshBikBjsi:

(6.16)
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This expression agrees with the standard result [21–24,35].
We wish to remark that the dominant contribution to the
superconducting gap comes from quasistatic chromomag-
netic fields.

VII. SUMMARYAND FUTURE PERSPECTIVE

We have investigated QCD guided by the theoretical
indications that two quarks correlations are important at
all baryon densities. We introduced such correlated pairs
by means of Bogoliubov transformations in the formalism
of the transfer matrix with lattice regularization. We per-
formed a first transformation which produces a background
field and quasiparticles with the quark quantum numbers.
A second transformation yields the diquark field in terms
of quasiparticles. Evaluating the trace in the partition
function using a fermionic basis obtained by these
Bogoliubov transformations on fermionic coherent states
we got an effective action of the system exactly equivalent
to the original one. At variance with previous use of the
Bogoliubov transformations we let them to depend on time
and on spatial-link variables. This makes it possible to
enforce for quasiparticles the same symmetry transforma-
tions as for quarks, and thus perform the saddle point
approximation keeping gauge invariance manifest. The
construction of the diquark field in terms of quasiparticles
constitutes another innovation.

We have evaluated the effective theory at the zeroth
order of a nilpotency expansion, namely, an expansion in
the inverse of the number of fermionic states in the struc-
ture functions of the composites, called the index of nilpo-
tency. This means that we derived the effective action in a
saddle point approximation, that we have shown to be
equivalent to a variational calculation, in which the free
energy is minimized with respect to background and di-
quark fields.

In our previous papers we provided the solution for the
background field in the absence of diquarks. According to
this solution the QCD vacuum is a dual superconductor in
which the chromoelectric field is totally expelled from the
vacuum and the fermion Fock space contains quasipar-
ticles only in the form of pointlike color singlets [32].

In the present work we have solved the saddle point
equations in the presence of a diquark field. In order to
describe multiquark mesons and baryons as bound states of
a quark and a diquark we should include the fluctuations of
this field. We have restricted ourselves, however, to the
study of diquark condensation at finite chemical potential.
At fixed stationary gauge-field configuration, we derived an
expression for the diquark contribution to the free energy
that cannot be evaluated analytically but has a definite
positive sign.While at given stationary gauge-field configu-
ration the Fermi surface is sharp, it should be smoothed out
by taking into account the gauge fields fluctuations.

Integrating the effective action in the saddle point
approximation on the space of stationary gauge-field

configurations, and performing an expansion in powers of
the gauge coupling constant, we got a gap equation com-
patible with previous expressions. In particular the gap is
dominated by static chromomagnetic fields.
We must remark, however, that we obtained this result

following in our scheme the corresponding derivation in
the literature, in which the dependence of the structure
function of the diquark on the spatial gauge fields is
altogether ignored. Since this dependence is due to the
strings that connect the two constituent quarks, it can be
omitted, strictly speaking, only for pointlike diquarks. It
might perhaps be an acceptable approximation for molecu-
lar diquarks, but it is hardly justified for the diquarks of a
BCS condensate that have a spatial extension much greater
than the average interquark distance.
We hope that our formulation should give a reasonable

approximation to the QCD partition function for values of
chemical potential of the order of the nucleon mass.
Increasing the chemical potential the quark-antiquarks
pairs present in the background field are progressively
replaced by diquarks until (presumably) chiral symmetry
is restored. If such phase transition is of first order, to
determine its location we should compare the free energy
evaluated in the present paper with that of the chirally
symmetric phase in which the background field is no
longer macroscopically different from zero. However, we
notice that the free energy in the chirally symmetric phase
cannot be simply obtained by setting the background field
to zero in our equations. In fact in our saddle point ap-
proximation we disregarded the quasiparticles appearing
after the second Bogoliubov transformation, on the usual,
reasonable assumption that they are separated from the
vacuum by a large gap. If instead the background field
vanishes, we have no reason to expect that such a gap for
quasiparticles persists. We must therefore proceed in a
different way that we hope to illustrate in a future work.
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APPENDIX A: SUPERCONDUCTIVITY
IN MANY-BODY SYSTEMS

