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We reanalyze the radial (n) and angular-momentum (J) Regge trajectories for all light-quark states with

baryon number zero listed in the 2011 edition of the Particle Data tables. The parameters of the trajectories

are obtained with linear regression, with weight of each resonance inversely proportional to its half-width

squared, ð�=2Þ2. That way, we are side-stepping possible channel-dependent and model-dependent

extractions of the resonance parameters and are able to undertake an error analysis. The method complies

to the fact that the pole position of the resonance is typically shifted from channel-dependent extractions

by ��=2. This is also a feature of the large-Nc limit of QCD, where the masses change by �=2 when

evolving from Nc ¼ 3 to Nc ¼ 1. Our value for the slope of the radial Regge trajectories is a ¼
1:35ð4Þ GeV2. We discuss the fundamental issue whether the masses of the light-quark nonstrange states

fit into a universal pattern M2
nJ ¼ aðnþ JÞ þ b, as suggested by Afonin, and also predicted by some

holographic models. Our joint linear-regression analysis in the ðn; J;M2Þ Regge planes indicates, at a

statistically significant level of 4.5 standard deviations, that the slopes of the radial Regge trajectories are

larger from the angular-momentum slopes. Thus, no strict universality of slopes occurs in the light

nonstrange meson spectra.
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I. INTRODUCTION

The study of regularities in the hadronic spectrum has
been a recurrent subject in the quark model [1], as it allows
not only to check our current understanding of strong
interactions, but also to predict possible missing states. In
the case of light-quark mesons, which is the subject of the
present study, the quark-hadron duality [2] implies QCD
constraints based on the operator product expansion of a
two-point correlation function with some given mesonic
quantum numbers (say J). In particular,

f2nJ=ðdM2
nJ=dnÞ ! const; (1)

where MnJ is the nth mass of the meson and fnJ the
corresponding vacuum decay amplitude. More than a de-
cade ago, Anisovich, Anisovich, and Sarantsev [3] sug-
gested that mesons could be grouped into radial Regge
trajectories of the form

M2
n ¼ M2

0 þ n�2; (2)

where M0 is the mass of the lowest-lying meson on each
corresponding trajectory and �2 is the slope parameter.
According to Ref. [3], the slope is approximately the same
for all the trajectories considered: �2 ¼ 1:25ð15Þ GeV2.

The uncertainly was estimated based on the spread of the
different results for each meson family. In addition, some
missing states predicted from Eq. (2) have indeed been
confirmed and included in the latest edition of the Particle
Data Group (PDG) tables [4]. Furthermore, Ref. [3] also
analyzed the venerable angular-momentum Regge trajecto-
ries [5] (for a review see, e.g., [6]), which motivated the
original (rubber) string models [7] (for a review see, e.g.,
[8,9]). Similar results were found in Ref. [10]. Moreover, the
large degeneracy [11] of the daughter Regge trajectories is
capable of producing the Hagedorn growth of the hadronic
spectra [11,12] (see Refs. [13,14] for a recent reanalysis).
In a remarkable paper, Afonin [15] (see also [16]) ana-

lyzed jointly the radial and angular-momentum trajectories
and argued that they merge into a single pattern

M2ðn; JÞ ¼ aðnþ JÞ þ c; (3)

unveiling a kind of hydrogenlike accidental degeneracy,
with a harmonic oscillator mass-squared spectrum. All
these phenomenological findings provide some confidence
on the string picture of hadrons, where the square of the
mass is the fundamental dynamical quantity. Together with
the QCD short-distance constraint of Eq. (1), we may then
infer that mesonic vacuum decay amplitudes tend to a
constant in the upper part of the spectrum.
Regardless of the success of the radial Regge trajecto-

ries, it is important to note that the resonance parameters,
such as mass, width, or coupling constants, depend on the
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definitions and are sensitive to the background, i.e., to
the particular process used to extract the resonance from
the experimental data. This poses the relevant question of
what the precise meaning of Eq. (2) is, and, moreover, in
what sense is QCD compatible with such an analysis. In
the present work, we reanalyze this problem, carrying
out global linear-regression fits with the uncertainty of
the resonance position proportional to its width, �.
Specifically, we use weights inversely proportional to the
square of the resonance half-width. The approach is con-
sistent with the fact that the pole position of the resonance
is typically shifted from channel-dependent extractions by
about �=2. Also, within the large-Nc QCD [17,18] (see,
e.g., [19] for a review), where the strong coupling constant
is assumed to scale as g� 1=

ffiffiffiffiffiffi
Nc

p
, the meson masses

change by �=2 when evolved from Nc ¼ 3 to Nc ¼ 1,
as has been exploited intensely in Refs. [20–27].

We note that within the AdS/CFT proposal (for a review
see, e.g., [28]) there have been attempts to formulate holo-
graphic models (the so-called soft-wall models) with linear
confinement [29] and, likewise, their light-cone relatives
[30], complying to the ansatz of Eq. (2). We recall that all
these AdS/CFT-inspired models are claimed to operate for
large t’Hooft couplings, i.e., g� 1=Nc.

As we will elaborate in detail, our main finding, after
considering the resonance width uncertainties, is to con-
firm the result of Ref. [3] with the updated data, as we find
�2 ¼ 1:35ð4Þ GeV2. On the other hand, our analysis in the
ðn; J;M2Þ Regge planes shows that at a statistically signifi-
cant level of 4.5 standard deviations the slopes of the radial
Regge trajectories are larger from the slopes of the angular-
momentum trajectories. Therefore, no strict universality of
slopes occurs in the light nonstrange meson sector.

The plan of the paper is as follows. In Sec. II, we
motivate our choice for the weight in the linear-regression
analysis.

In Sec. III, we discuss in detail, through the use of the
present PDG tables, how the different states are grouped
into the radial Regge trajectories. Whenever possible, we
try to keep the successful choice of Ref. [3] taking into
account the assumed uncertainties. In Sec. III H on, we
enlarge the choice of Ref. [3] to complete all the light
unflavored states collected in the PDG. The update of the
angular-momentum Regge trajectories is considered in
Sec. IV. In Sec. V, we discuss, as originally suggested by
Afonin, simultaneously the radial and angular-momentum
trajectories. Finally, in Sec. VI we summarize our results
and draw our main conclusions.

Throughout this work, we use the up-to-date edition of
the PDG tables [4]. The symbol q stand for the light
quarks, u or d.

