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We present a detailed examination of the color-dipole picture of low-x deep inelastic scattering. We

discriminate model-independent results, not depending on a specific parametrization of the dipole cross

section, from model-dependent ones. The model-independent results include the ratio of the longitudinal

to the transverse photoabsorption cross section at large Q2 or, equivalently, the ratio of the longitudinal to

the unpolarized proton structure function, FLðx;Q2Þ ¼ 0:27F2ðx;Q2Þ, as well as the low-x scaling

behavior of the total photoabsorption cross section ���pðW2; Q2Þ ¼ ���pð�ðW2; Q2ÞÞ as

logð1=�ðW2; Q2ÞÞ for �ðW2; Q2Þ< 1, and as 1=�ðW2; Q2Þ for �ðW2; Q2Þ � 1. Here, �ðW2; Q2Þ denotes
the low-x scaling variable, �ðW2; Q2Þ ¼ ðQ2 þm2

0Þ=�2
satðW2Þ, with �2

satðW2Þ being the saturation scale.

The model-independent analysis also implies limW2!1;Q2fixed���pðW2; Q2Þ=��pðW2Þ ! 1 at any photon

virtuality Q2 for asymptotically large energy, W. Consistency with evolution in perturbative QCD

evolution determines the underlying gluon distribution and the numerical value of C2 ¼ 0:29 in the

expression for the saturation scale, �2ðW2Þ � ðW2ÞC2 . In the model-dependent analysis, by restricting

the mass of the actively contributing q �q fluctuations by an energy-dependent upper bound, we extend the

validity of the color-dipole picture to the region of �ðW2; Q2Þ> 10, where Q2 reaches values of a few

hundred GeV2. The theoretical results agree with the world data on deep inelastic scattering for

0:036 GeV2 � Q2 � 316 GeV2, with x ffi Q2=W2 being limited by approximately x � 0:01.

DOI: 10.1103/PhysRevD.85.094001 PACS numbers: 13.60.Hb

I. INTRODUCTION

In terms of the (virtual) forward-Compton-scattering
amplitude, deep inelastic scattering (DIS) at low values of
the Bjorken scaling variable, x ffi Q2=W2 � 1, proceeds
via forward scattering of massive (timelike) hadronic fluc-
tuations of the photon, much like envisaged by generalized
vector dominance [1–3]1 a long time ago. In QCD, the
hadronic fluctuations may be described as quark-antiquark
states that interact with the nucleon in a gauge-invariant
manner as color-dipole states [5,6], coupled to the gluon
field in the nucleon via (at least) two gluons [7]. This is the
color-dipole picture (CDP) of low-x DIS. Compare Fig. 1.

A detailed representation of the experimental results on
the photoabsorption cross section requires an ansatz for the
dipole cross section, i.e. an ansatz for the cross section for
the scattering of the color-dipole state on the nucleon. Such
an ansatz cannot be formulated entirely free from parame-
ters, just as fit parameters are required for the related
description of the DIS data in terms of the gluon distribu-
tion2 of the nucleon at low x.

In the first part of the present work, we will show that,
nevertheless, many of the general features of the DIS
experimental data [9] on the photoabsorption cross sec-
tion at low x can be derived in the CDP without a detailed
parameter-dependent ansatz for the dipole-proton interac-
tion cross section, i.e. model independently. The general
results follow from the very nature of the q �q interaction
with the nucleon as the interaction of a color-dipole state.
The model-independent results include the ratio of the
longitudinal to the transverse photoabsorption cross
section at low x and large Q2 [10], as well as the empiri-
cally established low-x scaling: the dependence of the
photoabsorption cross section on a single variable
�ðW2; Q2Þ, i.e. ���pðW2; Q2Þ ¼ ���pð�ðW2; Q2ÞÞ [11].

The empirical dependence on �ðW2; Q2Þ, as
1=�ðW2; Q2Þ for �ðW2;Q2Þ�1, and as lnð1=�ðW2; Q2ÞÞ
for �ðW2; Q2Þ � 1, is a general feature of the dipole
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FIG. 1. The fluctuation of the photon �� into a massive q �q
color-dipole state and the interaction of the color dipole with the
gluon field of the nucleon.
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1Compare also Ref. [4] for a recent review and further

references.
2Compare e.g. Ref. [8], Chapter 4, and the bibliography given

there.

PHYSICAL REVIEW D 85, 094001 (2012)

1550-7998=2012=85(9)=094001(39) 094001-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.094001


interaction. Here, �ðW2; Q2Þ denotes the scaling variable,
�ðW2; Q2Þ � ðQ2 þm2

0Þ=�2
satðW2Þ with m2

0 ’ 0:15 GeV2,

and �2
satðW2Þ denotes the appropriately defined

‘‘saturation scale’’ which increases with a small fixed
power, C2 of the square of the �

�p center-of-mass energy,
�2

satðW2Þ � ðW2ÞC2 .
A detailed model for the dipole cross section will be

analyzed and compared with the world experimental data
in Secs. III, IV, and Vof the present paper, and conclusions
will be presented in Sec. VI.

II. THE CDP: MODEL-INDEPENDENT RESULTS

A model-independent prediction of the longitudinal-to-
transverse ratio of the photoabsorption cross section was
recently presented [10]. Based on the general analysis of
the transverse and the longitudinal photoabsorption cross
sections in Secs. II A and II B, we will present a more
detailed account of the underlying argument in Sec. II C.
After a general discussion on the CDP in Sec. II D, we will
deal with low-x scaling in Sec. II E and derive the func-
tional dependence of the photoabsorption cross section on
the scaling variable �ðW2; Q2Þ. In Sec. II F, we analyze the
photoabsorption cross section in the limit of W2 ! 1 at
fixed values ofQ2 > 0. The�ðW2; Q2Þ dependence implies
that the photoabsorption cross section forW2 ! 1 at fixed
Q2 > 0 converges towards a Q2-independent limit that
coincides with (Q2 ¼ 0) photoproduction. In Sec. II G,
we will show that the consistency of the CDP with
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
evolution [12] for the sea-quark distribution function
constrains the energy dependence of the saturation scale,
�2

satðW2Þ, and of the structure function F2ðxffiQ2=W2;Q2Þ
for x < 0:1. We will also elaborate on the connection
between the CDP and the extraction of the gluon distribu-
tion of the proton. We compare the gluon distribution
underlying the CDP with the gluon distributions that
were extracted from the experimental data by directly
employing the pQCD-improved parton picture in the
analysis of the experimental data.

A. Longitudinal and transverse photoabsorption
cross sections at large Q2: Part I

The transverse-position-space representation [13] of the
longitudinal and transverse photoabsorption cross sections,
[5,6]

���
L;Tp

ðW2; Q2Þ ¼
Z

dz
Z

d2 ~r?jc L;Tð ~r?; zð1� zÞ; Q2Þj2

	 �ðq �qÞpð~r?; zð1� zÞ; W2Þ; (2.1)

summarizes in compact form the structure of the x 

Q2=W2 � 0:1 interaction of a q �q pair, originating
from a ��

L;T ! q �q transition, with the gluon field of the

nucleon. The square of the ‘‘photon wave function’’
jc L;Tð~r?; zð1� zÞ; Q2Þj2 describes the probability for the

occurrence of a q �q fluctuation of transverse size, ~r?,

of a longitudinally, ��
L, or a transversely polarized

photon,��
T , of virtuality Q2. The variable z, with

0�z�1, characterizes the distribution of the momenta
between the quark and antiquark. In the rest frame of a q �q
fluctuation of mass Mq �q, the variable z determines [6] the

direction of the three-momentum of the quark with respect
to the photon direction. The dipole cross section, related to
the imaginary part of the ðq �qÞp forward-scattering
amplitude, is denoted by �ðq �qÞpð~r?;zð1�zÞ;W2Þ. For

generality, we include a potential dependence on the
‘‘q �q-configuration variable’’ zð1� zÞ. The dipole cross
section depends on the center-of-mass energy, W,3 of the
ðq �qÞp scattering process [6,11,14,15], since the photon
fluctuates intomassiveq �q pairs of timelike four-momentum
squared. The interaction of a massive q �q pair with the
proton (the integration over d2 ~r? corresponding to an in-
tegration over fluctuation masses) depends on W and, in
particular, is independent of the photon virtuality, Q2. This
point is inherently connected with the mass-dispersion
relation [1,2] of generalized vector dominance, and it was
recently elaborated upon from first principles of quantum
field theory in Ref. [15].
The gauge invariance for the interaction of the q �q color

dipole with the color field in the nucleon requires a repre-
sentation of the dipole cross section of the form [5,6]

�ðq �qÞpð ~r?;zð1�zÞ;W2Þ¼
Z
d2 ~l? ~�ð~l2?;zð1�zÞ;W2Þ

	ð1�e�i~l?� ~r?Þ; (2.2)

where the transverse momentum of the gluon absorbed by

the dipole state is denoted by ~l?. In the important limit of a
small-size dipole, ~r2? ! 0, from (2.2) we have

�ðq �qÞpð ~r?;zð1�zÞ;W2Þ¼�

4
~r2?

Z
d~l2? ~l2? ~�ð~l2?;zð1�zÞ;W2Þ:

(2.3)

A dipole of vanishing transverse size must obviously have a
vanishing cross section (‘‘color transparency’’) as in (2.3),
when interacting with the gluon field. The validity of the
approximation (2.3) requires

~r 2
? ~l2? < ~r2? ~l2?MaxðW2Þ< 1; (2.4)

where ~l2?MaxðW2Þ characterizes theW-dependent domain of
~l2? < ~l2?MaxðW2Þ in which ~�ð~l2?; zð1� zÞ; W2Þ, at a given
energyW, by assumption is appreciably different from zero.
For the subsequent discussion, it will be useful to introduce

the variables ~r0? ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞp

~r? and ~l0? ¼ ~l?=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞp

[16]. In terms of these variables the restriction (2.4)
becomes

~r 02
? ~l02? < ~r02? ~l02?MaxðW2Þ< 1: (2.5)

3In this respect, we differ from Ref. [5], where the dipole cross
section is assumed to depend on x ffi Q2=W2. Compare also the
discussion on this point in Sec. II D.
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The validity of (2.3), (2.4), and (2.5) is an integral part of
the CDP. The absorption of a gluon of transverse-

momentum squared ~l2? < ~l2?MaxðW2Þ by a q �q fluctuation
(unless the absorbed gluon is reemitted by the absorbing
quark) increases themass of theq �qfluctuation.At anygiven
squared energy, W2, the contributing q �q masses, and con-

sequently the values of ~l02? actively contributing to the cross
section, must be bounded by an upper limit, since only

fluctuations of sufficiently long lifetimes4 do contribute to
the Compton forward-scattering amplitude of the CDP.
Color transparency (2.3) determines the photoabsorption

cross section (2.1) for sufficiently large Q2. This will be
elaborated upon next.
We will consider massless quarks. Inserting the explicit

representation of the photon wave function in (2.1), we find

the well-known expression (Q � ffiffiffiffiffiffi
Q2

p
) [5]

���
L;Tp

ðW2; Q2Þ ¼ 3�

2�2

X
q

Q2
qQ

2

8<
: 4

R
d2 ~r?

R
dzz2ð1� zÞ2K2

0ðr?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞp

QÞ�ðq �qÞpðr?; zð1� zÞ;W2ÞR
d2 ~r?

R
dzð1� 2zð1� zÞÞzð1� zÞK2

1ðr?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞp

QÞ�ðq �qÞpðr?; zð1� zÞ; W2Þ:
(2.6)

Here, r? � j~r?j, and K0;1ðr?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞp

QÞ denotes modi-
fied Bessel functions.

A compact and direct way of deriving the large-Q2

behavior of the cross sections in (2.6) makes use of the
strong falloff of the modified Bessel functions at large
values of their argument,

K2
0;1ðyÞ �

�

2y
e�2y; ðy � 1Þ: (2.7)

The integral over
R
d2 ~r? ¼ �

R
d~r2? in (2.6) is accordingly

dominated by

r0?Q � r?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞ

p
Q< 1: (2.8)

As soon as ~r02? > 1=Q2, the integrand in (2.6) yields negli-

gible contributions. The interval for r0? defined by the

condition (2.8) is contained in the interval (2.5), where
color transparency is valid, provided Q2 is sufficiently
large, such that

~r 02
? <

1

Q2
<

1

~l02?MaxðW2Þ (2.9)

or

Q2 > ~l02?MaxðW2Þ: (2.10)

Under this constraint, the photoabsorption cross section
(2.6) can be evaluated by inserting the ~r2? ! 0 expression

(2.3). One obtains

���
L;Tp

ðW2;Q2Þ¼3�

2

X
q

Q2
qQ

2

8<
:
R
d~r2? ~r2?

R
dzz2ð1�zÞ2K2

0ðr?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1�zÞp

QÞRd~l2? ~l2? ~�ð~l2?;zð1�zÞ;W2Þ
1
4

R
d~r2? ~r2?

R
dzð1�2zð1�zÞÞzð1�zÞK2

1ðr?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1�zÞp

QÞRd~l2? ~l2? ~�ð~l2?;zð1�zÞ;W2Þ:
(2.11)

In terms of the variable ~r0? from (2.8) the photoabsorption cross section (2.11) is given by

���
L;Tp

ðW2; Q2Þ ¼ 3�

2

X
q

Q2
qQ

2

8<
:
R
dz

R
d~r02? ~r02?K

2
0ðr0?QÞR d~l2? ~l2? ~�ð~l2?; zð1� zÞ; W2Þ

1
4

R
dz 1�2zð1�zÞ

zð1�zÞ
R
d~r02? ~r02?K

2
1ðr0?QÞR d~l2? ~l2? ~�ð~l2?; zð1� zÞ; W2Þ: (2.12)

Making use of the mathematical identities [17]Z 1

0
dyy3K2

0ðyÞ ¼
1

3
;

Z 1

0
dyy3K2

1ðyÞ ¼
2

3
; (2.13)

the photoabsorption cross section (2.12), valid for Q2 > ~l02?MaxðW2Þ from (2.10) (and x ffi Q2=W2 � 1), reduces to the
simple form

���
L;Tp

ðW2; Q2Þ ¼ �
X
q

Q2
q

1

Q2

8<
:
R
dz

R
d~l2? ~l2? ~�ð~l2?; zð1� zÞ; W2Þ

2
R
dz 1

4
1�2zð1�zÞ
zð1�zÞ

R
d~l2? ~l2? ~�ð~l2?; zð1� zÞ; W2Þ: (2.14)

According to our derivation, the large-Q2 result (2.14) is a consequence of the transverse-position-space representation

(2.1) combined with color transparency (2.3) that in turn rests on decent behavior of ~�ð~l2?; zð1� zÞ; W2Þ as characterized
by ~l02?MaxðW2Þ.

4The well-known expression for the lifetime of a hadronic fluctuation is given in (2.60) below.
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For the ensuing discussion, it will be useful to represent the
contribution of the dipole cross section to the transverse
cross section in (2.14) in terms of the contribution to the
longitudinal one by introducing the factor �W ,Z

dz
1

4

1� 2zð1� zÞ
zð1� zÞ

Z
d~l2? ~l2? ~�ð~l2?; zð1� zÞ; W2Þ

¼ �W

Z
dz

Z
d~l2? ~l2? ~�ð~l2?; zð1� zÞ; W2Þ: (2.15)

The cross section (2.14) then becomes

���
L;Tp

ðW2;Q2Þ

¼ �
X

Q2
q

1

Q2

Z
dz

Z
d~l2? ~l2? ~�ð~l2?; zð1� zÞ;W2Þ

�
1

2�W;

(2.16)

and the longitudinal-to-transverse ratio, RðW2; Q2Þ, at
large Q2 is given by

RðW2; Q2Þ � ���
Lp
ðW2; Q2Þ

���
Tp
ðW2; Q2Þ ¼

1

2�W

: (2.17)

In (2.15), (2.16), and (2.17), the index W indicates a
potential dependence of �W on the energy W. Actually,
we will find that �W is a W-independent constant; see
Sec. II C. The factor 1=2 in (2.17) is due to the enhanced
probability for transverse photons to fluctuate into q �q
pairs relative to longitudinal photons, compare (2.13).
The additional factor of 1=�W is associated with dif-
ferent interactions of q �q fluctuations originating from
transverse, ��

T ! q �q, and longitudinal, ��
L ! q �q, photons,

respectively.
By comparing the representation of the cross section

in (2.16) with the one in (2.11), taking into account the
~r2? ! 0 form of the dipole cross section in (2.3), we obtain

a substitution rule that connects the longitudinal with the
transverse photoabsorption cross section. Indeed, substitut-
ing the replacement [using (2.3)]

�ðq �qÞpð ~r2?;zð1�zÞ;W2Þ!�ðq �qÞpð�W ~r2?;zð1�zÞ;W2Þ
(2.18)

into the longitudinal cross section in (2.11) in conjunction
with

K2
0ðr?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞ

p
QÞ ! K2

1ðr?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞ

p
QÞ (2.19)

reproduces (2.16), which relates the transverse photoab-
sorption cross section to the longitudinal one,

���
Lp
ðW2; Q2Þ ! ���

Tp
ðW2; Q2Þ: (2.20)

We thus have arrived at the conclusion that q �q states
originating from transversely polarized photons, ��

T !
q �q, interact with enhanced transverse size,

~r 2
? ! �W ~r2?; (2.21)

relative to q �q states stemming from ��
L ! q �q transitions.

Based on the interpretation of �W in (2.21), in Sec. II C, we
will show that the absolute magnitude of �W is uniquely
determined as �W ¼ 4=3.
It is frequently assumed that the dipole cross section in

(2.1) and (2.2), i.e. ~�ð~l2?; zð1� zÞ; W2Þ, does not depend on
the configuration of the q �q state, zð1� zÞ. According to

(2.14), strict independence of ~�ð~l2?; zð1� zÞ; W2Þ from
zð1� zÞ implies a logarithmic divergence in the transverse
photoabsorption cross section. The divergence is avoided
by a restriction on 0 � zð1� zÞ< 1

4 given by

zð1� zÞ> �: (2.22)

This restriction corresponds to adopting an ansatz for

~�ð~l2?; zð1� zÞ;W2Þ of the form

~�ð~l2?; zð1� zÞ;W2Þ ! ~�ð~l2?;W2Þ�ðzð1� zÞ � �Þ;
(2.23)

as a ‘‘minimal’’ dependence5 of the dipole cross section on
zð1� zÞ.
Taking into account the restriction (2.22), the photo-

absorption cross section (2.14) becomes6

���
L;Tp

ðW2; Q2Þ ¼ �
X
q

Q2
q

1

Q2

8<
:
R
zð1�zÞ>� dz

R
d~l2? ~l2? ~�ð~l2?; W2Þ

2
R
zð1�zÞ>� dz

1
4
1�2zð1�zÞ
zð1�zÞ

R
d~l2? ~l2? ~�ð~l2?; W2Þ:

(2.24)

It may be rewritten as

���
L;Tp

ðW2; Q2Þ ¼ �
X
q

Q2
q

1

Q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p Z
d~l2? ~l2? ~�ð~l2?; W2Þ

�
1

2�ð�Þ; (2.25)

6Here, with � ¼ const, we exclude the more general case of � ¼ �ð~l2?Þ.

5The factorization of the zð1� zÞ dependence in (2.23), strictly speaking, amounts to an assumption that does not necessarily follow
from (2.14). Finiteness of (2.14) can also be achieved by an appropriate correlation of the zð1� zÞ and ~l? dependences not of the form
(2.23). Compare e.g. the specific model (3.3) below. The ansatz (2.23) is explicitly realized by (3.17).
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i.e. �W in (2.15) becomes

�W ¼ �ð�Þ ¼
R
zð1�zÞ>� dz

1�2zð1�zÞ
zð1�zÞ

4
R
zð1�zÞ>� dz

¼ 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p
Z
zð1�zÞ>�

dz
1� 2zð1� zÞ

zð1� zÞ : (2.26)

Explicitly, one finds

�ð�Þ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4�

p
�
ln
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�4�
p Þ2
4�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4�

p �
’1

2
ln
1

�
:

(2.27)

We note that in Sec. III we will introduce the parameter a,
related to � by � ¼ 1=6a. The ratio R of the longitudinal to
the transverse photoabsorption cross section from (2.17)
according to (2.25) is given by 1=2�ð�Þ,

R � ���
Lp
ðW2; Q2Þ

���
Tp
ðW2; Q2Þ ¼

1

2�ð�Þ : (2.28)

The ratio R in (2.28) is independent of a particular parame-
trization of the ~l2? dependence of the dipole cross section,
that is, for ~�ð~l2?; W2Þ in (2.23).