The phenomenon of superconductivity is explained in
terms of Bose-Einstein condensation of fermion pairs,
called Cooper pairs. The first suggestion in this direction
was made by Ogg [48], who observed persistent ring
currents in solutions of alkali metals in liquid ammonia.
However, the importance of this work was not understood
and it did not have any influence in the development of the
theory of superconductivity.
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The approach based on this idea is due to the Sydney
group [39], and it is formulated in the framework of the so-
called quasichemical equilibrium theory, in which there is
an equilibrium between formation and dissociation of
Cooper pairs. The formalism respects fermion-number
conservation, but deals only with the ground state energy.
In spite of its conceptual simplicity, calculations in this
formalism are quite complicated, and were completed only
after the BCS theory [49] was published. We will also
report this theory in the version of Bogoliubov and
Valatin [36,37], which does not respect fermion conserva-
tion, but introduces quasiparticles and is close to our
approach from a technical point of view.

1. Quasichemical equilibrium theory

The quasichemical equilibrium theory is based on a
variational calculation with a wave function �N con-
structed in terms of the wave function ’½i; j� of the pair
of the i-th and j-th among N fermions

�N ¼ CN

2NN!

X
�2SN

sgnð�Þ’½	ð1Þ;	ð2Þ� . . .’½	ðN�1Þ;	ðNÞ�

¼CNðpf’Þ; (A1)

where CN is a normalization constant, SN is the symmetric
group of order N, and sgnð�Þ is the sign of the permutation
�. The fermion Hamiltonian is

HN ¼ X
i

p2
i

2M
þX

i<j

Vij; (A2)

with obvious meaning of the symbols. Since the Cooper
pairs undergo Bose-Einstein condensation their total
momentum is zero. Assuming that also the spin is zero,
we get simple pairing: the fermions of the pair have oppo-
site momenta and opposite spins, so that the Fourier trans-
form ~’ of the pair wave function can be written as a
function of a unique variable

’k :¼ ~’ðk;þ;�k;�Þ; (A3)

which can be assumed to be real. Here, and in the follow-
ing, according to the standard notation, the sum over k
implies also the sum over spins according to the previous
identification. So that, if the probability of finding a fer-
mion with momentum k is

�k ¼ ’2
k

1þ ’2
k

; (A4)

the condition of having N fermions isX
k

�k ¼ N: (A5)

To minimize the expectation value of the Hamiltonian
under this condition, a chemical potential � is introduced,
so that one has to minimize the quantity

E ¼ hHN ��Nopi; (A6)

where Nop is the fermion-number operator. The above ex-

pectation value, whose evaluation [39] is far from trivial is

E ¼X
k

ðek ��Þ�k þ 1

2

X
k;l

ðhk; ljVjk; li � hk; ljVjl; kiÞ�k�l

þ 1

2

X
k;l

hk;�kjVjl;�lic kc l þO

�
1

N

�
; (A7)

where

�k :¼ k2

2M
; c k :¼ ’k

1þ ’2
k

: (8)

Terms of orderOð1=NÞ have been neglected.They all respect
fermion-number conservation, and can be disregarded below
the critical temperature, but are essential in the determination
of the critical properties of the transition to normal state.
The first term is the contribution of the kinetic energy,

the second of the density-density interaction, and the third
of the interaction of fermions in one and the same pair.
Because the density-density interaction is almost the same
in the normal and in the superconducting state, to simplify
the calculation it is accounted for by a renormalization of
the chemical potential

�eff ¼ �� 1
2

X
l

ðhk; ljVjk; li � hk; ljVjl; kiÞ�l: (A9)

Variation with respect to ’ at constant �eff gives

ð�k ��effÞ’k þ 1
2ð’2

k � 1Þ�k ¼ 0; (A10)

where

�k ¼ �1
2

X
l

ðhk;�kjVjl;�li þ hl;�ljVjk;�kiÞc l (A11)

is the gap function. The solutions

’k ¼ � �k ��eff

�k

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
�k ��eff

�k

�
2

s
(A12)

inserted in the definition of the gap function give the gap
equation

�k ¼ 	X
l

hk;�kjVjl;�li
2½1þ ð�l��eff

�l
Þ2��l: (A13)

In order to get a close solution some approximations are
needed. First, a separable form is assumed for the matrix
elements of the potential, that is

hk;�kjVjl;�li �
�� �2

L3 for j�k ��eff j<!

