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We investigate the self-energies of particles in an external magnetic field B. The dependence is generally

of the type
ffiffiffiffiffiffiffiffiffiffi
PðBÞp

with P a polynomial inB and the participating masses. The nonanalytic point depends on

the masses and charges of the involved particles and is unproblematic for stable particles but constrains the

linear energy shift approximation for resonances. We recover an earlier reported condition when the self-

energy can be expanded inB and derive two more conditions. Furthermore, we obtain the B dependent self-

energies of the nucleon and �ð1232Þ-isobar in the SUð2Þ covariant chiral perturbation theory.
DOI: 10.1103/PhysRevD.85.094002 PACS numbers: 12.39.Fe, 12.40.�y, 13.40.Em, 14.20.Dh

I. INTRODUCTION

Electromagnetic (EM) moments of particles are funda-
mental observables for their internal structure. Prominent
ways to investigate those of baryons are chiral perturbation
theories (�PT) and lattice QCD (lQCD) where two meth-
ods are used: the three-point function method, e.g. applied
in [1–4], and the background field method, e.g. applied in
[5–9]. In this paper we study the self-energies of stable and
unstable particles placed in an EM background field from
the field theory point of view.

At present, finite volume lQCD results are mainly com-
pared to infinite volume �PT ones [1–4,10,11] where dis-
crepancies in the small pion mass region can be seen
[3,4,11]. Therefore, finite volume corrections on the �PT
side are of interest but reveal certain subtleties. In the case
of the three-point function method problems arise for the
decomposition of matrix elements in form factors as well
as for their Lorentz invariance [12]. Away around this is to
obtain these corrections from the self-energy as discussed
in [13] for pions. Baryon self-energies in the presence of an
external EM field were addressed in [14], however, for the
nonrelativistic infinite volume case. A covariant work does
not exist, even for the infinite volume, which motivates us
to present here the infinite volume nucleon and �ð1232Þ
self-energies in the covariant SUð2Þ �PT with explicit
dependence on a magnetic field.

Another motivation for this work is a deeper study of the
nonanalytic EM field dependence of self-energies in field
theories [15]. Effects of this nonanalyticity were already
encountered for theW boson in the standard model [15–17]
and for the �ð1232Þ in �PT [10,11,18]. Respectively,
the quark and pion loop contributions to EM moments
diverge for the (albeit unphysical) W-top-bottom and �-
nucleon-pion mass combinations of MW ¼ mt þmb and
M� ¼ MN þm�. The latter unphysical case is explicitly
encountered in the chiral extrapolations of �ð1232Þ EM
quantities. Other unstable particles, such as the �meson or
super symmetric spin 1=2 particles, could exhibit similar

behaviors. Situations would be the EM moments of the �
with mass m� ¼ 2m� on the lattice, or of the neutralinos

( ~Ni), charginos ( ~Ci) and gluinos whose masses are all
unknown [19,20]. For example a ~N anomalous magnetic

moment (AMM) coming from a W � ~C loop with
M ~N ¼ MW þM ~C could be matter of this subject.
For the present analysis we modernize the EM back-

ground field technique (BFT) of [21] with which the
electron’s AMM was correctly obtained for the first time
up to the fourth order in 1958. However, it is the three-point
function method that afterwards became the preferred
method to calculate EM moments. We will use both meth-
ods to check our results. It turns out that the self-energies of
particles, stable as well as unstable, actually depend non-
analytically on the magnetic field B and that conditions
for a perturbative treatment exist; one of them studied in
[15]. This we also see explicitly for the nucleon and
�ð1232Þ-isobar self-energies with N � � loops:

�pðBÞ ¼ MNCN

24ð1�BÞ4
�
n1 þ n2 ln�

þ n3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 � ðBþ�2Þ2p arccos

Bþ�2

2�

�
þOðB2Þ;

(1)

��þðBÞ ¼ M�C�

ð1�BÞ4
�
d1 þ d2 ln�þ d3 lnrþ d4 lnð1�BÞ

þ ðB� 1Þd5arctanh!1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4�2B

p
þ ðB� 1Þd6arctanh!2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þBðB� 2þ 2r2 þ 2�2Þp
þ d7 lnðr2 �BÞ

�
þOðB2Þ; (2)

with� ¼ m�=MN and certain polynomials ni ¼ niðB; �Þ,
di ¼ diðB; �; rÞ, �2 ¼ �2ð�; rÞ and further nonanalytic
functions !i ¼ !iðB; �; rÞ and notations given later. One
difference of the self-energies is that the square root in
�pðBÞ can be expanded in a weak magnetic field B for all*ledwig@kph.uni-mainz.de
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pion masses m� > 0 whereas for the �ð1232Þ-isobar only
if the condition�������� eB

2M�

��������� jM� � ðMN þm�Þj (3)

between the nucleon,�ð1232Þ and pion masses is met. This
is a general situation for unstable particles and was dis-
cussed in [15] within a simpler field theory. The work [15]
investigates only one Feynman graph whereas we derive
here the remaining two conditions coming from the two
more Feynman graphs. The mass ratios determine which of
the three conditions is the most strict one. Furthermore, we
here also study neutral external particles which enables us
to estimate when OðB2Þ terms start to contribute, and
derive the above (technically more involved) nucleon and
�ð1232Þ self-energies in the covariant SUð2Þ �PT.

