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The recently reported would-be excess at 125 GeV in invariant mass distribution of �� and of lþlþl�l�

obtained in the course of the Higgs boson search at LHC is tentatively interpreted as a scalar bound state

of two W. Nonperturbative effects of electroweak interactions obtained by the application of the

Bogoliubov compensation approach lead to such bound states due to the existence of anomalous three-

boson gauge-invariant effective interactions. The application of this scheme gives satisfactory agreement

with existing data without any adjusting parameter except for the bound state mass 125 GeV, while �BR

for �� resonance is predicted to be twice as much as the value for the standard model Higgs. The decay

channel �lþl� and an effect in 3� production may serve as decisive checks of the interpretation.
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I. STRONG EFFECTIVE TREE-BOSON
INTERACTION

Recent LHC results on searches for Higgs [1,2] already
induce active discussions. Hints on the existence of a state
with mass around 125 GeV, which manifests itself in
decays to �� and lþlþl�l�, are interpreted not only in
terms of the standard model (SM) Higgs, but also in differ-
ent variant extensions of the SM: fermiophobic Higgs [3],
two Higgs doublet models [4], etc. In any case data being
presented in [1,2] allow the discussion of different options,
as agreement of the data with SM predictions is not very
convincing.

In the present work we will discuss an interpretation of
the would-be LHC 125 GeV bump in terms of nonpertur-
bative effects of the electroweak interaction. For this
purpose, we rely on an approach induced by the N. N.
Bogoliubov compensation principle [5,6]. In [7–13], this
approach was applied to studies of a spontaneous genera-
tion of effective nonlocal interactions in renormalizable
gauge theories. In particular, papers [12,13] deal with an
application of the approach to the electroweak interaction
and a possibility of the spontaneous generation of an
effective anomalous three-boson interaction of the form
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with the uniquely defined form factor FðpiÞ, which guar-
antees the effective interaction (1) acting in a limited
region of the momentum space. This was done of course
in the framework of an approximate scheme, whose
accuracy was estimated to be ’ 10% [7]. The would-be
existence of the effective interaction (1) leads to important
nonperturbative effects in the electroweak interaction. This

is usually called the anomalous three-boson interaction,
and it has been considered for a long time on phenomeno-
logical grounds [14,15]. Note that the first attempt to obtain
the anomalous three-boson interaction in the framework of
the Bogoliubov approach was done in [16]. Our interaction
constant G is connected with conventional definitions in
the following way:

G ¼ � g�

M2
W

; (2)

where g ’ 0:65 is the electroweak coupling. The current
limitations for parameter � read [17]

� ¼ �0:016þ0:021
�0:023; �0:059< �< 0:026ð95% C:L:Þ:

(3)

Interaction (1) increases with increasing momenta p.
For the estimation of an effective dimensionless coupling
we choose symmetric momenta (p, q, k) in a vertex cor-
responding to the interaction

ð2	Þ4G�abcðg��ðq�pk� p�qkÞ þ g��ðk�pq� q�pkÞ
þ g��ðp�qk� k�pqÞ þ q�k�p� � k�p�q�Þ
� Fðp; q; kÞ
ðpþ qþ kÞ þ . . . ; (4)

where p, �, a; q, �, b; k, �, c are, respectfully, incoming
momenta, Lorentz indices, and weak isotopic indices ofW
bosons. We also mean that there are four-boson, five-boson
and six-boson vertices present according to the expression
for Wa

�� (1). In what follows we shall use the four-boson

vertex, which corresponds to the following interaction:

�L ¼ gG

2
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The explicit expression for the corresponding vertex is
presented in [12]. The form factor Fðp; q; kÞ is obtained
in [13] using the following approximate dependence on the
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The symmetric condition means

pq ¼ pk ¼ qk ¼ p2
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Interaction (1) increases with increasing momenta p and
corresponds to the effective dimensionless coupling being
of the following order of magnitude:

geff ¼ jg�jp2
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W
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�
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The form factor FðxÞ in [13] is expressed in terms of the
Meijer functions [18]
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g0 ¼ 0:6037; C1 ¼ �0:0351; C2 ¼ �0:0511;

(10)

where g0 is the value of the electroweak running coupling
at momentum p0 corresponding to value of variable z,

z0 ¼ 9:6175: (11)

Thus, the running coupling geff , dependent on the variable
t ¼ Gp2, is the following:

geffðtÞ ¼ t

2
F

�
9t2

2048	2

�
; t ¼ Gp2: (12)

The behavior of geffðtÞ is presented in Fig. 1. We see that
for t ’ 22 the coupling reaches a maximal value geff ¼
3:63; the corresponding effective � is the following:

�eff ¼ g2eff
4	

¼ 1:049: (13)

Thus, for sufficiently large momentum, interaction (1)
becomes strong and may lead to physical consequences
analogous to that of the usual strong interaction (QCD). In
particular, bound states and resonances consisting of W-s
(W-hadrons) may appear. We have already discussed the
possibility to interpret the would-be CDF Wjj excess [19]
in terms of such a state [20].