0 otherwise.
(A14)

L3 is the volume of the system. This is a crude but reason-
able approximation of the electron-electron interaction due
to phonon exchange. Second, since the contribution to the
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integral comes essentially from ek � �eff � ½k2F=ð2MÞ�,
where kF is the Fermi momentum, one can set �k �
�kF ¼ �. Then the solution of the gap equation is

� � 2! exp

�
� MkF

2	2�2

�
: (A15)

It is important to observe, in connection with our problem
of including Cooper pairs and unpaired fermions at the
same time, that, for j�k ��eff j>!, we assume �k ¼ 0,
but ’k need not to vanish. Actually in general ’k must not
vanish for ½p2

k=ð2mÞ�<�eff �! in order to fulfill the

condition (A5) on fermion number.
We conclude this subsection by discussing the effect of

the coupling to a magnetic field. The Cooper pair structure
function depends on the applied gauge field, and the inter-
action can be computed in a perturbation series, that is

’ ¼ ’0 þ e’1ðAÞ þOðe2Þ: (A16)

The first correction ’1ðAÞ (e being the electric charge and
A the vector potential) describes the Cooper pair magnetic
susceptibility, and is essential in the explanation of the
Meissner effect. Now the electromagnetic coupling is
small with respect to the phonon coupling, which binds
the electrons in a Cooper pair [39], and therefore the
perturbation expansion is justified. In the case of QCD it
is, instead, the gauge interaction which binds quarks into
diquarks, and therefore, in general, the dependence of the
diquark structure function on the gauge fields cannot be
neglected.

2. Bogoliubov transformations

The Bogoliubov transformations corresponding to sim-
ple pairing in standard notations are

�y
k ¼ ukc

y
k � vkc�k; �k ¼ ukck � vkc

y
�k; (A17)

where cyk , ck are creation-annihilation operators of the

fermions in the system and the parameters u, v, not to be
confused with the upper and lower spinor components,
must satisfy the normalization conditions

u2k þ v2
k ¼ 1: (A18)

The transformed Hamiltonian is

H0 ��Nop ¼ E þH11 þH20 þHint; (A19)

where Nop is the fermion-number operator

E ¼ X
k

ðek ��Þv2
k þ 1

2

X
kl

ukulvkvlhk;�kjVjl;�li;

(A20)

H11 ¼
X
k

½ðek ��Þðu2k � v2
kÞ

� 2
X
l

ukulvkvlhk;�kjVjl;�li��y
k�k; (A21)

H20 ¼
X
k

�
ðek ��Þukvk þ 1

2ðu2k � v2
kÞ

�X
l

ulvlhk;�kjVjl;�li
�
� ð�y

k�
y
�k þ ��k�kÞ;

(A22)

and the density-density interaction has been neglected.
These terms have a close correspondence with those of
the transformed action (4.15). We have not writtenHint. We
only mention that it contains monomials of operators of
power higher than 2 which do not conserve fermion num-
ber but are of order 1

N (essential in the study of the phase

transition to normal state). If we set

vk ¼ ’kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ’2

k

q ; uk ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ’2

k

q ; (A23)

we see that the vacuum energy E is identical to that found
in the quasichemical equilibrium theory. At its minimum,
H20 ¼ 0, in perfect analogy with the results we got in the
relativistic case, and

H11 ¼
X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðek ��Þ2 þ �2

q
�y
k�k (A24)

so that the Bogoliubov-Valatin method gives directly also
the spectrum of quasiparticles which in the quasichemical
equilibrium theory has to be found separately. Introducing
the parametrization (A23) into the definitions (A17) we
can recognize the form of our relativistic transformations.
If we make the Bogoliubov transformation time dependent,
we can conserve fermion-number by the help of compen-
sating fields. The development of this approach for many-
body systems can be found in [50].

