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We present both spin-independent and spin-dependent parts of a central interquark potential for

charmonium states, which is calculated in 2þ 1 flavor dynamical lattice QCD using the PACS-CS gauge

configurations with a lattice cutoff of a�1 � 2:2 GeV. Our simulations are performed with a relativistic

heavy-quark action for the charm quark at the lightest pion mass,M� ¼ 156ð7Þ MeV, in a spatial volume

of ð3 fmÞ3. We observe that the spin-independent charmonium potential obtained from lattice QCD with

almost physical quark masses is quite similar to the Cornell potential used in nonrelativistic potential

models. The spin-spin potential, which is calculated in full lattice QCD for the first time, properly exhibits

a finite-range repulsive interaction. Its r-dependence is different from the Fermi-Breit type potential,

which is widely adopted in quark potential models.
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Recently, many of the newly discovered charmonium-
like mesons have been announced by B-factories at KEK
and SLAC, which are primarily devoted to the physics of
CP violation. Such states named as ‘‘XYZ’’ mesons could
not be simply explained by a constituent quark description
in quark potential models [1]. Thus, the charmoniumlike
XYZ mesons are expected to be good candidates for non-
standard quarkonium mesons, such as hadronic molecular
states, diquark-antidiquark bound states (tetraquark states),
or hybrid mesons [2]. However, it seems to be still too early
to judge whether we may discard the constituent quark
description for such higher-mass charmonium states.

The interquark potential in quark potential models is
based on the phenomenology of confining quark interac-
tions: the so-called Cornell potential [3] together with
spin-spin, tensor, and spin-orbit terms appeared as leading
spin-dependent corrections in powers of the inverse of the
heavy-quark massmQ [4,5]. Although the Cornell potential

was qualitatively justified by the static heavy-quark poten-
tial obtained from Wilson loops in lattice QCD [6], the
functional forms of the spin-dependent terms in potential
models are basically determined by perturbative one-gluon
exchange as the Fermi-Breit type potential [4]. Thus, prop-
erties of higher-mass charmonium states predicated in
potential models may suffer from large uncertainties, since
the phenomenological spin-dependent potentials would
have validity only at short distances and also in the vicinity
of the heavy-quark mass limit.

In this sense, the reliable interquark potential directly
derived from first principles QCD is desired at the charm
quark mass. Indeed, the static potential between infinitely
heavy-quark and antiquark, which is obtained fromWilson
loops, have been precisely calculated in lattice QCD

simulations [6]. The relativistic corrections to the static
potential are classified in powers of 1=mQ within a frame-

work called potential nonrelativistic QCD [7]. The leading
and next-to-leading order corrections have been success-
fully calculated in quenched lattice QCD with high accu-
racy by using a multilevel algorithm [8]. However, it is
rather difficult to calculate the proper charmonium poten-
tial in lattice QCD within the Wilson loop formalism. It is
obvious that the inverse of the charm quark mass is far
outside the validity region of the 1=mQ expansion. Indeed,

a spin-spin potential determined at Oð1=m2
QÞ [8], which

exhibits an attractive interaction for the higher spin states,
seems to yield wrong mass ordering among hyperfine
multiplets. In addition, practically, the multilevel algorithm
employed in Ref. [8] is not easy to be implemented in
dynamical lattice QCD simulations.
Under these circumstances, in our previous work [9], we

have proposed a novel approach, where the interquark
potential at finite quark mass can be accurately determined
from the equal-time and Coulomb gauge Bethe-Salpeter
(BS) amplitude through an effective Schrödinger equation.
(See also Ref. [10].) The BS amplitude method is origi-
nally applied for the hadron-hadron interaction [11].
As demonstrated in Ref. [9], the spin-independent part of
an interquark potential calculated in the new method
smoothly approaches the static potential given by Wilson
loops in the infinitely heavy-quark limit. The new approach
enables us to determine both spin-independent and spin-
dependent interquark potentials at the charm quark mass,
which potentially account for all orders of 1=mQ correc-

tions. Furthermore, there is no restriction to dynamical
calculation within this method.
In this paper, we present results of the spin-independent

central and spin-spin potentials between the quark (Q) and
antiquark ( �Q) at the vicinity of the physical charm quark
mass from the BS amplitude with 2þ 1 flavor PACS-CS
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gauge configurations [12], where the simulated pion mass
is closest to the physical point as M� ¼ 156ð7Þ MeV. As
for a treatment of heavy quarks, we adopt a relativistic
heavy quark (RHQ) action, which can remove large dis-
cretization errors introduced by large quark mass [13].

Let us briefly review the new method utilized here to
calculate the interquark potential with the finite quark
mass. As the first step, we consider the following equal-
time Q �Q BS amplitude in the Coulomb gauge for the
quarkonium states [14,15]:

��ðrÞ ¼
X
x

h0j �QðxÞ�Qðxþ rÞjQ �Q; JPCi; (1)

where r is the relative coordinate of two quarks at certain
time slice and � is any of the 16 Dirac � matrices. A
summation over spatial coordinates x projects onto the
zero total momentum. The r-dependent amplitude, ��ðrÞ,
is here called BS wave function.