II. SCALAR BOUND STATE OF TWO W-s

In the present work we apply these considerations, along
with some results of [13], to data indicating a possible
excess in �� and lþlþl�l� production at the LHC [1,2] in
the region of invariant mass, 120–130 GeV.
Let us assume that this excess is due to the existence

of the bound state X of two W’s with mass Ms. This state
X is assumed to have spin 0 and also weak isotopic spin
0. Then, the vertex of the XWW interaction has the
following form:

GX

2
Wa

��W
a
��X�0; (14)

where �0 is a Bethe-Salpeter (BS) wave function of the
bound state. Again, due to gauge invariance there is also
a three-boson term

� gGX�abcW
a
0��W

b
�W

c
�X; (15)

as well as a four-boson term. In what follows we use
expressions (14) and (15). The main interactions forming
the bound state are just nonperturbative interactions (1)
and (14). This means that we take into account the
exchange of the vector boson W as well as of scalar
bound state X itself. In diagram form the corresponding
Bethe-Salpeter equation is presented in Fig. 2. We ex-
pand the kernel of the equation in powers of M2

W and M2
s

and obtain the following equation with the introduction
of a more suitable variable:

z ¼ G2ðp2Þ2
64	2

; t ¼ G2ðq2Þ2
64	2

;

where p is the external momentum and q is the integra-
tion momentum.
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FIG. 1 (color online). Behavior of the effective coupling
geffðtÞ, t ¼ Gp2; geffðtÞ ¼ 0 for t > 148.
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The upper line in the equation is the main (zero approxi-
mation) part. This line and terms proportional to�2 and�2

s

are obtained from the main triangle diagram (the second
one in the upper line of Fig. 2) by expanding its expression
in powers of ðM2

WÞn and ðM2
s Þn. Then we take into account

terms with n ¼ 0, 1. Estimates show that higher powers
can be neglected. The term proportional to �, that is, toG2

X,
corresponds to the third diagram in the upper line of Fig. 2.
Terms with gauge electroweak coupling g enter due to
diagrams in the second line of Fig. 2. The upper limit z00
is introduced for the sake of generality due to the experi-
ence of [7–13], according to which z00 may be either 1 or
some finite quantity. That is, z00 is defined in the process of
solving the problem. The physical meaning of this
parameter corresponds to the definition of the effective
cutoff z00, which bounds a ‘‘low-momentum’’ region, where
the nonperturbative effects are significant. For the form
factor of interaction (1), the upper limit z0 (11) is defined
in [13].

The Bethe-Salpeter wave function in the first approxi-
mation is normalized by the condition �0ð0Þ ¼ 1, which
corresponds to the following equality:

4
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0
�0ðtÞdtþ 2

ffiffiffi
2

p
	

Z z0

0

gFðtÞffiffi
t

p dt

þ 3

32	2

Z z0
0

�

g2�0ðtÞ
t

dt ¼ 1; (17)

where FðtÞ and z0 are defined by Eqs. (9)–(12). In diagram
form this condition is presented in Fig. 3. We also have to
take into account the normalization condition for the
Bethe-Salpeter wave function, which defines the interac-
tion constant GX. This condition guarantees the proper
form of the effective propagator for bound state X. In
diagram form it is presented in Fig. 4. Here each diagram
is a coefficient before external momentum squared p2; that
is, for expression �ðp2; . . .Þ we put

@

@p2 �ðp2; . . .Þjp2¼0:

Diagrams in Fig. 4 correspond to the following
expressions:

FIG. 2. Representation of the Bethe-Salpeter equation for
W-W bound state. The black spots correspond to the XWW
vertex (14) with the BS wave function. The empty circles
correspond to the pointlike anomalous three-gluon vertex (1),
and the double circle to the pointlike XWW vertex (14). The
simple point is the usual gauge triple W interaction. The double
line is the bound state X, and the single line is W.

