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We estimate the valence quark contributions for the ��Y ! �� (Y ¼ �, �0) electromagnetic transition

form factors. We focus particularly on the case of �� ¼ �ð1670Þ as an analogue reaction with ��N !
Nð1535Þ. The results are compared with those obtained from chiral unitary model, where the ��

resonance is dynamically generated and thus the electromagnetic structure comes directly from the

meson cloud excitation of the baryon ground states. The form factors for the case Y ¼ �0 in particular,

depend crucially on the two real phase (sign) combination, a phase between the � and �� states, and the

other, the phase between the � and �0 radial wave functions. Depending on the combination of these two

phases, the form factors for the ���0 ! �� reaction can be enhanced or suppressed. Therefore, there is a

possibility to determine the phase combination by experiments.
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I. INTRODUCTION

With the development of modern accelerators, the study
of the meson and light baryon structure has become one of
the most exciting topics in physics. Although the under-
lying theory of strong interaction, quantum chromodynam-
ics (QCD) has been known for a long period, its complexity
in the low energy region forces us to use some effective
theories (aside from lattice QCD), either based on the
quark and gluon degrees of freedom, or some effective
interactions between the mesons and baryons. Among the
various possible meson-baryon reactions, the reactions that
involve strangeness are particularly interesting, due to the
accessibility of modern accelerators to strange particles
such as kaons, K, antikaons, �K, and hyperons, � and �.

In this study we focus on the electromagnetic excitations
of the� hyperon ground state. The� ground state�ð1116Þ
is JP ¼ 1

2
þ and belongs to the spin 1=2 octet baryon

multiplet, in which the nucleons also belong. The lowest
mass of the � excited state (��) reported by the particle
data group [1] is �ð1405Þ, a JP ¼ 1

2
� state. The �ð1405Þ

state has created a great deal of interest over the years for
the following reasons: (i) it has been suggested as a dy-
namically generated state (molecularlike state) composed
largely of the �� and �KN states [2–5]; (ii) it is difficult to
classify in terms of naive quark models based on SUð6Þ
symmetry. In the representation of spin-flavor SUð6Þ sym-
metry the �ð1405Þ state can be a mixture of three dis-
tinct 3-quark states, including the �-singlet state [6–8].
However, its mass is difficult to predict in the Karl-Isgur
model [8], as well as in the cloudy bag model (CBM) [9].
In the CBM, the �ð1405Þ state was interpreted primarily
as a �KN bound state [9]. Thus, there is a strong indica-
tion that the �ð1405Þ state is a dynamically generated
meson-baryon molecularlike state with a single or a double

pole structure [9–19]. In particular, it was demonstrated
that the �ð1405Þ state is composed substantially of the
meson-baryon components within the chiral unitary model
[13]. Nevertheless, there are some works that support
�ð1405Þ as a 3-quark state [20–22].
Therefore, the study of the ��� ! �� reaction is very

interesting for the following reasons. In one aspect this
reaction has a possible analogy with the ��N ! N�ð1535Þ
reaction. Because ��� ! �� is a transition between the
JP ¼ 1

2
þ and JP ¼ 1

2
� states, we have the possibility of

interpreting the�ð1405Þ state as a p-state excitation of one
quark in the ground state �ð1116Þ, analogous to N�ð1535Þ,
a p-state excitation of the nucleon [23]. However, the
�ð1405Þ state has considerably lower mass than
N�ð1535Þ. Furthermore, it has a larger mass difference
with the nearest d-state partner �ð1520Þ compared to the
case of N�ð1535Þ and N�ð1520Þ. The mass order is even
reversed for the �ð1405Þ case. Because of the reasons
discussed above, it is very difficult to interpret naively
�ð1405Þ as a simple p-state excitation of �ð1116Þ.
Searching for the next higher mass excited state of

�ð1116Þ with JP ¼ 1
2
�, one finds �ð1670Þ, which can be

an analogous with S11 excitation of the nucleon, N
�ð1535Þ.

Since �0 is the neutral � ground state (JP ¼ 1
2
þ) which

belongs to the spin 1=2 octet baryon multiplet, and the
���0 ! �� reaction is similar to the ��� ! �� reaction,
we also focus on the ���0 ! �� reaction in this study.
Because �ð1116Þ and �0ð1193Þ are similar in masses, the
two reactions differ mainly in the initial state quark con-
figurations. As for the other interesting aspect, we note that
the �ð1670Þ resonance can also be described as a dynami-
cally generated meson-baryon state [18,19], and the
��Y ! �� transition form factors for Y ¼ �, �0, were
calculated in chiral unitary model [17].
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In the previousworks, a valence quarkmodelwas applied
to study the��N ! N�ð1535Þ reaction, and the correspond-
ing transition form factors and helicity amplitudes were
studied [23,24]. The reaction was also studied in coupled-
channels chiral dynamics (chiral unitary model) [25]. In the
chiral unitary model the contributions for the transition
form factors come entirely from the meson-baryon states
(meson cloud effect). For the ��N ! N�ð1535Þ reaction
the transition form factors F�

1 (Dirac-type) and F�
2 (Pauli-

type) can be expressed in terms of the transverse (A1=2) and

longitudinal (S1=2) helicity amplitudes [23,26]. In Ref. [23],

it was found that the F�
1 can be explained very well just

taking into account the valence quark effect. By contrast,
the meson cloud seems to play a very important role for the
F�
2, in particular, in the low Q2 region [25]. Then, such

different roles between the valence quark and meson cloud
effects may be reflected in the experimentally extracted
helicity amplitudes S1=2 and A1=2. This possibility was in-

deed demonstrated in Ref. [24]. We will also briefly review
these results.

Therefore, one of the main motivations of this study is to
investigate whether or not the different roles of the valence
quark and meson cloud effects observed for the ��N !
N�ð1535Þ reaction can also be observed in the ��Y ! ��
reactions with Y ¼ � and �0. In particular, we focus on
the structure of �ð1670Þ in this study. Assuming that
�ð1670Þ is a radial p-state excitation of �ð1116Þ, we
estimate the valence quark contributions for the ��Y !
�� transition form factors as well as the helicity ampli-
tudes. For this purpose, we use the covariant spectator
quark model [23,27–29], which was successfully applied
to the study of the ��N ! N�ð1535Þ reaction. The results
of the covariant spectator quark model for the ��Y ! ��
reaction are also compared with those obtained with the
chiral unitary model [17], where the �� is generated as a
meson-baryon molecularlike state such as the N �K, ��,
and�K states. Then, one of the interests is the structure of
the�ð1670Þ state, namely, how it can be interpreted, either
it is predominantly a meson-baryon molecularlike state, or
dominated by the 3-valence-quark state. Furthermore, we
also show that the ���0 ! �� transition form factors
depend crucially on the combination of the two unknown
real phases (signs), a phase between the � and �� three-
quark wave functions (to be denoted by ���), and a phase
between the � and �0 wave functions (to be denoted
by ���0).

This article is organized as follows. In Sec. II, we define
the ��Y ! �� (Y ¼ �, �0) transition form factors and
their relations with the helicity amplitudes. In Sec. III,
we present the covariant spectator quark model and esti-
mate the valence quark contributions for ��Y ! ��
(Y ¼ �, �0). We discuss in Sec. IV the �ð1670Þ state
based on the chiral unitary model and estimate the contri-
butions from the meson-baryon states in the ��Y ! ��
(Y ¼ �, �0) reactions. In Sec. V, we present the results

from both models, and provide a discussion. Finally, in
Sec. VI we provide the conclusions of the present study.

II. FORMFACTORS ANDHELICITYAMPLITUDES

The ��Y ! �� electromagnetic transition current for Y
a strangeness S ¼ �1 and JP ¼ 1

2
þ state, and �� a JP ¼

1
2
� excited state of the � ground state (JP ¼ 1

2
þ), can be

represented as [23,26]

J�Y ¼e

��
���6qq�

q2

�
FY
1 ðQ2Þþ i���q�

M�� þMY

FY
2 ðQ2Þ

�
�5; (1)

where FY
i (i ¼ 1, 2) are the transition form factors, and q

the four-momentum transfer (defined below) with Q2 ¼
�q2. The factor e is the absolute electron charge given by

e ¼ ffiffiffiffiffiffiffiffiffiffi
4��

p
with � being the electromagnetic fine structure

constant. Note that the form factors are frame independent
since Eq. (1) is Lorentz covariant. We are particularly
interested in the cases Y ¼ � and �0 in this study.
The current J

�
Y can be projected on the initial state

uYðP�; SzÞ and final state �u�� ðPþ; S0zÞ Dirac spinors, where
P� (Pþ) is the initial (final) momentum, q ¼ Pþ � P�,
and Sz (S

0
z) the spin projection.