In the next section necessary notations are given which
we use in the third section to study the self-energies of
stable and unstable particles. In Secs. IVand Vwe apply the
BFT to the nucleon and �ð1232Þ-isobar.

II. FIELD EQUATIONS IN PRESENCE
OF AN EXTERNAL EM FIELD

We consider spin-1=2 and spin-3=2 fields moving
in a constant electromagnetic field given by the potential

A�ðxÞ ¼ � 1
2F��x

� with F�� ¼ @½�A�� as the electromag-

netic field strength tensor. The Dirac equation for a particle
�ðxÞ of mass M with the EM minimal substitution is

½��M��AðxÞ ¼ 0; (4)

where we take e > 0 and define the momentum �� ¼
i@� � eA�ðxÞ. This operator is noncommutative with

½��;��� ¼ 1

i
F��: (5)

The spin 3=2 field ��ðxÞ satisfies the equation
½��M���

A ðxÞ ¼ 0; (6)

with the subsidiary conditions

���
�
A ðxÞ ¼ 0; (7)

���
�
A ðxÞ ¼ 0: (8)

Because of the noncommutativity of � we have to sym-
metrize occurring expressions and use for the propagators:

1

��M
¼ 1

2

�
ð�þMÞ 1

�2 �M2 þ F

þ 1

�2 �M2 þ F
ð�þMÞ

�
; (9)

where we introduce the notation F ¼ 1
2i �

�F�	�
	. With

this we calculate the particle’s self-energy �ðFÞ and obtain
its anomalous magnetic moment (AMM) 
 through the
linear energy shift [21]:

h�Aj�ðFÞj�Ai ¼ h�ð0Þi � hFi 


2M
þOðF2Þ: (10)

In Fig. 1 we list all Feynman graphs used in this work. The
upper row shows all types of graphs that appear to the one-
loop level in the BFT, tadpole graphs not considered.

For better reading we use the notation ~B ¼ M2B ~ez, i.e.

B ¼ j ~Bj=M2, with which the linear approximation to the
self-energy reads:

FIG. 1 (color online). Upper row: Feynman graphs contributing to the self-energy in the presence of an external electromagnetic
field. The blue lines indicate which loop-internal particle is affected by the field. Middle and lower row: Feynman graphs contributing
to the three-point function method to obtain the AMM. Single solid lines correspond to stable particles (e.g. the nucleon), double solid
lines to unstable particles (e.g. the �ð1232Þ), dashed lines to (pseudo-) scalar particles (e.g. the pion) and the blue cross to the coupling
of the photon.
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�ðBÞ ¼ �ð0Þ �M
1

2

BþOðB2Þ; (11)

�ð�BÞ � �ðBÞ ¼ M
BþOðB3Þ: (12)

The BFT self-energy formulas in this work omit some, but
not all, OðB2Þ terms. In particular nonanalytic B structures
are preserved in the BFT which are not in the one-photon
approximation Eq. (11).

III. SCALAR COUPLINGS AND ESTIMATION
OF OðB2Þ EFFECTS

We use the notations of the Appendix and consider two
spin 1=2 fields �1, �2 interacting with a scalar field �:

L ¼ X2
a¼1

��aði 6Da �MaÞ�a þ 1

2
ðD��ÞðD��Þ

� 1

2
m2�2 þ X2

a;b¼1

g ��a�ab�b�; (13)

with the covariant derivative D� ¼ @� þ iqeA�, q as the

charge of the field with e > 0 and �ab either 1 or �5. In the
upper row of Fig. 1 we show the types of self-energy
graphs that can occur for a charged or uncharged external
particle �ex. The corresponding expressions �iðBÞ with a
loop-internal particle �in are

h�exj�1ðFÞj�exi ¼ g2

i
h�exj

Z
~dl�1

1

½6 l�Min þ i"��1

1

½ð�� lÞ2 �m2 þ i"� j�exi; (14)

h�exj�2ðFÞj�exi ¼ g2

i
h�exj

Z
~dl�2

1

½��6 l�Min þ i"��2

1

½l2 �m2 þ i"� j�exi; (15)

h�exj�3ðFÞj�exi ¼ g2

i
h�exj

Z
~dl�3

1

½��6 l�Min þ i"��3

1

½ð�þ þ lÞ2 �m2 þ i"� j�exi; (16)

with ��
þ ¼ i@� þ eA�ðxÞ. For a third-spin projection of þ1=2 we can write these expressions in dimensional regulari-

zation as

�i ¼ �g2

ð4�Þ2 Mex

Z 1��i

��i

dz½s5ðzþ �iÞ þ r�½Lþ lnðz2 � �2
i � i"Þ þ ð�i1 þ �i2Þ lnð1�BÞ� þOðB2Þ; (17)

with �i, �i given below and s5 ¼ �1 for �i ¼ �5 andþ1 for �i ¼ 1. We see that for ~B ¼ 0 these expressions are the same
and for ~B � 0 several different logarithms occur. The formula Eq. (17) omits some, but not all, B2 terms and the integrated
solution for the real and imaginary parts are