FIG. 3. Representation of the normalization condition
�0ð0Þ ¼ 1. The four-leg vertex corresponds to interaction (15).
All the external momenta are zero. Other notations are the same
as in Fig. 2.
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We shall solve Eq. (16) by iterations. We take as the first
approximation for the problem the set of equations con-
sisting of

(i) the upper line of Eq. (16), that is, (16) with � ¼
�s ¼ � ¼ g ¼ 0;

(ii) condition �0ð0Þ ¼ 1 (17);
(iii) normalization condition (18) for the BS wave

function.
There are a few solutions to the set of Eqs. (16) and (17),

but only one of them leads to positive M2
s . It reads

�1ðzÞ ¼ 	

2
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20
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10
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z00 ¼ 44:151 234;

C1 ¼ 3:054 37;

C2 ¼ �0:001 196 4:

(19)

where we again use Meijer functions [18]. Now we use the
solution (19) and obtain the parameter � (16) with the aid
of the normalization condition for XWW coupling (18).

With �1 (19) we obtain from (18)

� ¼ 0:592 411: (20)

Then we multiply the full Eq. (16) by�1ðzÞ from the right
and integrate the result by z in the interval ð0; z00Þ. It is easy
to see by changing the order in double integrals that all
terms of zero order in �, �s, �, g vanish, and we have the
following equation:
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Now we define the running coupling g,

g ¼ gðMWÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 5g2ðMW Þ

24	2 lnð1þ 8	
ffiffi
z

p
GM2

W

Þ
r : (23)

It enters in integrals (20) and (22). We introduce Ms ¼
125 GeV, which means

�s ¼ �
1252

80:42
; (24)

and perform the necessary calculations. So we choose a
solution with mean valueMs ¼ 125 GeV from the ATLAS
and the CMS results [1,2]; then we have a unique solution
with the following parameters:

GX ¼ 0:000 666 GeV�1; G ¼ 0:004 84

M2
W

: (25)

The result (25) is the parameter of the anomalous triple
interaction (1), taking into account the relation (2),

� ¼ �GM2
W

gð0Þ ¼ �0:007 44; (26)

which doubtlessly agrees with the limitations (3).

III. COMPARISON TO EXPERIMENTS

Thus, we have scalar state Xwith coupling (14) and (25).
In calculations of decay parameters and cross sections, we
use the COMPHEP package [21]. We use the parameter GX

(25), obtained above from the BS wave function (19), and
Ms ¼ 125 GeV. The cross section of X production at the
LHC with

ffiffiffi
s

p ¼ 7 TeV reads

�X ¼ �ðpþ p ! X þ . . .Þ ¼ 0:184 pb: (27)

Parameters of X decay are the following:

FIG. 4. Diagrams for the normalization condition of the XWW
vertex. The four-leg vertex corresponds to vertex (5) being
proportional to gG.
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�tðXÞ¼ 0:000502 GeV; BRðX!��Þ¼ 0:430;

BRðX!�ZÞ¼ 0:305; BRðX! 4lð�;eÞÞ¼ 0:000577;

BRðX! b �bÞ¼ 0:000024; BRðX!�eþe�Þ¼ 0:0231;

BRðX!��þ��Þ¼ 0:016; BRðX!�
þ
�Þ¼ 0:0125;

BRðX!�u �uÞ¼ 0:0478; BRðX!�c �cÞ¼ 0:0368;

BRðX!�d �dÞ¼ 0:0446; BRðX!�s�sÞÞ¼ 0:0430;

BRðX!�b �bÞ¼ 0:0416: (28)

For decay X ! b �b we calculate the evident triangle dia-
gram and use mbð125 GeVÞ ’ 2:9 GeV. Branching ratios
for decays to other fermion pairs are even smaller. We see
that state X is quite narrow, so we would expect the
observable width of the state to be defined by the corre-
sponding experimental resolution.

Experimental data give, in the region of the
would-be state, the following limitations for ��� ¼
�XBRðX ! ��Þ:

��� < 3:8�ðSMÞ; ��� < 3:6�ðSMÞ;
��� < 0:135 pb:

(29)

Here �ðSMÞ ’ 0:04 pb is the standard model value for the
quantity under discussion, the upper line corresponds to
ATLAS data [22], and the lower line correspond to CMS
data [23]. First, both limitations are quite consistent.
Second, our value for the same quantity from (27) and
(28) reads

��� ¼ 0:077 pb (30)

which also agrees with limitations (29); however, it essen-
tially exceeds the SM value �ðSMÞ. At this point it is
advisable to discuss the accuracy of our approximations.
The former experience concerning both applications to the
Nambu—Jona-Lasinio model in QCD [8,9,11] and to the
electroweak interaction [12,13] shows that the average
accuracy of the method is around 10% in values of different
parameters. So we may assume that in the present estima-
tions of the coupling constant GX, we also have the same
accuracy. For the cross section this means a possible de-
viation of up to 20% of the calculated value. Thus, we
would change (30) to the following result:

��� ¼ ð0:077� 0:015Þ pb: (31)

Branching ratios (28) do not depend on the value of GX, so
we assume their accuracy is considerably better than in
(31). In any case result (31) agrees with (29).