With respect to subsequent discussions in Secs. II B and
II C, we note the origin of the zð1� zÞ-dependent factors in
(2.14) and (2.24) from the coupling of the q �q states to the
electromagnetic current. The electromagnetic current de-
termining the ��ðq �qÞ coupling of a timelike photon of mass

squared M2
q �q ¼ ~k2?=zð1� zÞ is given by [6]X

	¼�	0¼�1

jj	;	0
L j2 ¼ 8M2

q �qzð1� zÞ ¼ 8 ~k2? (2.29)

and X
	¼�	0¼�1

jj	;	0
T ðþÞj2 ¼ X

	¼�	0¼�1

jj	;	0
T ð�Þj2

¼ 2M2
q �qð1� 2zð1� zÞÞ

¼ 2 ~k2?
ð1� 2zð1� zÞÞ

zð1� zÞ ; (2.30)

for a longitudinal photon, ��
L, and a transverse one, ��

T ,
respectively. Comparison of (2.29) and (2.30) with (2.14)
and (2.15) reveals that the size enhancement �W is related
to the difference of the longitudinal and transverse photon
couplings of dipole states carrying the transverse momen-

tum ~l? of the absorbed gluon. At large Q2, the interaction

of the photon according to (2.14) reduces to interactions of
fluctuations into q �q dipole states carrying a quark trans-
verse momentum identical to the transverse momentum of

the absorbed gluon, ~l?.
According to (2.29) and (2.30), the normalized zð1� zÞ

distributions fL;Tðzð1� zÞÞ of a q �q pair of fixed mass Mq �q

originating from a longitudinally and a transversely polar-
ized photon are given by [10]

fLðzð1� zÞÞ ¼ 6zð1� zÞ (2.31)

and

fTðzð1� zÞÞ ¼ 3
2ð1� 2zð1� zÞÞ; (2.32)

respectively.
We end the present section by stressing the simplicity of

the physical picture underlying the photoabsorption in DIS
at low x and sufficiently largeQ2. The photon fluctuates into
a q �q dipole state. The ��

L;Tðq �qÞ transition strength is deter-
mined by the electromagnetic current in (2.29) and (2.30).
Theq �q dipole state entering (2.14) and (2.24) carries a quark
(antiquark) transverse momentum equal to the transverse

momentum of the absorbed gluon, ~l?. Summation over all

fluctuations, theweight function ~�ð~l2?; W2Þ being character-
istic for the transverse-momentumdistribution of the gluons
in the nucleon, uponmultiplication by 1=Q2, determines the
photoabsorption cross section. The representations, (2.14)
and (2.24), accordingly, explicitly demonstrate that the q �q
fluctuations directly test the gluon distribution in the nu-

cleon that is characterized by ~�ð~l2?;W2Þ. The enhanced
transverse photoabsorption cross section, due to 2�W in
(2.16) and to 2�ð�Þ in (2.25), results from the enhanced
transition of transverse photons into q �q pairs, compare
(2.13) and (2.14), in conjunction with a ðq �qÞp interaction
of the q �q pairs from transverse photons with enhanced
transverse size, compare (2.18) and (2.21).

B. The photoabsorption cross section at
large Q2: Part II, ðq �qÞJ¼1

L;T states

In this section, we will represent the photoabsorption
cross section in terms of scattering cross sections for dipole
states ðq �qÞJ¼1

L;T with definite spin J ¼ 1, and longitudinal as

well as transverse polarization, L and T, respectively.

Upon introducing ~r0? ¼ ~r?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞp

from (2.8), the

photoabsorption cross section (2.6) becomes [16]

���
L;Tp

ðW2; Q2Þ ¼ 3�

2�2

X
q

Q2
qQ

22

8><
>:
R
d2r0?K

2
0ðr0?QÞR dz2zð1� zÞ�ðq �qÞp

�
r0?ffiffiffiffiffiffiffiffiffiffiffi
zð1�zÞ

p ; zð1� zÞ;W2

�
R
d2r0?K

2
1ðr0?QÞR dz 1

2 ðz2 þ ð1� zÞ2Þ�ðq �qÞp
�

r0?ffiffiffiffiffiffiffiffiffiffiffi
zð1�zÞ

p ; zð1� zÞ;W2

�
:

(2.33)

The cross section in (2.33) is written in such a manner that the appearance of the rotation functions, d1jj0 ðzÞ, is explicitly
displayed, i.e.
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���
L;Tp

ðW2; Q2Þ ¼ 3�

2�2

X
q

Q2
qQ

22

8><
>:
R
d2r0?K

2
0ðr0?QÞR dzðd110ðzÞÞ2�ðq �qÞp

�
r0?ffiffiffiffiffiffiffiffiffiffiffi
zð1�zÞ

p ; zð1� zÞ; W2

�
R
d2r0?K

2
1ðr0?QÞR dz 1

2 ððd11�1ðzÞÞ2 þ ðd111ðzÞÞ2Þ�ðq �qÞp
�

r0?ffiffiffiffiffiffiffiffiffiffiffi
zð1�zÞ

p ; zð1� zÞ; W2

�
:

(2.34)

The rotation functions originate from the ��ðq �qÞ couplings via the electromagnetic currents in (2.29) and (2.30), rewritten
as X

	¼�	¼�1

jj	;	0
L j2 ¼ 4M2

q �qðd110ðzÞÞ2 (2.35)

and

X
	¼�	0¼�1

jj	;	0
T ðþÞj2¼ X

	¼�	¼�1

jj	;	0
T ð�Þj2¼4M2

q �q

1

2
ððd11�1ðzÞÞ2þðd111ðzÞÞ2Þ: (2.36)

Integration over dz in (2.35) and (2.36) defines the total longitudinal and transverse transition strengths for the ��
Lðq �qÞ and

��
Tðq �qÞ transitions. Requiring factorization of these transition strengths in (2.34), we represent ���

L;Tp
ðW2; Q2Þ in terms of

the so-defined cross sections for scattering of ðq �qÞJ¼1
L;T states on the proton, �ðq �qÞJ¼1

L;T pðr0?; W2Þ,

���
L;Tp

ðW2; Q2Þ ¼ 3�

2�2

X
q

Q2
qQ

22

8<
:
R
d2r0?K

2
0ðr0?QÞR dzðd110ðzÞÞ2�ðq �qÞJ¼1

L pðr0?; W2ÞR
d2r0?K

2
1ðr0?QÞR dz 1

2 ððd11�1ðzÞÞ2 þ ðd111ðzÞÞ2Þ�ðq �qÞJ¼1
T pðr0?; W2Þ: (2.37)

Upon inserting the normalizationsZ
dzðd110ðzÞÞ2 ¼

Z
dzðd11�1ðzÞÞ2 ¼

Z
dzðd111ðzÞÞ2 ¼

1

3
; (2.38)

(2.37) becomes

���
L;Tp

ðW2; Q2Þ ¼ �

�

X
q

Q2
qQ

2
Z

dr02?K
2
0;1ðr0?QÞ�ðq �qÞJ¼1

L;T pðr0?; W2Þ: (2.39)

By comparing (2.39) with (2.34), we find that the J ¼ 1 dipole cross sections introduced in (2.37) are explicitly given by

�ðq �qÞJ¼1
L;T pðr0?; W2Þ ¼ 3

8><
>:
R
dzðd110ðzÞÞ2�ðq �qÞp

�
r0?ffiffiffiffiffiffiffiffiffiffiffi
zð1�zÞ

p ; zð1� zÞ; W2

�
R
dz 1

2 ððd11�1ðzÞÞ2 þ ðd111ðzÞÞ2Þ�ðq �qÞ
�

r0?ffiffiffiffiffiffiffiffiffiffiffi
zð1�zÞ

p ; zð1� zÞ;W2

�
:

(2.40)

We add the comment at this point that the ðq �qÞJ¼1
L;T p cross sections in (2.37), (2.39), and (2.40) may be identified as the

J ¼ 1 parts of the partial-wave expansions

d110ðzÞ�ðq �qÞp
�

r0?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞp ; zð1� zÞ; W2

�
¼ d110ðzÞ�ðq �qÞJ¼1

L pðr0?; W2Þ þ d210ðzÞ�ðq �qÞJ¼1
L

ðr0?;W2Þ þ . . . (2.41)

and

d11�1ðzÞ�ðq �qÞp
�

r0?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞp ; zð1� zÞ; W2

�
¼ d11�1ðzÞ�ðq �qÞJ¼1

�1
pðr0?; W2Þ þ d21�1ðzÞ�ðq �qÞJ¼2

�1
ðr0?; W2Þ þ . . . (2.42)

as well as

d111ðzÞ�ðq �qÞp
�

r0?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞp ; zð1� zÞ; W2

�
¼ d111ðzÞ�ðq �qÞJ¼1

þ1
pðr0?; W2Þ þ d211ðzÞ�ðq �qÞJ¼2

þ1
ðr0?; W2Þ þ . . . : (2.43)

These partial-wave expansions explicitly demonstrate that the cross section (2.40) introduced by the factorization
requirement in (2.37) and (2.39) stands for the cross sections for the scattering of ðq �qÞJ¼1

L;T states on the proton.
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DIS at low x � Q2=W2 � 1 and sufficiently large Q2 is
recognized as elastic diffractive forward scattering of
ðq �qÞJ¼1

L;T fluctuations of the photon on the proton, compare
(2.39).

We return to the representation of the dipole cross
section (2.2) which contains color transparency. Applying
the projection (2.40) to representation (2.2), we obtain

�ðq �qÞJ¼1
L;T pð~r0?; W2Þ ¼

Z
d2 ~l0? ��ðq �qÞJ¼1

L;T pð~l02?; W2Þ

	 ð1� e�i~l0?� ~r0? Þ: (2.44)

The relation between ~�ð~l02?zð1� zÞ; zð1� zÞ; W2Þ in (2.2)

and ��ðq �qÞJ¼1
L;T pð~l02?; W2Þ in (2.44) is analogous to (2.40), i.e.

�� ðq �qÞJ¼1
L;T pð~l02?; W2Þ ¼ 3

( R
dzðd110ðzÞÞ2zð1� zÞ~�ð~l02?zð1� zÞ; zð1� zÞ; W2ÞR
dz 1

2 ððd11�1ðzÞÞ2 þ ðd111ðzÞÞ2Þzð1� zÞ~�ð~l02?zð1� zÞ; zð1� zÞ;W2Þ: (2.45)

Expanding (2.44) for ~r02? ! 0, in analogy to (2.3), we have

�ðq �qÞJ¼1
L;T pð ~r02?; W2Þ ¼ 1

4
�~r02?

Z
d~l02? ~l02? ��ðq �qÞJ¼1

L;T pð~l02?; W2Þ; ð~l02?MaxðW2Þ ~r02? � 1Þ: (2.46)

Substituting (2.46) into (2.39) and integrating over d~r02? with the help of (2.13), we find the large-Q2 representation

���
L;Tp

ðW2; Q2Þ ¼ �
X
q

Q2
q

1

Q2

1

6

8<
:
R
d~l02? ~l02? ��ðq �qÞJ¼1

L pð~l02?; W2Þ
2
R
dl02? ~l02? ��ðq �qÞJ¼1

T pð~l02?; W2Þ
(2.47)

in terms of the ðq �qÞJ¼1
L;T p cross sections, ��ðq �qÞJ¼1

L;T pð~l02?; W2Þ.
The representation (2.47) is also obtained directly from
(2.14) by introducing ~l02? and inserting (2.45).

The ratio of the integrals over the transverse and the
longitudinal ðq �qÞJ¼1p cross sections in (2.47) must be
identical to the factor �W already introduced in (2.15),

Z
d~l02? ~l02? ��ðq �qÞJ¼1

T pð~l02?; W2Þ ¼ �W

Z
d~l02? ~l02? ��ðq �qÞJ¼1

L pð~l02?;W2Þ:
(2.48)

According to the proportionality (2.48), the dipole cross
sections for transversely and longitudinally polarized di-
pole states in (2.46) become related to each other via

�ðq �qÞJ¼1
T pð~r02?;W2Þ ¼ 1

4
��W ~r02?

Z
d~l02? ~l02? ��ðq �qÞJ¼1

L pð~l02?;W2Þ
¼ �ðq �qÞJ¼1

L pð�W ~r02?; W
2Þ;

ð~l02MaxðW2Þ ~r02? � 1Þ: (2.49)

According to (2.49), for ~r02 sufficiently small, the cross
section for transversely polarized ðq �qÞJ¼1 states on the
proton, �ðq �qÞJ¼1

T pð~r02?; W2Þ, is obtained from the cross

section for longitudinally polarized ðq �qÞJ¼1 states,
�ðq �qÞJ¼1

L pð~r02?; W2Þ, by performing the substitution of ~r02?
by �W ~r02,

~r 02
? ! �W ~r02? (2.50)

in �ðq �qÞJ¼1
L pð ~r02?; W2Þ.

Upon inserting the proportionality (2.48), the large-Q2

photoabsorption cross section (2.47) becomes

���
L;Tp

ðW2;Q2Þ

¼�
X
q

Q2
q

1

Q2

1

6

Z
d~l02? ~l02? ��ðq �qÞJ¼1

L pð~l02?;W2Þ
�
1

2�W :
(2.51)

It is tempting to generalize the substitution law (2.50),
~r0? ! ffiffiffiffiffiffiffi

�W
p

~r0?, from its validity for ~r02? ! 0 to arbitrary

values of ~r0? by rewriting (2.44) as

�ðq �qÞJ¼1
L;T pð ~r02?;W2Þ

¼
Z
d2 ~l02? ��ðq �qÞJ¼1

L pð~l02?;W2Þ
8<
:ð1�e�i~l0?� ~r0? Þ
ð1�e�i~l0?�ð ffiffiffiffiffi

�W
p

~r0?ÞÞ:
(2.52)

The representation (2.52), in the limit of ~r02? ! 1, implies a

helicity-independent color-dipole cross section that is
given by

�ðq �qÞJ¼1
L;T pð ~r02?!1;W2Þ¼�

Z
d~l02? ��ðq �qÞJ¼1

L
ð~l02?;W2Þ��ð1ÞðW2Þ:

(2.53)

The representation (2.52), accordingly, contains the dy-
namical assumption (2.53). In this respect, (2.53) differs
from the representations (2.2) and (2.44) which are based
on the gauge invariance of the color-dipole interaction by
itself. We will come back to (2.53) in Sec. II E.

C. The ratio of R � ���
L
pðW2; Q2Þ=���

T
pðW2; Q2Þ

The ratio of the longitudinal to the transverse photo-
absorption cross section at sufficiently large Q2, according
to (2.16) and (2.51), is determined by the proportionality
factor 1=2�W . The factor 1=2 stems from the difference in
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the ~r0? dependence of the photon wave functions, compare

(2.13), for longitudinally and transversely polarized pho-
tons. The factor 1=�W , according to (2.48) and (2.49), is
associated with the enhancement of the transverse dipole-
proton cross section relative to the longitudinal one in the

limit of ~l02?MaxðW2Þ ~r02? � 1. According to (2.21), �W is

identical to the factor that is responsible for the enhance-
ment of the size, ~r2?, of q �q states originating from ��

T ! q �q
transitions, relative to the size of q �q states from ��

L ! q �q
transitions.

The enhancement of the transverse relative to the longi-
tudinal q �q-dipole-proton cross section is recognized as a
consequence of the enhanced transverse size of trans-
versely relative to longitudinally polarized dipole states.
Longitudinally and transversely polarized ðq �qÞJ¼1 states,
ðq �qÞJ¼1

L and ðq �qÞJ¼1
T , determining the cross sections in

(2.47), differ in the transverse-momentum distribution of
the quark (antiquark). According to (2.29), (2.30), (2.31),
and (2.32) , as a consequence of the ��

L;T ! ðq �qÞJ¼1
L;T tran-

sitions, the average value of the square of the transverse

momentum, ~l2? ¼ zð1� zÞ~l02?, of a quark (antiquark) in the
ðq �qÞJ¼1

L;T state is given by

h~l2?i
~l02?¼const
L;T ¼ ~l02?

8<
:6

R
dzz2ð1�zÞ2¼ 4

20
~l02?

3
2

R
dzzð1�zÞð1�2zð1�zÞÞ¼ 3

20
~l02?:

(2.54)

The q �q states of fixed mass ~l02? from longitudinal photons
predominantly originate with zð1� zÞ � 0, in contrast to
the q �q states from transverse photons which originate
predominantly from zð1� zÞ ffi 0, compare (2.29) and
(2.30). The average transverse momentum for a ðq �qÞJ¼1

L

state originating from the ��
L ! ðq �qÞJ¼1

L transition, accord-
ing to (2.54), is enhanced by the factor 4=3,7

h~l2?i
~l02?¼const

ðq �qÞJ¼1
L

¼ 4

3
h~l2?i

~l02?¼const

ðq �qÞJ¼1
T

: (2.55)

Longitudinally polarized photons produce ðq �qÞJ¼1

pairs with (relatively) ‘‘large’’ internal quark transverse
momentum, while transversely polarized photons lead
to ðq �qÞJ¼1 states of ‘‘small’’ internal quark transverse
momentum.

By invoking the uncertainty principle, ðq �qÞJ¼1
L

states originating from longitudinally polarized photons
accordingly have small transverse size, while ðq �qÞJ¼1

T

states from transversely polarized photons have relatively
large transverse size. The enhancement factor, when
passing from small-size longitudinally polarized
ðq �qÞJ¼1

L states to large-size transversely polarized
ðq �qÞJ¼1

T states, from (2.55), is accordingly given by 4=3;

i.e. the factor �W in ~r02? ! �W ~r02? in (2.50) and (2.21)8 is

equal to 4=3 [10],

�W � � ¼ 4
3: (2.56)

The factor �W ¼ � is independent of the energy W, since
the Lorentz boost from e.g. the ðq �qÞJ¼1 rest frame to the
��p frame does not affect the ratio of the transverse

momenta ~l? in the ðq �qÞJ¼1
T and ðq �qÞJ¼1

L states.
The ratio R for sufficiently large Q2 is given by

R¼���
Lp
ðW2;Q2Þ

���
Tp
ðW2;Q2Þ¼

1

2�
¼
8<
:0:5 for�¼1

3
8¼0:375 for�¼ 4

3 :
(2.57)

In (2.57), for comparison, in addition to the case of
transverse-size enhancement of � ¼ 4=3, we have also
indicated the case of � ¼ 1 obtained from helicity inde-
pendence, i.e. by replacing the transverse-size enhance-
ment by the simplifying ad hoc assumption of equality of
the ðq �qÞJ¼1p cross sections for longitudinal and transverse
ðq �qÞJ¼1 states. The transverse-size enhancement is respon-
sible for the deviation of R from R ¼ 0:5.
In the case of the ansatz (2.23), from (2.27), with �ð�Þ ¼

4=3, one finds

� ffi 0:0303: (2.58)

Our examination of the longitudinal-to-transverse ratio
R at large Q2 may be summarized as follows. The ratio is,
first of all, determined by a factor 1=2, originating from the
ratio of the probabilities to find a q �q with size parameter
squared, ~r02? ¼ ~r2?zð1� zÞ, in a longitudinally and a trans-

versely polarized photon; compare (2.12) to (2.14) and
(2.47). The second factor, 1=� in (2.57), results from the
different dependence on the configuration variable zð1� zÞ
of q �q states from longitudinally and transversely polarized
photons implying interactions of ðq �qÞ states with different

average transverse momenta squared ~l2? of the quark (an-
tiquark) in the ðq �qÞJ¼1

L;T states; compare (2.55). Invoking the

uncertainty relation with respect to the scattering of these
ðq �qÞJ¼1

L;T states on the proton, one arrives at the fixed value

of � ¼ 4=3 in (2.57) for the transverse-size enhancement
that enters (2.49) and determines the value of R in (2.57).
In terms of the proton structure functions, FLðx;Q2Þ and

F2ðx;Q2Þ, the result (2.57) for R at large Q2 becomes

7The left-hand and right-hand sides in (2.55) belong to the
same value of ~l02? ¼ const, but the ratio, 4=3, is independent of
the specific value chosen for ~l02?.

8Note that by comparing (2.16) and (2.47), one findsR
dz

R
d~l2? ~l2? ~�ð~l2?; zð1� zÞ; W2Þ ¼ 1

6

R
d~l02? ~l02? ��ðq �qÞJ¼1

L pð~l02?;W2Þ.
The right-hand side in the longitudinal photoabsorption cross
section (2.12) may be rewritten as

���
Lp
ðW2; Q2Þ ¼ 3�

2

X
q

Q2
q �Q2

Z
d~r02? ~r02?K

2
0ðr0?QÞ 1

6

	
Z

d~l02? ~l02? ��ðq �qÞJ¼1
L

ð~l02?; W2Þ;
thus explicitly connecting the dipole size ~r0? with the ðq �qÞJ¼1

L
state of fixed mass ~l02?, as required for the above argument.
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FLðx;Q2Þ¼ 1

1þ2�
F2ðx;Q2Þ¼

8<
:
0:33F2ðx;Q2Þ ð�¼1Þ
0:27F2ðx;Q2Þ

�
�¼ 4

3

�
:

(2.59)

The prediction (2.59) ofFL ¼ 0:27F2 is consistent with the
experimental results from the H1 and ZEUS collabora-
tions. Compare Figs. 2 and 3.

D. Discussion on the representations of the
CDP in Secs. II A and II B

The CDP of DIS at low x is based on a lifetime argument
concerning massive hadronic fluctuations of the photon.
The argument is identical to the one put forward in the
space-time interpretation [2,18] of generalized vector
dominance in the early 1970s. The lifetime in the rest
frame of the nucleon of a hadronic fluctuation of mass
Mq �q, given by the covariant expression [19]

1

�E
¼ 1

xþ M2
q �q

W2

1

Mp

� 1

Mp

; (2.60)

becomes large in comparison with the inverse of the proton
mass, Mp, provided x ffi Q2=W2 � 1 and the c.m. energy

W is sufficiently large. The ��p interaction with the nu-
cleon at low x, accordingly, proceeds via the interaction of
hadronic q �q fluctuations of timelike four-momentum
squared identical to M2

ðq �qÞ. More definitely, the integration

over the dipole cross section �ðq �qÞpðr?; zð1� zÞ; W2Þ in

transverse position space in (2.1) describes the interaction
of a continuum of massive q �q states. The dipole cross
section depends on W2,9 just as any other purely hadronic
interaction cross section. In particular, the dipole cross
section does not depend on the virtuality Q2 of the photon,
and consequently, it does not depend on x.