More familiar matrix elements may be the helicity am-
plitudes. In this case the current J�Y is projected on the

photon polarization states �ð	Þ� , where the polarizations can
be longitudinal (	 ¼ 0) or transverse (	 ¼ �). As the
photon polarizations depend on the frame, the helicity
amplitudes are frame dependent. The most common choice
of the reference frame is the final state rest frame, �� at
rest. In this frame we can define the transverse (AY

1=2) and

longitudinal (SY1=2) helicity amplitudes as [26]

AY
1=2 ¼

ffiffiffiffiffiffiffiffiffiffi
2��

K

s
1

e

�
��; S0z ¼ þ 1

2

���������ðþÞ � JY
��������Y; Sz ¼ � 1

2

�
;

(2)

SY1=2¼
ffiffiffiffiffiffiffiffiffiffi
2��

K

s
1

e

�
��;S0z¼þ1

2

���������ð0Þ �JY
��������Y;Sz¼þ1

2

�jqjY
Q

;

(3)

with � ¼ e2

4� , and

K ¼ M2
�� �M2

Y

2M��
: (4)

In the above jqjY is the absolute value of the photon three-
momentum q in the �� rest frame,

jqjY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðM�� þMYÞ2þQ2�½ðM�� �MYÞ2þQ2�p

2M��
: (5)

The subindex Y is to label the initial state.
In the�� rest framewe can relate the helicity amplitudes

with the form factors [26]:
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AY
1=2 ¼ �2b

�
FY
1 þM�� �MY

M�� þMY

FY
2

�
; (6)

SY1=2¼
ffiffiffi
2

p
bðM�� þMYÞjqjY

Q2

�
M�� �MY

M�� þMY

FY
1 �
FY

2

�
; (7)

with


 ¼ Q2

ðM�� þMYÞ2
; (8)

and

b ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM�� þMYÞ2 þQ2

8MYðM2
�� �M2

YÞ

vuut : (9)

III. SPECTATOR QUARK MODEL

In the spectator formalism [30–32] a baryon is repre-
sented as a 3-quark state and the wave function is ex-
pressed in terms of the corresponding baryon spin flavor
[27,29,33]. Then the baryon system is decomposed as
an off-mass-shell constituent quark, free to interact with
electromagnetic fields, and two on-mass-shell quarks.
Integrating over the on-mass-shell momenta we reduce
the baryon to a quark-diquark system which has an effec-
tive diquark mass mD [27,33,34].

The electromagnetic interaction with the quark is de-
scribed in terms of a vector meson dominance parametri-
zation (to be described later), that simulates the constituent
quark internal structure. The quark structure parameterizes
effectively the interactions with gluons and quark-
antiquark polarization effects. The quark electromagnetic
current was calibrated previously by the nucleon and dec-
uplet baryon data [27,33], and also tested in the lattice
regime for the nucleon elastic reaction as well as for the
�N ! � transition [28,33,35,36]. The model was also
applied to the physical regime to study the octet baryon
and decuplet baryon systems [28,37–42], and some of the
excited states of nucleon and � [23,43,44].

A. Wave functions

We next discuss the spin-flavor-radial wave functions of
the systems relevant in this work, namely, �, �0, and ��,
where �� is interpreted as a 3-quark excitation of the
� ground state with negative parity. The structure of
the� and�0 systems are based on Ref. [28], which studied
the octet baryon electromagnetic properties. As for the ��,

based on the structure considered for the N�ð1535Þ in
Ref. [23], we generalized it.

1. Spin-flavor wave functions

In Ref. [28] it was shown that the octet baryon systems
can be described reasonably well in an S-state configura-
tion for the quark-diquark system, and that the same struc-
ture of wave function applies for all the members of the
octet baryons except for the flavor states. The general
structure of the wave function is written by [28]

�YðP; kÞ ¼ 1ffiffiffi
2

p ½�0
SjMAiY þ�1

SjMSiY�c YðP; kÞ; (10)

where P is the total momentum of particle Y, k the diquark

momentum, c Y is the radial wave function, and �0;1
S are

the spin wave functions. The flavor wave functions are
presented in Table I. The spin wave functions (the same
for all the octet members) are expressed as [23,27,28]

�0
S ¼ uYðP; SzÞ; �1

S ¼ �ð"�PÞ�ð	DÞU�
Y ðP; SzÞ; (11)

where U�
Y is the vector-spinor [27,40],

U�
Y ðP; sÞ ¼

1ffiffiffi
3

p �5

�
�� � P�

MY

�
uYðP; SzÞ; (12)

and uYðP; SzÞ the Y-Dirac spinor with the spin projection
Sz. In Eq. (11), "Pð	DÞ with 	D ¼ 0, � are the spin-1
diquark polarization states defined in the fixed-axis repre-
sentation as a function of the Y momentum [27,45]. For
later discussions, we note that, even the flavor states can be
well defined, the total wave functions can have sign
ambiguities due to the normalization constants for the
radial wave functions c Y . Note however, that the sign is
not relevant for the elastic reactions like the � and �
electromagnetic form factors, since the results are propor-
tional to the integral with the product of the two (real
number) functions c Y , although they have different argu-
ments [28].
As for the �� state with JP ¼ 1

2
�, we use the analogy

with N�ð1535Þ to represent the corresponding wave func-
tion. Assuming as in Ref. [23] that �� is dominated by
the internal quark states with a total spin 1=2 and has no
P states inside the diquark (pointlike diquark), it is
written by

��� ðP; kÞ ¼ 1ffiffiffi
2

p ½��jMAi� ��	jMSi��c �� ðP; kÞ; (13)

TABLE I. Flavor wave functions of � and �0.

Y jMSiY jMAiY
� 1

2 ½ðdsu� usdÞ þ sðdu� udÞ� 1ffiffiffiffi
12

p ½sðdu� udÞ � ðdsu� usdÞ � 2ðdu� udÞs�
�0 1ffiffiffiffi

12
p ½sðduþ udÞ þ ðdsuþ usdÞ � 2ðudþ duÞs� 1

2 ½ðdsuþ usdÞ � sðudþ duÞ�
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where �� and �	 are the spin states to be defined

shortly, and c �� the �� radial wave function. Note that
�� and � are described by the same flavor wave function
(see Table I). The states ��;	 are defined, respectively,

by [23],

��ð�Þ ¼ ��5N 0
�� ½ð"0 � ~kÞu�� ð�Þ � ffiffiffi

2
p ð"� � ~kÞu�� ð�Þ�;

�	ð�Þ ¼ �5N 0
�� ½ð"0 � ~kÞ"��U�

�� ð�Þ
� ffiffiffi

2
p ð"� � ~kÞ"��U�

�� ð�Þ�; (14)

where � hold for the spin projections Sz ¼ � 1
2 , and "0

is a short notation for "Pð0Þ of the diquark polarization
associated with the ��, and N 0

�� is the normalization

factor, and

~k ¼ k� P � k
M2

��
P: (15)

This last four-momentum reduces to the diquark three-
momentum in the �� rest frame. As for U�

�� , it is defined

by Eq. (12) with MY ! M�� . The normalization factor
N 0

�� can be represented as

N 0
�� ¼ ���N; (16)

where N ¼ 1=
ffiffiffiffiffiffiffiffiffi
�~k2

p
, and ��� is a relative phase (sign)

between the � and �� states to be discussed later.
The states �� and �	 in Eq. (14) are constructed,

respectively, to be antisymmetric and symmetric for the
interchange of the quarks 1 and 2 [23].