There are also indications for some excess around
125 GeV in four-lepton states. With (27) and (28) we
have, for the decay X ! lþlþl�l�ðl ¼ �; eÞ, �� BR ¼
ð0:000 11� 0:000 02Þ pb. For integral luminosity L ¼
4:8103 pb�1 [22,23] we have, for the number of events,

Nð4lÞ ¼ �� BR� L ¼ ð0:51� 0:10Þ; (32)

i.e. close to one event. This result also essentially exceeds
the SM expectations. As a matter of fact, ATLAS [24] has
three events and CMS [25] has two in the region under
consideration with the estimated background much smaller
than one event. In any case our estimation (32) has no
contradiction with data or the usual SM Higgs boson inter-
pretation. In the future, more precise experiments at the LHC
to determine the essential distinctions of our scheme and the
SM Higgs boson variant could manifest themselves and
decisively discriminate different variants. The distinctions
refer to ��� (31) and also to the four-lepton channel (32).

We emphasize the importance of channel X ! �lþl�.
For this decay mode from (27) and (28) we predict

�XBRðX ! �lþl�Þ ¼ ð0:0073� 15Þ pb (33)

which gives N ¼ 35� 7 events for the already-achieved
luminosity [1,2]. This channel may serve as an accurate
test of our results because the SM value for quantity (33)
gives around five events [26].
There is one point in the data [23] which provides hints

against the SM option and, on the contrary, on behalf of our
variant. The data of [23] deal with a two-jet tag, which
singles out the channel of XðHÞ production via vector
boson fusion. We calculate the effect for this channel
within our approach and obtain �VBF ¼ 0:079 pb. Taking
into account (28) and the efficiency in [23] for such a
process as ’ 0:037, we obtain six events of �� decay of
X, which by no means contradict CMS data [see [23],
Fig. 1(b)]. The estimate for the SM Higgs gives less than
one event here. Of course, there is no contradiction yet, but
nevertheless, we may state a trend for better agreement
with data of the present variant.
The main difference of our predictions with the SM

results consists in the decay channel X ! b �b. For the
SM Higgs, which is usually considered for the explanation
of a would-be 125 GeV state, this decay is dominant,
whereas our result (28) gives extremely small BR ’ 3�
10�5. We can emphasize that the SM Higgs interpretation
could not proven unless the b �b channel with the proper
intensity is detected.
We can also draw attention to the quite promising pro-

cess pp ! �þ Xþ . . . with X ! ��. Our option gives,
for the process, the cross section �ð�; X ! 2�þ . . .Þ ’
3:6 pb at the LHC, which for the already-reached luminos-
ity 4:8 fb�1, gives around 17 events, whereas for the SM
Higgs option the effect is negligible. This process could
provide a decisive test of our proposal, especially as the
amount of experimental data increases in the near future.
In considering consequences of the present results we

have to keep in mind that the experimental evidence for a
125 GeV state is by no means decisive. If either the data
[1,2] are not confirmed by forthcoming experiments or the
SM Higgs interpretation of the state is proved, we may
consider the possibility of applications of the results of the
W-hadron model to searches for possible states X with
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other masses. As a matter of fact, the mass of the X state is
defined by the value of the coupling constant (2) of inter-
action (1) with experimental limitations (3) for �. The
value Ms ¼ 125 GeV corresponds to � ¼ �0:0074 (26).
With j�j increasing,Ms also increases, and for the maximal
admissible value j�j ¼ 0:059 (3), we haveMs ’ 920 GeV.
This means that if the application of our results to a would-
be Ms ¼ 125 GeV state fails for some reason, it might be
advisable to look for X in the interval of masses up to
920 GeV. Of course, performance evaluations need to be
done for values ofMs in the interval. Negative results of the
search would decisively reject the possibility considered in
the present work.

IV. CONCLUSION

Thus, we have an alternative interpretation of the
LHC 125 GeV phenomenon. The overall data do not

contradict the SM Higgs option or the scalar W-hadron,
which we discuss here. However, our estimates of the
effects are, as a rule, much larger than the SM Higgs
predictions. It seems that data favor larger values. The
forthcoming increase of the integral luminosity will un-
doubtedly discriminate these two options. If the future
result is in favor of the scalar W-hadron, we need an
additional comparison of our predictions with results of
other possibilities, e.g. fermiophobic variants [27,28].
The application of this result to data [1,2] is discussed
in [3].
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