II. UNCERTAINTIES OF RESONANCE POSITIONS

As already mentioned in the Introduction, in order to
properly size the meaning of the radial Regge trajectories

for resonant states it is important to review the well-known
features of the quantum-mechanical decay process relevant
to our discussion. The rigorous quantum-mechanical defi-
nition of a resonance with given quantum numbers corre-
sponds to a pole in the second Riemann sheet in the
(analytically continued) partial-wave amplitude of the con-
sidered scattering channel [31]. This definition becomes
independent on the background, whereas the correspond-
ing residue provides the amplitude to produce that reso-
nance in the given process.
However, although quoting the complex pole and the

complex residue would be superior and highly desirable,
for practical reasons this is not what one typically finds in
the PDG tables [4], with very few exceptions. As a matter
of fact, several definitions besides the pole in the second
Riemann sheet are employed, such as a pole in the
K-matrix, the Breit-Wigner resonance, the location of a
maximum in the speed plot, time delay, etc. (see, e.g.,
[32,33]).
A resonance may be interpreted as a superposition of

states with a given mass distribution on the real axis,
approximately spanning the M� �=2 interval. Of course,
the shape of the distribution depends on the particular
process in which the resonance is produced, and thus on
the background. Clearly, while all the definitions converge
for narrow resonances, even for broad states we expect the
masses obtained from various methods to be compatible
within their corresponding M� �=2 intervals. As stated
above, the values listed by the PDG for a given resonance
correspond to different choices of the definition and/or
production processes, but mostly the results are compatible
within the estimated width differences. This clearly pro-
vides an upper bound on the uncertainty of the resonance
position for different resonance parameter definitions. For
shortness, we refer to this mass uncertainty estimate of the
resonance mass as the half-width rule.1

Quite remarkably, there is a QCD scenario where the
half-width rule estimate becomes parametrically small for
all the resonances in the mesonic spectrum. In the large-Nc

limit of QCD [17,18] (see, e.g., [19] for a review using
effective Lagrangians) mesons become stable, i.e., their
masses areM ¼ OðN0

cÞ, while their widths are suppressed,
� ¼ Oð1=NcÞ, such that the ratio �=M ¼ Oð1=NcÞ. This
expectation of the large-Nc limit seems to be fulfilled very
well in the real Nc ¼ 3 world, since one finds for the light-
quark mesons an average value �=M ¼ 0:12ð8Þ (to be
compared with a rule of thumb 1=Nc ¼ 0:33 for Nc ¼ 3)
[34]. This feature is visualized in Fig. 1. Of course, there
are exceptions to this average ratio, but they are scarce
within the given confidence interval. In fact, only just one
state (� ¼ f0ð600Þ) goes over the 1=3-value [34].

1Of course, the width itself has an uncertainty which may
eventually enlarge the global indetermination in the resonance
mass.
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A complementary way of connecting parametrically the
mass shift and the decay width is as follows. One starts
with the leading-Nc resonance Lagrangian [19], recalling
that the three and higher n-mesonic interactions are

OðN1�n=2
c Þ [17,18]. Thus, the mass shift is computed as a

loop integral via the self-energy whose imaginary part
corresponds to the decay width of the particles inside the
loop according to the Cutkosky rules. This argument
makes it clear that the 1=Nc scaling of the mass shift and
the width are exactly the same and bound by Oð1=NcÞ,
although the numerical values of the two quantities may
not coincide exactly. The point of this discussion is that if
we take the leading-1=Nc resonance mass, its systematic
uncertainty is parametrically indistinguishable from the
decay width, since they are the real and imaginary parts
of the self-energy, respectively. As pointed out in Ref. [35],
the role of the mass shift is crucial when determining the
properties of two-point correlator functions.

Within this framework, the half-width rule has been used
recently [34,36] for the case of the scalar and pseudoscalar
mesons with rather interesting results regarding the iden-
tification of glueball states and chiral symmetry doublets.
Here, we extend these ideas to the rest of the light-quark
meson spectrum. Specifically, to incorporate the half-width
rule in practice, we take2

�2 ¼ X
n

�
M2

n �M2
n;exp

�nMn

�
2
; (4)

for the linear-regression fit, where the radial Regge for-
mula, Eq. (2), is used as the model. Note that in doing so,
we are just saying that Eq. (2) is fulfilled within the

uncertainty M2
n ¼ �2nþM2

0 � �nMn. Moreover, we will

stay within the linear ansatz as the half-width rule yields
insensitivity to small nonlinearities as analyzed, e.g., in
Ref. [37] for n-trajectories or in Ref. [38] for J-trajectories.

III. RADIAL REGGE TRAJECTORIES

The construction of a meson Regge trajectory requires a
choice on the possible meson assignments. The analysis of
the radial Regge trajectories we are carrying out consists of
two stages: The first one reanalyzes the results of Ref. [3]
with the inclusion of more states from the updated PDG
tables [4], while from Sec. III H on we deal with meson
families not considered in Ref. [3]. To facilitate the com-
parison, we follow as close as possible the presentation of
Ref. [3].
We motivate our selections with rather detailed discus-

sions. The reader interested in the results only may jump to
Sec. III N.
In all our M2-plots we take, in line with the half-width

rule, the error to be given by �M2 ¼ ��M.

A. a1ð11þþÞ and a3ð13þþÞ
Compared to Ref. [3], we consider four different trajec-

tories: two for the a1ð11þþÞ states (lower solid and dashed
lines in Fig. 2) and two for the a3ð13þþÞ states (upper
solid and dash-dotted lines in Fig. 2). The first trajectory
for the a1ð11þþÞ states contains a1ð1260Þ, a1ð1640Þ, and
a1ð2095Þ. The a1ð2340Þ state (now called a1ð2270Þ), as-
sumed in Ref. [3] to belong to this trajectory, is now used in
the daughter trajectory for the a1ð11þþÞ, together with a
new state not considered in Ref. [3], the a1ð1930Þ. The
linear fit to the first trajectory for the a1ð11þþÞ states yields
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FIG. 2 (color online). The ðn;M2Þ plots for the states a1ð1þþÞ
(lower solid and dashed lines) and a1ð3þþÞ (upper solid and
dash-dotted lines). Error bars correspond to taking �M2 ¼
��M.
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FIG. 1 (color online). The ratio of width to mass for the light-
quark meson states. The surface of each point is proportional to
the (2J þ 1) spin degeneracy, while the intensity is proportional
to the isospin degeneracy (2I þ 1). The band corresponds to the
average � standard deviation bounds, �=M ¼ 0:12ð8Þ.

2There is an alternative fit with �2 ¼ P
nðMn�Mn;exp

�n=2
Þ2 which

does not alter much in the results. Actually, both �2 functions are
particular examples of the more general maximum-likelihood
method, where the resonance production profile is assumed to be
Gaussian. For a discussion on other profiles, in particular, for the
ubiquitous Breit-Wigner shape, see the Appendix for details.
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�2 ¼ 1:36ð49Þ GeV2 with �2 per degrees of freedom,
�2=DOF ¼ 0:12 (lower solid line in Fig. 2). For the second
trajectory �2 ¼ 1:43ð73Þ GeV2 (dashed line on Fig. 2).
This trajectory has only two states and it will not be
considered for the final compilation.