Re�i ¼ �g2

ð4�Þ2 Mex

�
þðs5�i þ rÞð	i lnð	2

i � �2
i Þ þ �i lnð�2

i � �2
i Þ � 2Þ þ s5

1

2
ð�2

i � 	2
i þ ð	2

i � �2
i Þ lnð	2

i � �2
i Þ

� ð�2
i � �2

i Þ lnð�2
i � �2

i ÞÞ þ ð�i1 þ �i2Þ lnð1�BÞ
�
s5�i þ rþ s5

2
ð	2

i � �2
i Þ
�
þ ðs5�i þ rÞ�i

�
; (18)

Im�i ¼ g2�

ð4�Þ2 Mexðs5�i þ rÞ2�i (19)

with 	i ¼ 1� �i and

�i ¼

8>>><>>>:
2

ffiffiffiffiffiffiffiffiffiffi
��2

i

q �
arctan 	iffiffiffiffiffiffiffi

��2
i

p þ arctan �iffiffiffiffiffiffiffi
��2

i

p
�

�2
i < 0

2
ffiffiffiffiffiffi
�2
i

q �
arctanh 	iffiffiffiffi

�2
i

p þ arctanh �iffiffiffiffi
�2
i

p
�

�2
i > 0

;

(20)

�0 ¼ 1

2
ð1þ r2 ��2Þ; �2

0 ¼ �2
0 � r2; (21)

�1 ¼ 1

2ð1�BÞ ð1þ r2 ��2 �BÞ;

�2
1 ¼ �2

1 �
r2

1�B
;

(22)

�2 ¼ 1

2ð1�BÞ ð1þ r2 ��2 � 2BÞ;

�2
2 ¼ �2

2 �
r2 �B
1�B

;

(23)

�3 ¼ 1

2
ð1þ r2 ��2 �BÞ; �2

3 ¼ �2
3 � r2 þB:

(24)
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The self-energies obtain imaginary parts if �2
i becomes

positive together with ��i < 	i and/or �i >��i. In ad-
dition, the nonanalytic contributions�i give constraints on
when the self-energies can be expanded for smallB. These
constraints can generically be written asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fið�; rÞBþ �2
0

q
! jBj<

�������� �2
0

fið�; rÞ
��������; (25)

for a certain function fi depending on the type of graph.
One of these constraints, coming from the first graph in
Fig. 1, was investigated in [15] for the situation of
Mex >Min. A quantitative analysis of the other two graphs,
especially the third, was not done. In the following we also
study the remaining two graphs as well as further applica-
tions of Eq. (17).

A. Nucleon-pion system

The first example is the nucleon-pion ðN;�Þ system with
pseudoscalar couplings, �NN�

a ¼ ga�5. For this we have
s5 ¼ �1, r ¼ 1, Mex ¼ MN , m ¼ m� and write for the
proton and neutron energies:

�pðBÞ ¼ 2�1ðBÞ þ�2ðBÞ; (26)

�nðBÞ ¼ �3ð0Þ þ 2�3ðBÞ; (27)

with

�i ¼ �g2

ð4�Þ2 MN

Z 1

0
dzð1� zÞ

� ½Lþ lnðz�2 þ ð1� zÞ2 þBi � i"Þ�; (28)

and B1 ¼ zð1� zÞB, B2 ¼ �ð1� zÞ2B and B3 ¼
�ð1� zÞB. It is easy to check that we get from this form
the same AMM as obtained from the usual three-point
function method:


p ¼ 2
1 þ 
2; 
n ¼ �2
1 þ 2
2; (29)


1 ¼ g2

ð4�Þ2
Z 1

0
dz

2zð1� zÞ2
z�2 þ ð1� zÞ2 ;


2 ¼ g2

ð4�Þ2
Z 1

0
dz

�2ð1� zÞ3
z�2 þ ð1� zÞ2 :

(30)

According to this, we can also write

�nðBÞ ¼ 3�1ð0Þ � 2�1ðBÞ þ 2�2ðBÞ; (31)

for the neutron self-energy where the difference of Eq. (31)
to Eq. (27) is of order B2.

In Fig. 2 we plot the nucleon energy shifts together with
the linear approximation with MN ¼ 939 MeV and m� ¼
139 MeV. We see that the signs of the AMM are in
agreement with phenomenology, i.e. 
p > 0 and 
n < 0.

To estimate OðB2Þ effects, we use the difference of the red
and blue lines in the lower right neutron graph. The com-

bination �ð�BÞ � �ðBÞ does not have OðB2Þ contribu-
tions whereas the difference of the expressions Eqs. (27)
and (31) is of OðB2Þ. Plotting the same results for various
pion masses shows that the B2 effects are small for mag-
netic field strengths of jBj< 1

5M
2
N for pion masses larger

thanm� ¼ 100 MeV and for jBj< 1
2M

2
N with pion masses

aroundm� ¼ 600 MeV. Within these region the Eqs. (11),
(27), and (31) give approximately the same results. We
estimate therefore that the self-energy formulas are appli-
cable for magnetic field strengths of jBj< 1

5M
2
N with pion

masses between the physical point m� ¼ 140 MeV up to
m� ¼ 600 MeV. This is the applied pion mass range in
lattice QCD calculations.
In addition we also have the nonanalytic B expressions

for the nucleon, Eq. (20), which would constrain a defini-
tion of the magnetic moment by the linear energy shift.
These constraints read

�1;3: jBj< j�ð�� 2Þj; (32)