The dipole cross section in (2.1) does not refer to a
definite spin J of the massive q �q continuum states. The
interaction with the nucleon, nevertheless, proceeds via the
spin J ¼ 1 projection of the dipole cross section
�ðq �qÞpðr?; zð1� zÞ;W2Þ; compare the discussion in

Sec. II B, in particular, the relations (2.39) and (2.40).
TheW dependence of the dipole cross section explicitly,

via ~�ð~l2?; zð1� zÞ; W2Þ in (2.16) and ��ðq �qÞJ¼1
L pð~l02?; W2Þ in

(2.51) with (2.56), enters the large-Q2 approximation of the
photoabsorption cross section. Inserting (2.16) and (2.51)
into the proton structure function,

F2ðx;Q2Þ¼ Q4ð1�xÞ
4�2�ðQ2þð2MpxÞ2Þ

ð���
Lp
ðW2;Q2Þ

þ���
Tp
ðW2;Q2ÞÞ

ffi Q2

4�2�
ð���

Lp
ðW2;Q2Þþ���

Tp
ðW2;Q2ÞÞ (2.61)

one finds
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FIG. 2 (color online). The H1 experimental results for the
longitudinal proton structure function FLðx;Q2Þ compared with
the prediction of FLðx;Q2Þ ¼ 0:27	 F2ðx;Q2Þ from transverse-
size enhancement of transversely relative to longitudinally po-
larized ðq �qÞJ¼1 states.
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FIG. 3 (color online). The ZEUS experimental results for the
longitudinal proton structure function FLðx; Q2Þ compared with
the prediction of FLðx;Q2Þ ¼ 0:27	 F2ðx;Q2Þ from transverse-
size enhancement of transversely relative to longitudinally po-
larized ðq �qÞJ¼1 states.

9Compare also Ref. [15].
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F2ðx;Q2Þ¼
P

qQ
2
q

4�2

Z
dz

Z
d~l2? ~l2? ~�ð~l2?;zð1�zÞ;W2Þð1þ2�Þ

(2.62)

and

F2ðx;Q2Þ ¼
P
q
Q2

q

4�2

1

6

Z
d~l02? ~l02? ��ðq �qÞJ¼1

L pð~l02?; W2Þð1þ 2�Þ;
(2.63)

where � for Q2 sufficiently large is given in (2.56).
According to the right-hand sides in (2.62) and (2.63),
the structure function only depends on W2 ¼ Q2=x in the
color-transparency region of sufficiently large Q2 and suf-
ficiently small x < 0:1.

The W2 dependence in (2.62) and (2.63) can be empiri-
cally tested by plotting the experimental data for the proton
structure function F2ðx ffi Q2=W2; Q2Þ as a function of
1=W2.

In Fig. 4(a), we show10 the experimental data from
HERA for Q2 in the large range of 10 GeV2 � Q2 �
100 GeV2 as a function of 1=W2. In the relevant range of
x ffi Q2=W2 < 0:1, approximately corresponding to
1=W2 � 10�3, the experimental data indeed show a ten-
dency to lie on a single line, quite in contrast to the range of
1=W2 
 10�3. The opposite tendency of the experimental
data, approximate clustering around a single line for x 

0:1, but stronger deviations from a single line at x � 0:1, is
seen in Fig. 4(b), where the same experimental data for
F2ðx;Q2Þ are plotted in the usual manner as a function of
Bjorken x. The replacement of W2 by W2 ’ Q2=x, when
passing from Fig. 4(a) to Fig. 4(b), now yields the well-
known increased violation of Bjorken scaling in the dif-
fraction region of x < 0:1. Compare Sec. II G for a
discussion of the theoretical prediction shown in Fig. 4(a).

We summarize as follows: DIS at low x proceeds via the
imaginary part of the forward-scattering amplitude of a
continuum of massive ðq �qÞJ¼1

L;T states. The interaction of the

q �q color dipole with the gluon field of the proton, by gauge
invariance, fulfills (2.2) and (2.44), implying color trans-
parency, (2.3) and (2.46). For Q2 sufficiently large (with
x ffi Q2=W2 � 0:1 sufficiently small), the structure func-
tion F2ðx;Q2Þ only depends on the single variable W. No
details of perturbative QCD beyond the gauge-invariant
color-dipole interaction are needed to deduce the CDP of
Secs. II A and II B, including the (approximate) depen-
dence of F2ðx;Q2Þ on the single variable W2 for Q2 suffi-
ciently large. In particular, no reference to details of the
perturbative gluon density of the proton is needed. In this
connection, also compare the derivation of the CDP in
Ref. [6], as well as the formally much more complete
and elaborate derivation in Ref. [15].

By starting from the ~l?-factorization approach, under
certain assumptions, one may derive a CDP-like represen-
tation [20] for the photoabsorption cross section containing
x instead of W2 in the dipole cross section in (2.1).
Close examination of the derivation shows that the

validity of the resulting representation of the photoabsorp-
tion cross section must be restricted to values of Q2 much
larger than the relevant quark mass, or equivalently m2

0.

The use [21] of the CDP-like representation, containing an
x-dependent dipole cross section, for the transition to small
Q2 including Q2 ¼ 0, photoproduction, even upon modi-
fication of x ’ Q2=W2 by �x ’ ðQ2 þm2

0Þ=W2, is unjusti-

fied. Understanding the transition to small Q2 is the main
aim and achievement of the CDP, however.

E. Low-x scaling

A model-independent analysis of the experimental data
on DIS from HERA has revealed [11,22] that the photo-
absorption cross section, ���pðW2; Q2Þ, at low x is a func-

tion of the low-x scaling variable11

�ðW2; Q2Þ ¼ Q2 þm2
0

�2
satðW2Þ ; (2.64)

i.e. a function of the single variable �ðW2; Q2Þ,
���pðW2; Q2Þ ¼ ���pð�ðW2; Q2ÞÞ: (2.65)

In (2.64) and (2.65), the ‘‘saturation scale’’ �2
satðW2Þ em-

pirically increases as �2
satðW2Þ � ðW2ÞC2 , with C2 ffi 0:27

and m2
0 ffi 0:15 GeV2 [11,22]. The empirical analysis

of the experimental data showed that ���pð�ðW2; Q2ÞÞ
for large �ðW2; Q2Þ � 1 is inversely proportional to
�ðW2; Q2Þ,

)-2(GeV21/W
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FIG. 4 (color online). In (a) we show the experimental data for
F2ðx ffi Q2=W2; Q2Þ as a function of 1=W2, and in (b), for
comparison, as a function of x. The theoretical prediction based
on (2.124) and (2.125) is also shown in (a).

10Figure 4 was kindly prepared by Prabhdeep Kaur.

11Scaling in terms of a different, x-dependent instead of
W-dependent, scaling variable was found in Ref. [23].
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���pðW2; Q2Þ � �ð1ÞðW2Þ 1

�ðW2; Q2Þ ; (2.66)

while for small values of �ðW2; Q2Þ � 1, the dependence
on �ðW2; Q2Þ is logarithmic,

���pðW2;Q2Þ��ð1ÞðW2Þln 1

�ðW2;Q2Þ ; ð�ðW2;Q2Þ�1Þ:

(2.67)

In (2.66) and (2.67) the cross section �ð1ÞðW2Þ was
empirically found to be of hadronic size and approximately

constant, �ð1ÞðW2Þ ’ const, as a function of the energyW.
In the present section, we will show that not only

the existence of the scaling behavior (2.65), but also the
observed functional dependence of the cross section, as
1=�ðW2; Q2Þ for large �ðW2; Q2Þ, and as lnð1=�ðW2; Q2ÞÞ
for small �ðW2; Q2Þ, in (2.66) and (2.67), respectively, is a

general and direct consequence of the color-dipole nature
of the interaction of the hadronic fluctuations of the photon
with the color field in the nucleon. No specific parametri-
zation of the color-dipole-proton cross section,
�ðq �qÞpðr?; zð1� zÞ;W2Þ, must be introduced to deduce

the empirically observed functional dependence in (2.66)
and (2.67).
The ensuing analysis will be based on the representation

of the photoabsorption cross section in Sec. II B in terms
of the scattering of ðq �qÞJ¼1

L;T states on the proton. Compare

(2.39), in particular, as well as the longitudinal and
transverse dipole cross sections given by (2.44). The rep-
resentation (2.44) of the dipole cross section, as a conse-
quence of (2.2), is solely based on the gauge-invariant
coupling of the color-dipole state to the gluon field in the
nucleon.
Upon angular integration, (2.44) becomes

�ðq �qÞJ¼1
L;T pðr0?; W2Þ ¼ �

Z
d~l02? ��ðq �qÞJ¼1

L;T pð~l02?; W2Þ
�
1�

R
d~l02? ��ðq �qÞJ¼1

L;T pð~l02?; W2ÞJ0ðl0?r0?ÞR
d~l02? ��ðq �qÞJ¼1

L;T pð~l02?; W2Þ
�
; (2.68)

where r0? �
ffiffiffiffiffiffi
~r02?

q
and J0ðl0?r0?Þ denotes the Bessel function

of order zero. We assume that the integrals in (2.68) do
exist and are determined by the integrands in a restricted
range of ~l02? < ~l02?Max � l02?MaxðW2Þ, where ��ðq �qÞJ¼1

L;T pð~l02?; W2Þ
is appreciably different from zero. The resulting dipole
cross section (2.68), for any fixed value of r0?, strongly
depends on the variation of the phase, l0?r

0
?, in (2.44) and

(2.68) as a function of l0? < l0?MaxðW2Þ.
Indeed, if for a given value of r0? the phase l0?r

0
? in the

relevant range of l0? < l0?MaxðW2Þ is always smaller than

unity, i.e.

0< l0?r
0
? < l0?MaxðW2Þr0? � 1; (2.69)

the second term in the brackets of (2.68) essentially cancels
the first one, since

J0ðl0?r0?Þ ffi 1� 1

4
ðl0?r0?Þ2 þ

1

43
ðl0?r0?Þ4 þ � � � : (2.70)

Substitution of (2.70) into (2.68) implies the proportional-
ity of the dipole cross section to r02? already given in (2.46).

Combining (2.46) with (2.49) and (2.56), we find

�ðq �qÞJ¼1
L;T pðr02?; W2Þ ¼ 1

4
�r02?

Z
d~l02? ~l02? ��ðq �qÞJ¼1

L pð~l02?; W2Þ
�
1;
�;

�
r02? � 1

l02?MaxðW2Þ
�
: (2.71)

In the limiting case of

l0?MaxðW2Þr0? � 1; (2.72)

alternative to (2.69), the rapid oscillation of the Bessel
function under variation of 0< l0? < l0?MaxðWÞ at fixed

r0? implies a vanishing contribution of the second term in
(2.68). The dipole cross section (2.68) in this limit is not
proportional to the dipole size ~r02?, but, in contrast to (2.71),
becomes identical to the ~r02?-independent limit �ð1Þ

L;TðW2Þ of
normal hadronic size,

�ðq �qÞJ¼1
L;T pðr02?; W2Þ ffi �

Z
d~l02? ��ðq �qÞJ¼1

L;T pð~l02?;W2Þ � �ð1Þ
L;TðW2Þ;

�
r02? � 1

l02?MaxðW2Þ
�
: (2.73)

We note that the r0?-independent limit on the right-hand side in (2.73) obtained at any fixed value of r0? for l02?maxðW2Þ !
1 coincides with the limit of r0? ! 1 at fixed energy, W, or fixed ~l02?maxðW2Þ. A small q �q dipole at infinite energy yields

the same cross section as a sufficiently large dipole at finite energy W.
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The gauge-invariant color-dipole interaction with the
gluon thus implies the emergence of two scales, the

helicity-dependent integral12 over ��ðq �qÞJ¼1
L;T pð~l02?; W2Þ in

(2.73) and the first moment of ��ðq �qÞJ¼1
L;T pð~l02?; W2Þ in (2.71),

which determine the dipole cross section for relatively
large r02? and relatively small r02?, respectively. Whether

(2.73) or (2.71) is relevant for a chosen value of r0? depends

on the value of l02?MaxðW2Þ that, in turn, depends on the W
dependence of the ðq �qÞJ¼1

L;T p dipole cross section,

��ðq �qÞJ¼1
L;T pð~l02?; W2Þ.

It is appropriate to introduce and use the normalized

distribution in ~l02?,

�2
satðW2Þ �

R
d~l02? ~l02? ��ðq �qÞJ¼1

L pð~l02?; W2ÞR
d~l02? ��ðq �qÞJ¼1

L pð~l02?; W2Þ

¼ 1

�ð1Þ
L ðW2Þ� �

Z
d~l02? ~l02? ��ðq �qÞJ¼1

L pð~l02?;W2Þ;

(2.74)

as the second scale besides �ð1Þ
L;TðW2Þ from (2.73).13 The

r02? ! 0 limit in (2.71) then becomes

�ðq �qÞJ¼1
L;T pðr02?;W2Þ

¼1

4
r02?�

ð1Þ
L ðW2Þ�2

satðW2Þ
�
1;

�;

�
r02?� 1

l02?MaxðW2Þ
�
:

(2.75)

The cross section �ð1Þ
L;TðW2Þ, as a consequence of the color-

dipole interaction in (2.2) and (2.44), according to (2.73)
and (2.75), is of relevance for both the r02? ! 1 and the

r02? ! 0 behavior of the dipole cross section.

Before returning to the photoabsorption cross section,
we add a further comment on the dipole cross section
(2.68) and its important limits in (2.71) [or, equivalently, in
(2.75)] and in (2.73). The dependence of the dipole cross
section (2.68) on r0? is determined by the destructive

interference originating from the (negative) second term
in the brackets in (2.68). At any fixed value of r0?, for
sufficiently high energy, i.e. with increasingly greater val-

ues of ~l02?MaxðW2Þ, the vanishing of this term, due to strong
oscillations of the integrand, leads to the ~r0?-independent
limit of a cross section of hadronic size in (2.73). With
increasing energy, a transition occurs from the region
of color transparency (2.71), where the cross section is

proportional to the dipole size, ~r02?, to the saturation regime

(2.73) characterized by a cross section that is independent
of the dipole size, ~r02?; the interaction of a color neutral q �q
dipole is, in the saturation regime, replaced by the interac-
tion of a colored quark and a colored antiquark, thus
producing a cross section of hadronic size. Both color
transparency and the transition to the hadronlike saturation
behavior are recognized as a genuine consequence of
the gauge-invariant color-dipole interaction (2.1). It is a
misconception to associate the saturation regime with an
increased density in a small-size region of the proton: in
the high-energy limit of (2.73) the cross section is not
proportional to the dipole size, and therefore it cannot be
interpreted as the product of a (small) dipole size with a
high-gluon-density region.
We turn to the photoabsorption cross section in (2.33).

The integration over d2 ~r0? in (2.33) at fixed Q2 is domi-

nated by

~r 02
? � r02? � 1

Q2
: (2.76)

Compare (2.7) and (2.8). The resulting photoabsorption
cross section for fixed Q2 then depends on whether the
limiting case of either (2.71) [or, equivalently, (2.75)] or of
(2.73) is relevant for r02? � 1=Q2.

For the case of

r02? <
1

Q2
� 1

l02?MaxðW2Þ ; (2.77)

the r02? ! 0 expression in (2.75) is relevant. This region of

relatively largeQ2 was treated in Sec. II B. Compare (2.46)
and (2.47). Introducing �2

satðW2Þ from (2.74) and (2.75) on
the right-hand side of (2.51), with �W ¼ � from (2.56), we
find

���
L;Tp

ðW2;Q2Þ¼�

�

X
q

Q2
q

1

6
�ð1Þ

L ðW2Þ�
2
satðW2Þ
Q2

�
1

2�:
(2.78)

The total photoabsorption cross section is given by

���pðW2; Q2Þ ¼ ���
Lp
ðW2; Q2Þ þ ���

Tp
ðW2; Q2Þ

¼ �

�

X
q

Q2
qð1þ 2�Þ 1

6
�ð1Þ

L ðW2Þ�
2
satðW2Þ
Q2

:

(2.79)

Unitarity requires the hadronic dipole cross section
�1

L;TðW2Þ from (2.73) to only weakly14 depend on W2,

�ð1Þ
L;TðW2Þ ffi const: (2.80)

Moreover, by quark confinement and, quantitatively, by
quark-hadron duality [24], the divergence of r02? ! 1 for

Q2 ! 0 in (2.76) must be replaced by

12For generality, we keep the distinction between �ð1Þ
L ðW2Þ and

�ð1Þ
T ðW2Þ, even though the essential conclusions of this section

do not depend on whether this distinction is kept or replaced by
the equality (2.53).
13The scale �2

satðW2Þ in (2.74) is to be identified with the
parameter �2

satðW2Þ in (2.64) that was introduced in the fit
[11,22] to the experimental data. 14Actually, a logarithmic increase of �ð1Þ

L;TðW2Þ is allowed.
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r02? <
1

Q2 þm2
0

; (2.81)

where m2
0 actually depends on the quark flavor. For light

quarks, m2
0 & m2

�, where m� is the �0 meson mass, is

relevant. Replacing15 Q2 ! Q2 þm2
0 in (2.79), and iden-

tifying the resulting (inverse) ratio with the empirical
parameter �ðW2; Q2Þ in (2.64), we have

���pðW2;Q2Þ¼�

�

X
q

Q2
qð1þ2�Þ1

6
�ð1Þ

L ðW2Þ 1

�ðW2;Q2Þ ;

ð�ðW2;Q2Þ�1Þ; (2.82)

where �ðW2; Q2Þ � 1 as a consequence of (2.74) and
(2.77). With (2.80), this is the empirically established
scaling behavior (2.66).

We turn to the case of

1

l02?MaxðW2Þ � 1

Q2
; (2.83)

alternative to (2.77), and relevant, in particular, for
large values of the energy W and relatively small values
of Q2. In this case of (2.83), within the integration domain

of r02? < 1=Q2 from (2.76), we have to discriminate two

different regions. For

r02? <
1

~l02?MaxðW2Þ �
1

Q2
; (2.84)

we have color transparency (2.75). In distinction from
(2.77), color transparency only holds in a small restricted
domain of the full integration interval r02? < 1=Q2. For the

remaining integration domain,

1

~l02?MaxðW2Þ < r02? <
1

Q2
; (2.85)

the r0?-independent dipole cross section (2.73) becomes

relevant.
It is useful to split the integration domain into the sum of

two different ones. Noting that, according to the definition
(2.74),

�2
satðW2Þ & l02?MaxðW2Þ; (2.86)

we use �2
satðW2Þ as the splitting parameter of the integral

over dr02?. The photoabsorption cross section (2.39) then

becomes

���
L;Tp

ðW2; Q2Þ ¼ �

�

X
q

Q2
qQ

2

�Z 1=½�2
satðW2Þ�

0
dr02? þ

Z 1=Q2

1=½�2
satðW2Þ�

dr02?

�
K2

0;1ðr0?QÞ�ðq �qÞJ¼1
L;T pðr02?; W2Þ: (2.87)

The main contribution to the photoabsorption cross section is due to the second term on the right-hand side in (2.87). The
first term will subsequently be shown to be negligible compared with the second one. Only taking into account the second
term, upon introducing the r0?-independent dipole cross section from (2.73), we find

���
L;Tp

ðW2; Q2Þ ¼ 2�

�

X
Q2

qQ
2

8<
:
�ð1Þ

L ðW2ÞR1=Q

1=½�satðW2Þ� dr
0
?r

0
?K

2
0ðr0?QÞ

�ð1Þ
T ðW2ÞR1=Q

1=½�satðW2Þ� dr
0
?r

0
?K

2
1ðr0?QÞ:

(2.88)

The cross section in the high-energy limit, (2.88), as a
consequence of the factorization of the dipole cross section
(2.73), is directly given by an integral over the photon wave
function; compare e.g. (2.88) with the general expression
in (2.39).

In the integration domain (2.85) of r0?Q< 1, relevant in
(2.87) and (2.88), upon introducing y ¼ r0?Q, we can

approximate K2
0;1ðr0?QÞ ¼ K2

0;1ðyÞ by

K2
0ðyÞ ’ ln2y; K2

1ðyÞ ’
1

y2
; ðy < 1Þ: (2.89)

We find

���
L;Tp

ðW2;Q2Þ¼2�

�

X
Q2

q

8<
:

1
4�

ð1Þ
L ðW2Þ

1
2�

ð1Þ
T ðW2Þln�2

satðW2Þ
Q2 :

(2.90)

The longitudinal cross section becomes small in this limit
of very high energy W and comparatively small values of
Q2. According to (2.90), the longitudinal cross section may
be neglected, and the total cross section is given by

���pðW2; Q2Þ ¼ �

�

X
Q2

q�
ð1Þ
T ðW2Þ ln�

2
satðW2Þ
Q2

: (2.91)

With the replacement of Q2 ! Q2 þm2
0, compare

(2.81), and upon introducing �ðW2; Q2Þ from (2.64), we
indeed have derived the empirically observed logarithmic
dependence,

15Actually, realistic values of �2
satðW2Þ fulfill the hierarchy of

�2
satðW2Þ � m2

0, such that for Q2 � �2
satðW2Þ, the photon vir-

tuality Q2 in (2.79) may be replaced by Q2 þm2
0. The replace-

ment of Q2 ! Q2 þm2
0 in the case of (2.82) is of formal nature.