2. Radial wave functions

Since the baryon and the diquark are on-mass shell in the
spectator quark model, we can represent the baryon radial
wave function in term of ðP� kÞ2. We can use then the
dimensionless variable

B ¼ ðMB �mDÞ2 � ðP� kÞ2
MBmD

; (17)

where MB is the mass of the baryon B and mD the
diquark mass. Following Ref. [28], we take the form for
the Y ( ¼ �, �0) wave functions,

c YðP; kÞ ¼ N Y

mDð�1 þ YÞð�3 þ YÞ ; (18)

where the values of �1 and �3 were fixed in Ref. [28] as
�1 ¼ 0:0440 and �3 ¼ 0:7634, and N Y is the normaliza-
tion constant. We assume that N Y is positive. While �1

parameterizes the spacial long-range distribution of the
quarks which are dominated by the light quarks, �3 regu-
lates the short-range structure in a system with only one
strange quark. The normalization constant, N Y , is deter-
mined by the condition

Z
k
jc Yð �P; kÞj2 ¼ 1; (19)

where �P ¼ ðMY; 0; 0; 0Þ is the Y momentum in its rest

frame, and
R
k stands for

R
d3k

2EDð2�Þ3 , where ED is the diquark

on-mass-shell energy. Note that Eq. (19) only determines
the magnitude of N Y , but not the sign.
For the �� wave function, we also take the form of

Eq. (18), except that Y is replaced by �� , meaning that
the MY is replaced by M�� . This choice is equivalent to
stating that � and �� have the same radial wave function,
and they are distinguished only by the spin states. It also
means that the normalization constants in the radial wave
functionsN � andN �� are equal1 and therefore have the
same sign.
We can now discuss the sign ��� in Eq. (16). Since it is

already assumed that the normalization constant of the
radial wave function N � is positive, ��� defines the
sign of the ��� ! �� transition form factors. Because
we have no clue for the sign of the form factors until the
date, we will keep the factor ��� in the following equa-
tions. We also call attention to the fact that the sign
corresponding to the ��N ! N�ð1535Þ reaction is equiva-
lent to ��� ¼ 1, where this was determined by the experi-
mentally extracted sign for the form factor F�

1 [23].

B. Electromagnetic transition current

The electromagnetic current for the transition
��Y ! �� in a relativistic impulse approximation is given
by [27,28,33]

J
�
Y ¼ 3e

X
�

Z
k

���� ðPþ; kÞj�q�YðP�; kÞ; (20)

where � ¼ fs; 	Dg (the scalar diquark s, and the vector
diquark polarizations 	D ¼ 0, �1), and j

�
q is the quark

current operator associated with the quark 3. The factor 3
accounts for the contributions from the quark pairs (13)
and (23) [the same contribution as that from the pair (12)].

1. Quark current

The quark current j
�
q (in e units) can be represented as

[27,28,33,40,41]

j
�
q ¼ j1�̂

� þ j2
i���q�
2M

; (21)

where M is the nucleon mass, and

�̂ � ¼ �� � 6qq�
q2

; (22)

and ji (i ¼ 1, 2) are the Dirac and Pauli quark operators,
respectively. The inclusion of the term 6qq�=q2 in the quark

1For the radial wave functions with the structure of Eqs. (17)
and (18), the normalization condition given by Eq. (19) uses

B ¼ 2ðED

mD
� 1Þ, which is independent of the baryon mass. As a

consequence, the normalization constant is independent of the
baryon mass.
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current is equivalent to using the Landau prescription
[46,47] to the final electromagnetic current. The term
restores current conservation but does not affect the
observables calculated [46].

The operators ji (i ¼ 1, 2) act on the flavor states jMAiY
and jMSiY written in terms of the symmetry with respect to
the quark 3. The operators ji can be decomposed into the
sum of SUð3Þ-space operators [28,33],

ji ¼ 1
6fiþ	0 þ 1

2fi�	3 þ 1
6fi0	s; (23)

where 	0 ¼ diagð1; 1; 0Þ, 	3 ¼ diagð1;�1; 0Þ, and 	s ¼
diagð0; 0;�2Þ, and fin (i ¼ 1, 2, n ¼ 0, �) define the
constituent quark form factors. The operators act on the
third quark, where the quark wave function is represented
by q ¼ ðudsÞT .

The quark electromagnetic form factors are normalized
as f1nð0Þ ¼ 1 (n ¼ 0, �), f2�ð0Þ ¼ ��, and f20ð0Þ ¼ �s.
The isoscalar (�þ) and isovector (��) anomalous magnetic
moments are related with the u and d quark anomalous
magnetic moments by �þ ¼ 2�u � �d and �� ¼ 2

3�u �
1
3�d [27]. As for �s, it is the strange quark anomalous

magnetic moment [33,42].

2. Quark electromagnetic form factors

To parameterize the quark current (23), we adopt the
structure inspired by the vector meson dominance mecha-
nism as in Refs. [27,33]:

f1� ¼ 	q þ ð1� 	qÞ m2
v

m2
v þQ2

þ c�
M2

hQ
2

ðM2
h þQ2Þ2 ;

f10 ¼ 	q þ ð1� 	qÞ
m2

�

m2
� þQ2

þ c0
M2

hQ
2

ðM2
h þQ2Þ2 ;

f2� ¼ ��
	
d�

m2
v

m2
v þQ2

þ ð1� d�Þ M2
h

M2
h þQ2



;

f20 ¼ �s

	
d0

m2
�

m2
� þQ2

þ ð1� d0Þ M2
h

M2
h þQ2



;

(24)

where mv, m� and Mh are the masses, respectively, corre-

sponding to the light vector meson mv ’ m�, the � meson

(associated with an s�s state), and an effective heavy meson
with mass Mh ¼ 2M to represent the short-range phe-
nomenology. For the isoscalar component it should be
mv ¼ m!, but we neglect the small mass difference be-
tween the � and ! mesons, and use m�. The coefficients

c0, c� and d0, d� were determined in the previous studies
of the nucleon (model II) [27] and 	� [33]. The values
are respectively, cþ ¼ 4:160, c� ¼ 1:160, dþ ¼ d� ¼
�0:686, c0 ¼ 4:427, and d0 ¼ �1:860 [33]. The parame-
ter 	q ¼ 1:21 is fixed to give the correct quark number

density in deep inelastic scattering [27].
In this study we use the values of the parameters deter-

mined by the study of the octet baryon electromagnetic
form factors [28]:

�u ¼ 1:6690; �d ¼ 1:9287; �s ¼ 1:4620: (25)

With the wave functions (10) and (13) one can write the
quantity in Eq. (20) as

X
�

����j
�
q�Y ¼ þA

2

	
jA1

����̂
��0

S þ jA2
���

i���q�
2M

�0
S




�A
2

	
jS1

����̂
��1

S þ jS2
���

i���q�
2M

�1
S



;

(26)

where

jAi ¼ �hMAjjijMAiY; jSi ¼ �hMSjjijMSiY; (27)

for i ¼ 1, 2, and they are the coefficients that encap-
sulate the flavor effect [28,33,41], and A ¼
N 0

��c �� ðPþ; kÞc YðP�; kÞ. In Eq. (26) the sum in the

diquark polarizations 	D is implicit for the vector diquark
contributions (terms in �1

S).

The calculation of the coefficients jA;Si (i ¼ 1, 2) gives

jSi ¼
1

6
fiþ; jAi ¼ 1

18
ðfiþ � 4fi0Þ (28)

for the ��� ! �� reaction, and

jSi ¼ � 1ffiffiffiffiffiffi
12

p fi�; jAi ¼ 1ffiffiffiffiffiffi
12

p fi�; (29)

for the ���0 ! �� reaction. In the case of ��� ! ��, the
coefficients are the same as ones calculated in Ref. [28] for
the elastic � electromagnetic form factors. As for the
���0 ! �� reaction, they are explicitly calculated, and
the coefficients are the same as those for the reaction
��� ! �0, and reflect the isovector nature of the reaction
[48]. In both reactions, there is no interference between the
jMAiY and jMSiY states, which are in the initial and final
states.
Note that, in the second term in Eq. (26), there is a

dependence on the diquark polarization vectors "�Pþð	DÞ
and "��P�ð	DÞ. As already mentioned, these states are de-

fined according to the fixed-axis representation [45] and
depend also on the masses of the final (M��) and initial
(MY) states, respectively. Taking into account the sum in
the diquark polarization states, we have [40,45],

��� � X
	D

"�Pþð	DÞ"��P�ð	DÞ

¼ �
�
g�� � P��P��

Pþ � P�

�
� a

�
P� � Pþ � P�

M2
��

Pþ
�
�

�
�
Pþ � Pþ � P�

M2
Y

P�
�
�
; (30)

with

a ¼ M��MY

Pþ � P�ðM��MY þ Pþ � P�Þ : (31)
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The calculation of the current (20) is carried out by the
reduction from Eq. (26) to the evaluation of a few matrix
elements. We present in Appendix A the explicit expres-
sions for these matrix elements.

The final result is given by

J�Y ¼ þe
1

2
ð3jA1 þ jS1ÞIY�̂

��5

� e
1

2
ð3jA2 � jS2ÞIY

i���q�
2M

�5; (32)

where

IYðQ2Þ ¼ ����
Z
k
Nð"0 � ~kÞc �� ðPþ; kÞc YðP�; kÞ: (33)

The integral IY is covariant and includes the radial depen-
dence of the wave functions. We call IY the overlap
integral.