�1;3: jBj< j�ð�þ 2Þj; (33)

�2: jBj<
��������1

4
�2 � 1

��������; (34)

which can always be fulfilled for 0<�< 2.
Furthermore, we obtain for the nucleon self-energy an

imaginary part when a stronger magnetic field is applied.
The imaginary parts appear only for B � ��ð2þ�Þ in
�1 and B � �ð2��Þ in �3.
To see the cause of this we take the present three energy

scale problem as a two energy scale problem of some
effective values, i.e. modeling the field strength depen-
dence by altering the pion and nucleon masses in a zero
magnetic field. This view approximates the real situation of
Fig. 2 at small field strengths, e.g. jBj< 0:2, and is meant
to give a qualitative insight only. For �1 the magnetic field
enters through the pion propagator and we choose to vary
the pion mass. Qualitatively, the negativeB side (� 0:3<
B< 0) corresponds to a smaller pion mass and the positive
B side (0<B) to a larger pion mass. An imaginary part is
obtained through a complex pion mass which would cor-
respond to a strong negative field (B<�0:3). For the
latter pion mass it would be energetically possible for the
nucleon and pion inside the loop to go on-shell. However,
this would correspond to a pion photoproduction without
any excess of energy [22] and is in the present framework
unphysical. This situation cannot occur for positive B
since the corresponding effective pion mass gets larger
and the N � � loop can therefore not open. Furthermore,
an imaginary part for �2 is not obtained for the considered
field strengths since we would compare it to the large
nucleon mass. The �3 is a combination of both so that
for �n a similar discussion as for �1 holds. However, the
imaginary parts in Fig. 2 appear in a field strength
region where unknown higher order B terms start to
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contribute, lower right graph in Fig. 2, and we concen-
trate on jBj< 0:2.

The nucleon results of this section are obtained from
the general expression Eq. (17) for particles with Yukawa
couplings as in the Lagrangian Eq. (13) and would be
transcriptable for other stable particles in similar field
theories.

B. Nucleon-pion-resonance system

For the second example we include a resonance (R)
of mass MR with the coupling �NR�

a ¼ iga and get with
s5 ¼ 1 and r ¼ MN=MR the self-energies:

�i ¼ g2

ð4�Þ2 MR

Z 1

0
dzðzþ rÞ½Lþ lnðz�2 � zð1� zÞ

þ ð1� zÞr2 þBi � i"Þ� þOðB2Þ: (35)

From this, we also recover the results of the three-point
method:


1¼ g2

ð4�Þ2
Z 1

0
dz

2zð1�zÞð�z�rÞ
z�2�zð1�zÞþð1�zÞr2� i"

;


2¼ g2

ð4�Þ2
Z 1

0
dz

2ð1�zÞ2ðzþrÞ
z�2�zð1�zÞþð1�zÞr2� i"

:

(36)

Since the resonance is unstable we have the following
imaginary parts for the self-energies:

Im�i ¼ �MR

g2

ð4�Þ2 �ðrþ �iÞ2�i (37)

for �i > �i. Explicitly, these parts are present for magnetic
fields of

�1:B<�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�r2��2Þ2�4�2

0

q
þ1�r2��2; (38)

�2: B>� �2
0

�2
; (39)

FIG. 2 (color online). Energy shift of the proton (left) and neutron (right) with pseudoscalar coupling form� ¼ 139 MeV. The upper
row corresponds to the shift with �ðBÞ ��ð0Þ and the lower row to �ð�BÞ ��ðBÞ. The linear solid green lines correspond to the
linear approximation Eq. (11) while the curved solid red lines to Eqs. (26) and (27). The solid blue line shows the result of Eq. (31).
The dotted lines correspond to the imaginary parts.
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�3: B>þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2 þ�2Þ2 � 4�2

0

q
� 1þ r2 þ�2: (40)

In the case of �2 and �3 with a magnetic field of B � r2

we have �i > �i, Eq. (37) has do be altered accordingly
and an additional cusp is present at B ¼ r2.

In Fig. 3 we show all three possible self-energies for
the parameters MN ¼ 939 MeV, MR ¼ 1232 MeV, and
m� ¼ 139 MeV together with the linear approximations.
For the graph�1 we see the linear behavior near B ¼ 0 and
a cusp appearing according to Eq. (38). This graph was
investigated in [15]. In the case of�2 we see only one cusp
at B ¼ r2 � 0:6 since for the present mass combination
Eq. (39) is fulfilled for all jBj< 1 and an imaginary part is
steadily present. However, choosingm� closer to the mass-
gap MR �MN the second cusp appears on the B< 0 side.
The occurrence of such two cusps can be seen for �3. The
cusp for B< 0 is due to the imaginary part from Eq. (40)
and the one forB> 0 due toB � r2. As we approach with
m� the mass-gap MR �MN , i.e. � ¼ 1� r, all cusps
corresponding to Eqs. (38)–(40) converge on B ¼ 0 where
we have 1� r�� ¼ 0. For a m� mass larger than the
mass gap the resonance will not be unstable anymore and
we get similar results as in the previous example.