We note that the introduction ofm0 is equivalent to introducing a
nonzero quark mass in the photon wave function of the CDP in
(2.1).
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���pðW2; Q2Þ ¼ �

�

X
Q2

q�
ð1Þ
T ðW2Þ ln 1

�ðW2; Q2Þ ;

ð�ðW2; Q2Þ � 1Þ; (2.92)

where �ð1Þ
T ðW2Þ ffi const; compare (2.80).

Combining (2.78) and (2.90), the ratio R of the longitu-
dinal and the transverse parts of the photoabsorption cross
section is given by

RðW2;Q2Þ ¼ 1

2

8><
>:

�ð1Þ
L ðW2Þ

�ð1Þ
T ðW2Þ

1
ln 1

�ðW2 ;Q2Þ
ð�ðW2;Q2Þ � 1Þ

1
� ð�ðW2;Q2Þ � 1Þ:

(2.93)

In the limit of �ðW2; Q2Þ � 1, i.e. for W2 ! 1 at fixed
Q2, the longitudinal part of the photoabsorption cross

section becomes vanishingly small compared with the
transverse part. In the limit of �ðW2; Q2Þ � 1, we have
� ¼ 4=3 from transverse-size enhancement, while � ¼ 1
under the ad hoc assumption of helicity independence.
We finally have to convince ourselves that the first term

in (2.87) can be neglected relative to the second one.
Inserting (2.75) into (2.39), the contribution of the first
term becomes

�ðIÞ
��
L;Tp

ðW2;Q2Þ

¼�

�

X
q

Q2
q

1

2
�ð1Þ

L ðW2Þ�
2
satðW2Þ
Q2

8<
:
RQ=�satðW2Þ
0 dyy3K2

0ðyÞ
�
RQ=�satðW2Þ
0 dyy3K2

1ðyÞ:
(2.94)

Evaluation of the integrals upon inserting (2.89) yields

�ðIÞ
��pðW2;Q2Þ¼�

P
qQ

2
q

�

1

4
�ð1Þ

L ðW2Þ
�
1

2

Q2

�2
satðW2Þ ln

2 Q2

�2
satðW2Þþ�

�
ffi�

P
Q2

q

�

1

4
�ð1Þ

L ðW2Þ�; ð�2
satðW2Þ�Q2Þ: (2.95)

Since (2.91) is enhanced by lnð�2
satðW2Þ=Q2Þ, we can

neglect (2.95) for sufficiently large �2
satðW2Þ.

The resulting cross sections (2.82) and (2.92) establish
the empirically observed low-x scaling behavior as a con-
sequence of the interaction of the q �q fluctuations of the
(real or virtual) photon as color-dipole states. Low-x scal-
ing is recognized as a genuine consequence of the CDP in
the formulation given in (2.39) and (2.44) that is based on
(2.1) and (2.2). ‘‘Saturation’’ i.e. the slow logarithmic
increase as ln�2

satðW2Þ in (2.92), is not based on a specific
model assumption. It occurs as a consequence of the
transition of the ðq �qÞp interaction from the color-
transparency region to the hadronic one. This transition
occurs for any given Q2, or any fixed dipole size, provided
the energy is sufficiently high such that the q �q state does

not interact as a colorless dipole, but rather as a system of
two colored quarks.

F. The photoproduction limit for W2 ! 1
at fixed Q2 > 0

In Sec. II E, we found that the CDP from (2.1) and (2.2)
implies that the photoabsorption cross section at low x ffi
Q2=W2 � 1 depends on the single scaling variable
�ðW2; Q2Þ from (2.64) and (2.74). Moreover, the depen-
dence of ���

L;Tp
ð�ðW2; Q2ÞÞ, for small and large values of

�ðW2; Q2Þ, was found to be uniquely determined without
adopting a specific parametrization for the dipole cross
section [compare (2.92) and (2.82)],

���pðW2; Q2Þ ¼ ���pð�ðW2; Q2ÞÞ ¼ �

�

X
q

Q2
q

8><
>:
�ð1Þ

T ðW2Þ ln 1
�ðW2;Q2Þ ð�ðW2; Q2Þ � 1Þ

1
6 ð1þ 2�Þ�ð1Þ

L ðW2Þ 1
�ðW2;Q2Þ ð�ðW2; Q2Þ � 1Þ;

(2.96)

where unitarity restricts �ð1Þ
L;TðW2Þ to being, at most,

weakly dependent on W. In this section, we present a
more detailed discussion of the important �ðW2; Q2Þ ! 0
limit of W2 ! 1 at fixed values of Q2.

We explicitly assume �2
satðW2Þ to increase with

the energy W. There are convincing theoretical arguments
for this assumption, independent of the analysis
of the experimental data that was referred to
in the discussion related to (2.64), (2.65), (2.66), and
(2.67).

Note that the absorption of a gluon of transverse mo-

mentum ~l? by a q �q fluctuation leads to ‘‘diagonal’’ as well

as ‘‘off-diagonal’’ transitions with respect to the massMq �q

of the q �q fluctuations,

ðq �qÞMq �q
!

� ðq �qÞMq �q
ðdiagonalÞ

ðq �qÞM0
q �q�Mq �q

ðoff-diagonalÞ: (2.97)

The mass difference in the second line of (2.97) is propor-

tional to ~l02? ¼ ~l2?=zð1� zÞ, or to �2
satðW2Þ from (2.74), on

the average,

�M2
q �q � M02

q �q �M2
q �q ��2

satðW2Þ: (2.98)
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This connection excludes �2
satðW2Þ ¼ const unless one is

willing to postulate the mass difference between incoming
and outgoing q �q states in hadronic diffraction to be equal
to a fixed value that is W independent, even for W ! 1.
Constancy, �2

satðW2Þ ¼ const:, would imply a W depen-
dence of the photoabsorption cross section (2.96) that is
exclusively determined by the factorized cross section

�ð1Þ
L;TðW2Þ from (2.73), entirely independent of the details

of the dynamics of the gluon field in the proton related to
�2

satðW2Þ from (2.74). One accordingly can safely dismiss
the assumption of �2

satðW2Þ ¼ const on theoretical
grounds, independently of its inconsistency with the
experimental data; compare (2.64), (2.65), (2.66), and
(2.67). A further argument on the increase of �2

satðW2Þ
with the energy may be based on the consistency of the
CDP with a description of the proton structure function in
terms of sea-quark and gluon distributions and their
evolution with Q2. This will be discussed below; compare
Sec. II G.

Considering the limit of �ðW2; Q2Þ ! 0, or W2 ! 1 at
fixed Q2, we introduce the ratio of the virtual to the real
photoabsorption cross section, and from (2.96) we find [22]

lim
W2!1
Q2 fixed

���pð�ðW2;Q2ÞÞ
���pð�ðW2;Q2¼0ÞÞ

¼ lim
W2!1
Q2 fixed

lnð�2
satðW2Þ
m2

0

m2
0

ðQ2þm2
0
ÞÞ

ln
�2

satðW2Þ
m2

0

¼1þ lim
W2!1
Q2 fixed

ln
m2

0

Q2þm2
0

ln
�2

satðW2Þ
m2

0

¼1: (2.99)

At sufficiently large W, at any fixed value of Q2, the ��p
cross section approaches the Q2-independent (Q2 ¼ 0)
photoproduction limit. We stress again that this result
(2.99) is independent of any particular parametrization of
the dipole cross section. It is solely based on the CDP (2.1)

with the general form of the dipole cross section (2.2)
required by the gauge-invariant two-gluon coupling of
the q �q fluctuation in the forward-Compton-scattering
amplitude.
The ðQ2; W2Þ plane corresponding to (2.96) and (2.99) is

simple. It consists of only two regions separated by the line
�ðW2Þ; Q2Þ ffi 1; compare Fig. 5. Below this line, i.e. for
�ðW2; Q2Þ � 1, we have color transparency with
���pðW2; Q2Þ ��2

satðW2Þ=Q2, while for �ðW2; Q2Þ � 1,

we have hadronlike saturation behavior. Without explicit
parametrization of �2

satðW2Þ, the relation (2.99) does
not determine the energy scale, at which the limit of
photoproduction is reached in (2.99).
The limit (2.99) was first given [22] under the assump-

tion of a specific ansatz for the dipole cross section in (2.2),

�ðq �qÞpðr?; zð1� zÞ;W2Þ
¼ �ð1ÞðW2Þð1� J0ðr?zð1� zÞ�satðW2ÞÞ; (2.100)

which was used in a successful fit [11,22] to the experi-
mental data from HERA. By extrapolating the fit to the
experimental data based on (2.100) toW2 ! 1 at fixedQ2,
one finds the limiting behavior (2.99). Inserting the fit
result [22],16

�2
satðW2Þ¼ ð0:34�0:06Þ

�
W2

1GeV2

�
C2

GeV2;

C2¼0:27�0:01; m2
0¼0:15GeV2�0:04GeV2;

(2.101)

into (2.99) allows one to examine the approach to the
photoabsorption limit in (2.99). As expected from the
logarithmic behavior in (2.99), exceedingly high energies
are needed to approach this limit. Compare Table I for a
specific example.
More recently, fits to the low-x DIS data based on

various parametrizations of the photoabsorption cross sec-
tion of the general form

���pðW2; Q2Þ � l	eff ðQ2Þ (2.102)

were examined by Caldwell [25], in particular, in view of
an extrapolation to the above limit of large W at fixed Q2.
The ansatz (2.102), with

FIG. 5. The ðQ2; W2Þ plane showing the line �ðW2; Q2Þ ¼ 1
separating the large-Q2 and the small-Q2 region.

TABLE I. The approach of ���pð�ðW2; Q2ÞÞ to the photopro-
duction limit, ��pðW2Þ ¼ ���pð�ðW2; Q2 ¼ 0ÞÞ, forW2 ! 1 at

fixed Q2 > 0.

Q2½GeV2� W2½GeV2� ���pð�ðW2 ;Q2ÞÞ
��pðW2Þ

1.5 2:5	 107 0.5

1:26	 1011 0.63

16The original fit [22] with �2ðW2Þ ¼ C1ðW2 þW2
0 ÞC2 and

W2
0 ¼ 1081� 124 GeV2 can to a good approximation be re-

placed by (2.101).
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l ¼ 1

2Mpx
ffi 1

2Mp

W2

Q2
; (2.103)

was motivated by the lifetime, or coherence length, of a
hadronic fluctuation according to (2.60).

The particular fit based on

���pðW2; Q2Þ ¼ �0ðQ2Þl	eff ðQ2Þ; (2.104)

and individually carried out for a series of values of Q2 in
the interval 0:15 & Q2 & 400 GeV2, led to an intersection
of the straight lines in the representation of the log of
���pðW2; Q2Þ against the log of the coherence length l.

The intersection, interpreted as an indication for the ap-
proach to a Q2-independent limit at large W2, occurred at

W2 ffi 109Q2; (2.105)

to be compared with the (not yet fully asymptotic) results
forW2 from our approach in Table I. It is of interest that the
large-W extrapolation of a fit to the experimental data
based on the simple, intuitively well-motivated, but still
fairly ad hoc ansatz (2.104) implies a saturation effect
similar to the one predicted from the CDP, the validity of
which stands on firm theoretical grounds. Not every ansatz
for a successful fit in terms of the variable l in (2.103),
however, as pointed out in Ref. [25], implies an approach
to a Q2-independent saturation limit. Precise empirical
evidence for the limiting behavior (2.99) presumably re-
quires experiments at energies substantially above the ones
explored at HERA.

G. The CDP, the gluon-distribution function,
and evolution

The CDP of DIS corresponds17 to the low-x approxima-
tion of the pQCD-improved parton model in which the
interaction of the (virtual) photon occurs by interaction
with the quark-antiquark sea in the proton via �� gluon !
q �q fusion; compare Fig. 6. The longitudinal structure
function FLðx; Q2Þ in this low-x or CDP approximation
of pQCD solely depends on the gluon density gðx;Q2Þ
[27],

FLðx;Q2Þ ¼ �sðQ2Þ
3�

X
q

Q2
q � 6Igðx;Q2Þ (2.106)

with

Igðx;Q2Þ �
Z 1

x

dy

y

�
x

y

�
2
�
1� x

y

�
Gðy;Q2Þ; (2.107)

where Gðy;Q2Þ � ygðy;Q2Þ. For a wide range of different
gluon distributions, independently of their specific form,
the integration in (2.107) yields a result that is proportional
to the gluon-distribution function at a rescaled value x=
L

[27], i.e.

FLð
Lx;Q
2Þ ¼ �sðQ2Þ

3�

X
q

Q2
qGðx;Q2Þ: (2.108)

The rescaling factor 
L in (2.108) has the preferred value of

L ffi 0:40 [27]. The interaction of the longitudinally po-
larized photon with the quark (antiquark) originating from
gluon ! q �q splitting, via FLð
Lx;Q

2Þ, to a good approxi-
mation, thus fully determines the x and Q2 dependence of
the gluon-distribution function.
We turn to the structure function F2ðx;Q2Þ. In the DIS

scheme of pQCD, at low x and sufficiently large Q2,
F2ðx;Q2Þ is proportional to the singlet or sea-quark densityPðx;Q2Þ,

Xðx;Q2Þ ¼ Xnf
q¼1

ðqqðxÞ þ �qqðxÞÞ: (2.109)

For four flavors of quarks, nf ¼ 4, and flavor-blind quark

distributions, the structure function is given by

F2ðx;Q2Þ¼x
Xðx;Q2Þ1

4

X
q

Q2
q¼ 5

18
x
Xðx;Q2Þ: (2.110)

In the CDP approximation, �� gluon ! q �q fusion, the
evolution of F2ðx; Q2Þ with Q2 is determined by the gluon
distribution according to [12]

@F2ðx;Q2Þ
@lnQ2

¼�sðQ2Þ
�

X
q

Q2
q

Z 1

x
dzPqgðzÞG

�
x

z
;Q2

�
; (2.111)

where in leading order of pQCD

PqgðzÞ ¼ Pð0Þ
qg ¼ 1

2ðz2 þ ð1� zÞ2Þ: (2.112)

The evolution equation (2.111), again for a wide range of
choices for the gluon distribution, may be represented by
the proportionality [28]

@F2ð
2x;Q
2Þ

@ lnQ2
¼ �sðQ2Þ

3�

X
q

Q2
qGðx;Q2Þ: (2.113)

The rescaling factor in this case is given by 
2 ffi 0:50 [28].
The validity of (2.108) and (2.113) and the values of the

rescaling factors ð
L; 
2Þ ¼ ð0:40; 0:50Þ will be reex-
amined below by evaluating the relations (2.106) for
FLðx;Q2Þ and (2.111) for F2ðx;Q2Þ for the specific gluon

FIG. 6. (a) Photon-gluon fusion. (b) Higher order contributions
to photon-gluon ! q �q fusion resolving the lower blob in Fig. 1.
The lower part of the diagram must be extended to become a
gluon ladder.

17With respect to the present section, compare also Ref. [26].
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distribution to be obtained by requiring consistency with
the CDP approach.

We introduce the ratio of F2ðx;Q2Þ and FLðx;Q2Þ by
employing the form of this ratio in (2.59), but allowing for
a potential dependence of � � �ðx;Q2Þ on the kinematic
variables x and Q2,

FLðx;Q2Þ ¼ 1

2�þ 1
F2ðx;Q2Þ: (2.114)

Replacing the right-hand side of (2.113) by FLð
Lx;Q
2Þ

from (2.108), and subsequently replacing FLð
Lx;Q
2Þ by

F2ð
Lx;Q
2Þ according to the defining relation (2.114), the

evolution equation (2.113) becomes

ð2�þ 1Þ @

@ lnQ2
F2

�

2


L

x;Q2

�
¼ F2ðx;Q2Þ; (2.115)

or, in terms of the flavor-singlet distribution (2.109) ac-
cording to (2.110),

ð2�þ 1Þ @

@ lnQ2


2


L

X�

2


L

x;Q2

�
¼ Xðx;Q2Þ: (2.116)

By alternatively replacing FLðx; Q2Þ in (2.114) by the
gluon distribution from (2.108), upon inserting the result-
ing expression for F2ðx;Q2Þ into the evolution equation
(2.113), we find an evolution equation for the gluon-
distribution function that reads

@

@ lnQ2 ð2�þ 1Þ�sðQ2ÞG
�

2


L

x;Q2

�
¼ �sðQ2ÞGðx;Q2Þ:

(2.117)

Comparing (2.117) with (2.116), we conclude that, if and
only if

ð2�þ 1Þ ¼ const; (2.118)

the evolution of the gluon density multiplied by �sðQ2Þ in
(2.117) coincides with the quark-singlet evolution accord-
ing to (2.115) and (2.116).

Identical evolution of the q �q sea originating from
�� gluon ! q �q fusion [Fig. 6(a)] and the gluon distribu-
tion multiplied by�sðQ2Þ appears as a natural consequence
of the fact that the q �q state seen by the photon originates
from the gluon: the evolution of the sea distribution, mea-
sured by the interaction with the photon, directly yields the
evolution of the gluon distribution.

In the CDP, according to Sec. II D [specifically (2.63)],
and supported by the experimental results in Fig. 4, the
structure function F2ðx;Q2Þ for x � 0:1 and Q2 suffi-
ciently large depends on the single variable W2,

F2ðx;Q2Þ ¼ F2

�
W2 ¼ Q2

x

�
: (2.119)

Independently of the specific form of the functional
dependence of F2ðx;Q2Þ on W2, according to (2.119), the
Q2 dependence and the x dependence of F2ðx;Q2Þ are
intimately related to each other. This is a consequence of

the W dependence of the dipole cross section in (2.1);
compare (2.78) and (2.61). In terms of the energy variable
W, the evolution equation (2.115) becomes

ð2�W þ 1Þ @

@ lnW2
F2

�

L


2

W2

�
¼ F2ðW2Þ: (2.120)

Since according to (2.1) the longitudinal as well as the
transverse photoabsorption cross section depend on W2,
the potential dependence of � on x andQ2 is also restricted
to W, and in (2.120), this is indicated by �W .
We assume a power-law dependence for F2ðW2Þ onW2,

F2ðW2Þ � ðW2ÞC2 ¼
�
Q2

x

�
C2

: (2.121)

We note that the dependence of F2ðx;Q2Þ ¼ F2ðW2Þ in
(2.121) on a fixed (i.e. Q2-independent) constant power C2

of 1=x coincides with the x ! 0 so-called ‘‘hard’’ Pomeron
solution [29] of pQCD that rests on a ð1=xÞ	 input assump-
tion for the flavor-singlet quark as well as the gluon dis-
tribution (	 ¼ const). A fixed power of 1=x, as ð1=xÞ�0 ,
also appears in the Regge approach to DIS based on a
linear combination of a ‘‘soft’’ and a hard Pomeron, with
the fit parameter of the hard-Pomeron contribution being
given by �0 ffi 0:43 [30].
It is a unique feature of the CDP, however, that the

1=x dependence and the Q2 dependence of F2ðx;Q2Þ (for
x � 0:1 and Q2 sufficiently large, Q2 
 10 GeV2) are
determined by one and the same constant power C2; com-
pare (2.121).
Inserting the power law (2.121) into the evolution equa-

tion (2.120), we find the constraint

ð2�W þ 1ÞC2

�

L


2

�
C2 ¼ 1: (2.122)

Consistency of the power law (2.121) for the W depen-
dence with the flavor-singlet evolution (2.120) thus implies
the remarkable constraint (2.122) that connects the expo-
nent C2 of the 1=x dependence with the longitudinal-to-
transverse ratio of the photoabsorption cross sections, 2�W ,
or, equivalently, with the ratio of F2ðx;Q2Þ and FLðx;Q2Þ
in (2.114). Constancy of C2 implies constancy of �W ¼
� ¼ const, and vice versa.
In the CDP, from (2.56), � has the constant and fixed

value of � ¼ 4=3. With this CDP value of � ¼ 4=3, we
find from (2.122) (compare also [26])18

C2 ¼ 1

2�þ 1

�

2


L

�
C2 ¼ 0:29; (2.123)

where the preferred value of 
2=
L ¼ 0:5=0:4 ¼ 1:25 was
inserted. We note that the (ad hoc) variation of this value in
the interval 1 � 
2=
L � 1:5 around the above value
of 
2=
L ¼ 1:25 yields 0:27 � C2 � 0:31. The result

18Note that (2.123) differs from the result in [31] by taking into
account the rescaling factor 
L ¼ 0:4 as well as � ¼ 4=3.
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C2 ¼ 0:29, accordingly, is fairly insensitive under varia-
tion of the rescaling factors 
2 and 
L.