APPENDIX B: DERIVATION OF THE DIQUARK
EFFECTIVE ACTION

1. Pfaffians

We first need to recall some basic facts about pfaffians.
The interested reader can find a discussion about the
properties of pfaffians and their relation to the Gaussian
Berezin integrals in the detailed appendices of [51], to-
gether with similar properties of determinants, permanents
and hafnians.
Let A ¼ ðAijÞ2mi;j¼1 be a 2m� 2m antisymmetric matrix.

We define the pfaffian of A by

pf A ¼ 1

2mm!

X
�2S2m

sgnð�ÞA�ð1Þ�ð2Þ � � �A�ð2m�1Þ�ð2mÞ;

(B1)

where S2m is the symmetric group of 2m elements, and
sgnð�Þ is the sign of the permutations �. Then

ðpf AÞ2 ¼ detA (B2)
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and for any 2m� 2m matrix X

pf ðXAXTÞ ¼ ðdetXÞðpf AÞ: (B3)

If A is invertible

pf ðA�TÞ ¼ ðpf AÞ�1: (B4)

Consider a partitioned matrix of the form

M ¼ A B

�BT D

 !
(B5)

where A, B, D are matrices of sizes 2m� 2m, 2m� 2n,
and 2n� 2n, respectively, with elements in a commutative
ring with identity, and A and D are antisymmetric. If A is
invertible, then

pf M ¼ ðpf AÞpf ðDþ BTA�1BÞ: (B6)

If D is invertible, then

pf M ¼ ðpf DÞpf ðAþ BD�1BTÞ: (B7)

Now let 
1; . . . ; 
n be the generators of a Grassmann
algebra and A be an antisymmetric n� n matrix. Then the
Gaussian Berezin integral provides a representation for the
pfaffian:

Z
d
1 � � �d
n exp

�
1
2

Xn
i;j¼1


iAij
j

�
¼
�
pf A if n is even

0 if n id odd:

(B8)

2. Evaluation of the transfer matrix

In this section we refer to the fermion transfer matrix at
nonzero chemical potential �, in an arbitrary gauge, as
defined in (3.3), with the notations given in (3.4) and (3.5).
Let juvi be the coherent state associated to the fermion

operators û and v̂, that is

juvi ¼ expð�uûy � vv̂yÞj0i; (B9)

where u and v are Grassmann variables. We shall make use
of the completeness relation

1 ¼
Z

dudu�dvdv� juvihuvj
huvjuvi (B10)

with the help of the Berezin integration on Grassmann
variables.
The scalar product of two states is

hu1v1ju2v2i ¼ expðu�1u2 þ v�
1v2Þ: (B11)

The evaluation of the matrix element of the transfer
matrix between coherent states was already performed in
[29] with the result

hutvtjT t;tþ1jutþ1vtþ1i ¼ expðu�t Ny
t v

�
t þ vtþ1Ntþ1utþ1

þ u�t U0;te
2�utþ1

þ v�
t U

�
0;te

�2�vtþ1Þ: (B12)

Here we are interested in the evaluation of the matrix
element

I :¼ hDt;F tjT t;tþ1jDtþ1;F tþ1i: (B13)

Our procedure goes through the introduction of two com-
plete sets of coherent states

I ¼
Z

dutdu
�
t dvtdv

�
t dutþ1du

�
tþ1dvtþ1dv

�
tþ1

� hDt;F tjutvti
hutvtjutvti hutvtjT t;tþ1jutþ1vtþ1i hutþ1vtþ1jDtþ1;F tþ1i

hutþ1vtþ1jutþ1vtþ1i :

(B14)

Also to compute the matrix element hu1v1jD;F i we insert a complete set of coherent states as follows:

hu1v1jD;F i ¼
Z

du2du
�
2dv2dv

�
2

hu1v1j expðD̂y=2Þju2v2ihu2v2j expðF̂ yÞj0i
hu2v2ju2v2i :

(B15)

According to our definitions (4.8) and (4.2)

D̂ y ¼ ûyR1=2DyR�1=2ûy þ v̂FR1=2DyR�1=2F Tv̂� 2ûyR1=2DyR�1=2F Tv̂: (B16)