To interpret Fig. 3 in physical terms we look once more
at the magnetic field as a manipulation of the involved
masses. For �1 of Eq. (35) we can again take the quantity
zð1� zÞB as a reducing or enhancing term for z�2 de-
pending on the sign ofB. On the other hand zð1� zÞ is also
the coefficient in front of the resonance mass term and we
could attribute the whole field dependence to a variation of

that mass, i.e. ~MR ¼ MR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�B

p
. This would correspond

to an effective heavier resonance for B< 0 and a lighter
one for B> 0 whereas the pion and nucleon masses
are unaltered. The result is that on the B< 0 side the
mass gap is widened and on B> 0 closed. This is exactly
the behavior in the left graph of Fig. 3. An imaginary part is
usually associated with a decay width and we see that the
imaginary part is absent when the mass gap is closed, i.e.
no decay is energetically possible, and enhances as the

mass gap enlarges. For�2 the behavior is similar where we
absorb the field dependence in an effective resonance mass

of ~MR ¼ MR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�B

p
together with a nucleon mass of

~MN ¼ MN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �B

p
. For more positive B the ~MN de-

creases faster than ~MR and the decay width enhances as
the mass gap grows. At B ¼ r2 we also see that the
effective nucleon mass becomes complex which results
in the additional cusp. For �3 the field dependence could

be absorbed in ~MN ¼ MN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �B

p
with the corresponding

decay width behavior as in the right graph of Fig. 3.
The above discussion is however meant to be qualitative

only. We solely discussed the masses inside the logarithm
to grasp the effect induced by the external magnetic field.
Qualitatively, the effect is that the involved energy levels
are rearranged in a way that either a decay is energetically
possible or not depending on the sign of the field strength.
The self-energy here depends on the three parameters M1,
M2,m in Eq. (13) and the field strengthB. In contrast to the
previous example, even for reasonable mass values can the
nonanalytic point be in the jBj< 0:2 region if the mass-
gap M1 � ðM2 þmÞ is not wide enough.
The explicit conditions to expand the self-energies

for small B due to the nonanalytic contributions �i,
Eq. (20), are

�1: jBj< 2j1� r��j; (41)

�2: jBj< 2r

1� r
j1� r��j; (42)

�3: jBj< 2rj1� r��j; (43)

for the parameters r < 1, �> 0, and �< 1þ r. The
first condition was found in [15]. Which condition is
the most strict one depends on the charge of the exter-
nal particle and the actual values of the masses. For
charged external particles with �< r and r > 1=2 it is
the first one and for uncharged the last one.

FIG. 3 (color online). Self-energies of a resonance in an external magnetic field B. The linear green lines correspond to the linear
approximation Eq. (11) while the curved red lines to Eqs. (35). The solid lines show the real parts and the dotted lines the imaginary
parts.
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IV. NUCLEON SELF-ENERGY

We apply now the BFT to a more involved situation,
namely, the nucleon self-energy in the SUð2Þ chiral per-
turbation theory of [23]:

LN� ¼ �Nði 6D�MNÞN � gA
2f�

�N
að 6Dab�bÞ�5N

þ 1

2
ðDab

� �bÞðD�
ac�cÞ � 1

2
m2

��a�
a: (44)

The covariant derivatives are given in the Appendix and
the nucleon axial-vector and the pion decay constants are
gA ¼ 1:27 and f� ¼ 92:4 MeV. We consider the two
graphs �1 and �2 in Fig. 1 and obtain for the nucleon
the following unrenormalized self-energies in d ¼ 4� 2"
dimensions:

�N
1 ðBÞ ¼ i

�
gA
2f�

�
2
MN

Z 1

0
dz½�M2

Nð1� zÞ3J2
þ ð�6þ 3zÞJ1 þ ð3� zÞ"J1 þ Bz2ð3� zÞJ2�;

(45)

�N
2 ðBÞ¼ i

�
gA
2f�

�
2
MN

Z 1

0
dz½�M2

Nð1�zÞ3J2þð�6þ3zÞJ1
þð3�zÞ"J1þBð2ð1�zÞ4M2

NJ3

þð3�8zþ6z2�z3ÞJ2�ð3�4zþz2Þ"J2Þ�:
(46)

The loop integrals Ji ¼ JiðMNÞ with MN ¼ zm2
�þ

ð1� zÞ2M2
N þ zð1� zÞB are listed in the Appendix. The

expressions �1 and �2 only differ by B dependent terms
and we write for the nucleon self-energies:

�pðBÞ ¼ 2�1ðBÞ þ�2ðBÞ; (47)

�nðBÞ ¼ 3�1ð0Þ � 2�1ðBÞ þ 2�2ðBÞ: (48)

By integrating the Feynman parameter we get the gMS
renormalized proton self-energy

�pðBÞ ¼ MNCN

24ð1�BÞ4
�
n1 þ n2 ln�

þ n3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 � ðBþ�2Þ2p arccos

Bþ�2

2�

�
; (49)

n1ðB; �Þ ¼ 36� 156Bþ 236B2 � 135B3 þ 12B4

þ 7B5 þ ð72� 252BÞ�2 þOðB2Þ; (50)

n2ðB;�Þ¼�24B3þ42B4�12B5þ96B�2

þð�144þ348BÞ�4þð36�72BÞ�6þOðB2Þ;
(51)

n3ðB; �Þ ¼ �24B2 þ 42B3 � 12B4 þ 120B�2

þ ð�36þ 72BÞ�4 þOðB2Þ; (52)

with CN ¼ ðgAMN

4�f�
Þ2. We give here only terms up to OðB2Þ

or constant in � and list in the Appendix the full coeffi-
cients niðB; �Þ. By setting B ¼ 0 we recover the normal

nucleon gMS renormalized B�PT self-energy [24,25]:

�pð0Þ ¼ 3

2
MNCN

�
1þ 2�2

� 2�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

4

s
arccos

�

2
��4 ln�

�
: (53)

The chiral expansion of the nucleon mass is

MNðBÞ ¼ M
�
N � 4c

�
1m

2
� þ �ð3Þ

N ðBÞ � 

�
N

2MN

B; (54)

where M
�
N , c

�
1 and 


�
N are the low-energy constants for

the nucleon mass and its AMM. The �0 and �2 terms in
Eq. (53) break the usual power counting scheme [23]
where e.g. the EOMS renormalization scheme [26] is one
way to deal with this problem. The general behavior of the
self-energy in this section is similar to the nucleon self-
energy of the last section for pseudoscalar N � �
couplings.
In Fig. 4 we show the proton self-energy as a function of

the magnetic field B for the phenomenological values.
In the case of the linear approximation we use the AMM
obtained from the three-point method, i.e. defined by

 ¼ F2ð0Þ via the matrix element

FIG. 4 (color online). Proton self-energy as function of a
magnetic field B for m� ¼ 139 MeV and MN ¼ 939 MeV.
The solid red line is the result of Eq. (49) and the solid linear
green line the linear approximation �pðBÞ ¼ MN � 


2MN
B with


 ¼ 1:73. The dashed line is the imaginary part of Eq. (49).
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hNðp0Þj ��ð0Þ���ð0ÞjNðpÞi
¼ �uðp0Þ

�
��F1ðq2Þ þ i���q�

2MN

F2ðq2Þ
�
uðpÞ; (55)

with q ¼ p0 � p as the momentum transfer. The explicit
results for the nucleon graphs in the second row of Fig. 1
are


N
1 ¼ 1

i

�
gAMN

2f�

�
2 Z 1

0
dz2z½ð�6þ 12z� 4z2ÞJ2

þ ð3� 4zþ z2Þ"J2 � 2M2
Nð1� zÞ4J3� (56)


N
2 ¼1

i

�
gAMN

2f�

�
2Z 1

0
dz2½ð3�14zþ15z2�4z3ÞJ2

�ð3�7zþ5z2�z3Þ"J2þ2M2
Nð1�zÞ5J3� (57)

with Ji ¼ JiðMÞ and M ¼ zm2
� þ ð1� zÞ2M2

N [11].
Extracting the AMM from the above self-energy yields
identical results. For example this can be seen for 
N

1

literally even before the Feynman parameter integration:


NðBFTÞ
1 ¼ 1

i

�
gAMN

2f�

�
2 Z 1

0
dz2z½ð�6þ 9z� 3z2ÞJ2

þ zð3� zÞJ2 þ ð3� 4zþ z2Þ"J2
� 2M2

Nð1� zÞ4J3�: (58)

The two J2 integrals add up to the same expression in
Eq. (56). However, in the case of the three-point function
method, e.g., the J2 contributions come purely from tensor
integrals whereas in the case of the BFT method it is a
combination of tensor and scalar-loop-integrals. As we see
for the infinite volume case this difference is not important.
Tensor-integrals do not appear in [15] where the loop-
integrals of the AMM obtained from the BFT or the
three-point function method are the same. The above ob-
served different loop-integral combinations might yield
different finite volume corrections and would imply that
these corrections calculated from the self-energy or the
vector-current matrix element may differ. However, a
quantitative study of finite volume effects is beyond the
scope of this work.

V. DELTA(1232) SELF-ENERGY

We consider now the �þð1232Þ-isobar and concentrate
on the graphs that give its decay width. We take the
following Lagrangian [24]:

L �� ¼ ���ði����D� �M��
��Þ��

þ i
hA

2f�M�

�NTa����ðD���ÞðDab
� �bÞ þ H:c:;

(59)

and obtain the relevant self-energies as:

��
1 ðBÞ ¼

1

i
M�

�
hA
2f�

�
2 1

2

Z 1

0
dz½ðzþ rÞJ1 � Bðzþ rÞz2J2�;

(60)

��
2 ðBÞ ¼

1

i
M�

�
hA
2f�

�
2 1

2

Z 1

0
dz½ðzþ rÞJ1

� Bðzþ rÞð1� zÞ2J2�; (61)

M � ¼ z�2 þ ð1� zÞr2 � zð1� zÞ þBi; (62)

with B1 ¼ þzð1� zÞB and B2 ¼ �ð1� zÞ2B and all
other definitions given in the Appendix. Integrating these
expressions yield

��
1 ðBÞ 	

144

M�C�

¼ A1ðBÞ þ 48½2ðrþ �1Þ�2
1

þBð3ðrþ �1Þ�2
1 þ ð�1 � rÞ�2

1Þ��1ðBÞ;
(63)

��
2 ðBÞ 	

144

M�C�

¼A2ðBÞþ48½2ðrþ�2Þ�2
2

þBð3rþ3�2�6r�2

�ð3�2
2þ1Þð2þr��2Þ�2

2Þ��2ðBÞ; (64)