In lattice simulations, the BS wave function can
be extracted from the following four-point correlation
function:
X

x;x0;y0
h0j �Qðx; tÞ�Qðxþ r; tÞð �Qðx0; tsÞ�Qðy0; tsÞÞyj0i

¼ X
x

X
n

Anh0j �QðxÞ�Qðxþ rÞjnie�M�
n ðt�tsÞ

!t�ts
A0��ðrÞe�M�

0
ðt�tsÞ; (2)

at the large Euclidean time from source location (ts).
Here both quark and antiquark fields at ts are separately
averaged in space as wall sources. The constant ampli-
tude An is a matrix element defined as An ¼P

x0;y0 hnjð �Qðx0Þ�Qðy0ÞÞyj0i. M�
n denotes a mass of the

n-th quarkonium state jni in a given JPC channel. For
instance, when � is chosen to be �5 for the pseudoscalar
(PS) channel ðJPC ¼ 0�þÞ and �i for the vector (V)
channel ðJPC ¼ 1��Þ in the charm sector, MPS

0 and MV
0

correspond to the rest masses of the �c and J=c ground
states, which can be read off from the asymptotic large-
time behavior of the correlation functions.

The BS wave function satisfies an effective Schrödinger
equation with a nonlocal and energy-independent inter-
quark potential U [11,16]

� r2

2�
��ðrÞ þ

Z
dr0Uðr; r0Þ��ðr0Þ ¼ E���ðrÞ; (3)

where the reduced mass � of the Q �Q system is given by
mQ=2 with the quark kinetic mass mQ. The energy eigen-

value E� of the stationary Schrödinger equation is sup-
posed to be M� � 2mQ [17]. If the relative quark velocity

v ¼ jr=mQj is small as v � 1, the nonlocal potential U
can generally expand in terms of the velocity v as
Uðr0;rÞ¼ fVðrÞþVSðrÞSQ �S �QþVTðrÞS12þVLSðrÞL �Sþ
Oðv2Þg�ðr0 �rÞ, where S12¼ðSQ � r̂ÞðS �Q � r̂Þ�SQ �S �Q=3

with r̂ ¼ r=r, S ¼ SQ þ S �Q, and L ¼ r� ð�irÞ [11].

Here, V, VS, VT, and VLS represent the spin-independent
central, spin-spin, tensor, and spin-orbit potentials,
respectively.
In this paper, we focus only on the S-wave charmonium

states (�c and J=c ). We perform an appropriate projection
with respect to the discrete rotation, which provides the BS
wave function projected in the Aþ

1 representation,��ðrÞ !
��ðAþ

1 ; rÞ. This projected BS wave function corresponds
to the S-wave in continuum theory at low energy [18]. We
simply denote the Aþ

1 projected BS wave function by��ðrÞ
hereafter.
The stationary Schrödinger equation for the projected

BS wave function ��ðrÞ is reduced to

�
� r2

mQ

þ VðrÞ þ SQ � S �QVSðrÞ
�
��ðrÞ ¼ E���ðrÞ (4)

at the leading order of the v-expansion [19]. The spin
operator SQ � S �Q can be easily replaced by expectation

values �3=4 and 1=4 for the PS and V channels, respec-
tively. As a result, both spin-independent and spin-
dependent part of the central interquark potentials can be
separately evaluated through a linear combination of
Eq. (4) calculated for both PS and V channels as

VðrÞ ¼ Eave þ 1

mQ

�
3

4

r2�VðrÞ
�VðrÞ þ 1

4

r2�PSðrÞ
�PSðrÞ

�
; (5)

VSðrÞ ¼ Ehyp þ 1

mQ

�r2�VðrÞ
�VðrÞ � r2�PSðrÞ

�PSðrÞ
�
; (6)

where Eave ¼ Mave � 2mQ and Ehyp ¼ MV �MPS. The

mass Mave denotes the spin-averaged mass as ð1=4ÞMPS þ
ð3=4ÞMV. The derivative r2 is defined by the discrete
Laplacian with nearest-neighbor points. As for other
spin-dependent potentials such as the tensor potential VT

and the spin-orbit potential VLS, in principle, this approach
can access them by considering the P-wave quarkonium
states such as the �c (0

þþ, 1þþ) and hc (1þ�) states, which
must leave contributions of VT and VLS to Eq. (4).
It is worth mentioning that the quark kinetic mass mQ,

which is essentially involved in the definition of the inter-
quark potentials, can be self-consistently evaluated within
the same framework [9]. The proper determination of the
quark mass has a key role in establishing the connection to
the static heavy-quark potential given by Wilson loops in
the infinitely heavy-quark limit. A more detailed discus-
sion can be found in Ref. [9].
To calculate the charmonium potential, we have per-

formed dynamical lattice QCD simulations on a lattice
L3 � T ¼ 323 � 64 with 2þ 1 flavor PACS-CS gauge
configurations generated by Iwasaki gauge action at
� ¼ 1:90, which corresponds to a lattice cutoff of
a�1 � 2:2 GeV (a � 0:091 fm) [12]. The spatial lattice
size corresponds to L � 3 fm. The hopping parameters
for the light sea quarks f	ud; 	sg ¼ f0:13781; 0:13640g