In the case of the a3ð13þþÞ trajectories, the first one
contains the new a3ð1875Þ state together with the a3ð2275Þ,
yielding �2 ¼ 1:5ð1:1Þ GeV2 (upper solid line in Fig. 2)
and the second trajectory contains only the a3ð2030Þ state
[dash-dotted line parallel to the a3ð13þþÞ trajectory].

B. �ð00�þÞ and �2ð02�þÞ
Figure 3 shows the �ð00�þÞ and �2ð02�þÞ states where,

due to two independent flavor components q �q and s�s, both
yield two trajectories. The �ð00�þÞq �q contains five states:
�ð548Þ, �ð1295Þ, �ð1760Þ, �ð2100Þ, and �ð2320Þ (lower
solid line in Fig. 3), where the first state, �ð548Þ, is not
used in the linear fit. In Ref. [3], the state �ð2100Þ was
predicted, while nothing was said about the �ð2320Þ. Both
states, now listed by the PDG, are incorporated in our
study. The fit yields�2 ¼ 1:33ð11Þ GeV2 with �2=DOF ¼
0:26.

The �ð00�þÞs�s trajectory with four states: �ð958Þ,
�ð1475Þ, �ð2010Þ, and �ð2225Þ, yields �2 ¼
1:36ð14Þ GeV2 with �2=DOF ¼ 0:44. The �ð2010Þ was
predicted in Ref. [3] under the name �ð1900Þ and now is
listed in the PDG tables.

In Ref. [3], only one state with mass near 1440 MeV was
considered. Now, it is well established that in this energy
region there are two different � states, the �ð1405Þ and the
�ð1475Þ. The first one, however, is not unambiguously
located and it is considered to be a glueball (see the
mini-review about this state on the PDG tables), therefore

we exclude it from our fitting procedure. The second state
is included in the s�s trajectory.
The �ð02�þÞq �q trajectory yields �2 ¼ 1:32ð32Þ GeV2,

with �2=DOF ¼ 0:22. This trajectory contains �2ð1645Þ,
�2ð2030Þ, and �2ð2250Þ. The �ð02�þÞs�s trajectory, which
contains only one �2ð1870Þ state, is drawn parallel to the
nonstrange case.

C. �1ð11��Þ and �3ð13��Þ
The two trajectories for �1ð11��Þ are depicted in Fig. 4.

The first one contains �ð770Þ, �ð1450Þ, �ð1900Þ, and
�ð2150Þ. As explained by the PDG, it is not clear what
values for the mass and width one should use for �ð1900Þ.
We choose M ¼ 1:870ð30Þ GeV and � ¼ 0:150ð20Þ GeV.
The linear fit (solid line in Fig. 4) yields �2 ¼
1:43ð13Þ GeV2 with �2=DOF ¼ 0:09.
The second trajectory contains �ð1700Þ, �ð2000Þ, and

�ð2270Þ. These last two states were predicted by Ref. [3]
and now are listed in the PDG compilation. The �ð1700Þ
and �ð2000Þ states, however, are controversial and need
confirmation. The corresponding slope trajectory is �2 ¼
1:08ð47Þ GeV2 with a �2=DOF ¼ 0:004 although it is
drawn in Fig. 4 as parallel to the q �q trajectory due to the
lack of confirmation of these states. There is a new state
in the PDG tables called �ð1570Þ, which also needs further
confirmation because it might reflect a threshold effect or
an Okubo-Zweig-Iizuka-rule-suppressed decay mode of
the �ð1700Þ (see the mini-review about this issue on
PDG). We do not include it on our analysis, either.
In addition to Ref. [3], we have also considered the

�3ð13��Þ states, which include �3ð1690Þ, �3ð1990Þ,
and �3ð2250Þ. The slope for this trajectory is �2 ¼
1:19ð32Þ GeV2 with �2=DOF ¼ 0:05. Neither �3ð1690Þ
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FIG. 3 (color online). The ðn;M2Þ plots for the �ð00�þÞ
(lower solid and dashed lines) and �2ð02�þÞ (upper solid and
dashed lines) trajectories. Error bars correspond to taking
�M2 ¼ ��M.
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FIG. 4 (color online). The ðn;M2Þ plots for the states �1ð11��Þ
(solid and dashed lines, respectively), and the �3ð13��Þ states
(dash-dotted line). Error bars correspond to taking �M2 ¼
��M.
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nor �3ð2250Þ are well-established resonances and we just
quote them for completeness. We do not use the slope
prediction for this trajectory in our later average result.

D. � and �2

For the �ð10�þÞ trajectory (lower solid line in Fig. 5),
composed of �ð1300Þ, �ð1800Þ, �ð2070Þ, and �ð2360Þ,
the fit produces �2 ¼ 1:27ð27Þ GeV2 with �2=DOF ¼
0:16, where the stable �ð140Þ state is not used in the fit.3

We update the trajectory including the �ð2070Þ and
�ð2360Þ states originally predicted in Ref. [3].

The �2ð12�þÞ states produce two trajectories. The first
one includes �2ð1670Þ and two new states predicted in
Ref. [3]: �2ð2005Þ and �2ð2285Þ. The fit yields �2 ¼
1:21ð36Þ GeV2 with �2=DOF ¼ 0:02 (solid upper line in
Fig. 5). The second trajectory has two new states, not
predicted in Ref. [3]:�2ð1880Þ and�2ð2100Þ. The heaviest
�2, with the mass of 2.090(29) GeVand the width of 0.625
(50) GeV, has still to be confirmed. Conversely, if we use
the fitted daughter trajectory with this state omitted, we
predict its mass to be around 2.19(13) GeV.