�iðBÞ ¼
ffiffiffiffiffiffi
�2
i

q �
arctanh

	iffiffiffiffiffiffi
�2
i

q þ arctanh
�iffiffiffiffiffiffi
�2
i

q �
; (65)

with C� ¼ ðhAM�

8f��
Þ2 and the analytic parts Ai also listed in

the Appendix. With these two expressions we can also
write the self-energy of the different isospin states as

��þþðBÞ ¼ ���
1 ð0Þ þ��

1 ðBÞ þ��
2 ðBÞ; (66)

��þðBÞ ¼ 1

3
��

1 ðBÞ þ
2

3
��

2 ðBÞ; (67)

��0ðBÞ ¼ ��
1 ð0Þ �

1

3
��

1 ðBÞ þ
1

3
��

2 ðBÞ; (68)

���ðBÞ ¼ 2��
1 ð0Þ ���

1 ðBÞ: (69)

In Fig. 5 we show the �þð1232Þ self-energy as func-
tion of the magnetic field B for the phenomenological
parameters together with the linear approximation as ob-
tained from the three-point function method. The cusp is
from �1 while the second cusp of �2 is not present for
m� ¼ 139 MeV. However it emerges on the B< 0 side
for larger pion masses and both cusps fall on B ¼ 0 for
m� ¼ M� �MN. The imaginary parts read

TIM LEDWIG PHYSICAL REVIEW D 85, 094002 (2012)

094002-8



Im�1ðBÞ 	 3

�M�C�

¼ �2ð1�BÞðrþ �1Þ�3
1

�B�1½3�1ð�2
1 þ �2

1Þ þ rð3�2
1 þ �2

1Þ�; (70)

Im�2ðBÞ 	 3

�M�C�

¼ �2ð1�BÞðrþ �2Þ�3
2 �B�2½�6�2

2 þ 3�3
2 � 2�2

2

þ 3�2ð1þ �2
2Þ þ rð3� 6�2 þ 3�2

2 þ �2
2Þ�; (71)

where the �þð1232Þ decay width, experimentally given by
�� � 120 MeV, is obtained from � ¼ �2 Im�ðB ¼ 0Þ.
The slope of the imaginary part at B ¼ 0 in Fig. 5 is
consistent with [27] and we obtain a vanishing decay
width at

B ¼� ð1�2rþr2��2Þð1þ2rþr2��2Þ
2ð1þr�2r3þ3r4þ2r�2þ3�4�2r2ð1þ3�2ÞÞ

þOðB2Þ:
(72)

The magnetic moment from the three-point function
method is again defined through the vector matrix ele-
ment by 
 ¼ F2ð0Þ and

h�ðp0Þj ��ð0Þ���ð0Þj�ðpÞi
¼ � �u�ðp0Þ

��
F�
1 �

� þ i���q�
2M�

F�
2

�
g�	

þ
�
F�
3 �

� þ i���q�
2M�

F�
4

�
q�q	

4M2
�

�
u	ðpÞ; (73)

with the results [11]:


�
1 ¼ 1

i

�
hAM�

2f�

�
2 Z 1

0
dz2z

�
� 1

2
zþ z2 � 1

2
rþ zr

�
J2;

(74)


�
2 ¼ 1

i

�
hAM�

2f�

�
2 Z 1

0
dz2ð1� zÞ

� ½ð1þ rÞð1� zÞ � ð1� zÞ2�J2; (75)

with Ji ¼ JiðM�Þ and M�¼ z�2þð1�zÞr2�zð1�zÞ.
The results of the BFT method agree in this form literally.

From
ffiffiffiffiffiffi
�2
1

q
in Eq. (65) we obtain the condition�������� eB

2M�

��������� jM� � ðMN þm�Þj (76)

for expanding the �ð1232Þ-isobar self-energies in small
magnetic fields [15].

VI. SUMMARY

We investigated the self-energies of particles placed in a
constant electromagnetic (EM) field. Explicitly, we applied
the EM background field technique (BFT) once to the
situation of stable and unstable spin-1=2 particles coupling
to (pseudo-) scalar fields and once to the nucleon and
�ð1232Þ-isobar baryons in the SUð2Þ chiral perturbation
theory (B�PT). We obtained the self-energies of these
particles as function of the external constant magnetic field
B and calculated from these the anomalous magnetic mo-
ments (AMM) by the linear energy shift. We summarize
our findings as:
(i) Self-energies of Dirac particles coupling to (pseudo-)

scalar fields: We investigated all three types of
Feynman graphs that can appear in the one-loop
BFT. The self-energies generally depend nonanalyti-
cally on B where for stable particles the actual

FIG. 5 (color online). The �þð1232Þ-isobar self-energy loop results as function of a magnetic field B for m� ¼ 139 MeV,
MN ¼ 939 MeV and M� ¼ 1232 MeV. The left pictures shows the real part and the right one the imaginary part. The curved red
solid lines are from Eq. (62) while the linear green lines correspond to the linear approximation ��ðBÞ ¼ M� � 
�

2M�
B.
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nonanalytic points are unproblematic for defining the
AMMby the linear energy shift. These points depend
on the masses and charges of the involved particles
and give three different conditions for resonances on
when their self-energies can be expanded for weakB.
One of these conditionswas reported earlier. The self-
energy formulas contain thoseOðB2Þ terms that keep
the nonanalytical dependence intact, in contrast to the
one-photon approximation. However, they omit some
OðB2Þ contributions where we estimated for the
nucleon-pion system with pseudoscalar couplings
that these contributions are small for magnetic fields
of jBj< 1

5M
2
N withMN as the nucleon mass.