We specify (2.121) by adopting the theoretical result for
the exponent C2 ¼ 0:29 from (2.123) and by introducing a
proportionality constant f2,

F2ðW2Þ ¼ f2 �
�

W2

1 GeV2

�
C2¼0:29

: (2.124)

Via an eyeball fit to the experimental data for F2ðW2Þ as a
function of 1=W2 in Fig. 4(a), we find

f2 ¼ 0:063: (2.125)

The theoretical prediction (2.124) with (2.125) is shown in
Fig. 4(a). A detailed comparison with the experimental
data, separately for distinct values of Q2 in the relevant
range of 10 GeV2 � Q2 � 100 GeV2, shows agreement
with the single-free-parameter fit (2.124) to the structure
function F2ðW2Þ in (2.124) for 10 GeV2 � Q2 �
100 GeV2. Compare the discussion in Sec. V, in particular,
Figs. 16 and 17.

According to (2.110), the flavor-singlet quark or sea
distribution is proportional to the structure function
F2ðW2Þ,

x
Xðx;Q2Þ ¼ 18

5
f2 �

�
W2

1 GeV2

�
C2¼0:29

: (2.126)

Employing the proportionality (2.108) of the gluon distri-
bution to the longitudinal structure function FLð
Lx;Q

2Þ,
and expressing FLð
Lx;Q

2Þ in terms of F2ð
Lx;Q
2Þ ac-

cording to (2.114), we find that the gluon distribution can
also be directly deduced from the experimental data for the
structure function F2ðx;Q2Þ ¼ F2ðW2 ¼ Q2=xÞ,
�sðQ2ÞGðx;Q2Þ

¼ 3�P
q
Q2

q

FLð
Lx;Q
2Þ ¼ 3�P

q
Q2

q

1

ð2�þ 1ÞF2ð
Lx;Q
2Þ

¼ 3�P
q
Q2

qð2�þ 1Þ
f2


C2¼0:29
L

�
W2

1 GeV2

�
C2¼0:29

; (2.127)

where (2.124) was inserted in the last step.
This is the appropriate point to add a remark, as pre-

viously announced, on the validity of the representations
(2.108) and (2.113) in terms of the rescaling factors
ð
L; 
2Þ. It will turn out that, indeed, without loss of gen-
erality, (2.106) and (2.111) for our gluon distribution may
be replaced by (2.108) and (2.113).

Inserting the gluon distribution (2.127) into the repre-
sentations of FLðx;Q2Þ and F2ðx;Q2Þ in (2.106) and
(2.111), one may explicitly test the validity of the propor-
tionalities to the gluon distribution in (2.108) and (2.113)
that originate from (2.106) and (2.111). One finds that the
above choice of the rescaling factors, ð
L; 
2Þ ¼ ð0:4; 0:5Þ,
yields a small discrepancy between the evaluation of the
integrals over the gluon distribution and the representation
in terms of the rescaling factors that amounts to about 4%

and 6.5% for FLðx;Q2Þ and F2ðx;Q2Þ, respectively. The
discrepancy is reduced to less than 0.5%, for the choice of
ð
L; 
2Þ ¼ ð0:45; 0:40Þ. This implies a change of C2 ¼
0:29 to C2 ¼ 0:26 in (2.123), close to the value of C2 ¼
0:27� 0:01 found in the fit in Refs. [11,22]. For the
comparison with the experimental data, the difference
between C2 ¼ 0:26 and C2 ¼ 0:29 is not very important.
We use C2 ¼ 0:29 in Fig. 4(a) and in the more extensive
comparison with the experimental data in Figs. 16 and 17
in Sec. V.
In Fig. 7, we compare our gluon distribution from (2.127)

with various gluon distributions obtained in fits to the
experimental results for F2ðx;Q2Þ. Compare Refs. [30,32]
and the Durham Data Base [33].19 The gluon distributions
from the various fits were multiplied by �sðQ2Þ, where

�NLO
s ðQ2Þ ¼ 1

bt

�
1� b0 lnt

bt

�
; (2.128)

with

b ¼ 33� 2nf
12�

; b0 ¼ 153� 19nf
2�ð33� 2nfÞ ; (2.129)

and t ¼ lnðQ2=�2
QCDÞ; nf ¼ 4 and �QCD ¼ 340 MeV cor-

responding to �sðM2
ZÞ ¼ 0:113.

According to Fig. 7, there is a considerable spread
between the gluon-distribution functions extracted from
experimental data of the structure function F2ðx;Q2Þ by
different collaborations. The gluon-distribution function
corresponding to the hard Pomeron of the Regge fit [30],
in general, lies above our result. The results from the so-
called global analysis by the CTEQ [34] and MSTW [35]
collaborations are lower than ours. The fact that our results
are fairly close to the results from GRV [32] seems no
accident and deserves further examination.
Our relation (2.127), obtained as a consequence of the

low-x pQCD approximations (2.106) and (2.111) and the
W dependence of FL;2ðx;Q2Þ ¼ FL;2ðW2Þ from the CDP, is

transparent and simple as far as the underlying assumptions
are concerned. The extracted gluon distribution only de-
pends on the single normalization parameter f2 that was
adjusted to the experimental data. The gluon distribution
can directly be read off from the experimental data for
F2ðW2 ¼ Q2=xÞ shown in Fig. 4 by multiplication of these
data with the constant given in (2.127).
We end this section with the following summarizing

comments:
(i) The starting point for our extraction of the gluon

distribution is the low-x approximation of the
pQCD-improved parton model that relates the
gluon distribution to the longitudinal structure func-
tion, FLðx;Q2Þ; compare (2.106). This relation is

19The gluon-distribution functions in Fig. 7 marked GRV [32],
MSTW [35], and CTEQ [34] were extracted from the Durham
Data Base [33].
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supplemented by the W dependence of the structure
functions FLðW2 ¼ Q2=xÞ and F2ðW2 ¼ Q2=xÞ and
their proportionality via the constant factor of
1=ð2�þ 1Þ, both the W dependence and the propor-
tionality being extracted from the CDP and being
supported empirically. Finally, a power-law depen-
dence, F2 � ðW2ÞC2 ¼ ðQ2=xÞC2 , is inserted, with
C2 ¼ 0:29 predicted from sea-quark evolution. The
extraction of the gluon distribution depends on only
one fitted normalization constant, f2.

(ii) The gluon distribution resulting from (2.127) lies
within the range of gluon distributions available in
the literature. We note that our extraction of the
gluon distribution from the data on F2ðx;Q2Þ ¼
F2ðW2 ¼ Q2=xÞ is not based on a resolution of the
ggpp vertex, the lower blob in Fig. 1. The consis-
tency of our gluon distribution with the ones in the

literature indicates that the gluon distribution does
not depend as sensitively on the details of the struc-
ture of theggppvertex as usually expected, assumed,
or elaborated upon. Compare the Balitsky-Fadin-
Kuraev-Lipatov approach [36] to DIS at low x, as
well as the double asymptotic scaling (DAS) solution
[37–39] ofDGLAPevolution [12] based on replacing
the unresolved lower part of the diagram in Fig. 1 by
the lower part of the diagram in Fig. 6(b) which has to
be extended by a gluon ladder.We conjecture that our
gluon distribution, nevertheless, in the sense of a
numerical approximation, is consistent with the
DGLAP gluon evolution equation at low x which
supplements the evolution of the flavor-singlet quark
distribution solely employed in our analysis.

(iii) As mentioned, our 1=x dependence (2.127),
ð2�þ 1Þ�sðQ2Þxgðx;Q2Þ � x

Pðx;Q2Þ � ð1=xÞC2

FIG. 7. The gluon-distribution function from (2.127) compared with the gluon distributions from the hard-Pomeron part of a Regge
fit [30] to F2ðx;Q2Þ, and from the F2ðx;Q2Þ fits GRV [32], CTEQ [34], and MSTW [35].
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with fixed exponent C2, is closely related to
DGLAP evolution with the input constraint of a
hard Pomeron [29]. We differ from Ref. [29]
insofar as we have the necessary constraint of
ð2�þ 1Þ ¼ const [compare (2.122)], while the
analysis of Ref. [29] led to ð2�þ 1Þ�sðQ2Þ ¼
const.

(iv) Our ð1=xÞC2 dependence is analogous to the ð1=xÞ
dependence of the hard-Pomeron component of the
Regge approach [30]. However, we predict C2 ¼
0:29 from sea-quark evolution, the value being
consistent with experiment, while the analogous
parameter �0 ffi 0:43 in the Regge approach is a
pure fit parameter. Moreover, the CDP contains a
smooth transition to low Q2, including Q2 ¼ 0,
rather than relying on the addition of a soft
Pomeron. In the language of Pomeron exchange,
the CDP only knows of a single Pomeron which is
relevant for both small and large values of Q2.

III. MODELS FOR THE DIPOLE CROSS SECTION

In Sec. II, without adopting a specific parametrization
for the dipole cross section, we found the proportionalities
(2.96) of the total photoabsorption cross section to
lnð1=�ðW2; Q2ÞÞ for �ðW2; Q2Þ � 1, and to 1=�ðW2; Q2Þ
for �ðW2; Q2Þ � 1. Any specific parametrization of the

dipole cross section has to interpolate between these two
limits.
In Sec. III A, we will remind ourselves of a previously

employed ansatz for the dipole cross section that implies
RðW2; Q2Þ ¼ 1=2 at large Q2 for the ratio of RðW2; Q2Þ ¼
���

Lp
ðW2; Q2Þ=���

Tp
ðW2; Q2Þ. In Sec. III B, we introduce a

more general ansatz that allows for the transverse-size
reduction and associated enhancement of the transverse
relative to the longitudinal photoabsorption cross section
from Sec. II C.

A. A dipole cross section implying R ¼ 0:5

The ansatz for the dipole cross section in (2.1),
previously employed in a successful fit to the experimental
data on the total cross section, ���pðW2; Q2Þ, is given

by [11]

�ðq �qÞpð~r?; zð1� zÞ; W2Þ
¼ �ð1ÞðW2Þð1� J0ðr?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞ

p
�satðW2ÞÞÞ; (3.1)

where �ð1ÞðW2Þ is of hadronic size and weakly dependent
on W, while �2

satðW2Þ increases as a small power of W2.

Since the cross section (3.1) depends on the product ~r0? ¼
~r?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞp

, the longitudinal and transverse J ¼ 1 projec-
tions in (2.40) become identical,20

�ðq �qÞJ¼1
L pðr0?�satðW2ÞÞ ¼ �ðq �qÞJ¼1

T pðr0?�satðW2ÞÞ ¼ �ð1ÞðW2Þð1� J0ðr0?�satðW2ÞÞ

¼ �ð1ÞðW2Þ
8<
:

1
4
~r02?�

2
satðW2Þ for ~r02?�

2
satðW2Þ ! 0

1 for ~r02?�
2
satðW2Þ ! 1:

(3.2)

With respect to momentum space, the ansatz (3.1), accord-
ing to (2.2), corresponds to

~�ð~l2?;zð1�zÞ;W2Þ¼�ð1ÞðW2Þ
�

�ð~l2?�zð1�zÞ�2
satðW2ÞÞ:

(3.3)

Its J ¼ 1 projections, according to (2.45), are given by

�� ðq �qÞJ¼1
L pð~l02?; W2Þ ¼ ��ðq �qÞJ¼1

T pð~l02?; W2Þ

¼ �ð1ÞðW2Þ
�

�ð~l02? ��2
satðW2ÞÞ: (3.4)

Substitution of (3.3) and (3.4) into (2.2) and (2.44), respec-
tively, takes us back to (3.1) and (3.2).

We remark that helicity independence, the equality of
the cross sections for scattering of the J ¼ 1 projections for
longitudinally and transversely polarized ðq �qÞJ¼1 states in
(3.2) and (3.4), is a general consequence of the dependence

of the ansatz (3.1) on the variable r0? ¼ r?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞp

. Any

dipole cross section in (2.1) fulfilling

�ðq �qÞpð~r?;zð1�zÞ;W2Þ¼�ðq �qÞpð ~r?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1�zÞp

;W2Þ; (3.5)

together with color transparency (2.2), implies helicity
independence and RðW2; Q2Þ ¼ 1=2 at large Q2. Indeed,
consistency of (3.5) with (2.2),

�ðq �qÞpðr?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞ

p
; W2Þ

¼
Z

d2 ~l0?zð1� zÞ~�ð~l02?zð1� zÞ; zð1� zÞ; W2Þ

	 ð1� e�i~l0?� ~r0? Þ; (3.6)

requires zð1�zÞ~�ð~l02?zð1�zÞ;zð1�zÞ;W2Þ to be indepen-
dent of zð1�zÞ. Under this constraint, (2.45) implies helic-
ity independence and RðW2;Q2Þ¼1=2 according to (2.47).
The ansatz (3.1) for the dipole cross section has to be

supplemented by a constraint on the masses of the contrib-
uting q �q fluctuations. The constraint reads

m2
0 � M2

q �q;M
02
q �q � m2

1ðW2Þ; (3.7)
20For clarity, in terms of ðq �qÞJ¼1 helicities, ��ðq �qÞJ¼1

L
� ��ðq �qÞJ¼1

0
and ��ðq �qÞJ¼1

T
� 1

2 ð ��ðq �qÞJ¼1
þ

þ ��ðq �qÞJ¼1� Þ ¼ ��ðq �qÞJ¼1
þ

.
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where the notation, i.e. M2
q �q, M

02
q �q, for the masses of the

ðq �qÞ dipole states, indicates that incoming and outgoing q �q
masses in the forward Compton amplitude of Fig. 1 do not
necessarily agree with each other. The lower bound m2

0

depends on the flavor of the actively contributing quarks.
For up and down quarks the value ofm0 must be somewhat
below the �0 mass. The upper bound m2

1ðW2Þ depends on
the available energy. In most applications of the CDP, the
approximation of m2

1ðW2Þ ! 1 is employed that restricts
the kinematic range of applicability of the CDP. For the

present discussion we put m2
1ðW2Þ ! 1. We will come

back to a finite value of m2
1ðW2Þ in Sec. IV.

According to dimensional analysis, with m2
1ðW2Þ ! 1,

the photoabsorption cross section resulting from (3.1) in
addition to the dependence on �ðW2;Q2Þ¼ðQ2þm2

0Þ=
�2

satðW2Þ will depend on m2
0=�

2
satðW2Þ. For the realistic

case of m2
0=�

2
satðW2Þ � 1, the total photoabsorption cross

section ���pðW2; Q2Þ ¼ ���
Tp
ðW2; Q2Þ þ ���

Lp
ðW2; Q2Þ

takes the remarkably simple explicit form [11]

���pðW2; Q2Þ ¼ ���pð�ðW2; Q2ÞÞ þO

�
m2

0

�2
satðW2Þ

�
¼ �Reþe�

3�
�ð1ÞðW2ÞI0ð�Þ þO

�
m2

0

�2
satðW2Þ

�
; (3.8)

where

I0ð�ðW2;Q2ÞÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4�ðW2;Q2Þp ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4�ðW2;Q2Þp þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4�ðW2;Q2Þp �1

ffi

8>>><
>>>:
ln 1

�ðW2;Q2ÞþOð�ln�Þ for�ðW2;Q2Þ! m2
0

�2
satðW2Þ

1
2�ðW2;Q2ÞþO

�
1
�2

�
for�ðW2;Q2Þ!1;

(3.9)

and

Reþe� ¼ 3
X
q

Q2
q: (3.10)

As expected, since (3.1) fulfills color transparency [com-
pare (3.2)], the result (3.8) with (3.9) and �ð1ÞðW2Þ ffi
const constitutes an example for the general result in
(2.82) and (2.92) from Sec. II E.

For further reference, we give the explicit parametriza-
tion of the ansatz (3.1) and the values of the parameters
obtained in the fit to the experimental data. The ‘‘saturation
scale’’ �2

satðW2Þ is given by [11,22]

�2
satðW2Þ ¼ B

�
W2

W2
0

þ 1

�
C2

; (3.11)

with

B ¼ 2:24� 0:43 GeV2; W2
0 ¼ 1081� 124 GeV2;

C2 ¼ 0:27� 0:01: (3.12)

To a good approximation, (3.11) becomes

�2
satðW2Þ ¼ C1

�
W2

1 GeV2

�
C2

; (3.13)

with

C1 ¼ 0:34� 0:06 GeV2; (3.14)

i.e. �2
satðW2Þ is, to a good approximation, determined by

only two parameters, the normalization scale C1 and the
exponent C2.

The hadronic cross section �ð1ÞðW2Þ was obtained [11]
by requiring consistency with the Regge fit to the measured
Q2 ¼ 0 photoproduction cross section. It determines the

product of Reþe��
ð1ÞðW2Þ, where Reþe� ¼ 3

P
qQ

2
q. With

three active flavors, Reþe� ¼ 2, and

�ð1ÞðW2Þ ffi 30 mb ¼ 77:04 GeV�2: (3.15)

The value of the lower bound, m2
0, in (3.7) is given by

m2
0 ¼ 0:15� 0:04 GeV2: (3.16)

B. The ansatz for the dipole cross section implying
R ¼ 1=2�ð�Þ

Returning to the discussion in Sec. II [compare in par-
ticular (2.23)], we generalize (3.3) as21

~�ð~l2?; zð1� zÞ; W2Þ ¼ ��ð1ÞðW2Þ
�

�

�
~l2? � 1

6
��2
satðW2Þ

�
�ðzð1� zÞ � �Þ: (3.17)

With respect to transverse position space, according to (2.2), we obtain from (3.17)

21The quantities ��ð1ÞðW2Þ and ��2
satðW2Þ are proportional to �ð1ÞðW2Þ and �2

satðW2Þ introduced by the defining relations (2.73) and
(2.74). The constant proportionality factors will be given below.
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�ðq �qÞpðr?; zð1� zÞ;W2Þ ¼ ��ð1ÞðW2Þ
�
1� J0

�
r?

��satðW2Þffiffiffi
6

p
��
�ðzð1� zÞ � �Þ

ffi ��ð1ÞðW2Þ�ðzð1� zÞ � �Þ
8<
:

1
4

��2
satðW2Þ
6

~r2? for ~r2? ! 0

1 for ~r2? ! 1:
(3.18)

The � function in (3.17), via ��2
satðW2Þ, specifies the W

dependence of the integral
R
d~l 2? ~l 2? ~�ð~l 2?;W 2Þ that, accord-

ing to (2.25), determines the photoabsorption cross section

at large Q2. The � function in (3.17) [compare (2.23)]

provides the necessary W-dependent cut on ~l02? ¼
~l 2?=zð1� zÞ. It forbids q �q fluctuations of infinitely large
mass to occur as a result of gluon absorption at finite
energy, W. The J ¼ 1 projections of the ansatz (3.17), by
substitution of (3.17) into (2.45), are found to be given by

��ðq �qÞJ¼1
L;T pð~l02?; ��2

satðW2ÞÞ

¼fL;Tð~l02?; ��2
satðW2ÞÞ�

�
~l02?�2

3
��2
satðW2Þ

�
�ða ��2

satðW2Þ�~l02?Þ;
(3.19)

where

fLð~l02?; ��2
satðW2ÞÞ¼ ��ð1ÞðW2Þ

3�

��4
satðW2Þ
~l06?

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 ��2

satðW2Þ
3~l02?

r
(3.20)

and

fTð~l02?; ��2
satðW2ÞÞ ¼ 3~l02?

2 ��2
satðW2Þ

�
1� 1

3

��2
satðW2Þ
~l02?

�

	 fLð~l02?; ��2
satðW2ÞÞ: (3.21)

The constant a in (3.19) is related to � in (3.18) by � ¼
1=6a, where a � 1. Comparison of (3.19) with (3.4) re-

veals that the peak as a function of ~l02? at ~l02? ¼ �2
satðW2Þ in

(3.4) is replaced by a broad distribution in the interval

ð2=3Þ ��2
satðW2Þ � ~l02? � a ��2

satðW2Þ. For ~l02? > ��2
satðW2Þ, the

transverse part of the dipole cross section in (3.21) be-

comes enhanced by a factor of ~l02?=�2
satðW2Þ relative to the

longitudinal one.
Inserting the J ¼ 1 dipole cross section (3.19), with

(3.20) and (3.21), into the large-Q2 form of the photo-

absorption cross section in (2.47), we find [with Q2 �
��2
satðW2Þ]

���
L;Tp

ðW2; Q2Þ ¼ �

�

X
q

Q2
q

1

Q2

1

6
��ð1ÞðW2Þ ��2

satðW2Þ

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

3a

s � 1
2�

�
� ¼ 1

6a

�
;

(3.22)

where 2�ð� ¼ 1
6aÞ coincides with the result given in (2.27).

Here, we assumed m2
1ðW2Þ ! 1. The generalization to

finite values of m2
1ðW2Þ will be given in Sec. IV [compare

(4.28)].
The photoabsorption cross section (3.22) may be ex-

pressed in terms of the cross section �ð1Þ
L ðW2Þ and the

scale�2
satðW2Þ introduced in Sec. (2.5) in terms of integrals

over the longitudinal part of the J ¼ 1 dipole cross section.
Compare (2.73) and (2.74). Evaluating (2.73) and (2.74) for
the ansatz (3.19), we find

�ð1Þ
L ðW2Þ¼ ��ð1ÞðW2Þ

�
1þ 1

3a

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

3a

s

ffi ��ð1ÞðW2Þ
�
1� 1

9a2

�
ða>1Þ; (3.23)

and

�2
satðW2Þ ¼ ��2

satðW2Þ 1

1þ 1
3a

: (3.24)

The photoabsorption cross section (3.22) may accordingly
be written in terms of �1

L ðW2Þ and �2
satðW2Þ as

���
L;Tp

ðW2;Q2Þ¼�

�

X
q

Q2
q

1

6
�ð1Þ

L ðW2Þ�
2
satðW2Þ
Q2

�1
2�ð�¼ 1

6aÞ;
ðQ2��2

satðW2ÞÞ: (3.25)

The result (3.25) correctly coincides with the general result
(2.78).
A comparison of (3.25) with (3.8) and the �ðW2; Q2Þ !