This means that

hu1v1j expðD̂y=2Þju2v2i ¼ hu1v1ju2v2i
� exp

�
1
2u

�
1R

1=2DyR�1=2u�1 þ 1
2v2FR1=2DyR�1=2F Tv2 � u�1R

1=2DyR�1=2F Tv2

�
: (B17)
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Similarly,

hu2v2j expðF̂ yÞj0i ¼ expðu�2F yv�
2Þ: (B18)

Therefore,

hu1v1jD;F i ¼ exp

�
1
2u

�
1R

1=2DyR�1=2u�1
�Z

du2du
�
2dv2dv

�
2 expðu�2F yv�

2Þ

� exp

�
1
2v2FR1=2DyR�1=2F Tv2 � u�1R

1=2DyR�1=2F Tv2 þ u�1u2 þ v�
1v2 � u�2u2 � v�

2v2

�
: (B19)

The integrations on the variables u2 and v
�
2 produce, respectively, the constraints u

�
2 ¼ u�1 and v2 ¼ u�1F

y, and we arrive at
the result

hu1v1jD;F i ¼ exp

�
1
2u

�
1R

�ð1=2ÞDyðR�TÞ1=2u�1 þ u�1F
yv�

1

�
: (B20)

By using all these intermediate steps we get

I ¼
Z

dutdu
�
t dvtdv

�
t dutþ1du

�
tþ1dvtþ1dv

�
tþ1

� exp

�
1
2utðR�T

t Þð1=2ÞDtR
�ð1=2Þ
t ut þ vtF tut � u�t ut � v�

t vt

�
� expðu�t Ny

t v
�
t þ vtþ1Ntþ1utþ1 þ u�t U0;te

2�utþ1 þ v�
t U

�
0;te

�2�vtþ1Þ
� exp

�
1

2
u�tþ1R

�ð1=2Þ
tþ1 Dy

tþ1ðR�T
tþ1Þð1=2Þu�tþ1 þ u�tþ1F

y
tþ1v

�
tþ1 � u�tþ1utþ1 � v�

tþ1vtþ1

�
: (B21)

The integrations on the variables v�
tþ1 and vt produce, respectively, the constraints vtþ1 ¼ �u�tþ1F

y
tþ1 and v

�
t ¼ �F tut,

and, using the definition of F N;t given in (4.27), we arrive at the expression

I ¼
Z

dutdu
�
t dutþ1du

�
tþ1 exp

�
1
2utðR�T

t Þð1=2ÞDtR
�ð1=2Þ
t ut þ 1

2u
�
tþ1R

�ð1=2Þ
tþ1 Dy

tþ1ðR�T
tþ1Þð1=2Þu�tþ1

�
� expð�u�tF N;tut � u�tþ1F

y
N;tþ1utþ1 þ u�t U0;te

2�utþ1 þ utF T
t U

�
0;te

�2�F �
tþ1u

�
tþ1Þ: (B22)

As the next step we perform the Berezin integrations on utþ1 and u�tþ1 to get

I ¼ detðF y
N;tþ1Þ

Z
dutdu

�
t exp

�
1

2
utðR�T

t Þð1=2ÞDtR
�ð1=2Þ
t ut

�
� exp½�u�t ðF N;t þU0;tðF y

N;tþ1Þ�1F y
tþ1U

y
0;tF tÞut�

� exp

�
1
2u

�
t U0;te

2�ðF y
N;tþ1Þ�1R�ð1=2Þ

tþ1 Dy
tþ1ðR�T

tþ1Þð1=2ÞðF y
N;tþ1Þ�Te2�UT

0;tu
�
t

�
: (B23)

These final integrals produce the pfaffian of a partitioned matrix and can be computed by using the expressions (B6) or
(B7) to get