(ii) Self-energies of the nucleon and �ð1232Þ-isobar in
B�PT: We derived the formulas for the nucleon
and �ð1232Þ-isobar self-energies depending on the
pion mass and the magnetic field. We recover the
expressions as obtained from the three-point func-
tion method as well as the condition on when the
�ð1232Þ-isobar magnetic moment is well defined by
the linear energy shift. Furthermore, we saw that the
AMM expressions have different tensor- and scalar-
loop integral combinations depending on whether
the AMM is derived by the three-point function
method or from the self-energy. In the infinite vol-
ume these combinations add up to the same AMM
expressions.
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APPENDIX: NOTATION

We use the following notations: ~dl ¼ dnl=ð4�Þn with
n ¼ 4� 2� dimensions,

� ¼ m=Mex r ¼ Min=Mex B ¼ B=M2
ex: (A1)

The covariant derivatives are

Dab
� �b ¼ �ab@��

b þ ieQab
� A��

b; (A2)

D�N ¼ @�N þ ieQNA�N þ i

4f2�
�abc
a�bð@��cÞ;

(A3)

D��� ¼ @��� þ ieQ�A��� þ i

2f2�
�abcT a�bð@��cÞ;

(A4)

with the operators QN ¼ ð1þ 
3Þ=2 and Qab
� ¼ �i"ab3.

The results for the loop integration in infinite volume and

dimensional regularization with L ¼ � 1
" þ �E þ ln M2

sc

4��2

are

J1ðMÞ ¼ �i

ð4�Þ2 m
2
sc

~M½L� 1þ ln ~M�;

J2ðMÞ ¼ �i

ð4�Þ2 ½Lþ ln ~M�;

J3ðMÞ ¼ �i

ð4�Þ2
1

2m2
sc

1
~M

:

(A5)

The corresponding parts of the nucleon and �ð1232Þ
self-energies are

n1ðB;�Þ ¼ 36� 156Bþ 236B2� 135B3þ 12B4þ 7B5

þð72� 252Bþ 321B2� 186B3þ 45B4Þ�2

þð6B2� 6B3Þ�4 (A6)

n2ðB;�Þ¼�24B3þ42B4�12B5

þð96	�180	2þ60	3þ12	4�12	5Þ�2

þð�144þ348B�270B2þ120B3�18B4Þ�4

þð36�72Bþ12B2Þ�6þ6B2�8 (A7)

n3ðB; �Þ ¼ �24B2 þ 42B3 � 12B4

þ ð120B� 294B2 þ 216B3 � 60B4Þ�2

þ ð�36þ 72B� 24B2 þ 6B3Þ�4 � 6B2�6

(A8)

AðBÞ ¼ 27þ 40r� 68�� 120r�þ 42�2þ 120r�2þ 12�3� 54�2� 168r�2� 60��2þð�18þ 48�� 36�2þ 36�2

� 24rð1� 3�þ 3�2� 3�2ÞÞ lnð1�BÞþ ð�24r�3� 6�4þ 72r��2þ 36�2�2þ 18�4Þ lnð�2��2Þ
þ ð�18þ 48�� 36�2þ 6�4þ 36�2� 36�2�2� 18�4þ 24rð�� 1Þðð�� 1Þ2� 3�2ÞÞ lnð	2��2Þ (A9)

A1ðBÞ ¼ ½AðBÞ þBð�36� 56rþ 56�þ 96r�� 60�2 � 168r�2 � 48�3 þ 36�2 þ 120r�2 � 48��2

þ
ffiffiffiffiffiffi
�2

p
�ð144r�2 þ 144�3 � 48r�2 þ 48��2Þ þ 12ð3� 4�þ 3�2 � 3�2 þ rð4� 6�þ 6�2 � 6�2ÞÞ lnð1�BÞ

þ ð48r�3 þ 24�4 þ 72�2�2Þ lnð�2 ��2Þ � 12ð4�þ 2�4 þ 3ð�2 � 1Þ þ�2ð6�2 � 3Þ
þ rð6ð���2 þ�2Þ � 4þ 4�3ÞÞ lnð	2 ��2ÞÞ��;	;�!�1;	1;�1

(A10)
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A2ðBÞ ¼ ½AðBÞ þBð�40� 128rþ 32�þ 240r�þ 36�2 � 168r�2 � 48�3 þ 132�2 þ 120r�2 � 48��2

þ 12ð2� 4�þ 3�2 � 3�2 þ rð4� 6�þ 6�2 � 6�2ÞÞ lnð1�BÞ þ ð72r�þ 36�2 � 72r�2 � 48�3 þ 48r�3

þ 24�4 þ 36�2 � 72r�2 � 144��2 þ 72�2�2Þ lnð�2 � �2Þ � 24ð�1þ �Þ2ð�1þ 2rð�1þ �Þ þ �2 þ 3�2Þ
� lnð	2 � �2ÞÞ��;	;�!�2;	2;�2

(A11)
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