E. a0ð10þþÞ, a2ð12þþÞ, and a4ð14þþÞ
In Ref. [3], the experimental information in the

a0ð10þþÞ, a2ð12þþÞ, and a4ð14þþÞ sector was scarce and
could not fix the �2 slope uniquely. Therefore, two differ-
ent slopes, �2 ¼ 1:38 GeV2 and �2 ¼ 1:1 GeV2 were
deduced depending on the states included, and in fact
�2 ¼ 1:1 GeV2 predicted a yet unobserved new state
a0ð1800Þ. Hence, �2 ¼ 1:38 GeV2 is favored currently

and we accept the classification of Ref. [3], with the
a0ð10þþÞ, a2ð12þþÞ, and a4ð14þþÞ trajectories and the
a2ð12þþÞ split into two daughters. The a0ð10þþÞ contains
a0ð980Þ, a0ð1450Þ,4 and a0ð2020Þ. The prediction for the
slope is �2 ¼ 1:42ð26Þ GeV2 with �2=DOF ¼ 0:48. The
a0ð2260Þ predicted in Ref. [3] has not been seen yet and in
our present description should be located around 2.29
(12) GeV.
Two trajectories for a2ð12þþÞ are presented. The lower

trajectory contains a2ð1320Þ, a2ð1700Þ, and a2ð2175Þ,5
giving �2 ¼ 1:39ð26Þ GeV2 with a �2=DOF ¼ 0:24. The
previously predicted a2ð2400Þ Ref. [3] has not been seen
yet. It is also predicted within our trajectory to have M ¼
2:42ð17Þ GeV.
The upper trajectory contains a2ð2030Þ and a2ð2255Þ.

The a2ð2030Þ is an average of different experimental de-
terminations (under two different names) from the PDG
compilation. In the 1999 PDG edition, a state called
a2ð1990Þ was introduced, while in 2001 this state was
updated to become a2ð2030Þ by Ref. [39], but not modified
in the PDG review. Since then, a2ð2030Þ appears under two
different entries in the PDG compilation, hence one of
them is redundant. The mass and width for a2ð2030Þ are
not averaged by the PDG, where just the three different
measurements are presented. We average them with the
result 2021(14) MeV for the mass and 220(23) MeV for the
width. This trajectory would produce �2 ¼ 1:0ð7Þ GeV2.
Another problem to face for the upper a2 trajectory is the

presence of two very close resonances, a2ð1950Þ with the
mass of 1950(50) MeVand the width of 187(50) MeV, and
a2ð2030Þ. It is argued in Ref. [39] that it is necessary to
obtain a better fit to the data. As a matter of fact, due to the
large errors of the mass position and widths, these states
might easily be a single state. For the presented reasons, we
do not use this trajectory for our average slope value.
Finally, the a4ð14þþÞ trajectory contains a4ð2040Þ and

a4ð2255Þ and the slope turns out to be �2 ¼ 1:0ð8Þ GeV2.
We draw, however, a parallel line to the main (solid)
trajectory in Fig. 6.

F. f2ð02þþÞ
In Ref. [3], it was not possible to discriminate the slopes

�2 ¼ 1:1 GeV2 or �2 ¼ 1:38 GeV2 for the f2ð02þþÞ sec-
tor with the 12 available states in year 2000. The currently
listed 18 states favor the second slope.
Figure 2(c) of Ref. [3] shows a quadruplet of trajectories

wtih two flavor components, q �q and s�s. With the inclusion
of the additional 6 new states, we find that an overall
satisfactory update of Ref. [3] is given by the scheme
presented in Fig. 7 (left panel) requiring some reshuffling
which we describe below. We name these trajectories,
fa2 ,f

b
2 , f

c
2, and fd2 .
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FIG. 5 (color online). The ðn;M2Þ plots for the �ð10�þÞ
(lower solid line) and �2ð12�þÞ (upper solid and dashed lines)
trajectories. Error bars correspond to taking �M2 ¼ ��M.

3One expects a strong nonlinearity for the Goldstone bosons,
see, e.g., Ref. [34].

4Called before a0ð1520Þ.
5Named before a2ð1660Þ and a2ð2100Þ, respectively.
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(i) The fa2 trajectory (lower solid line in Fig. 7). It

contains f2ð1270Þ, f2ð1750Þ, and f2ð2150Þ, one
less state than Ref. [3] which also included
f2ð2400Þ. In our case, the slope for this trajectory
is �2 ¼ 1:50ð19Þ GeV2 with �2=DOF ¼ 0:06.

(ii) The fb2 trajectory (dashed line in Fig. 7). It contains
f2ð1430Þ, which is still to be determined (we take
M ¼ 1468ð60Þ MeV and � ¼ 100ð100Þ MeV),
f2ð1910Þ with M ¼ 1927ð32Þ MeV and � ¼
154ð73Þ MeV, and, finally, f2ð2240Þ. These states
yield �2 ¼ 1:48ð23Þ GeV2 with �2=DOF ¼ 0:09.

(iii) The fc2 trajectory (the upper solid line in Fig. 7.) As
in Ref. [3], it is composed of f2ð1525Þ, f2ð1950Þ,

and f2ð2295Þ, giving �2 ¼ 1:47ð25Þ GeV2 with
�2=DOF ¼ 0:000 01.

(iv) The fd2 trajectory (the dash-dotted line in Fig. 7). It

contains f2ð1565Þ (which needs confirmation),
f2ð2000Þ, and f2ð2300Þ. The slope for this trajec-
tory is �2 ¼ 1:42ð20Þ GeV2 with �2=DOF ¼ 0:05.
The states considered here involve some reshuffling
compared to Ref. [3].

We now turn to the new trajectories, i.e., not given in
Ref. [3], which are separately plotted in Fig. 7 (right panel).
(i) The two trajectories including f2ð1640Þ and

f2ð2150Þ as well as f2ð1810Þ and f2ð2220Þ (both of
them need confirmation), might actually be inter-
twined or describe an overcomplete set of states.
The first one returns �2 ¼ 1:99ð36Þ GeV2 and the
second �2 ¼ 1:69ð36Þ GeV2. Considering the lack
of confirmation and the particular values for both
masses and widths, it might turn out that f2ð1810Þ
and f2ð2220Þ are the very same f2ð1910Þ and
f2ð2240Þ states.

(ii) The upper trajectory is described with �2 ¼
1:43ð83Þ GeV2 and contains two states, f2ð2010Þ
and f2ð2340Þ.

G. f0ð00þþÞ
Two trajectories for f0ð00þþÞ are displayed in Fig. 8 and

as claimed in Ref. [3] they are doubled due to two flavor
components, q �q and s�s. Without considering the f0ð600Þ
(see however Ref. [36] and the Appendix), also called the
�meson, the lower trajectory contains four states: f0ð980Þ,
f0ð1500Þ, f0ð2020Þ, and f0ð2200Þ (solid line in Fig. 8). The
last state was actually predicted in Ref. [3] and later con-
firmed experimentally. The trajectory yields �2 ¼
1:31ð12Þ GeV2 with �2=DOF ¼ 0:11.
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FIG. 6 (color online). The ðn;M2Þ plots for the a0ð10þþÞ
(lower solid line), a2ð12þþÞ q �q and s�s (upper solid and dashed
lines, respectively), and a4ð14þþÞ (dash-dotted line) trajectories.
Error bars correspond to taking �M2 ¼ ��M.
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FIG. 7 (color online). The ðn;M2Þ plots for the seven f2ð02þþÞ trajectories comprising the 4 originally described in Ref. [3] (left
panel) and the new ones discussed in the main text (right panel). Error bars correspond to taking �M2 ¼ ��M.
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The second trajectory (dashed line in Fig. 8) has also
four states, f0ð1370Þ, f0ð1710Þ, f0ð2100Þ, and f0ð2330Þ,
where an average of the experimental determinations
is considered for this latter state. It yields �2 ¼
1:24ð18Þ GeV2 with �2=DOF ¼ 0:12.