I ¼ detðF y
N;tþ1Þpf ½ðR�T

t Þð1=2ÞDtR
�ð1=2Þ
t �

� pf fU0;te
2�ðF y

N;tþ1Þ�1R�ð1=2Þ
tþ1 Dy

tþ1ðR�T
tþ1Þð1=2ÞðF y

N;tþ1Þ�Te2�UT
0;t

þ ½F N;t þU0;tðF y
N;tþ1Þ�1F y

tþ1U
y
0;tF t�½ðR�T

t Þð1=2ÞDtR
�ð1=2Þ
t ��1

� ½F N;t þU0;tðF y
N;tþ1Þ�1F y

tþ1U
y
0;tF t�Tg; (B24)

where the last pfaffian can be rewritten, by using formula (B3), as
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I ¼ detðF y
N;tþ1Þpf ½ðR�T

t Þð1=2ÞDtR
�ð1=2Þ
t � det½F N;t þU0;tðF y

N;tþ1Þ�1F y
tþ1U

y
0;tF t�

� pf f½ðR�T
t Þð1=2ÞDtR

�ð1=2Þ
t ��1 þ ½F N;t þU0;tðF y

N;tþ1Þ�1F y
tþ1U

y
0;tF t��1

�U0;te
4�ðF y

N;tþ1Þ�1R�ð1=2Þ
tþ1 Dy

tþ1ðR�T
tþ1Þð1=2ÞðF y

N;tþ1Þ�TUT
0;t

� ½F N;t þU0;tðF y
N;tþ1Þ�1F y

tþ1U
y
0;tF t��Tg: (B25)

Remarking that detðF y
N;tþ1Þ ¼ detðF y

N;tþ1U
y
0;tÞ, the product of this determinant with the other one appearing in (B25) can

be written as the determinant of the product, which is exactly Etþ1;t according to (4.28), so that

I ¼ detðEtþ1;tÞpf ½ðR�T
t Þð1=2ÞDtR

�ð1=2Þ
t �pf f½ðR�T

t Þð1=2ÞDtR
�ð1=2Þ
t ��1 þ e4�E�1

tþ1;tR
�ð1=2Þ
tþ1 Dy

tþ1ðR�T
tþ1Þð1=2ÞE�T

tþ1;tg: (B26)

By using the relation (4.35) and the formula (B3), we obtain, at the end, the expression

I ¼ detðEtþ1;tÞpf ðDtÞpf ðD�1
t þ e4�Q�1

t;tþ1D
y
tþ1Q

�T
tþ1;tÞ: (B27)

We shall also need the normalization factor

hD;F jD;F i ¼
Z

dudu�dvdv� expð�u�u� v�vþ u�F yv� þ vF uÞ

� exp

�
1
2u

�R�ð1=2ÞDyðR�TÞð1=2Þu� þ 1
2uðR�TÞð1=2ÞDyR�ð1=2Þu

�
; (B28)

which, after the integration on v� and v and a rescaling of the variables, becomes

hD;F jD;F i ¼ ðdetRÞ�1
Z

dudu� exp
�
�u�uþ 1

2u
�Dyu� þ 1

2uD
yu
�

(B29)

¼ ðdetRÞ�1pf ðDÞpf ðD�1 þDyÞ:(B30)
In conclusion,

expð�SboÞ ¼
YL0=2�1

t¼0

hDt;F tjT t;tþ1jDtþ1;F tþ1i
hDt;F tjDt;F ti (B31)

¼ YL0=2�1

t¼0

detðEtþ1;tÞpf ðDtÞpf ðD�1
t þ e4�Q�1

t;tþ1D
y
tþ1Q

�T
tþ1;tÞ

ðdetRÞ�1
t pf ðDtÞpf ðD�1

t þDy
t Þ

(B32)

¼ YL0=2�1

t¼0

detðQtþ1;tÞ
�
detð1þ e4�DtQ

�1
t;tþ1D

y
tþ1Q

�T
tþ1;tÞ

detð1þDtD
y
t Þ

�
1=2

: (B33)

From this expression, as Sme is the part of Sbo at D ¼ 0 and Sdq the rest, we easily derive that

Sme ¼ � XL0=2�1

t¼0

trþ lnQtþ1;t; (B34)

Sdq ¼ 1
2

XL0=2�1

t¼0

trþ½lnð1þDtD
y
t Þ � lnð1þ e4�DtQ

�1
t;tþ1D

y
tþ1Q

�T
tþ1;tÞ�: (B35)
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