C. Form factors

Combining Eqs. (1) and (32) with the coefficients in
Eq. (28), we obtain the form factors for the ��� ! ��
reaction,

F�
1 ðQ2Þ ¼ 1

6
½f1þðQ2Þ � 2f10ðQ2Þ�I�; (34)

F�
2 ðQ2Þ ¼ 1

3
f20ðQ2ÞM�� þM�

2M
I�: (35)

As for the ���0 ! �� reaction, using Eq. (29) we obtain

F�
1 ðQ2Þ ¼ � 1ffiffiffiffiffiffi

12
p f1�ðQ2ÞI�; (36)

F�
2 ðQ2Þ ¼ þ 2ffiffiffiffiffiffi

12
p f2�ðQ2ÞM�� þM�

2M
I�: (37)

Note that the presence of the factor 2M in the form factor
expressions, which is a consequence of the quark Pauli
current expressed in terms of the nucleon mass M [27,33]
in Eq. (21).

The overlap integral IY can be evaluated in the �� rest
frame to give a simple expression [23],

I YðQ2Þ ¼ ���
Z
k

kz
jkj c �� ðPþ; kÞc YðP�; kÞ; (38)

where

P� ¼ ðEY; 0; 0;�jqjYÞ; Pþ ¼ ðM�� ; 0; 0; 0Þ; (39)

with EY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Y þ jqj2Y
q

¼ M2
��þM2

YþQ2

2M�� .

From Eq. (38) we may conclude that the signs of the
overlap integrals for Y ¼ � and Y ¼ � depend on the
relative sign of the � and � scalar wave functions.
Defining the factor,

��� ¼ N �N �

jN �N �j ; (40)

which gives the relative sign between the � and � radial
wave functions, we can write in the limit M� ¼ M�0 as

sgn ðI�Þ ¼ ���0 � sgnðI�Þ: (41)

This result is equivalent to state that the relative sign of the
integrals I� and I� is given by the relative sign of N �

and N � (or ���0). Since the M� and M�0 values are
close, it is expected that relation (41) also holds for a
certain region of Q2. The phase ���0 is unknown at
present, as the same reason for the sign of the ��� ! �0

transition magnetic moment ���0 is unknown [1]. If the
sign of ���0 is determined, we may be able to fix the sign
for the ���0 ! �� transition form factors within the
present approach. Therefore, although we will assume
���0 ¼ 1 in the presentation of our results later, we will
also discuss the alternative sign possibility.
For later discussions, it is also important to mention that

the integral (33) has a behavior,

I YðQ2Þ / jqjY; (42)

for small jqjY . Recall that jqjY , given by Eq. (5), is the
photon three-momentum in the ��Y ! �� reaction in the
final �� rest frame. See Appendix C of Ref. [23] for
the derivation of the relation (42).
We can now discuss the Q2 range applicable for the

present model. From the definition of the transition form
factors (1), we can conclude that the Dirac-type form factor
FY
1 should be zero or vanish whenQ2 ! 0. However, in the

present case if M�� � MY , one has F�
1ð0Þ � 0. That is a

simple consequence of the relation (42), from which we
can conclude that IYð0Þ � 0 in the case of Q2 ¼ 0, when

jqjY ¼ jqj0Y ¼ M2
���M2

Y

2M�� . This result is equivalent with the

Y and�� states not being orthogonal in the spectator quark
model.2 The two states would be orthogonal only in the
case of M�� ¼ MY , when jqj0Y ¼ 0. We can regard the
states as approximately orthogonal when jqj0Y is very
small, which leads to IYð0Þ 	 0. Then, we can assume
that the condition IYð0Þ ’ 0 is satisfied when Q2 
 jqj20Y .
Interpreting �� as �ð1670Þ (M�� ’ 1:670 GeV) the

model is then applicable when Q2 
 jqj20 ¼ 0:21 GeV2

(M� ¼ 1:116 GeV) for the reaction involving�, and when
Q2 
 jqj20 ¼ 0:17 GeV2 (M�0 ¼ 1:193 GeV) for the re-

action involving �0.

2This is a consequence of the fact that we cannot simulta-
neously have Y and �� at rest when Q2 ¼ 0, unless the particles
have the same masses. Considering, for instance,�� at rest in the
following. According to Eq. (39), one gets Pþ ¼ ðM�� ; 0; 0; 0Þ,
but P� ¼

�M2
��þM2

Y

2M�� ; 0; 0;�jqj0Y
�
. Therefore, Y is not at rest.
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IV. CHIRAL UNITARY MODEL

In this section, we briefly explain the description of the
�ð1670Þ resonance and the calculation of the correspond-
ing form factors in the chiral unitary approach. Here we
consider the model presented in Refs. [17,18].

A. Description of �ð1670Þ
In the chiral unitary model, �ð1670Þ is dynamically

generated in s-wave meson-baryon scattering in the
coupled channels of �KN, ��, ��, K�, ��, and ��
with zero total charge. Here we take small isospin breaking
into account in the masses of the mesons and baryons. The
s-wave scattering amplitude in these channels is calculated
with the scattering equation given by

TðWÞ ¼ VðWÞ þ VðWÞGðWÞTðWÞ; (43)

where W is the center of mass energy of the two-body
system. Based on the N=D method, neglecting the left-
hand cut, a solution of the scattering equation can be
obtained by a simple algebraic equation [19]

T ¼ ð1� VGÞ�1V: (44)

For the interaction kernel V in Eq. (44) we take the
lowest order of the chiral perturbation theory, which is
the Weinberg-Tomozawa term, as

Vij ¼ �Cij

1

4f2
ð2W �Mi �MjÞNiNj; (45)

with the coupling strength Cij, the meson decay constant f

being fixed as f ¼ 1:123f� with f� ¼ 93 MeV, the
baryon mass Mi, and the normalization of baryon state

Ni �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðMi þ EiÞ=ð2MiÞ

p
, where Ei is the baryon energy in

the center of mass frame. It is important to note that the
coupling strength Cij is fixed solely by the flavor SUð3Þ
group structure of the channel, and thus once we fix the
meson decay constant, there are no free parameters in the
interaction (45). We do not include an explicit pole term in
the interaction. This is the reason that the obtained reso-
nance in the scattering amplitude is called a dynamically
generated resonance.

The diagonal matrix G in Eq. (44) is the meson-baryon
loop function given by

GiðWÞ ¼ i
Z d4p

ð2�Þ4
2Mi

p2 �M2
i þ i�

1

ðP� pÞ2 �m2
i þ i�

;

(46)

with the center of mass energy P ¼ ðW; 0; 0; 0Þ and the
meson mass mi. The divergent loop function can be calcu-
lated in an analytic form using dimensional regularization,
which isolates the divergent part from the integral. The
remaining finite constant being called ai is determined
phenomenologically by experiments. Here we use the
threshold branching ratios ofK�p to�� and�� observed
by stopped K� mesons in hydrogen [49,50]. In this study
use the following ai constants determined in Ref. [18]:

a �KN ¼�1:84; a��¼�2:00; a��¼�1:83;

a��¼�2:25; a��¼�2:38; aK�¼�2:67;
(47)

with the scale of the dimensional regularization
� ¼ 630 MeV.
Since the obtained amplitude is written in an analytic

form, we can perform analytic continuation to the complex
energy plain to look for resonances poles in the second
Riemann sheet. The pole position for the �ð1670Þ reso-
nance in this model can be found at

z ¼ 1680� 20i ½MeV�: (48)

We also obtain the coupling strength gi�� of�ð1670Þ to the
channel i as a residue of the scattering amplitude at the
resonance pole. The values of the couplings are given in
Ref. [17]. The couplings characterize the structure of
�ð1670Þ. �ð1670Þ has large couplings to the �� and
K� channels. As discussed in Ref. [13] the values of the
constants ai are very important for the nature of the dy-
namically generated resonance. If we take the constants ai
determined in the natural renormalization scheme which
excludes the Castillejo-Dalitz-Dyson pole contributions
[13], we obtain a resonance pole at 1700� 21i MeV
[17]. This is not so different from the pole position (48)
determined phenomenologically by the K�p threshold
branching ratios. This means that the resonance obtained
in this parameter set is composed mostly by meson-baryon
components.