H. !ð01��Þ and !3ð03��Þ
After reanalyzing the radial Regge trajectories taken into

account in Ref. [3], we now analyze using the same meth-
odology the remaining meson families included in the
latest PDG review [4].

Two trajectories for the !ð01��Þ states are shown
in Fig. 9. The ordering of the states on the different

trajectories for the !-family follows very closely the clas-
sification of the �-family states, Fig. 4. The main
!-trajectory, representing the q �q states and drawn as a
solid line in Fig. 9, contains four states: !ð782Þ, !ð1420Þ,
!ð1960Þ, and !ð2205Þ. The slope from the fit is �2 ¼
1:50ð12Þ GeV2 with �2=DOF ¼ 0:32.
The daughter trajectory (dashed line in Fig. 9) contains

two states:!ð1650Þ and!ð2290Þ. In the PDG recollection,
two ! states with very similar masses are listed in the
2.3 GeV region: !ð2290Þ and !ð2330Þ. Looking at the
error determination of the parameters of these states, it is
not clear to us that the two states are indeed different. We
gather both experimental results in a single entry !ð2290Þ,
which has mass 2315(45) MeV and width 325(185) MeV.
Comparing this trajectory with the corresponding one from
the �-family, we notice a missing ! state with the mass
near 2000 MeV, indicating the state!ð2290Þ to be the third
on its trajectory. With only two states, the corresponding
slope is �2 ¼ 1:27ð47Þ GeV2.
The third trajectory in Fig. 9, describing the !3ð03��Þ

states, contains !3ð1670Þ, !3ð1945Þ, and !3ð2255Þ. It
yields �2 ¼ 1:16ð26Þ GeV2 with �2=DOF ¼ 0:37.

I. h1ð01þ�Þ and h3ð03þ�Þ
The h sector contains two trajectories corresponding to

the h1ð01þ�Þ and h3ð03þ�Þ states shown as circles and
squares in Fig. 10, respectively. The h1ð01þ�Þ case con-
sists of four states: h1ð1170Þ, h1ð1595Þ, h1ð1965Þ, and
h1ð2215Þ. The h1ð1380Þ state is excluded, since it still
needs to be confirmed. The linear fit to this trajectory,
shown as a solid line in Fig. 10, gives �2 ¼
1:20ð25Þ GeV2 with �2=DOF ¼ 0:01.
The h3ð03þ�Þ includes only two states, h3ð2025Þ and

h3ð2275Þ (supposed to be the second and third excitation
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FIG. 8 (color online). The ðn;M2Þ plot for the f0ð00þþÞ q �q
(solid line) and s�s (dashed line) trajectories. Error bars corre-
spond to taking �M2 ¼ ��M.
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FIG. 9 (color online). The ðn;M2Þ plot for the !ð01��Þ
(circles, solid line and triangles, dashed line) trajectories, as
well as for the !3ð03��Þ (squares,dash-dotted line) trajectory.
Error bars correspond to taking �M2 ¼ ��M.
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FIG. 10 (color online). The ðn;M2Þ plot for the h1ð01þ�Þ
(circles, solid line) and h3ð03þ�Þ (squares, dashed line) trajec-
tories. Error bars correspond to taking �M2 ¼ ��M.
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states of that trajectory), thus the slope �2 ¼
1:08ð54Þ GeV2 is determined. In Fig. 10, the dashed line,
drawn parallel to the solid line, represents this trajectory.

J. b1ð01þ�Þ and b3ð03þ�Þ
Similarly to the previous subsection, the b sector con-

tains two trajectories, corresponding to the b1ð11þ�Þ and
b3ð13þ�Þ states, shown as circles and squares in Fig. 11,
respectively. The b1ð01þ�Þ consists of three states:
b1ð1235Þ, b1ð1960Þ, and b1ð2240Þ. The linear fit returns
�2 ¼ 1:17ð18Þ GeV2 with �2=DOF ¼ 0:000 01 (solid line
in Fig. 11).

The b3ð03þ�Þ includes only two states, b3ð2030Þ and
b3ð2245Þ, hence the slope is �2 ¼ 0:93ð75Þ GeV2. In
Fig. 11, a dashed line, parallel to the solid line, represents
this trajectory. Since the resemblance between the h sector
and the b sector is apparent, that suggests the existence of a
still not determined b1 state with a mass of the order of
1600 MeV.

K. f1ð01þþÞ and f3ð03þþÞ
The situation with the f1 and f3 states is equivalent to

the b and h case, thus we have two different trajectories
corresponding to the different angular-momentum,
f1ð01þþÞ and f3ð03þþÞ, shown as circles and squares in
Fig. 12, respectively. The f1ð01þþÞ trajectory consists of
three states: f1ð1285Þ, f1ð1960Þ, and f1ð2240Þ. The fit
for this trajectory returns �2 ¼ 1:19ð15Þ GeV2 with
�2=DOF ¼ 0:13 and it is shown as a solid line in Fig. 12.

The f3ð03þþÞ includes only two states, f3ð2050Þ and
f3ð2300Þ. The slope is �2 ¼ 1:27ð64Þ GeV2. In Fig. 12,
the dashed line, drawn parallel to the solid line, displays
this trajectory. The location of these states follows closely
the case of h3ð03þ�Þ and b3ð13þ�Þ, hence it starts at the

radial quantum number n ¼ 2. From Fig. 12, it is not
obvious how to allocate the f1ð1420Þ state, since the de-
parture from the expected value seems much larger than
expected from the half-width rule, therefore we exclude it
from the fit. This choice resembles the h1 case.

L. �ð01��Þ and �3ð03��Þ
The � sector has three states with J ¼ 1 (�ð1020Þ,

�ð1680Þ, and �ð2170Þ), and one with J ¼ 3 (�3ð1850Þ),
therefore the allocation of states becomes less unique.
However, if the states with J ¼ 1 are placed on a radial
linear trajectory, a well-determined slope �2 ¼
1:84ð6Þ GeV2 with a �2 ¼ 0:06 is obtained. We note that
such slope is much larger than any of the other slopes found
so far. We could also concede the states �ð1680Þ, and
�ð2170Þ to be n ¼ 2, 3, respectively, which would produce
�2 ¼ 1:19ð4Þ GeV2 instead, although with too large
�2=DOF ¼ 6:4. Because of this ambiguity, we will not
consider this family for the final summary results
In Fig. 13, two trajectories are shown as parallel lines,

with a solid line representing the J ¼ 1 states, and the
dashed line going across the J ¼ 3 state. Clearly, this
somewhat disturbing picture should profit from both theo-
retical or experimental insight.