1 limit in (3.9) shows that the large-Q2 cross section (3.25)
formally corresponds to the polarization-dependent re-
placement in (3.1) of

�2
satðW2Þ !

8<
:�2

sat;LðW2Þ ¼ �2
satðW2Þ

�2
sat;TðW2Þ ¼ �ð�Þ�2

satðW2Þ; (3.26)

combined with the substitution

�ð1ÞðW2Þ ! �ð1Þ
L ðW2Þ: (3.27)

The justification of the resulting cross section (3.25) rests
on the ansatz (3.18), since the dipole cross section in (2.1),
and accordingly in (3.1), must be independent of the po-
larization indices T and L of q �q dipole fluctuations. The
replacement (3.26) with (3.27) is nevertheless illuminating
for an intuitive understanding of the transition from (3.1) to
the ansatz (3.17).

MASAAKI KURODA AND DIETER SCHILDKNECHT PHYSICAL REVIEW D 85, 094001 (2012)

094001-22



IV. THE EVALUATION OF THE
PHOTOABSORPTION CROSS SECTION,

ANALYTIC RESULTS

For the evaluation of the ansatz for the photoabsorption
cross section presented in Sec. III, we return to momentum

space. Inserting the representation for the longitudinal and

the transverse part of the J ¼ 1 dipole cross section (2.44)

into (2.39), and employing the momentum-space represen-

tation of the modified Bessel functions K0;1ðr0?QÞ, one
finds (compare Appendix A)

���
Lp
ðW2;Q2Þ¼�Reþe�

3�
Q2

Z
d~l02? ��ðq �qÞJ¼1

L pð~l02?;W2Þ
Z
dM2

Z
dM02wðM2;M02; ~l02?Þ

�
1

ðQ2þM2Þ2�
1

ðQ2þM2ÞðQ2þM02Þ
�

(4.1)

and

���
Tp
ðW2;Q2Þ¼�Reþe�

3�

Z
d~l02? ��ðq �qÞJ¼1

T pð~l02?;W2Þ
Z
dM2

Z
dM02wðM2;M02; ~l02?Þ

�
M2

ðQ2þM2Þ2�
1

2

M2þM02� ~l02?Þ
ðQ2þM2ÞðQ2þM02Þ

�
:

(4.2)

In the transition from (2.39) to (4.1) and (4.2), we intro-
duced the q �q masses

M2 ¼
~k2?

zð1� zÞ �
~k02?; (4.3)

in terms of the quark transverse momentum ~k?, and

M02 ¼ ð ~k? þ ~l?Þ2
zð1� zÞ ; (4.4)

in terms of the transverse momentum of the quark upon
absorption of the gluon.

In (4.1) and (4.2), Reþe� ¼ 3
P

qQ
2
q, where the sum runs

over the actively contributing quarks. The Jacobian

wðM2;M02; ~l02?Þ in (4.1) and (4.2) is given by [6]

wðM2;M02; ~l02?Þ¼ 1

2MM0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cos2�

p ¼ 1

2M
ffiffiffiffiffi
~l02?

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1�cos2#Þp ;

(4.5)

where � denotes the angle between ~k? and ð ~k? þ ~l?Þ, and
# denotes the angle between ~k? and ~l?. Since

cos 2� ¼ 1

4M2M02 ðM2 þM02 � ~l02?Þ (4.6)

is symmetric under the exchange of M2 and M02,
wðM2;M02; ~l02?Þ in (4.5) is also symmetric under the ex-
change of M2 and M02. The integrands in (4.1) and (4.2)
may be cast into a form that is fully symmetric under the
exchange of M2 and M02, thus explicitly displaying the
symmetry of the virtual forward-Compton-scattering am-
plitude from Fig. 1. The process ��p ! ��p proceeds
symmetrically via diagonal, Mðq �qÞ ! Mðq �qÞ and M0

ðq �qÞ!
M0

ðq �qÞ, and via off-diagonal, Mðq �qÞ$M0
ðq �qÞ, transitions;

compare also (2.97).
The integrations in (4.1) and (4.2) have to fulfill the

restrictions

m2
0 � M2; M02 � m2

1ðW2Þ: (4.7)

The lower bound m2
0 in (4.7) corresponds to vanishing

�� ! q �q transitions, as soon as ~k2? [and ð ~k? þ ~l?Þ2] be-
come sufficiently small. A vanishing value of ~k2? would
imply contributions to the Compton-forward-scattering
amplitude of states of unbounded transverse size that do
not occur as a consequence of quark confinement. Via
quark-hadron duality in eþe� annihilation, the value of
m0 must be somewhat below the �0 mass.22 The upper
limit m2

1ðW2Þ in (4.7) follows from the restriction on the
lifetime, (2.60), of a hadronic q �q fluctuation that requires
M2 and M02 to be strongly bounded for any finite value of
the energy, W. Quantitatively, for a typical HERA energy
of W ¼ 225 GeV, the crude estimate of M2

q �q=W
2 ¼ 0:01

requires m1ðWÞ ¼ 22:5 GeV. This value is approximately
consistent with the mass range of the diffractive continuum
that is directly related to the scattering of q �q fluctuations
relevant for the total photoabsorption cross section.
Obviously, the mass bound m2

1 ¼ m2
1ðW2Þ increases with

increasing energy.
For the evaluation of (4.1) and (4.2) with the restriction

of (4.7) on M2 and M02, it is convenient to replace the
integration over dM02 by an integration over d#. Noting
that

M02ðM2; ~l02?; cos#Þ ¼ M2 þ ~l02? þ 2M

ffiffiffiffiffi
~l02?

q
cos# (4.8)

and

@M02ðM2; ~l02?; cos#Þ
@#

¼ � 1

wðM2;M02; ~l02?Þ
; (4.9)

upon incorporating the restrictions in (4.7), the integrations
in (4.1) and (4.2) simplify to become

22A refined treatment has to discriminate between the masses of
the different quark flavors and, in particular, introduce a larger
lower limit for the charm contribution to the cross section.
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Z
dM2

Z
dM02wðM2;M02; ~l02?Þ¼

Z m2
1
ðW2Þ

m2
0

dM2
Z �

0
d#�

Z ð
ffiffiffiffi
~l02?

p
þm0Þ2

ð
ffiffiffiffi
~l02?

p
�m0Þ2

dM2
Z �

#0ðM2; ~l02?Þ
d#�

Z m2
1
ðW2Þ

ðm1ðW2Þ�
ffiffiffiffi
~l02?

p
Þ2
dM2

Z #1ðM2; ~l02?Þ

0
d#:

(4.10)

The first term in (4.10) takes care of the bound onM2 in (4.7), ignoring, however, the restriction on # induced by the bound
on M02. The second and the third term in (4.10) correct for this ignored restriction on M02. The bounds on the angles,
#0ðM2; ~l02?Þ and #1ðM2; ~l02?Þ in (4.10), are obtained from the lower and the upper bound on M02ðM2; ~l02?; cos#Þ implied by
(4.8) and are given by

cos#0;1ðM2; ~l02?Þ ¼
m2

0;1 �M2 � ~l02?

2M
ffiffiffiffiffi
~l02?

q : (4.11)

Herem2
1 stands form

2
1 � m2

1ðW2Þ. In terms of the dM2d# integration (4.10), the photoabsorption cross sections in (4.1) and
(4.2) become

���
Lp
ðW2; Q2Þ ¼ �Reþe�

3�

Z
d~l02? ��ðq �qÞJ¼1

L pð~l02?;W2Þ
Z

dM2
Z

d#

�
Q2

ðQ2 þM2Þ2 �
Q2

ðQ2 þM2ÞðQ2 þM02ðM2; ~l02?; cos#ÞÞ
�

(4.12)

and

���
Tp
ðW2; Q2Þ ¼ �Reþe�

3�

Z
d~l02? ��ðq �qÞJ¼1

T pð~l02?; W2Þ
Z

dM2
Z

d#

�
M2

ðQ2 þM2Þ2 �
M2 þM02ðM2; ~l02?; cos#Þ � ~l02?

2ðQ2 þM2ÞðQ2 þM02ðM2; ~l02?; cos#ÞÞ
�
:

(4.13)

The integrations in (4.12) and (4.13), according to (4.10), lead to a sum of three terms,

���
L;Tp

ðW2; Q2Þ ¼ �dom
��
L;Tp

ðW2; Q2Þ þ��
ðm2

0Þ
��
L;Tp

ðW2; Q2Þ þ��
ðm2

1ðW2ÞÞ
��
L;Tp

ðW2; Q2Þ: (4.14)

The first term will be dominant. The correction due to the lower bound m2
0 will be small, of order 1%. The third term in

(4.14) will yield a somewhat larger contribution, of order 10%, dependent on the values of the kinematical variables.
For the dominant term, the integration of (4.12) and (4.13), with the integration domain given by the first term in (4.10),

can be carried out analytically. We concentrate on the dominant term, and for the correction terms we refer to Appendix B.
Upon integration over d# of (4.12) and (4.13), the dominant contributions to the photoabsorption cross section become

[16]

�dom
��
Lp
ðW2; Q2Þ ¼ �Reþe�

3

Z
d~l02? ��ðq �qÞJ¼1

L pð~l02?; W2Þ
Z m2

1
ðW2Þ

m2
0

dM2

�
Q2

ðQ2 þM2Þ2 �
Q2

ðQ2 þM2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XðM2; ~l02?; Q2Þ

q �
(4.15)

and

�dom
��
Tp
ðW2; Q2Þ ¼ �Reþe�

3

Z
d~l02? ��ðq �qÞJ¼1

T pð~l02?; W2Þ
Z m2

1ðW2Þ

m2
0

dM2

2

�
1

ðQ2 þM2Þ �
2Q2

ðQ2 þM2Þ2 �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XðM2; ~l02?; Q2Þ
q

þ 2Q2 þ ~l02?

ðQ2 þM2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XðM2; ~l02?; Q2Þ

q �
; (4.16)

where

XðM2; ~l02?; Q2Þ � ðM2 � ~l02? þQ2Þ2 þ 4Q2 ~l02?: (4.17)

Carrying out the integration over dM2 in (4.15) and (4.16), we finally obtain

�dom
��
L;Tp

ðW2; Q2Þ ¼ �Reþe�

3

Z
d~l02? ��ðq �qÞJ¼1

L;T pð~l02?; W2ÞðIL;Tð~l02?; m2
1ðW2Þ; Q2Þ � IL;Tð~l02?; m2

0; Q
2ÞÞ; (4.18)

where IL;Tð~l02?;M2; Q2Þ denotes the indefinite integrals over dM2 in (4.15) and (4.16). They are given by
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ILð~l02?;M2; Q2Þ ¼ �Q2

Q2 þM2
þ Q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~l02?ð~l02? þ 4Q2Þ
q ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~l02?ð~l02? þ 4Q2Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XðM2; ~l02?; Q2Þ

q
þ ~l02?ð3Q2 �M2 þ ~l02?Þ

Q2 þM2
(4.19)

and

ITð~l02?;M2; Q2Þ ¼ Q2

Q2 þM2
þ 1

2
ln

Q2 þM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XðM2; ~l02?; Q2Þ

q
þM2 � ~l02? þQ2

� 2Q2 þ ~l02?

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~l02?ð~l02? þ 4Q2Þ

q

	 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~l02?ð~l02? þ 4Q2Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XðM2; ~l02?; Q2Þ

q
þ ~l02?ð3Q2 �M2 þ ~l02?Þ

Q2 þM2
: (4.20)

The representation (4.18) for the (dominant part of the)
photoabsorption cross section does not depend on a spe-
cific ansatz for the dipole cross section. The representation
(4.18) only relies on the general form of the CDP given by
(2.1) with (2.2) and by (2.39) with (2.44). In other words,
(4.18) only rests on the low-x kinematics and the formation
of q �q color-dipole fluctuations that interact as color dipoles
with the gluon field in the nucleon. In most applications of
the CDP, one considers the limit of m2

1ðW2Þ ! 1 that
restricts the kinematic range of validity of the CDP. In
this limit of ��

ðm2
1
ðW2ÞÞ

��
L;Tp

ðW2; Q2Þ ¼ 0, the photoabsorption
cross section is well represented by the dominant term
(4.18) evaluated for m2

1ðW2Þ ! 1, since ��
ðm2

0
Þ

��
L;Tp

ðW2; Q2Þ
can be neglected.

The evaluation of (4.18) for the case of the ansatz (3.4) of
the dipole cross section with helicity independence is
straightforward. For the sum of the longitudinal and the
transverse cross section, for m2

1ðW2Þ ! 1, the result is
given in (3.8) with (3.9).

For the evaluation of the more general ansatz (3.19), it

will be convenient to replace the integration variable ~l02? by

y ¼ 2

3

��2
satðW2Þ
~l02

: (4.21)

The J ¼ 1 dipole cross sections (3.20) and (3.21) then
become

fLðy; ��2
satðW2ÞÞ ¼ 9

8

��ð1ÞðW2Þ
� ��2

satðW2Þ
y3ffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p ; (4.22)

and

fTðy; ��2
satðW2ÞÞ ¼ ð1� 1

2 yÞ
y

fLðy; ��2
satðW2ÞÞ: (4.23)

Explicitly, the photoabsorption cross section (4.18) for the
ansatz (3.19) is then given by

�dom
��
Lp
ðW2; Q2Þ ¼ �Reþe�

4

��1ðW2Þ
�

Z 1

2=3a
dy

yffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p
�
IL

�
2

3

��2
satðW2Þ
y

;m2
1ðW2Þ; Q2

�
� IL

�
2

3

��2
satðW2Þ
y

;m2
0; Q

2

��
(4.24)

and

�dom
��
Tp
ðW2; Q2Þ ¼ �Reþe�

4

��ð1ÞðW2Þ
�

Z 1

2=3a
dy

1� y=2ffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p
�
IT

�
2

3

��2
satðW2Þ
y

;m2
1ðW2Þ; Q2

�
� IT

�
2

3

��2
satðW2Þ
y

;m2
0; Q

2

��
: (4.25)

We note that the replacements

�� ð1ÞðW2Þ ! �ð1ÞðW2Þ; 2

3

��2
satðW2Þ
y

! �2
satðW2Þ; (4.26)

and the formal replacements

Z 1

2=3a
dy

yffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p ! 4

3
;

Z 1

2=3a
dy

1� y
2ffiffiffiffiffiffiffiffiffiffiffiffi

1� y
p ! 4

3
(4.27)

in (4.24) and (4.25) take us back to the photoabsorption cross section for the dipole cross section (3.4) with helicity
independence that is obtained by substitution of (3.4) into (4.18).

The correction terms��
ðm2

0
Þ

��
L;Tp

ðW2; Q2Þ and��ðm2
1Þ

��
L;Tp

ðW2; Q2Þ from (4.14) that are to be added to the dominant parts of the

cross sections (4.24) and (4.25) are explicitly given in Appendix B; compare (B9) and (B10).
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The evaluation of the cross sections in (4.24) and (4.25),

together with the correction terms (B9) and (B10), in

general, requires numerical integration.23

A simple analytic approximation of the cross
sections can be derived, however, for the limit of

Q2 � ��2
satðW2Þ ¼ �2

satðW2Þð1þ 1=3aÞ ffi �2
satðW2Þ, or

�ðW2; Q2Þ � 1. Ignoring the negligible contribution

from �
ðm2

0
Þ

��
L;Tp

ðW2; Q2Þ, the analytic approximation for the

sum of �dom
��
L;Tp

ðW2; Q2Þ and ��
ðm2

1Þ
��
L;Tp

ðW2; Q2Þ is given by

���
L;Tp

ðW2; Q2Þ ¼ ���
L;Tp

ð�ðW2; Q2Þ; 
Þ ¼ �Reþe�

18

�ð1Þ
L ðW2Þ
�

1

�ðW2; Q2Þ

8><
>:
GLð�ðW2; Q2Þ; 
Þ
2�

�
" ¼ 1

6a

�
GTð�ðW2; Q2Þ; 
Þ; (4.28)

where

GLð�ðW2; Q2Þ; 
Þ ¼ GL

�



�ðW2; Q2Þ
�
¼ ð
�Þ3 þ 3ð
�Þ2

ð1þ 

�Þ3

¼

8>>><
>>>:
1 for 


� ! 1
0:98 for 


� ¼ 10

0:5 for 

� ¼ 1;

(4.29)

and

GTð�ðW2; Q2Þ; 
Þ ¼ GT

�



�ðW2; Q2Þ
�
¼ 2ð
�Þ3 þ 3ð
�Þ2 þ 3ð
�Þ

2ð1þ 

�Þ3

¼

8>>><
>>>:
1 for 


� ! 1
0:88 for 


� ¼ 10

0:5 for 

� ¼ 1;

(4.30)

and �ð� ¼ 1
6aÞ is given by (2.27). Compare Appendix C for

the derivation of (4.28), (4.29), and (4.30). In (4.28), (4.29),
and (4.30), � � �ðW2; Q2Þ ¼ ðQ2 þm2

0Þ=�2
satðW2Þ de-

notes the low-x scaling variable defined by (2.64), and
the parameter 
 specifies m2

1ðW2Þ via

m2
1ðW2Þ ¼ 
�2

satðW2Þ ¼ 


�ðW2; Q2Þ ðQ
2 þm2

0Þ; (4.31)

where the approximation of m2
0 ffi 0 is valid, since we are

concerned with Q2 � �2
satðW2Þ � m2

0. With (4.28), we
have obtained the generalization of (3.25) to the case of a
finite upper bound m2

1ðW2Þ for the masses of the q �q fluc-
tuations. The limit of 
=� ! 1, or 
 ! 1 at fixed
�ðW2; Q2Þ, yields the frequently employed approximation
of the CDP that ignores the upper bound on the masses of
the contributing q �q fluctuations. Since 
 must be finite
[compare (3.7) and (4.31)], this approximation of the CDP
breaks down as soon as �ðW2; Q2Þ becomes sufficiently
large.

According to (4.28), the ratio of the longitudinal to the
transverse photoabsorption cross section for Q2 �
�2

satðW2Þ is given by

RðW2; Q2Þ ¼ ���
Lp
ð�ðW2; Q2Þ; 
Þ

���
Tp
ð�ðW2; Q2Þ; 
Þ

								�ðW2;Q2Þ�1

¼ 1

2�ð� ¼ 1
6aÞ

GT ð
�Þ
GLð
�Þ

: (4.32)

The ratio RðW2; Q2Þ in (4.32), compared with (2.57), is
modified by the factor of GTð
=�Þ=GLð
=�Þ. The

transverse-size enhancement of transversely polarized
relative to longitudinally polarized ðq �qÞJ¼1 fluctuations
from Sec. II C must be applied for realistic values of
m2

1ðW2Þ, sufficiently large such that the CDP, approxi-
mately unmodified by the finiteness of m2

1ðW2Þ, becomes
applicable. We accordingly consider RðW2; Q2Þ for 
=� 

10. With �ðW2; Q2Þ in the interval of 5<�ðW2; Q2Þ< 10,
this corresponds to 50�2

satðW2Þ<m2
1ðW2Þ< 100�2

satðW2Þ
and 5�2

satðW2Þ<Q2 < 10�2
satðW2Þ,24 and

m2
1ðW2Þ � Q2 � �2

satðW2Þ: (4.33)

Taking into account the transverse-size enhancement in
the denominator of (4.32) according to (2.57) and (2.56)
requires

�

�
� � 1

6a

�GTð
� ffi 10Þ
GLð
� ffi 10Þ ¼

4

3
: (4.34)

With �ð� � 1=6aÞ from (2.27), and the numerical values of
GTð
=� ¼ 10Þ and GLð
=� ¼ 10Þ from (4.29) and (4.30),
GTð
=� ffi 10Þ=GLð
=� ffi 10Þ ffi 0:9, the constraint
(4.34) yields

a ffi 7:5: (4.35)

With this uniquely determined25 value of a ¼ 7:5, our
ansatz (4.17) for the dipole cross section yields a concrete
realization of the transverse-size enhancement that implies
RðW2; Q2Þ ¼ 1

2�ð43Þ
¼ 0:375; compare (2.57).

23A computer program can be provided on request.

24At HERA energies, we approximately have 3 GeV2 �
�2

satðW2Þ � 7 GeV2.
25Avalue of a ¼ 7 is applied in the analysis of the experimental
data in Sec. V.
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In what follows, we will discuss the effect of a finite
value of m2

1ðW2Þ ¼ 
�2
satðW2Þ by examining the behavior

of the large-Q2 approximation of the cross section in (4.28)
under variation of 
. In particular, we, first of all, choose
the value of 
 required by consistency with the experimen-
tal results in the range of �ðW2; Q2Þ 
 10. This value of 

(compare Sec. V) is given by


 ¼ 
exp ¼ 130: (4.36)

We illustrate the effect of 
 by comparing the theoretical
results for the photoabsorption cross section obtained for
the choice of (4.36) with the ones for 
 ! 1 and for
various values of 
 < 
exp ¼ 130.