B. Transition amplitude

We calculate the transition amplitude of the �ð1670Þ
resonance using the method developed in Ref. [25]. In the
following we adopt an alternative parametrization for the
transition current to Eq. (1) as given in Ref. [17]:

J�Y;NR ¼ MNR
1 �� þMNR

2 P�
þ� � qþMNR

3 q�� � q; (49)

where �� ¼ ð0;�Þ with the Pauli matrix �i for the hy-
peron spin space and P�

þ ¼ ðM�� ; 0; 0; 0Þ and q� are the
�� and photon momenta, respectively. The current J

�
Y;NR is

projected on the Y and �0 Pauli spinors. This representa-
tion is equivalent to the transition current J�Y of Eq. (1)
once one understands that the spin projection on the
asymptotic state Dirac spinors uYðP�; SzÞ and
�u�� ðPþ; S0zÞ is already performed in the �� rest frame
(39). The index NR is intend to indicate that we will
make a nonrelativistic reduction of the operators and take
the leading order contributions, but still the current itself is
covariant. The parametrization (49) together with the
gauge invariance condition,

M NR
1 þMNR

2 q � Pþ þMNR
3 q2 ¼ 0; (50)

is equivalent to the representation of Eq. (1).
With these amplitudes the transition form factors are

written as
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FY
1 ðQ2Þ¼Q2 1

e

ffiffiffiffiffiffiffiffiffiffiffi
1

1þ


s ffiffiffiffiffiffiffiffiffi
MY

M��

s �
M��

MYþM��
MNR

2 þMNR
3

�
;

(51)

FY
2 ðQ2Þ¼ ðMYþM�� Þ2 1

e

ffiffiffiffiffiffiffiffiffiffiffi
1

1þ


s ffiffiffiffiffiffiffiffiffi
MY

M��

s

�
�
� M��

MYþM��
MNR

2 þ
MNR
3

�
; (52)

where 
 is given by Eq. (8),MY andM�� are the masses of
the hyperon Y and ��, respectively, and we set3 M�� ¼
1670 MeV. In the above equations, the factor 1

e must be

included since the form factors defined by (1) are defined
without e and the transition amplitudes MNR

i include the
factor e as shown next. The absolute phases of FY

1 and FY
2

are arbitrary in the present model. Here we define the
phases of the transition form factors obtained in the chiral
unitary model so that the value of AY

1=2ðQ2Þ at Q2 ¼ 0 for

each hyperon Y should be real and positive. This is equiva-
lent to set the value of FY

2 ð0Þ real and negative from Eq. (6)
with FY

1 ð0Þ ¼ 0 thanks to gauge invariance.
The transition amplitudes MNR

i are calculated based on
the Feynman diagrams shown in Fig. 1 in a nonrelativistic
formulation in which the operators are expanded in terms
of 1=Mi and only the leading contributions are taken. The
amplitudes are decomposed in terms of the Lorentz struc-
tures given by Eq. (49). As shown in Eqs. (51) and (52), the
transition form factors can be expressed by MNR

2 and
MNR

3 . Since it was found in Ref. [25] that diagram

(c) has only MNR
1 term, which is irrelevant for the form

factors, we can actually omit diagram (c) for the present
purpose. It should be noted that the amplitudes MNR

2 and
MNR

3 remain finite although each process contains one-

loop integral. Since diagram (b) has the �BB vertex having
the 1=Mi factor, diagram (b) gives only subleading
contribution in the nonrelativistic limit and we neglect
diagram (b).

Each vertex in the diagrams is given by the chiral
effective theory. The basic interactions of the mesons and
baryons are given by the chiral Lagrangian:

LMBB ¼ � Dffiffiffi
2

p
f
Tr½ �B���5f@��; Bg�

� Fffiffiffi
2

p
f
Tr½ �B���5½@��; B��; (53)

with the meson and baryon fields, � and B, defined by

� ¼
1ffiffi
2

p �0 þ 1ffiffi
6

p � �þ Kþ

�� � 1ffiffi
2

p �0 þ 1ffiffi
6

p � K0

K� �K0 � 2ffiffi
6

p �

0
BB@

1
CCA; (54)

B ¼

1ffiffi
2

p �0 þ 1ffiffi
6

p � �þ p

�� � 1ffiffi
2

p �0 þ 1ffiffi
6

p � n

�� �0 � 2ffiffi
6

p �

0
BBBB@

1
CCCCA: (55)

The meson-baryon coupling constants are obtained from
the Lagrangian as giA=ð2fÞ with the axial coupling constant
giA given by D and F together with the Clebsch-Gordan
coefficients. The parameters are fixed as

D ¼ 0:85� 0:06; F ¼ 0:52� 0:04; (56)

so as to reproduce the observed axial vector coupling for
the octet baryons. The photon couplings to mesons and
baryons are given by the gauge coupling:

L �B ¼ �eTr½ �B��½Qch; B��A�; (57)

L �M ¼ ieTr½@��½Qch;���A�; (58)

with the charge matrix Qch ¼ diagð23 ;� 1
3 ;� 1

3Þ and e > 0.

The Kroll-Ruderman terms of the �MBB couplings are
obtained by replacing the derivative acting on the meson
fields @�� with the covariant derivative D�� ¼ @��þ
ieA�½Qch;�� in the Lagrangian (53). The �� coupling to

the meson and baryon has an s-wave form

L ��MiBi
¼ gi�� ����iBi; (59)

with the coupling constant gi�� determined by the chiral

unitary model. The explicit values are given in Ref. [17].
The amplitude given by�it ¼ J � � for diagram (a) with

channel i is calculated as

� itia ¼ iQMAi

Z d4p

ð2�Þ4
ðp� qÞ � �ð2p� qÞ � �
ðPþ � pÞ2 �M2

i þ i�

� 1

ðp2 �m2
i þ i�Þððp� qÞ2 �m2

i þ i�Þ ; (60)

with QM the meson (M) charge and Ai is given by Ai ¼
giAg

i
��Mi=f. After some algebra shown in Ref. [17,25], we

obtain

(a) (b) (c)

FIG. 1. Feynman diagrams for the phototransition to the ��.
The solid, dashed, wavy, and double lines denote octet baryons,
mesons, photon, and ��, respectively. Diagram (b) gives sub-
leading contribution in the nonrelativistic limit.

3In the previous work [17], M�� ¼ 1680 MeV was used. This
value corresponds to the real part of the pole position for the
�ð1670Þ in the present model.
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�itia¼ iQMAi2
Z 1

0
dx

Z x

0
dy

Z d4p

ð2�Þ4
ðpþðy�1ÞqÞ ��
ðp2�Siaþ i�Þ3

�ð2pþð2y�1Þqþ2ð1�xÞPþÞ��; (61)

where Sia is defined by

Sia ¼ 2Pþ � qð1� xÞy�M2
��xð1� xÞ � q2yð1� yÞ

þM2
i ð1� xÞ þm2

i x: (62)

In Eq. (61), only even powers of p give contribution after
performing the integration. The MNR

2 and MNR
3 ampli-

tudes can be calculated as finite numbers. After performing
the integration, we get theMNR

2 andMNR
3 components for

the channel i as

M iðNRÞ
2a ¼ QMAi

ð4�Þ2
Z 1

0
dx

Z x

0
dy

2ðy� 1Þð1� xÞ
Sia � i�

; (63)

M iðNRÞ
3a ¼ QMAi

ð4�Þ2
Z 1

0
dx

Z x

0
dy

ðy� 1Þð2y� 1Þ
Sia � i�

: (64)

In order to take into account the charge distribution of
the constituent mesons and baryons, we multiply the tran-
sition amplitudes obtained above by the electromagnetic
form factors of the mesons or baryons to which the photon
couples. The Q2 dependence of the helicity amplitude of
the �� resonance, thus, stems from the form factors of the
meson and baryons components and the intrinsic Q2 struc-
ture of the loops. For the mesons and baryons form factors,
we take monopole form factors:

FðQ2Þ ¼ �2

�2 þQ2
; (65)

with

�� ¼ 0:727 ½GeV�; (66)

�K ¼ 0:828 ½GeV�; (67)

which are determined by the radii of the mesons. These
values correspond to hr2i ¼ 0:44 fm2 and hr2i ¼ 0:34 fm2

for the pion and the kaon, respectively. For the baryon, we
take the same form factor as for the corresponding meson
to keep gauge invariance. Thanks to the practically negli-
gible effect of the baryon terms, the approximation made
there has no practical consequences.

V. RESULTS

We first present the results of the valence quarks (spec-
tator quark model) and meson cloud (chiral unitary model)
for the ��N ! N�ð1535Þ transition form factors in the
charge þ1 channel (namely for the proton target case).
Although some of the results were already reported in the
previous works [23,25], we present again some results of
the form factors, since they are important and can help
make the later discussions more clear.