M. �1ð11�þÞ
Finally, the last sector we analyze corresponds to the �1

states, composed by �1ð1400Þ, �1ð1600Þ, and �1ð2015Þ.
Two different measurements are found for this last state
and we average them to have mass M ¼ 2:013ð25Þ GeV
and width � ¼ 0:287ð53Þ GeV.
With these three states on a linear trajectory, the slope

obtained is �2 ¼ 1:09ð36Þ GeV2 with a �2 ¼ 0:11. The
results are depicted in Fig. 14.
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FIG. 11 (color online). The ðn;M2Þ plot for the b1ð11þ�Þ
(circles, solid line) and b3ð13þ�Þ (squares, dashed line) trajec-
tories. Error bars correspond to taking �M2 ¼ ��M.
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FIG. 12 (color online). The ðn;M2Þ plot for the f1ð01þþÞ
(circles, solid line) and f3ð03þþÞ (squares, dashed line) trajec-
tories. Error bars correspond to taking �M2 ¼ ��M.
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N. Summary of the radial-trajectory fits

We summarize this section by collecting the fits for all
the radial trajectories studied. The �2 parameter ranges
from 1:09ð36Þ GeV2 (the �1ð11�þÞ trajectory) to
1:50ð19Þ GeV2 (corresponding to the fa2 ð02þþÞ trajectory).
The weighted average yields 6

�2 ¼ 1:35ð4Þ GeV2: (5)

This result agrees within the uncertainties with the estimate
of Ref. [3], �2 ¼ 1:25ð15Þ GeV2, where the uncertainty
was given by the spread of the mean values determined
from a fit to the PDG masses with equal weights. When we
carry out the same procedure for the updated and new
trajectories, we get �2 ¼ 1:32ð12Þ GeV2. This seems to
provide a quite robust estimate of a common radial Regge
trajectories slopes. A graphic overview of the estimated
slopes is presented in Fig. 16 (upper part).

We have also considered the possibility of a linear
n-dependence of the masses, since it was a popular out-
come of holographic models in the hard-wall scheme (see,
e.g., Ref. [28] and references therein). With the same
conditions as analyzed above, i.e., assuming the validity
of the half-width rule our analysis is not compatible with
such radial spectrum; typically, we obtain �2=DOF� 10
or larger.

IV. ðJ;M2Þ TRAJECTORIES

In this section, taking into account all the states so far
considered and adding those with larger J ¼ 4, 5, 6 from

the PDG tables [4], we complement the results of the
ðn;M2Þ analysis with the study in the ðJ;M2Þ plane, i.e,
the standard Chew-Frautschi plots [5].
One may parametrize the trajectories as

�XðM2Þ � �Xð0Þ þ �0
Xð0ÞM2; (6)

with �Xð0Þ and �0
Xð0Þ constant parameters.

Equivalently, we consider

M2
XðJÞ ¼ M2

Xð0Þ þ 	XJ: (7)

The 	 parameter is related to � as 	� 1=�0
Xð0Þ.

The results for the leading trajectories are shown in
Table I. Generally, we do not attempt to determine the
slope when the trajectory is made of less than three states.
An overview of the estimated slopes can be seen in Fig. 16
(lower part). Nevertheless, to provide a broader perspec-
tive, we show in Fig. 15 also trajectories with just two
states (dashed lines).
The weighted average result for the angular trajectories

yields

	 ¼ 1:16ð4Þ GeV2: (8)

If one considers, instead, the spread of central values as in
Ref. [3], the updated result for the states, one obtains 	 ¼
1:15ð8Þ GeV2, in agreement with [3].
When comparing the results of Eqs. (5) and (8), we note

that the radial and angular-momentum slopes are different
at the level of 3.4 standard deviations. Thus, there is
indication that the radial slopes are larger than the
angular-momentum slopes at a significant statistical level.
We come back to this important issue in the next section.
It should be noted that in addition to the states of

Ref. [3], we have also included the !, h1, b1, f1, �, and
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FIG. 13 (color online). The ðn;M2Þ plot for the �ð01��Þ
(circles, solid line) and �3ð03��Þ (squares, dashed line) trajec-
tories. Error bars correspond to taking �M2 ¼ ��M.
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FIG. 14 (color online). The ðn;M2Þ plot for the �1ð11�þÞ
(circles, solid line) trajectories. Error bars correspond to taking
�M2 ¼ ��M.

6We use the customary definition for the weighted average
�A ¼ P

N
i¼1 wiAi=

P
N
i¼1 wi, with wi ¼ 1=�2

i . The errors are the

mean-squared deviation,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A2 � ð �AÞ2p

. The mean average corre-
sponds to wi ¼ 1.
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�1 sectors on our analysis, as well as three new
J-trajectories, with the a0, f0, and ! states.

V. JOINT ðn; J;M2Þ FITS
A summary of the estimated radial and angular slopes is

given in Fig. 16. We consider a weighted average estimate
for a common (universal) slope trajectory, including the

studied trajectories both in the ðn;M2Þ and the ðJ;M2Þ
planes. This yields �2 ¼ 	 ¼ 1:26ð3Þ GeV2. When the

spread of central values for all the trajectories is used, we

obtain �2 ¼ 	 ¼ 1:27ð14Þ GeV2. The trend to produce a

number closer to the radial slope reflects a larger sample.

As a matter of fact, when we weight both n and J trajecto-

ries equally, we get �2 ¼ 	 ¼ 1:26ð3Þ GeV2.
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FIG. 15 (color online). The ðJ;M2Þ plots for all states considered in Table I. Error bars correspond to taking �M2 ¼ ��M.
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In the previous sections, we have carried out the analysis
for the ðn;M2Þ and ðJ;M2Þ planes, with the indication that
�2 >	 at a significant statistical level (3.4 standard devi-
ations). This strongly suggests a careful reconsideration of
the findings of Ref. [15], where a common fit of Eq. (3) for
the ðn;M2Þ and ðJ;M2Þ planes was proposed. Technically,
the joint analysis presented in this section is different from

the separate analyses of Secs. III and IV in the following
important detail. In the separate fits, the constants M2

0 and

M02
0 in the formulas M2ðnÞ ¼ �2nþM2

0 and M2ðnÞ ¼
	J þM02

0 were treated as unrelated parameters, even in

the same family of states. On the contrary, formula (3),
with a common parameter c for a given family, relates the
‘‘offset’’ constants M2

0 and M02
0 , providing a constraint to

the statistical analysis.
Therefore, to look closer at the issue of universality of

the radial and angular-momentum slopes, we analyze each
sector independently with two different plane fit functions:
the nonuniversal formula

M2 ¼ anþ bJþ c (9)

on one hand, and the universal formula

M2 ¼ aðnþ JÞ þ c (10)

on the other hand. With the c parameter fixed for the whole
family, the states with different values of n and J belong to

FIG. 16 (color online). ðn;M2Þ and ðJ;M2Þ slope results for the
considered trajectories. The horizontal dashed line separates the
radial slopes (circles) from the angular slopes (squares).
Individual errors are estimated from the �2 fits to the corre-
sponding trajectories described in the main text. The bands
correspond to the weighted averages of the radial (upper band)
and the angular-momentum (lower band).