In Fig. 8, we show the cross section for

���pð�ðW2; Q2Þ; 
Þ ¼ ���
Lp
ð�ðW2; Q2Þ; 
Þ

þ ���
Tp
ð�ðW2; Q2Þ; 
Þ (4.37)

obtained by numerical evaluation of (4.24) and (4.25)
together with (B9) and (B10). The numerical input for
�2

satðW2Þ and m2
0 is identical to what will be used in

Sec. V, when comparing with the experimental data.
The main features of the behavior of���pð�ðW2; Q2Þ; 
Þ

in Fig. 8 can be understood by looking at the analytic
approximations in (4.28), (4.29), and (4.30), which hold
for �ðW2; Q2Þ sufficiently large compared with unity,
�ðW2; Q2Þ> 1:

(i) For fixed 
 ¼ 
exp ¼ 130 and 
=� > 10, or �<

�exp ¼ 13, the effect of the finite upper bound of

m2
1ðW2Þ ¼ 130�2

satðW2Þ becomes negligible. The
corresponding range of Q2 and W2 is given by

Q2 <�exp�
2
satðW2Þ

ffi
�
39 GeV2 for �2

satðW2Þ ¼ 3 GeV2

91 GeV2 for �2
satðW2Þ ¼ 7 GeV2:

(4.38)

The result (4.38) gives the domain, where at HERA
energies the frequently employed approximation of
the CDP with m2

1ðW2Þ ! 1 is applicable.26

(ii) For fixed 
 ¼ 
exp ¼ 130 and 
=� < 10, or �>

�exp ¼ 13, the approximation of m2
1ðW2Þ ! 1

breaks down, and large corrections of order 0.5,
according to (4.29) and (4.30), depending of the
value of �ðW2; Q2Þ, are necessary. Compare
Fig. 8. The finite value of 
 ¼ 
exp ¼ 130 explicitly

excludes high-mass fluctuations that have too short
a lifetime to actively contribute to the cross
section.

(iii) In Fig. 8, we also show the theoretical results
for the photoabsorption cross section for values of

 between 
 ¼ 7 and 
 ¼ 
exp ¼ 130. The pre-

dicted cross sections for �ðW2; Q2Þ sufficiently
below �ðW2; Q2Þ ¼ �exp ¼ 13, depending on the

chosen value of 
, coincide with both the results
for 
 ¼ 
exp ¼ 130 and 
 ¼ 1. This is consistent

with the analytic result, GT;Lð
=�Þ ffi 1 for 
 >
10�; compare (4.29) and (4.30). The actively
contributing masses M2

q �q are actually bounded by


 < 10� or

M2
q �q<10��2

satðW2Þ¼10Q2 ð1<�<�expffi13Þ:
(4.39)

Compare Table II. The upper bounds on the
masses of the q �q fluctuations, Mq �q, contributing

to ���pð�ðW2; Q2ÞÞ according to Table II approxi-

mately coincide with the upper bounds of the
q �q masses in which the dominant contributions
to diffractive production are observed at HERA [9].

FIG. 8. The photoabsorption cross section ���pð�ðW2; Q2Þ; 
Þ
for different values of 
 ¼ m2

1ðW2Þ=�2
satðW2Þ.

TABLE II. The upper limit of the masses of the actively
contributing (q �q) fluctuations, Mq �q, for values of � ffi
Q2=�2

satðW2Þ and �2
satðW2Þ relevant for HERA energies.

� �2
satðW2Þ½GeV2� Q2½GeV2� M2

q �q½GeV2�
13 3 39 390

7 91 910

5 3 15 150

7 35 350

26The notation �exp for �exp ¼ 13 results from the choice of

 ¼ 
exp ¼ 130 necessary for agreement with the experimental
data for x � 0:1.
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We return to the cross section in (4.16) and (4.25),
as well as (4.15) and (4.24), and consider the approximation
of

�ðW2; Q2Þ � 1 (4.40)

that includes the limit of (2.99) ofW2 ! 1 at fixedQ2, and
specifically the limit of Q2 ¼ 0. In this limit the longitudi-
nal cross sectionvanishes, while the transverse cross section
(4.16) is given by

�dom
��
Tp
ðW2;Q2¼0Þ¼�Reþe�

6

Z
d~l02?�ðq �qÞJ¼1

T pð~l02?;W2Þ

	
Z m2

1
ðW2Þ

m2
0

dM2

�
1

M2
� M2� ~l02?
M2jM2� ~l02?j

�

¼�Reþe�

3

Z
d~l02? ��ðq �qÞJ¼1

T pð~l02?;W2Þ ln
~l02?
m2

0

:

(4.41)

Since according to (3.19) the cross section ��ðq �qÞJ¼1
T

ð~l02?; W2Þ
is nonvanishing only for ~l02? < a�2

satðW2Þ, the upper bound
m2

1ðW2Þ ¼ 
�2
satðW2Þ in (4.41) may be replaced by

m2
1ðW2Þ ¼ a�2

satðW2Þ. With a ¼ 7, and 2 GeV2 �
�2

satðW2Þ � 7 GeV2 at HERA energies, this implies
14 GeV2 � M2

q �q � 49 GeV2. Only q �q fluctuations in a

strongly limited range of masses, bounded by approxi-
mately a value between 3.7 GeV and 7 GeV, dependent on
W, are responsible for the photoabsorption cross section
whenQ2 approaches the photoproduction limit ofQ2 ! 0.
This analytic estimate is confirmed by the numerical results
for 
 ¼ 7 shown in Fig. 8. For �ðW2; Q2Þ< 1, q �q fluctua-
tions with masses squared larger thanm2

1ðW2Þ ¼ 7�2
satðW2Þ

do not contribute to the interaction.
Inserting the dipole cross section (3.19) and passing to

the variable y according to (4.21) and (4.23), the photo-
production cross section (4.41) becomes

��pðW2Þ¼�dom
��
Tp
ðW2;Q2¼0Þ

¼�Reþe�

4

��ð1ÞðW2Þ
�

Z 1

2=3a
dy

1� 1
2yffiffiffiffiffiffiffiffiffiffiffi

1�y
p ln

2 ��2
satðW2Þ
3ym2

0

:

(4.42)

The substitutions (4.26) and (4.27) take us back to (3.8) and
(3.9).

V. COMPARISON WITH EXPERIMENT

The total photoabsorption cross sections from (4.24) and
(4.25) together with (B9) and (B10) depend on the satura-
tion scale �2

satðW2Þ, or rather the low-x scaling variable,
�ðW2; Q2Þ ¼ ðQ2 þm2

0Þ=�2
satðW2Þ, the lower and the

upper bounds,m2
0 andm

2
1ðW2Þ ¼ 
�2

satðW2Þ, on the masses

of the q �q fluctuations, and the total ðq �qÞp cross section

�ð1ÞðW2Þ, where from (3.24) �ð1ÞðW2Þ � �ð1Þ
L ðW2Þ ffi

��ð1ÞðW2Þ.

The numerical results27 that will be shown subsequently
are based on the set of parameters specified as follows. The
saturation scale is parametrized by28

�� 2
satðW2Þ ¼ �2

satðW2Þ
�
1þ 1

3a

�
¼ �C1

�
W2

W2
0

þ 1

�
C2

(5.1)

with

�C 1¼2:04GeV2; W2
0 ¼1081GeV2; C2¼0:27: (5.2)

The lower and the upper bound on the masses of the q �q
fluctuations are given by

m2
0 ¼ 0:15 GeV2 (5.3)

and

m2
1ðW2Þ ¼ 
 ��2

satðW2Þ ¼ 130 ��2
satðW2Þ: (5.4)

The total cross section �ð1ÞðW2Þ is determined by requir-
ing [11] consistency of the CDP at Q2 ¼ 0 from (4.42),
with the Regge parametrization given by

�Regge
�p ðW2Þ ¼ APðW2Þ�P�1 þ ARðW2Þ�R�1; (5.5)

where W2 is to be inserted in units of GeV2, and

AP ¼ 63:5� 0:9 
b; �P ¼ 1:097� 0:002;

AR ¼ 145:0� 2:0 
b; �R ¼ 0:5:
(5.6)

Since both the CDP and the Regge parametrization
have similar (soft) energy dependence, one finds that the

variation of �ð1ÞðW2Þ in the HERA energy range is re-
stricted to about 10%. Quantitatively, since the total photo-
absorption cross section is dependent on the product of

Reþe��
ð1ÞðW2Þ, we have

�ð1ÞðW2Þffi
8<
:30mb ðfor3active flavors;Reþe� ¼2Þ
18mb ðfor4active flavors;Reþe� ¼ 10

3 Þ:
(5.7)

Comparing the parameters in (5.1) with the ones in
(3.11) from Refs. [11,22], one notes the different normal-
ization of�2

satðW2Þ that is required as a consequence of the
change of the longitudinal-to-transverse ratio R from R ¼
0:5 to R ¼ 0:375.
The magnitude of 
 ¼ 
exp ¼ 130 was determined from

an eyeball fit to the experimental data. Compare Fig. 8 for
the variation of the total photoabsorption cross section
under variation of 
.

27A computer program is available on request.
28For the connection between �2

satðW2Þ and ��2
satðW2Þ, compare

(4.35). The value of C2 ¼ 0:27 is taken from the previous fit in
Refs. [11,22]. The difference between this value of C2 ¼ 0:27
and C2 ¼ 0:29 from (2.123) is not significant in the relevant
kinematic range.
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In Fig. 9, we show the total cross section

���pðW2;Q2Þ¼���p

�
�ðW2;Q2Þ; m2

0

�2
satðW2Þ ;
¼
exp¼130

�
(5.8)

as a function of the low-x scaling variable �ðW2; Q2Þ. The
upper and the lower theoretical curve in Fig. 9 refer to

the variation of �ð1ÞðW2Þ under variation of the energy W,

i.e. �ðW ¼ 275 GeVÞ � �ð1ÞðW2 ¼ 2752 GeV2Þ and

�ðW ¼ 10 GeVÞ � �ð1ÞðW2 ¼ 100 GeV2Þ. It is interest-
ing to note that the violation of scaling in �ðW2; Q2Þ of the
order of about 10%, as a consequence of theW dependence

of the ðq �qÞp dipole cross section �ð1ÞðW2Þ, is seen in the
experimental data: the high-energy data from ZEUS and
H1 lie above the data obtained at lower energies. The
experimental data in the region of�ðW2; Q2Þ> 200 belong
to x in the region of approximately 0:02< x< 0:1. The
excess compared with the theoretical predictions is asso-
ciated with contributions from valence quarks.

Figure 10 is relevant for the discussion of the limit of
W2 ! 1 for fixed values of Q2 given in Sec. II; compare
(2.99) and Table I. In terms of the structure function
F2ðx ffi Q2=W2; Q2Þ, the W2 ! 1 limit in (2.99) becomes

lim
W2!1
Q2fixed

F2ðx ffi Q2=W2; Q2Þ
��pðW2Þ ¼ Q2

4�2�
: (5.9)

Higher energies are required to experimentally verify, in a
unique way, the expected saturation property for a larger
range of �ðW2; Q2Þ � 1 and fixed values of Q2.

In Figs. 11–13, we show our predictions from the CDP
for the proton structure function F2ðW2; Q2Þ as a function
of Q2 for fixed values of W2, and as a function of W2 for
fixed values of Q2. For comparison, we also show the

results of a very precise fit to the world experimental
data for F2ðx; Q2Þ for x < 0:025 (and Q2 > 0) carried out
by Caldwell [25]. In particular, we show the results from
the so-called 2P fit that is based on the simple ansatz [25]

���p ¼ �0

M2

Q2 þM2

�
l

l0

�
�0þð�1��0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2=Q2þ�2

p
; (5.10)

where
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 b
)

(
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-210
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EMC

E665

BCDMS

NMC

(W=275)

(W=10)

FIG. 9 (color online). The theoretical prediction for the photo-
absorption cross section ���pð�ðW2; Q2Þ; 
Þ for 
 ¼ 130 com-

pared with the experimental data on DIS.

FIG. 10. The approach to the saturation limit of
F2ð�ðW2; Q2Þ; Q2Þ=��pðW2Þ for �ðW2; Q2Þ � 1.

FIG. 11. The proton structure function F2ðW2; Q2Þ as a func-
tion of Q2 for various values of W. The theoretical prediction of
the CDP is compared with the Caldwell 2P fit as a representation
of the experimental data.
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l ¼ 1

2xbjMp

: (5.11)

The curves in Figs. 11–13 use the mean values of the six fit
parameters �0, M

2, l0, �0, �1, and �2 given in Table 5 of
Ref. [25]. There is acceptable agreement of the predictions
of the CDP with the results of the 2P fit.

In Figs. 14 and 15, we directly compare the theoretical
results forF2ðW2; Q2Þ from theCDP (shown in Figs. 11–13)

with the world experimental data29 [33]. As expected from
Figs. 11–13, there is consistency between the CDP and the
experimental data in the full range of 0:036 GeV2 � Q2 �
316 GeV2. The theoretical curves are restricted by the
condition of x ffi Q2=W2 < 0:01.
As noted in the above discussion of the theoretical

results in Fig. 10, experimental data at much higher
energies than available at present are needed for a
detailed verification of the approach to the saturation
limit (5.9). An indication of the proportionality of
F2ðx ffi Q2=W2; Q2Þ to Q2 according to (5.9) becomes
visible, however, when comparing the experimental data
in Fig. 14 for the very low values ofQ2

1 ¼ 0:036 GeV2 and
Q2

2 ¼ 0:1 GeV2 with each other. According to the propor-
tionality in (5.9), for sufficiently large W2 we have

F2ðW2; Q2
2 ¼ 0:1 GeV2Þ ¼ Q2

2

Q2
1

F2ðW2; Q2
1 ¼ 0:036 GeV2Þ

¼ 2:78F2ðW2; Q2
1 ¼ 0:036 GeV2Þ:

(5.12)

The theoretical results for F2ðW2; Q2
2 ¼ 0:1 GeV2Þ

obtained from (5.12) and shown in Table III are consistent
with the experimental results in Fig. 14.
In Figs. 16 and 17, in addition to the theoretical results in

Figs. 14 and 15, we show the prediction (2.124) of
F2ðW2Þ ¼ f2 � ðW2=1 GeV2Þ0:29, where f2 is the fitted
normalization constant of f2 ¼ 0:063 from (2.125), and
W2 ffi Q2=x. As expected from the analysis in Sec. II G and
Fig. 4(a), there is agreement between theory and experi-
ment for 10 GeV2 � Q2 � 100 GeV2 and disagreement
for values of Q2 outside of this range.
Equation (2.127) may be inverted and read as a predic-

tion for F2ðW2 ¼ Q2=xÞ from the pQCD-improved parton
picture in terms of a suitable gluon distribution, i.e. as a
prediction for the flavor-singlet quark distribution, accord-
ing to

F2

�
W2¼Q2

x

�
¼ 5

18
x
Xðx;Q2Þ

¼ð2�þ1ÞPQ2
q

3�

C2

L �sðQ2ÞGðx;Q2Þ: (5.13)

In (5.13), the numerical values for the gluon-distribution
function have to be inserted, which are obtained by eval-
uating the right-hand side of the second equality in (2.127).
The resulting gluon distributions were shown in Fig. 7.
Since (5.13) coincides with (2.127), the resulting structure
function F2ðW2; Q2Þ is identical to the one given by (2.124)
and shown in Figs. 16 and 17.

FIG. 12. As in Fig. 11, but as a function of 1=W2 for various
values of Q2 � 10 GeV2.

FIG. 13. As in Fig. 12, but for 30 GeV2 <Q2 < 316 GeV2.

29We thank Prabhdeep Kaur for providing the plots of the
experimental data in Figs. 14–17.
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The present interpretation of the results for F2ðW2; Q2Þ
is different, however. The agreement with experiment in
Figs. 16 and 17 shows that a suitable choice of the gluon
distribution (compare Fig. 7) yields agreement with

experiment for F2ðW2; Q2Þ in the relevant range of
10 GeV2 � Q2 � 100 GeV2. The results in Figs. 16 and
17 thus explicitly display the agreement with the pQCD-
improved parton picture based on the gluon-distribution
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FIG. 14 (color online). The predictions from the CDP for the structure function F2ðW2; Q2Þ compared with the experimental data for
0:036 GeV2 � Q2 � 10 GeV2.
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FIG. 15 (color online). As in Fig. 14, but for 31:6 GeV2 � Q2 � 316 GeV2.
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function of Fig. 7 in Sec. II G. For the ensuing discussion,
we note the proportionality of the gluon-distribution
function to the saturation scale,

�sðQ2ÞGðx;Q2Þ �
�

W2

1 GeV2

�
C2¼0:29 ��2

satðW2Þ�ð1Þ
L ;

(5.14)

that follows from comparing (5.13) with the representation
of F2ðW2; Q2Þ in terms of the saturation scale �2

satðW2Þ in
(2.63) with (2.74) and �ð1Þ

L ffi const. Compare also (2.101)
for the approximation of (5.1) by the proportionality to
ðW2=1 GeV2Þ used in (5.14).

The pQCD-improved parton picture in (5.13) with
the powerlike W2 dependence (5.14) fails as soon as
�ðW2; Q2Þ< 1, or Q2 < 10 GeV2; compare Fig. 16. The
saturation behavior of the CDP sets in. For sufficiently large

W2, at any fixed value ofQ2, it leads to a logarithmic depen-
dence of ���pðW2;Q2Þ, and of F2ðW2;Q2Þ, on the energy

W, or on �2
satðW2Þ as given in (2.96), (2.99), and (5.9),

F2ðW2; Q2Þ �Q2�ð1Þ
L ln

�2
satðW2Þ

Q2 þm2
0

�Q2�ð1Þ
L ln

�
�sðQ2ÞGðx;Q2Þ
�ð1Þ

L ðQ2 þm2
0Þ
�
;

ðfor �ðW2; Q2Þ � 1Þ: (5.15)

In distinction from the pQCD-improved parton picture in
(5.13), for �ðW2; Q2Þ< 1, the structure function in (5.15)
depends logarithmically on the gluon-distribution function.
The CDP with itsW-dependent ðq �qÞ-dipole-proton cross

section is unique in providing a smooth transition from the
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FIG. 16 (color online). In addition to the prediction from the CDP, we also show the prediction of F2ðW2Þ ¼ f2 � ðW2=1 GeV2Þ0:29
from (2.124) and (2.125) (valid for 10 GeV2 � Q2 < 100 GeV2) for Q2 � 10 GeV2.

TABLE III. The (approximate) validity of the proportionality (5.12). The results in the second
column were read off from Fig. 14. The predictions from (5.12) in the third column (approxi-
mately) agree with the experimental results in Fig. 14.

1
W2 ½GeV�2� F2ðW2; Q2

1 ¼ 0:036 GeV2Þ Q2
2

Q2
1

F2ðW2; Q2
1 ¼ 0:036 GeV2Þ

2	 10�5 ffi 0:055 0.15

10�4 ffi 0:04 0.11
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region of �ðW2; Q2Þ> 1, with peaceful coexistence be-
tween the CDP and the pQCD-improved parton picture, to
the saturation region of �ðW2; Q2Þ< 1, exclusively gov-
erned by the CDP. The pQCD-improved parton picture is
not allowed to invade the region of �ðW2; Q2Þ< 1. The
suppressed gluon-distribution function at x < 10�2, occa-
sionally with even negative results, from global fits (com-
pare Fig. 7) is presumably related to the inclusion of
experimental data for F2ðx;Q2Þ at very low values of Q2,
where saturation must actually be taken into account [com-
pare (5.15)]. The CDP, in distinction from the discrimina-
tion between a soft and a hard Pomeron of the low-x Regge
picture [30], only knows of a single Pomeron governing
both the regions of �ðW2; Q2Þ> 1 and of �ðW2; Q2Þ< 1.
The transition from�ðW2; Q2Þ> 1 to�ðW2; Q2Þ< 1, or to

W2 ! 1 at fixedQ2, is not associated with the transition to
a (first or second) soft-Pomeron exchange. The transition
corresponds to �2

satðW2Þ ! ln�2
satðW2Þ, or equivalently to

�sðQ2ÞGðx;Q2Þ ! lnð�sðQ2ÞGðx;Q2ÞÞ. As seen in Fig. 7,
the gluon distribution associated with the CDP increases
less strongly with decreasing x than the gluon distribution
from the hard Pomeron of the Regge fit.
In Figs. 18 and 19, we show a comparison of our

predictions for the longitudinal structure function
FLðx;Q2Þ with the experimental data. Since our ansatz
for the dipole cross section incorporates transverse-size
enhancement, � ¼ const ¼ 4=3, the theoretical results in
Figs. 18 and 19 agree with the ones in Figs. 2 and 3.
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FIG. 17 (color online). As in Fig. 16, but for 31:6 GeV2 � Q2 � 316 GeV2.

FIG. 18. The experimental results on the longitudinal structure
function FLðx;Q2Þ from the H1 Collaboration [40] compared
with the prediction from the CDP.