After analyzing the results for the ��N ! N�ð1535Þ
reaction, we will discuss the reaction ��Y ! �� for
Y ¼ � and �0. The results of the ��Y ! �� reactions
will be compared with those of ��N ! N�ð1535Þ.
We recall that the applicable region of the present va-

lence quark model is Q2 * 1 GeV2. As for the chiral
unitary model, we cannot extend the results for an arbitrary
large Q2, because the amplitudes are calculated using the
vertex given by the chiral perturbation theory. Therefore,
we expect the results of both formalisms can be compared
in the region Q2 ¼ 1–2 GeV2, where the correlation be-
tween the two effects can possibly determine the final
result for the transition form factors.
About the chiral unitary model we recall that the con-

tributions from the valence quarks (or baryon core) for the
form factors are real numbers. The results from the chiral
unitary model are based on a meson-baryon coupled-
channels formalism [17,25], and the states are constructed
as a consequence of the meson cloud dressing of the bare
octet baryons, and the transition amplitudes are calculated
by photon couplings to the hadron constituents. In the
diagrams with the baryon dressing (see Fig. 1) one can
have on-mass-shell states for the mesons or baryons; there-
fore, the amplitudes and the form factors become complex
number functions. As we have already mentioned, the
absolute phase is fixed so as to make A1=2 to be real and

positive, or equivalently F2 real and negative, at Q2 ¼ 0.

A. ��N ! N�ð1535Þ form factors

The results of the covariant spectator quark model and
the chiral unitary model for the ��N ! N�ð1535Þ transi-
tion form factors are presented in Fig. 2. The individual
results for the helicity amplitudes were presented in
Ref. [23] (for the valence quarks) and in Ref. [25]
(for the meson cloud). The results from the covariant
spectator quark model are restricted to the region Q2 >
1 GeV2, since the applicability of the model requires

Q2 

�
M2

S
�M2

2MS

�
2 ’ 0:21 GeV2, where MS corresponds to

this case to the N�ð1535Þ mass [23].
For the ��N ! N�ð1535Þ reaction we can observe dif-

ferent roles of the valence quark and meson cloud degrees
of freedom. Since in both cases for F�

1 and F�
2 the imagi-

nary part is small, we will focus only on the real part. In
Fig. 2 one can notice the dominance of the valence quark
effect for the Dirac-type form factor F�

1, with the prediction

very close to the data [51,52] for Q2 > 1 GeV2. In this
case, the meson cloud contributions are about an order of
magnitude smaller than those of the valence quarks. As for
the Pauli-type form factor F�

2, one can see, on the other

hand, that the meson cloud contributions are sufficient to
explain the data for Q2 < 1 GeV2. Furthermore, the va-
lence and meson cloud contributions have opposite signs
with similar magnitude forQ2 > 1 GeV2. The cancellation
between the two contributions may be the main reason of
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the experimental result, F�
2 ’ 0 for Q2 > 1 GeV2 (see F�

2

in Fig. 2).
For later convenience, we also study the falloff of the

form factors for the valence quark contributions in the
large Q2 region. Apart from logarithm corrections (very
smooth variation with Q2) [23], the falloff behavior of the

form factors can be expressed by F�
1ðQ2Þ 	

�
�2

1

�2
1
þQ2

�
2
and

F�
2ðQ2Þ 	

�
�2

2

�2
2
þQ2

�
3
, where �2

1 ’ 2:6 GeV2 and �2
2 ’

2:7 GeV2 for Q2 ’ 2 GeV2. Therefore, the ��N !
N�ð1535Þ transition form factors have much slower falloff
than that for the nucleon elastic form factors, where the
corresponding cutoff is �2 ¼ 0:71 GeV2.

We recall that the individual contributions, those from
the valence quarks and meson cloud, are based on the
different frameworks. The valence quark contributions
are estimated by a constituent quark model that takes
into account the quark internal electromagnetic structure
(including possible quark-antiquark internal excitations),
but it does not include the processes where a meson is
created by the overall baryon. On the other hand, the meson
cloud contributions are estimated in the meson-baryon
interactions where both states are considered as structure-
less particles but modified by monopole meson form fac-
tors (see Sec. IV). Because of the differences in the degrees

of freedom used in the two approaches described above, we
cannot simply combine the individual contributions to get
total results for the form factors. However, the opposite
signs of the individual contributions for F�

2 are very sug-
gestive, that a strong cancellation between the valence
quark and meson cloud effects may take place in a unified
approach.
The results shown for the ��N ! Nð1535Þ reaction

suggest that the form factor representation may be very
convenient to analyze the transition between the nucleon
and the first excited state of the nucleon with a negative
parity. Using the form factor representation, it is clear that
while F�

1 is dominated by the valence quark contributions,
F�
2 may be a result of the competition between the valence

quark and meson cloud effects. This simple separation is
not obvious in the helicity amplitude representation.
The results obtained for the ��N ! N�ð1535Þ reaction,

and the simplified interpretation in terms of the individual
(valence quarks and meson cloud) contributions, raise a
question, namely, whether or not such a trend can be
observed for similar reactions. Therefore, we next study
the ��� ! �� (Y ¼ �,�0) reactions with�� ¼ �ð1670Þ.

B. ��� ! �� and ���0 ! �� transition form factors

We now discuss the ��Y ! �� reactions, for Y ¼ � and
�0. As in the previous section we will compare the con-
tributions from the valence quarks and those from the
meson cloud dressing for the corresponding form factors.
The results of the valence quark contributions derived from
the covariant spectator quark model are given in Sec. III
[Eqs. (34)–(37)]. The meson cloud contributions calculated
in Ref. [17] using the chiral unitary model, are reviewed in
Sec. IV [Eqs. (51) and (52)].

1. Results of spectator quark model

First, we discuss the valence quark contributions, which
are presented here for the first time, using the covariant
spectator quark model. As mentioned already, the valence
quark contributions depend on the two different phases
(signs), ��� , the relative sign between the � and �� states,
and ���0 given by the relative sign between the � and �0

radial wave function normalization constants. We first
consider ��� ¼ 1 case, since it is equivalent to the phase
for the N�ð1535Þ-nucleon case as already discussed. The
sign was determined by the experimental form factor data4

[23] (see Fig. 2). As for the reaction involving the �0, we
take ���0 ¼ 1, which is equivalent to state that the � and
� radial wave function normalization constants are both
positive.
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FIG. 2 (color online). Valence quark and meson cloud contri-
butions for the ��N ! N�ð1535Þ transition form factors, F�

1ðQ2Þ
and F�

2ðQ2Þ. While the valence quark contributions are obtained

by the covariant spectator quark model [23], those of the meson
cloud contributions are obtained by the chiral unitary model
[25]. Data are from CLAS [51] and MAID [52].

4The sign of the N�ð1535Þ wave function was adjusted to
generate F�

1ðQ2Þ< 0, in agreement with the data from
Refs. [51,52]. In fact, for F�

1 the valence quark contributions
give a very good approximation to describe the data [23,24].
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The results are presented in Fig. 3. TheQ2 region shown
is extended up to Q2 ¼ 8 GeV2, in order to observe better
the falloff behavior of the FY

1 and FY
2 taking advantage of

the covariant nature of the model. We focus on the region
Q2 > 1 GeV2 that satisfies the model applicable condition,
Q2 
 0:2 GeV2 for both the reactions, since jqj20Y 	
0:2 GeV2. We can observe in Fig. 3 the slow falloff for
both form factors in both reactions, particularly for FY

1 . We
will come back later to the falloff of the form factors.

Another interesting point in Fig. 3 is the magnitude of
the form factors FY

1 and FY
2 which is very similar for both

cases � and �0. However, the form factors for the reaction
with �0 dominates over the one with � in the high Q2

region. This is particularly noticeable for FY
2 .