TABLE I. The ðJ;M2Þ trajectories for leading and daughter
trajectories. For an easy comparison with Ref. [3], we also show
the corresponding �0

Xð0Þ � 1=	 for each trajectory.

X M2
Xð0Þ [GeV2] 	X [GeV2] �0

Xð0Þ [GeV�2] �2=DOF

� 0.30(0) 1.22(10) 0.82(7) 0.37

� 0.60(11) 1.19(10) 0.84(7) 0.15

� 0.018(0) 1.29(11) 0.78(7) 0.26

a2 �0:45ð43Þ 1.09(18) 0.92(15) 0.03

a0 0.96(7) 1.02(12) 0.98(12) 0.001

f2 �0:66ð48Þ 1.15(16) 0.87(12) 0.12

f0 2.26(16) 1.20(17) 0.83(12) 0.01

f00 0.96(7) 1.13(12) 0.88(9) 0.07

! �0:48ð11Þ 1.09(11) 0.92(9) 0.02

FIG. 17 (color online). The ðn; J;M2Þ Regge planes for the � family and the � family.
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a Regge plane. This is illustrated in Fig. 17 for the �- and
�-families as an example.

Our numerical results are collected in Table II. Several
meson sectors can be placed on two almost parallel planes.
The nomenclature used is as follows: after the name of
each family, the subindex quoted refers to the states with
the particular angular quantum number used on the plane.
For example, �135 means the set of all the � states with
angular-momentum J ¼ 1, 3, 5, and with all the possible
radial quantum numbers.

The numbers in Table II show a few interesting features.
The most important one is that for each family of states the
fit with Eq. (9) is preferred over the fit with Eq. (10)
(judging by the different �2=DOF values). Moreover, we
generically find a > b. The offset parameter c also seems
to be stable through all the planes, although less stable than
the radial and angular slope parameters.

The fact that the ratio of the radial to angular slope,
denoted as R, grows with the quark mass may be a generic
and physically relevant feature. Note that for the heavy
quarkonia the joint fit is compatible with the formulaM2 ¼
að2nþ JÞ þ c [40]. Thus, it may be that R is close to unity
for light mesons, R ¼ 2 for heavy mesons, and assumes an
intermediate value for hidden-strangeness states.

From Table II, it is worth stressing how close the states
from the � and the ! families are. For a02 plane, we have
assigned to a2ð2030Þ and a2ð2255Þ radial quantum num-
bers n ¼ 2 and 3, respectively. Otherwise (with n ¼ 1 and
2), the angular slope would be larger than the radial slope.
The h13, b13, and f13 have systematically smaller a and b
parameters from the remaining families, although very
similar among themselves. As commented already, this
fact may be caused by the lack of states in these sectors.
States with higher angular-momentum (when discovered)
would lead to better and more reliable determination of the

Regge-plane parameters. Similar comments apply to the
�13 plane.
Considering only the planes with no large hidden-

strangeness content and with six or more states (excluding
then the h13, b13, f13, and �13 planes),7 we obtain our
global fit with the result

M2 ¼ 1:38ð4Þnþ 1:12ð4ÞJ � 1:25ð4Þ: (11)

Therefore, the a ¼ �2 parameter reads a ¼ 1:38ð4Þ GeV2

for the global Regge-plane fit, compatible with Eq. (5).
The b ¼ 	 parameter reads b ¼ 1:12ð4Þ GeV2, also close
to the value of Eq. (8). We note that a > b at the level of
4.5 standard deviations. In this estimate, we take the geo-
metric average of the individual errors (equal 0.04) for the
standard deviation of the difference a� b. Therefore, the
joint analysis points at a lack of universality of the Regge
slopes.
The right part of Table II shows the result of the fit,

where universality is imposed. This fit cannot be statisti-
cally rejected based on the values of �2, however, it is
somewhat worse than without the universality constraint.

VI. CONCLUSIONS

In this paper, we have reanalyzed, with the help of the
up-to-date PDG tables [4], the linear radial and angular-
momentum Regge trajectories considered in Ref. [3], in-
cluding in the fits the width of each state as an estimate of
the error of the resonance mass (the half-width rule). As we
have explained, this is a reasonable way to smooth out
resonance profile information, which makes the very defi-

TABLE II. Regge-plane fits combining both radial and angular-momentum trajectories (see main text for details).

M2 ¼ anþ bJ þ c M2 ¼ aðnþ JÞ þ c
a b c �2=DOF a c �2=DOF

a13 1.41(45) 1.11(32) �1ð1Þ 0.09 1.20(28) �0:89ð94Þ 0.19

�024 1.36(5) 1.21(9) �1:06ð5Þ 0.22 1.33(4) �1:03ð4Þ 0.51

�02ss 1.36(14) 1.27(22) �0:50ð28Þ 0.44 1.34(13) �0:47ð27Þ 0.35

�135 1.36(12) 1.12(9) �1:87ð23Þ 0.40 1.21(7) �1:79ð22Þ 0.73

�024 1.47(10) 1.27(10) �1:45ð10Þ 0.29 1.36(6) �1:34ð6Þ 0.50

a246 1.35(25) 1.06(16) �1:75ð48Þ 0.14 1.15(13) �1:70ð48Þ 0.33

a02 1.35(24) 0.78(24) �0:39ð27Þ 0.53 1.06(9) �0:09ð13Þ 0.90

f0246 1.38(13) 0.64(8) 0.04(33) 0.85 0.76(8) 1.06(29) 5.03

f02 1.34(11) 0.69(6) �0:38ð15Þ 0.14 0.84(6) 0.13(11) 5.66

!135 1.42(11) 0.98(8) �1:78ð11Þ 0.63 1.16(5) �1:70ð10Þ 1.77

h13 1.17(23) 0.75(19) �0:53ð62Þ 0.02 0.93(13) �0:37ð61Þ 0.46

b13 1.15(17) 0.72(15) �0:35ð32Þ 0.05 0.91(9) �0:29ð32Þ 0.88

f13 1.19(15) 0.70(19) �0:24ð17Þ 0.07 0.98(8) �0:33ð17Þ 0.95

�13 1.84(6) 1.20(08) �2:0ð1Þ 0.06 1.59(5) �2:15ð10Þ 19.5

7The f02 is not considered either due to the arbitrariness on the
selection of its components.
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nition of the resonance mass ambiguous. Moreover, this
choice allows to undertake an error analysis, not carried out
in Ref. [3]. Furthermore, we have argued that such a
procedure fully complies to the large-Nc viewpoint and
actually suggests an interesting interpretation: the Regge-
fitted masses are considered to be the leading-Nc contribu-
tion to the mass of the resonance. This incorporates a
desirable flexibility as to what should the Regge fit be
compared to. The squared mass of each meson is then
represented as M2