FIG. 19. As in Fig. 18, but showing the experimental results
from the ZEUS Collaboration [41].
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VI. CONCLUSION

In the present paperwe reexamined and reanalyzedDIS at
low values of the Bjorken scaling variable x ffi Q2=W2 �
0:1 in terms of the CDP with a W-dependent color-dipole
cross section.We explicitly showed that all essential features
of the experimental data on the longitudinal and the trans-
verse photoabsorption cross section can be understood as a
consequence of the color-gauge-invariant q �q-dipole-proton
interaction, without relying on any specific parametrization
of the dipole-proton cross section.

We also examined the consistency between the
description of the experimental data in the CDP and the
description in terms of q �q-sea and gluon distributions of
the pQCD-improved parton picture within its range of
validity.

The resulting ðQ2; W2Þ plane of DIS at low x consists of
only two regions, separated by the line �ðW2; Q2Þ ffi 1.

For �ðW2; Q2Þ ffi Q2=�2
satðW2Þ � 1, i.e. for sufficiently

largeQ2, color transparency of the color-dipole-proton cross
section becomes relevant: the strong destructive interference
among different dipole-proton scattering amplitudes origi-
nating as a consequence of color-gauge invariance implies a
ðq �qÞ-proton interaction that vanishes proportional to the
transverse dipole size, ~r2?. The photoabsorption cross sec-

tion correspondingly behaves as �2
satðW2Þ=Q2, and the pro-

ton structure function (for 10 GeV2 � Q2 � 100 GeV2) as
F2ðx;Q2Þ ¼ F2ðW2 ¼ Q2=xÞ.

The experimental data for �ðW2; Q2Þ> 1 can alterna-
tively be represented in terms of the ðq �qÞ-sea quark and the
gluon distribution of the pQCD-improved parton picture.
Consistency of the pQCD approach with the CDP requires
the gluon-distribution function to be proportional to the
saturation scale �2

satðW2Þ, and implies a definite value for
the exponent C2 in the representation of the saturation
scale, �2

satðW2Þ � ðW2ÞC2 . The resulting prediction, C2 ffi
0:27 toC2 ffi 0:29, is consistent with the experimental data.
The formulation of the CDP in terms of a W-dependent
(Q2-independent) color-dipole-proton cross section is es-
sential to arrive at this conclusion.

With increasing energy W, for any fixed dipole size ~r2?,
again due to color-gauge invariance, the destructive inter-
ference among different amplitudes contributing to the q �q
interaction with the color field of the nucleon dies out and
leads to an ~r2?-independent limit for the ðq �qÞ-proton cross

section. The q �q-proton cross section ‘‘saturates’’ in this
high-energy limit to become identical to a cross section of
hadronic size.

The limit of increasingly larger energy W at fixed
dipole size in the photoabsorption process is realized by
W2 ! 1 at fixed Q2, or �ðW2; Q2Þ � 1. The photoab-
sorption cross section increases logarithmically with the
energy according to ln�2

satðW2Þ, and for W2 ! 1 at any
fixed value of Q2, it reaches the limit of ðQ2 ¼ 0Þ photo-
production. The pQCD-improved parton picture fails, in-
sofar as the photoabsorption cross section in this limit

depends logarithmically on the (W-dependent) gluon-
distribution function.
A concrete parametrization of the dipole cross

section is necessary for the interpolation between the
regions of �ðW2; Q2Þ> 1 and �ðW2; Q2Þ< 1. We refined
previous work in several respects: the representation of
the longitudinal-to-transverse ratio of the photoabsorp-
tion cross section by taking into account the transverse-
size enhancement of q �q fluctuations originating from
transversely polarized photons, the extension of the
CDP to include the region of large Q2, where the
energy-dependent upper bound on the contributing
masses of the q �q fluctuations becomes active, among
others. We found agreement with the available DIS
data in the full range of 0:036GeV2�Q2�316GeV2,
with x ’ Q2=W2 being limited by approximately x �
0:01.
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APPENDIX A: DERIVATION OF (4.1) AND (4.2)

In this appendix, we derive the photoabsorption
cross section in momentum space (4.1) and (4.2) from
the coordinate representation (2.39). We start with
the integral representation of the modified Bessel
function

K0ðr0?QÞ ¼ 1

2�

Z
d2 ~k0?

1

Q2 þ ~k02?
e�i~r0?� ~k0? ; (A1)

where

r0? ¼ j~r0?j; Q ¼
ffiffiffiffiffiffi
Q2

q
: (A2)

Equation (A1) can be easily verified from the following
equations,

Z 2�

0
d� expð�iz cos�Þ ¼ 2�J0ðzÞ; (A3)

Z 1

0
dx

x

Q2 þ x2
J0ðr0?xÞ ¼ K0ðr0?QÞ: (A4)

We compute the following quantity,

ILð~l02?Þ �
Z

d2 ~r0?K
2
0ðr0?QÞe�i~r0?�~l0? : (A5)

Inserting (A1), we find
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ILð~l02?Þ ¼ 1

ð2�Þ2
Z

d2 ~r0?
Z

d2 ~k0?
Z

d2 ~k00?
1

ðQ2 þ ~k02?ÞðQ2 þ ~k002? Þ e
�i~r0?�ð ~k0?þ ~k00?þ~l0?Þ

¼
Z

d2 ~k0?
1

ðQ2 þ ~k02?ÞðQ2 þ ð ~k0? þ ~l0?Þ2Þ
¼

Z
d ~k02?

Z �

0
d#

1

ðQ2 þ ~k02?ÞðQ2 þ ð ~k0? þ ~l0?Þ2Þ
; (A6)

where # is an angle between ~k0? and ~l0?. Recalling (4.9), we have

d# ¼ �wðM2;M02; ~l02?ÞdM02: (A7)

Inserting (2.44) and (A6) and using (A7), the integral in (2.39) becomesZ
dr02?K

2
0ðr0?QÞ�ðq �qÞJ¼1

L pðr0?; W2Þ ¼
Z

dl02? ��ðq �qÞJ¼1
L pðl02?;W2ÞðILð0Þ � ILðl02?ÞÞ

¼
Z

dl02? ��ðq �qÞJ¼1
L pðl02?;W2Þ

Z
dM2

Z
dM02wðM2;M02; ~l02?Þ

	
�

1

ðQ2 þM2Þ2 �
1

ðQ2 þM2ÞðQ2 þM02Þ
�
; (A8)

which leads to (4.1).
The transverse cross section (4.2) is derived in a similar manner. Differentiating (A1) with respect to ~r0?, one finds

~r0?
r0?

ffiffiffiffiffiffi
Q2

q
K1ðr0?QÞ ¼ i

2�

Z
d2k0?

~k0?
Q2 þ ~k02?

e�i~r0?� ~k0? : (A9)

The integral

ITðl02?Þ �
Z

d2 ~r0?K
2
1ðr0?QÞe�i~r0?�~l0? (A10)

can be evaluated as

ITðl02?Þ ¼
1

ð2�Þ2
Z

d2 ~r0?
Z

d2 ~k0?
Z

d2 ~k00?
� ~k0? � ~k00?

Q2ðQ2 þ ~k02?ÞðQ2 þ ~k002? Þ e
�i~r0?�ð ~k0?þ ~k00?þ~l0?Þ

¼ 1

Q2

Z
d2 ~k0?

~k0? � ð ~k0? þ ~l0?Þ
ðQ2 þ ~k02?ÞðQ2 þ ð ~k0? þ ~l0?Þ2Þ

¼ 1

Q2

Z
dk02?

Z �

0
d#

~k0? � ð ~k0? þ ~l0?Þ
ðQ2 þ ~k02?ÞðQ2 þ ð ~k0? þ ~l0?Þ2Þ

: (A11)

Inserting (2.44) and (A11), the integral in (2.39) becomesZ
dr02?K

2
1ðr0?QÞ�ðq �qÞJ¼1

T pðr0?; W2Þ ¼
Z

dl02? ��ðq �qÞJ¼1
T pð~l02?; W2ÞðITð0Þ � ITð~l02?ÞÞ

¼ 1

Q2

Z
d~l02? ��ðq �qÞJ¼1

T pð~l02?; W2Þ
Z

dM2
Z

dM02wðM2;M02; ~l02?Þ

	
�

M2

ðQ2 þM2Þ2 �
M2 þM02 � ~l02?

2ðQ2 þM2ÞðQ2 þM02Þ
�
; (A12)

which leads to (4.2).

APPENDIX B: CORRECTION TERMS

In this appendix, we will give the explicit expres-

sions for the correction terms, ��
ðm2

0
Þ

��
L;Tp

ðW2; Q2Þ and

��
ðm2

1
Þ

��
L;Tp

ðW2;Q2Þ in (4.17), which in conjunction with

the dominant term guarantee the required bound on
M02 that is given by m2

0 � M02 � m2
1ðW2Þ � m2

1 from

(4.7).

With the splitting of the integrand (4.10) as applied to

the dominant term, the integrations over d# in (4.12) and

(4.13) yield the following results for the correction terms in

(4.14),
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��
ðm2

0
Þ

��
Lp
ðW2; Q2Þ þ ��

ðm2
1
Þ

��
Lp
ðW2; Q2Þ ¼ ��Reþe�

3

Z
d~l02? ��ðq �qÞJ¼1

L pð~l02?; W2Þ
�Z ð

ffiffiffiffi
~l02?

p
þm0Þ2

ð
ffiffiffiffi
~l02?

p
�m0Þ2

dM2SL;0ðM2; ~l02?; Q2; m2
0Þ

þ
Z m2

1

ðm1�
ffiffiffiffi
~l02?

p
Þ2
dM2SL;1ðM2; ~l02?; Q2; m2

1Þ
�

(B1)

and

��
ðm2

0Þ
��
Tp
ðW2; Q2Þ þ��

ðm2
1Þ

��
Tp
ðW2; Q2Þ ¼ ��Reþe�

6

Z
d~l02? ��ðq �qÞJ¼1

T pð~l02?; W2Þ
�Z ð

ffiffiffiffi
~l02?

p
þm0Þ2

ð
ffiffiffiffi
~l02?

p
�m0Þ2

dM2ST;0ðM2; ~l02?; Q2; m2
0Þ

þ
Z m2

1

ðm1�
ffiffiffiffi
~l02?

p
Þ2
dM2ST;1ðM2; ~l02?; Q2; m2

1Þ
�
; (B2)

where

SL;0ðM2; ~l02?; Q2; m2
0Þ ¼

Q2

ðQ2 þM2Þ2
�� #0ðM2; ~l02?; m2

0Þ
�

� Q2

ðQ2 þM2Þ ffiffiffiffi
X

p
�
1� 2

�
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YðM2; ~l02?; Q2; m2

0Þ
q �

; (B3)

SL;1ðM2; ~l02?; Q2; m2
1Þ ¼

Q2

ðQ2 þM2Þ2
#1ðM2; ~l02?; m2

1Þ
�

� Q2

ðQ2 þM2Þ ffiffiffiffi
X

p 2

�
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YðM2; ~l02?; Q2; m2

1Þ
q

; (B4)

ST;0ðM2; ~l02?; Q2; m2
0Þ ¼

M2 �Q2

ðQ2 þM2Þ2
�� #0ðM2; ~l02?; m2

0Þ
�

�M2 � ~l02? �Q2

ðQ2 þM2Þ ffiffiffiffi
X

p
�
1� 2

�
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YðM2; ~l02?; Q2; m2

0Þ
q �

; (B5)

ST;1ðM2; ~l02?; Q2; m2
1Þ ¼

M2 �Q2

ðQ2 þM2Þ2
#1ðM2; ~l02?; m2

1Þ
�

�M2 � ~l02? �Q2

ðQ2 þM2Þ ffiffiffiffi
X

p 2

�
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YðM2; ~l02?; Q2; m2

1Þ
q

: (B6)

In (B3)–(B6),

#ðM2; ~l02?; m2
0;1Þ ¼ arccos

m2
0;1 �M2 � ~l02?

2M
ffiffiffiffiffi
~l02?

q ; XðM2; ~l02?; Q2Þ ¼ ðM2 � ~l02? þQ2Þ2 þ 4Q2 ~l02?;

YðM2; ~l02?; Q2; m2
0;1Þ ¼

Q2 þ ðM�
ffiffiffiffiffi
~l02?

q
Þ2

Q2 þ ðMþ
ffiffiffiffiffi
~l02?

q
Þ2
� 1� cos#ðM2; ~l02?; m2

0;1Þ
1þ cos#ðM2; ~l02?; m2

0;1Þ
¼ �Q2 þ ðM�

ffiffiffiffiffi
~l02?

q
Þ2

Q2 þ ðMþ
ffiffiffiffiffi
~l02?

q
Þ2
� ð

ffiffiffiffiffi
~l02?

q
þMÞ2 �m2

0;1

ð
ffiffiffiffiffi
~l02?

q
�MÞ2 �m2

0;1

> 0

for

ffiffiffiffiffi
~l02?

q
> 2m0: (B7)

For photoproduction, Q2 ¼ 0, from (B2), (B5), and (B6), we have the simplified expression

��
ðm2

0Þ
��
Tp
ðW2; Q2 ¼ 0Þ þ��

ðm2
1Þ

��
Tp
ðW2; Q2 ¼ 0Þ

¼ ��Reþe�

6

Z
d~l02? ��ðq �qÞJ¼1

T pð~l02?; W2Þ
�Z ð

ffiffiffiffi
~l02?

p
þm0Þ2

ð
ffiffiffiffi
~l02?

p
�m0Þ2

dM2

M2

�
�� #0ðM2; ~l02?; m2

0Þ
�

� M2 � ~l02?
jM2 � ~l02?j

�
1� 2

�
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YðM2; ~l02?; Q2 ¼ 0; m2

0Þ
q ��

þ
Z m2

1

ðm1�
ffiffiffiffi
~l02?

p
Þ2
dM2

M2

�
#1ðM2; ~l02?; m2

1Þ
�

� 2

�
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YðM2; ~l02?; Q2 ¼ 0; m2

1Þ
q ��

(B8)

for m1 > 2
ffiffiffiffiffi
~l02?

q
.

Specializing the dipole cross section in (B1) to the ansatz (3.13) and its J ¼ 1 projections in (3.14), the longitudinal cross
section in (B1) becomes

MASAAKI KURODA AND DIETER SCHILDKNECHT PHYSICAL REVIEW D 85, 094001 (2012)

094001-36



��
ðm2

0
Þ

��
Lp
ðW2; Q2Þ þ ��

ðm2
1

��
Lp
ðW2; Q2Þ ¼ ��Reþe�

4

�ð1Þ

�

Z 1

2=3a
dy

yffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p
�Z ð

ffiffiffiffi
~l02?

p
þm0Þ2

ð
ffiffiffiffi
~l02?

p
�m0Þ2

dM2SL;0ðM2; ~l02?; Q2; m2
0Þ

þ
Z m2

1

ðm1�
ffiffiffiffi
~l02?

p
Þ2
dM2SL;1ðM2; ~l02?; Q2; m2

1Þ
�
; (B9)

while for the transverse cross section, we have

��
ðm2

0Þ
��
Tp
ðW2; Q2Þ þ ��

ðm2
1

��
Tp
ðW2; Q2Þ ¼ ��Reþe�

8

�ð1Þ

�

Z 1

2=3a
dy

ð1� 1
2 yÞffiffiffiffiffiffiffiffiffiffiffiffi

1� y
p

�Z ð
ffiffiffiffi
~l02?

p
þm0Þ2

ð
ffiffiffiffi
~l02?

p
�m0Þ2

dM2ST;0ðM2; ~l02?; Q2; m2
0Þ

þ
Z m2

1

ðm1�
ffiffiffiffi
~l02?

p
Þ2
dM2ST;1ðM2; ~l02?; Q2; m2

1Þ
�
: (B10)

~l02? on the right-hand side in (B9) and (B10) is to be replaced by the integration variable y,

~l 02? ¼ 2 ��2
satðW2Þ
3y

: (B11)

For photoproduction, from (B8), we have

��
ðm2

0
Þ

��
Tp
ðW2; Q2 ¼ 0Þ þ��

ðm2
1

��
Tp
ðW2; Q2 ¼ 0Þ

¼ ��Reþe�

8

�ð1ÞðW2Þ
�

Z 1

2=3a
dy

1� 1
2 yffiffiffiffiffiffiffiffiffiffiffiffi

1� y
p

�Z ð
ffiffiffiffi
~l02?

p
þm0Þ2

ð
ffiffiffiffi
~l02?

p
�m0Þ2

dM2

M2

�
�� #0ðM2; ~l02?; m2

0Þ
�

� M2 � ~l02?
jM2 � ~l02?j

�
1� 2

�
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YðM2; ~l02?; 0; m2

0Þ
q

Þ
�

þ
Z m2

1

ðm1�
ffiffiffiffi
~l02?

p
Þ2
dM2

M2

�
#1ðM2; ~l02?; m2

1Þ
�

� 2

�
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YðM2; ~l02?; 0; m2

1Þ
q ��

: (B12)

APPENDIX C: DERIVATION OF (4.28), (4.29), AND (4.30)

In this appendix, we derive the approximate expression for �dom
��
L=T

p in the largeQ
2 region. We expand IL=Tð~l02?;M2; Q2Þ in

(4.19) and (4.20) in terms of

x̂ 2 ¼
~l02?

Q2 þm2
0

; ŷ2 ¼
~l02?
m2

1

; ẑ2 ¼ m2
0

~l02?
; (C1)

all of which are small in the limit Q2 � ~l02? � 1. The various terms in (4.19) and (4.20) become

� Q2

M2 þQ2

								m2
1

m2
0

¼ x̂2

x̂2 þ ŷ2
þ oðx̂2ẑ2Þ; (C2)

Q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~l02?ð~l02? þ 4Q2Þ

q ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~l02?ð~l02? þ 4Q2Þ

q ffiffiffiffi
X

p þ ~l02?ð3Q2 �M2 þ ~l02?Þ
Q2 þM2

								m2
1

m2
0

¼ � x̂2

x̂2 þ ŷ2
þ x̂4 þ 3x̂2ŷ2 þ 6ŷ4

6ðx̂2 þ ŷ2Þ3 x̂4 þ � � � ; (C3)

1

2
ln

M2 þQ2ffiffiffiffi
X

p þM2 � ~l02? þQ2

								m2
1

m2
0

¼ x̂2

2

�
x̂2ŷ2

ðx̂2 þ ŷ2Þ2 þ � � �
�
; (C4)

� 2Q2 þ ~l02?

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~l02?ð~l02? þ 4Q2Þ

q ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~l02?ð~l02? þ 4Q2Þ

q ffiffiffiffi
X

p þ ~l02?ð3Q2 �M2 þ ~l02?Þ
Q2 þM2

								m2
1

m2
0

¼ x̂2

x̂2 þ ŷ2
þ 2x̂4 þ 3x̂2ŷ2 � 3ŷ4

6ðx̂2 þ ŷ2Þ3 x̂4 þ � � � : (C5)

Inserting (C2)–(C5) into (4.18), we find
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�dom
��
Lp
ðW2; Q2Þ ¼ �Reþe�

3

Z
d~l02? ��ðq �qÞJ¼1

L pð~l02?; W2Þx̂2
�
x̂4 þ 3x̂2ŷ2 þ 6ŷ4

6ðx̂2 þ ŷ2Þ3 x̂2 þ � � �
�

(C6)

and

�dom
��
Tp
ðW2; Q2Þ ¼ �Reþe�

3

Z
d~l02? ��ðq �qÞJ¼1

L pð~l02?; W2Þx̂2
�

x̂2 þ 3ŷ2

3ðx̂2 þ ŷ2Þ3 x̂
4 þ � � �

�
: (C7)

Recalling

x̂2

ŷ2
¼ 


�
; (C8)

and introducing the integration variable y defined by (4.21),

x̂ 2 ¼ 2

3�y
; (C9)

we find

�dom
��
Lp
ðW2; Q2Þ ¼ �Reþe�

24

�
�ð1ÞðW2Þ

�

�Z 1

2=ð3aÞ
dy

yffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p x̂2GL

�



�ðW2; Q2Þ
�

¼ �Reþe�

18

�
�ð1ÞðW2Þ

�

�
1

�ðW2; Q2ÞAGL

�



�ðW2; Q2Þ
�

(C10)

and

�dom
��
Tp
ðW2; Q2Þ ¼ �Reþe�

12

�
�ð1ÞðW2Þ

�

�Z 1

2=ð3aÞ
dŷ

1� ŷ=2ffiffiffiffiffiffiffiffiffiffiffiffi
1� ŷ

p x̂2GT

�



�ðW2; Q2Þ
�

¼ �Reþe�

18

�
�ð1ÞðW2Þ

�

�
1

�ðW2; Q2Þ
�
log

1þ A

1� A
� A

�
GT

�



�ðW2; Q2Þ
�
: (C11)

Here

A �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

3a

s
¼ 0:951 for a ¼ 7 (C12)

and the functions GLð 

�ðW2;Q2ÞÞ and GTð 


�ðW2;Q2ÞÞ are defined by (4.29) and (4.30). Noting that A� 1 and

ln
1þ A

1� A
� A ¼ 2A�

�
� ¼ 1

6a

�
� 2�

�
� ¼ 1

6a

�
(C13)

we reach the approximate expression for the dominant parts given in (4.28).
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