The similarity between the results for ��� ! �� and
���0 ! �� can be understood by the expressions for the
form factors given by Eqs. (34) and (35) and Eqs. (36) and
(37). In both cases there is a dependence on the overlap
integral IY . As the scalar wave functions have the same
parametrization for the � and �0 the difference in the
overlap integrals in their respective rest frames are only
due to the masses (M� andM�), leading to almost the same
results for both cases. Therefore, the main difference in the
form factors comes from the flavor factors that are multi-
plied by the overlap integrals. Although the flavor factors
contain the functions fiþ, fi� and fi0 (i ¼ 1, 2) which are
dependent on Q2, we can make a simple estimate in the
exact SUð3Þ limit taking fiþ ¼ fi� ¼ fi0 (i ¼ 1, 2). In

this limit we have F�
i ðQ2Þ ¼ ffiffiffi

3
p

F�
i ðQ2Þ (i ¼ 1, 2) consis-

tent with the magnitude shown in Fig. 3. We note that our
results are different from those in Ref. [53] obtained using
a constituent quark model, and also different from those of

the chiral unitary model [17] which shows jF�
2 j 
 jF�

2 j
for Q2 ’ 0 as seen later. This relation comes from the ��
decay widths to �� (���) and ��0 (���0), which are

predicted to be ���0 
 ��� (in general ��Y /
jAY

1=2ð0Þj2 / jFY
2 ð0Þj2). We recall again that the results of

the present valence quark model are valid for Q2 

0:2 GeV2 and the region near Q2 ¼ 0 is excluded, and

thus we cannot predict the corresponding decay widths
reliably.
We discuss next the rate of the falloff of the form factors,

again apart logarithm corrections. We measure the falloff

based on F�
1ðQ2Þ 	

�
�2

1

�2
1
þQ2

�
2
and F�

2ðQ2Þ 	
�

�2
2

�2
2
þQ2

�
3
for

Q2 ’ 2 GeV2. While for ��� ! ��, we have �2
1 ¼

3:6 GeV2 and �2
2 ¼ 3:6 GeV2, for ���0 ! �� we have

�2
1 ¼ 3:1 GeV2 and �2

2 ¼ 3:2 GeV2. In all cases, we have
slower falloff than that for the ��N ! N�ð1535Þ reaction.
Since in the flavor symmetric limit the falloff should be
same among the octet baryons, the differences among N
and � (or �0), and N� and ��, are a consequence of a
special role of the strange quark which breaks flavor
symmetry.
There are two factors that can cause the slower falloff of

the ��Y ! �� transition form factors than the one for the
��N ! N�ð1535Þ reaction. The first one is the difference
in the quark distributions between the nucleon-N�ð1535Þ
and the Y ��� systems. The second one is the difference
in the kinematics between the two systems. As for the
difference in the quark distributions, � and �0 are more
compact systems than that of the nucleon, because they
have one heavier strange quark in contrast with the nucleon
which have only the light quarks. Therefore, � and �0 are
characterized by the radial wave functions (18) with a
larger extension in the momentum space, and consequently
the overlap integral becomes larger than the one for the
��N ! N�ð1535Þ reaction. However, this is not the main
factor, since the parameters corresponding to the� and �0

wave functions are not different significantly from those of
the nucleon.5 The second factor is the difference in the
kinematics between the two reactions. For the radial wave
functions given by Eq. (18), it is possible to show that the
systems with the same parametrization are characterized
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FIG. 3 (color online). Valence quark contributions for the ��Y ! �ð1670Þ form factors, for Y ¼ � (left panel), and Y ¼ �0 (right
panel).

5While the � and �0 radial wave functions are characterized
by the parameter �3 ’ 0:76 [28], that of the nucleon system is
parameterized by �2 ’ 0:72 [27] (smaller momentum scale). In
both cases the additional range parameter is �1 	 0:05 [27,28].
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by the overlap integrals IY , which are functions of the ratio
jqjY
MY

(see Appendix B). Therefore, the falloff of IY is

determined by the factor jqjYMY
. The larger the ratio, the larger

the falloff is. Comparing the values of jqj�
M�

with the corre-

sponding ratio jqj
M for the ��N ! N�ð1535Þ reaction, the

latter has the larger ratio for Q2 ¼ 0 ( jqjM ¼ 0:48 compared

with jqj�
M�

¼ 0:41) and this is also true for larger values of

Q2. This means the overlap integral has stronger falloff for
��N ! N�ð1535Þ, and it is reflected on the faster falloff of
the form factors.

To compare the falloff for the reactions ��� ! �� and
���0 ! ��, we need to analyze them in more detail to
explain the difference in the observed behavior, namely,
the falloff for the reaction involving �0 is faster (smaller
cutoffs) than that for the reaction involving�. In this case,

the ratios jqjY
MY

are close, jqj�
M�

¼ 0:41 and
jqj�
M�

¼ 0:36, for

Q2 ¼ 0. The important effect now is the contribution
from the flavor factors in the form factors, given by
Eqs. (34)–(37). The form factors for the reaction involving
� have dependence on the strange quark form factors f10
and f20, and that these functions have slower falloff with
Q2 than those with the reaction involving the �0, which
depend only on the light quark form factors. Then, the

corresponding transition form factors for the reaction
with � also have slower falloff than that for the reaction
with �0.

2. Results of chiral unitary model

Next we show the result of the transition form factors
calculated in the chiral unitary model. In Figs. 4 and 5, we
show the results of the Dirac- and Pauli-type form factors,
FY
1 ðQ2Þ and FY

2 ðQ2Þ, for the ��Y ! �� transition, respec-
tively. As seen in the figures, in the meson cloud model the
FY
2 form factors for both cases are 1 order of magnitude

larger than the FY
1 form factors. This is a tendency that is

very similar to that for the Nð1535Þ case.
In Figs. 4 and 5 we also show the contribution coming

from each meson separately. For the � transition form
factors, the pion contribution is very small. This is because
only the isoscalar component of the photon current can
contribute the ��� ! �� transition in the isospin symmet-
ric limit, while the pion with isospin 1 can couple only to
the isovector part of the photon current. Thus, with very
small isospin breaking effect there is little pion cloud
contribution in the ��� ! �� transition. It is also interest-
ing to mention that for the ��� ! �� transition there is
cancellation between K� and Kþ contributions, while the
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FIG. 4 (color online). Meson cloud contributions for the Dirac-
type form factor FY

1 ðQ2Þ of the ��Y ! �� transition for Y ¼ �
(left panels) and Y ¼ �0 (right panels). The solid line shows the
total contribution coming from diagram (a), while the dashed,
dotted, and dot-dashed lines denote the K�, �, and Kþ contri-
butions, respectively.
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2 ðQ2Þ of the ��Y ! �� transition for Y ¼ �
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total contribution coming from diagram (a), while the dashed,
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���0 ! �� transition is dominated by the Kþ cloud com-
ponent. In this way, for both form factors FY

1 and FY
2 , the

transition from�0 is larger than that from�. Especially for

the Pauli-type form factor, F�
2 is almost 7 times larger than

F�
2 . This cancellation is also found for the helicity ampli-

tudes (see Ref. [17] for the details).

3. Comparison of the two models

Finally, we compare the valence quark contributions
with those from the meson cloud for the reactions involv-
ing � and �0. The comparison is shown in Fig. 6, for the
reactions involving � (left panel) and �0 (right panel).
Note that the chiral unitary model results have both real
and imaginary parts, and the absolute phases are fixed at
Q2 ¼ 0 to give a real and positive value of AY

1=2ð0Þ, or
equivalently real and negative FY

2 ð0Þ, as mentioned before.
One can see in Fig. 6, the imaginary part is small in

general. Therefore, we will focus only on the real part
hereafter. Another interesting point is that while both
form factors for the reaction involving � are dominated
by the valence quark contributions, this is not the case for
the reaction involving �0. For the latter case, one can see

that the valence quark contributions for F�
1 are larger than

those from the meson cloud (about 2.5 times near Q2 ¼
2:5 GeV2), although the magnitude is similar for F�

2 .

A point of particular importance about F�
2 is the relative

sign between the valence and meson cloud contributions.

Since, as mentioned before, the factor ���0 is unknown at
present, we cannot decide if there is a positive or negative
interference between the contributions. The results for
the form factors involving �0 are determined using
������0 ¼ 1. If this is the case, there is a combination

of the signs to enhance the total magnitude of F�
2 . On the

other hand, if the sign is opposite, ������0 ¼ �1, one can
expect a cancellation between the valence quark and meson

cloud effects, leading to the result F�
2 	 0, or to a magni-

tude similar to F�
1 . An example of a quark model with

F�
2 > 0 can be found in Refs. [53,54]. Note that in the case

of ������0 ¼ �1, the reaction ���0 ! �� has similar

properties with the reaction ��N ! N�ð1535Þ, discussed
previously. This result suggests that the experimental de-

termination of the sign for F�
2 is very important to pin

down the relative phase between the � and �0 wave
functions in the present model as we explain next.
From the discussions above, we conclude that if

������0 ¼ þ1, it is expected that F�
2 becomes larger in

magnitude. In the alternative case, ������0 ¼ �1, F�
2

should be smaller in magnitude, and comparable with

F�
1 . Therefore, once the sign ��� is known, ���0 can be

inferred from the result for F�
2 . Note also that in our model

��� can be fixed by the results for the reaction ��� ! ��,
since the valence quark effect dominates that transition

(F�
1 / ���). Then ��� ! �� can be used to determine

���0 , which fixes also the sign of ���0 .
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FIG. 6 (color online). Valence quark and meson cloud contributions for the ��Y ! �� transition form factors for Y ¼ � (left panel),
and Y ¼ �0 (right panel).
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The covariant spectator quark model can also be used
to calculate the valence quark contributions for the ��� !
�0 form factors in general and the transition magnetic
moment ���0 in particular. Assuming that the valence

quark effect is the leading contribution as demonstrated
reasonable for the octet baryon system [28], one can con-
clude that���0 / ����0 [48], namely, the sign of���0 is

the opposite to that of ���0 . Thus, once we determined the

sign of���0 corresponding to the reaction ���0 ! ��, we
can determine the sign of ���0 .