n ¼ M2 � �M, where M is its mass and
� is its width.

Generally, we reproduce the results of Ref. [3] when no
uncertainties are included. This only reflects the robustness
of the main features of the PDG compilation along the last
10 years, although some numerical values of the masses
have changed and, furthermore, some new states, partly
predicted by the pioneering radial Regge analysis of
Ref. [3], have been added. From our results, it follows
that there is no need to consider further new states to get
an acceptable Regge description. This is consistent with an
assertion of a complete mesonic spectrum up to the highest
energies considered in our work.

We have also addressed the issue of the universality of
radial and angular-momentum slopes within the errors
deduced from the linear-regression analysis with weights
provided with the half-width rule. Our joint analysis in the
ðn; J;M2Þ Regge planes indicates, at a statistically signifi-
cant level of 4.5 standard deviations, that the radial slope is
larger from the angular-momentum slope. Thus, no strict
universality of slopes occurs in the light nonstrange meson
spectra.
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APPENDIX: DEPENDENCE ON
RESONANCE PROFILE

In this Appendix, we show the independence of our
results on the shape of the resonance profiles, and hence
support our �2-statistical treatment. The �2-nature of the
fit relies implicitly on the assumption that the probability
of having a resonance with mass M and width � is of a
Gaussian shape,

Pð ffiffiffi
s

p Þ ¼ Ce�ðð ffiffi
s

p �MÞ2=�MÞ; (A1)

with C a normalization constant, whereas for the squared
mass one has

PðsÞ ¼ C0e�ððs�M2Þ2=2�2M2Þ: (A2)

The �2-fit then corresponds to applying the maximum-
likelihood method and maximize with respect to a and
M0 the function

Lða;M0; f�n;MngÞ ¼
YN
n¼1

Pðsn;�n;MnÞ; (A3)

where sn ¼ anþM2
0. This is the way the half-width rule is

implemented in practice, i.e., by assuming short tails in the
mass distribution. On the other hand, from analyticity
arguments the resonance profile function should be of a
Breit-Wigner (BW) form, at least for sufficiently narrow
resonances. Let us consider for definiteness the parametri-
zation of a complex resonance propagator at a given CM
energy squared, s,

DðsÞ ¼ 1

s�M2 � i�
ffiffiffi
s

p : (A4)

The
ffiffiffi
s

p
in the denominator ensures that we have a pole on

the second Riemann sheet (we neglect threshold effects).
Likewise, we also have a pure imaginary amplitude at the
real resonance value s ¼ M2. The probability for such a
mass distribution corresponds to the imaginary part,8

namely,

PBWðsÞ ¼ Z
�

ffiffiffi
s

p
ðs�M2Þ2 þ �2s

; (A5)

FIG. 18 (color online). The 68% and 95% relative confidence-
level contours of the radial Regge trajectories for all scalars in
the PDG assuming several resonance profiles. (1) Gaussian at the
level of the mass (dashed line), (2) Gaussian at the level of the
squared mass (dotted line), and (3) Breit-Wigner shape (black
solid line).

8We are appealing to the Lehman representation for a reso-
nance as obtained from a CM-energy dispersion relation of the
scattering process, see, e.g., Ref. [41] for a discussion in the
context of the ��-scattering.
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where Z is a suitable normalization constant. Thus, we may
apply the maximum-likelihood method to Eq. (A3) for N
resonances fulfilling the Regge formula and maximize with
respect to a and M0.

As a specific example, to illustrate the difference be-
tween the Gaussian, Eq. (A2), and the Breit-Wigner,
Eq. (A5), profiles to the set of all 0þþ scalars listed in
the PDG (see also Fig. 8) as discussed in Refs. [34,36],
where a joint formula for the trajectories,

sn ¼ a

2
nþm2

�; (A6)

was proposed. Maximizing Pða;m�; fMn;�ngÞ with re-
spect to a and m� and using Eqs. (A1), (A2), and (A5),
yields the most likely values m� ¼ 0:545, 0.557,
0.562 GeV, and a ¼ 1:330, 1.336, 1:334 GeV2, respec-
tively. The Gaussian cases correspond to the �2-analysis
of Refs. [34,36]. Similarly to the �2-method, the errors can
be determined by looking at the locus of the relative

probability Pða;m�Þ=Pmax � ðe���2=2Þ, which for two
variables yields ��2 ¼ 2:3 and 4.7 for the 68% and 95%
confidence levels, respectively. We show the results in
Fig. 18 where, as we can see, the resonance shape does
not play a role.

Of course, one may object to the previous confidence-
level analysis that for non-Gaussian probabilities mode
(most likely) and mean (average) are different. Indeed,
the application of

hAi ¼
Z

da
Z

dm�Aða;m�ÞLBWða;m�; fMn;�ngÞ (A7)

yields hai ¼ 1:34 GeV2 and hm�i ¼ 0:53 GeV for the
mean values, whereas the mode is at m� ¼ 0:562 GeV
and a ¼ 1:334 GeV2. Thus, for the Breit-Wigner case
the mean and the mode are different and the errors are

not defined by standard confidence-level rules with hAi �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihA2i � hAi2p
, for which we get a ¼ 1:34ð8Þ GeV2, m� ¼

0:53ð11Þ GeV with a correlation rða;m�Þ ¼ �0:77. Away
to sort this out is to define the equal probability contours, to
integrate inside the inner region for a given confidence
level,

pðzÞ ¼
Z

dadm�Pða;m�Þ�ðPÞa;m�ð�zÞ; (A8)

and to search for a z such that pðzÞ ¼ 0:68. The resulting
contour resembles strongly Fig. 18, reinforcing the con-
clusion that the shape of the resonance profile is irrelevant
for the analyses of this work.
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