For completeness, we also present in Fig. 7 the results
for the helicity amplitudes AY

1=2 and S
Y
1=2 converted fromFY

1

and FY
2 by Eqs. (6) and (7), assuming the same phases as

the form factors.6 For the ��� ! �� reaction we can also
observe the dominance of the valence quark contributions
over the meson cloud contributions. As for the ���0 ! ��
reaction, the more interesting point is the closeness of the

valence and meson cloud contributions for the S�1=2 ampli-

tude. Also in this case we can conclude that if ������0 ¼
þ1, S�1=2 is enhanced, while the alternative case,

������0 ¼ �1, we expect a substantial reduction of the

S�1=2 amplitude. The similarity in the behavior for S�1=2 and

F�
2 , as discussed before, is a consequence of the partial

suppression of the F�
1 contribution for the S�1=2 amplitude,

due to the factor
M���MY

M��þMY
. Another interesting point in

Fig. 7 is the flatness of the valence quark model result
for AY

1=2 as a function of Q2 around the region Q2 ¼
2 GeV2. This is because the region Q2 ¼ 2 GeV2 is the
turning point of changing the Q2 dependence in the am-
plitude. For the larger Q2 region, however, the expected
falloff with Q2 can be observed.

VI. CONCLUSIONS

In this study we have analyzed the contributions from
the valence quark and meson cloud effects for the ��B !
B� reactions with B ¼ N, �, �0, and B� ¼ Nð1535Þ,
�ð1670Þ. While the valence quark contributions are esti-
mated using a constituent quark model [23,27,28], those
of the meson cloud are estimated using the chiral unitary
model [17,25]. In the chiral unitary model, Nð1535Þ has
some components other than meson-baryon dynamics as
discussed in Ref. [13], but for the calculation of the
transition form factors we take only coupling of the
photon current to the meson component and do not
take into account of photon couplings to genuine quark
components. In this approach, �ð1670Þ is almost com-
posed of meson-baryon components [17]. Since the
valence and meson cloud effects are calculated by the
different formalisms we cannot simply combine both
contributions to obtain the final, total results for the
transition form factors. Nevertheless, the magnitude and
signs of the individual contributions presented here are
sufficient to conclude that it is possible to have a can-
cellation from the two effects, the valence quark and
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FIG. 7 (color online). Valence quark and meson cloud contributions for the ��Y ! �� helicity amplitudes for Y ¼ � (left panel) and
Y ¼ �0 (right panel).

6The AY
1=2 helicity amplitude shown in Ref. [17] has a different

absolute phase from the present work.
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meson cloud effects, in a consistent, unified approach
including both effects.

For the ��N ! N�ð1535Þ reaction, we have found dif-
ference in signs for the two contributions for the Pauli-type
form factor F�

2, which can be the main reason for the
experimental observation, F�

2 ’ 0 for Q2 > 2 GeV2.
As for the reactions ��Y ! �ð1670Þ (Y ¼ �, �0), we

conclude that generally the valence quark contributions
dominate for the Y ¼ � case, but the two contributions
are similar for the reaction with Y ¼ �0. A particularly

interesting case is the form factor F�
2 . Namely, if we

assume the same sign for the� and � radial wave function
normalization constants (���0 ¼ 1) and ��� ¼ 1, we have

an enhancement for F�
2 . Instead, if we assume ������0 ¼

�1, we have a substantial cancellation between the two

effects. Then, the F�
2 contribution for the reaction cross

section would be very small.
A consequence of the observation made above is that the

���0 ! �� reaction can provide an indirect method to
determine ���0 , which can be used to pin down the sign
of ���0 consistently within the present approach. This can
be of fundamental importance, because the sign of the
��� ! �0 transition form factors, and, in particular, the
sign of the transition magnetic moment, ���0 , is not
determined experimentally. Also, this sign has not been
related consistently with the other reactions so far.
Although the sign is predicted to be negative within the
unitary symmetry approach [55] (the same sign with the
neutron magnetic moment), the consistency with the other
reaction was not studied within the approach.

From the discussion made above we conclude that the
theoretical and experimental studies of the reactions
��N ! N�ð1535Þ and ��Y ! ��, with Y ¼ �, �0, as
well as the correlations between them, are very interesting
topics of investigation. The results from these transition
form factors can be used to estimate the light and strange
quark distributions in the baryons, as well as to predict
other reactions.
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APPENDIX A: CURRENT MATRIX ELEMENTS IN
THE COVARIANT SPECTATOR QUARK MODEL

The calculation of the matrix elements for a transition
between a JP ¼ 1

2
þ initial state and a JP ¼ 1

2
� final state

follows the same steps as that of Appendix B in Ref. [23]
for the ��N ! Nð1535Þ reaction. Here it is sufficient to
note that in the transition current involving ��� the terms

in ð"� � ~kÞ vanish in the k integral. Therefore, only the
terms proportional to the integral

I Y ¼ ����
Z
k
Nð"0 � ~kÞc ��c Y; (A1)

survive in the current. The minus sign is introduced for
convenience.
With this simplification we can derive the following

results:

Z
k
½ ����̂

��0
S�c ��c Y ¼ �IYf �u�� �̂��5uYg; (A2)

Z
k

�
���

i���q�
2M

�0
S

�
c ��c Y¼IY

	
�u��

i���q�
2M

�5uY



; (A3)

Z
k
½ ��	�̂

��1
S�c ��c Y ¼ 1

3
IYf �u�� �̂��5uYg; (A4)

Z
k

�
��	

i���q�
2M

�1
S

�
c ��c Y ¼ � 1

3
IY

	
�u��

i���q�
2M

�5uY



:

(A5)

Inserting these results into the expression of the current,
we obtain

J
�
Y ¼þe

1

2
ð3jA1 þjS1ÞIY�̂

��5�e
1

2
ð3jA2 �jS2ÞIY

i���q�
2M

�5:

(A6)

APPENDIX B: OVERLAP INTEGRAL

Consider the overlap integral in the final state (��) rest
frame, given by Eq. (38), with the radial wave functions of
Eq. (18),

IYðQ2Þ ¼ ���
N �N Y

m2
D

Z
k

kz
jkj

	
1

ð�1 þ �� Þð�3 þ �� Þ
� 1

ð�1 þ YÞð�3 þ YÞ


: (B1)

In the above equation, B is determined by Eq. (17) for the
momenta defined by Eq. (39). Therefore,
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�� ¼ 2

�
ED

mD

� 1

�
; (B2)

and

Y ¼ 2

�
EY

MY

ED

mD

þ jqjY
MY

kz � 1

�
; (B3)

where

EY

MY

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jqYj2

M2
Y

s
: (B4)

From Eq. (B2) we can see that �� has no dependence on
Q2 (or jqjY), and that from Eq. (B3) Y is a function of the

ratio jqjY
MY

. Therefore, we can write

I YðQ2Þ ¼ IY

�jqjY
MY

�
: (B5)

Furthermore, since Y increases when jqjY
MY

increases, we

can conclude that the absolute value of the integrand

function in Eq. (B1) decreases with jqjY
MY

for a given k,

and therefore jIYj decreases when the ratio jqjY
MY

increases.

These results show that, when we have two reactions
described by the same radial wave function (the same
values for the parameters �1 and �3), the reaction with

larger ratio jqjY
MY

for a given Q2, gets the smaller value

for jIYj.
A simple consequence of the above result applies for the

nucleon-N�ð1535Þ and ���� transition form factors,
when the wave functions are parameterized exactly the

same, jqj
M for the nucleon case is larger than jqj�

M�
for the �

case, and we have

jI�ðQ2Þj> jINðQ2Þj: (B6)

This relation also explains the faster falloff of the
��N ! N�ð1535Þ transition form factors than that of the
��� ! �� transition form factors.
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