TAICHI KAWANAI AND SHOICHI SASAKI PHYSICAL REVIEW D 85, 091503(R) (2012)

RAPID COMMUNICATIONS

091503-2



correspond toM� ¼ 156ð7Þ MeV andMK ¼ 554ð2Þ MeV
[12]. Although the light sea quark masses are slightly off
the physical point, the systematic uncertainty due to this
fact could be extremely small in our project. Our results are
analyzed on all 198 gauge configurations, which are avail-
able through International Lattice Data Grid and Japan
Lattice Data Grid [20]. We fix gauge configurations to
Coulomb gauge.

For the charm quark, we employ the RHQ action to
control systematic uncertainties coming from the discreti-
zation error induced by large quark mass [13]. The RHQ
action utilized here is a variant of the Fermilab approach
[21] and has five parameters: 	c, 
, rs, cB and cE. The
parameters rs, cB, and cE are determined by tadpole im-
proved one-loop perturbation theory [22]. For 
, we use a
nonperturbatively determined value, which is adjusted by
reproducing the effective speed of light to be unity in the
dispersion relation E2ðp2Þ ¼ M2 þ c2eff jpj2 for the spin-

averaged 1S charmonium state, since the parameter 
 is
sensitive to the size of hyperfine mass splitting [23]. We
choose 	c to reproduce the experimental spin-averaged
mass of 1S charmonium states M

exp
ave ¼ 3:0678ð3Þ GeV.

To calibrate adequate RHQ parameters, we employ a gauge
invariant Gaussian-smeared source for the standard two-
point correlation function with four different finite mo-
menta. As a result, the relevant speed of light, c2eff ¼
1:04ð5Þ, is observed for the spin-averaged mass of 1S
charmonium states with our chosen RHQ parameters sum-
marized in Table I.

We have computed charm quark propagators with two
wall sources located at different time slices ts=a ¼ 6 and
57, to increase statistics. Dirichlet boundary conditions are
imposed for the time direction to eliminate unwanted con-
tributions across time boundaries. We calculate a pair of
four-point correlation functions from two wall-source
quark propagators and fold them together to create a single
four-point correlation function.

Low-lying S- andP-wave charmoniummassesmeasured
in this study are all close to experimental values, though
the hyperfine mass splitting Mhyp ¼ 0:1124ð9Þ GeV is

slightly smaller than the experimental value, Mexp
hyp ¼

0:1166ð12Þ GeV. Note that we simply neglect the discon-
nected diagrams in both the �c and J=c correlation func-
tions. The similar value of the hyperfine mass splitting is
reported even on the physical point in Ref. [23]. We sum-
marize resulting charmonium masses in Table I.

First, we show a result of the spin-independent charmo-
nium potential VðrÞ in Fig. 1, where the constant term is
subtracted to set Vðr0Þ ¼ 0 with the Sommer scale, r0 �
0:5 fm. For comparison, the static heavy-quark potential
calculated from the Polyakov line correlator, which corre-
sponds to the one obtained in the infinitely heavy-quark
limit similar to the Wilson loop results [6], is also dis-
played in Fig. 1. As expected, the charmonium potential
calculated in the BS amplitude method properly exhibits
the linearly rising potential at large distances and the
Coulomb-like potential at short distances.
Here we give some technical remarks on systematic

uncertainties. In the BS amplitude method, we take a
weighted average of data points in the wide range of
jt� tsj=a ¼ 26–48 for determining the equal-time BS
wave function. Therefore, the resulting charmonium po-
tential has a much smaller systematic error stemming from
the uncertainty in the choice of time window than the
conventional approach to calculate the static heavy-quark
potential by Wilson-loops or Polyakov lines. On the other
hand, the discretization error seems to much severely
appear in the charmonium potential especially near the
origin. The Coulomb-like behavior obtained in the BS
amplitude method may contain large uncertainties, which
should vanish in the continuum limit. To avoid the large
discretization error, we hereafter prefer to use the ‘‘on-
axis’’ data, which less suffers from the rotational symmetry
breaking in the finite cubic box.

TABLE I. Summary of RHQ parameters and results of S- and P-wave charmonium masses.

RHQ parameters 	c 
 rs cB cE

0.10819 1.2153 1.2131 2.0268 1.7911

Charmonium mass MS-wave
ave MS-wave

hyp �cð0�þÞ J=c ð1�þÞ �c0ð0þþÞ �c1ð1þþÞ hcð1þ�Þ
[GeV] 3.0638(9) 0.1124(9) 2.9794(5) 3.0919(10) 3.3865(58) 3.4781(62) 3.4995(62)
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FIG. 1 (color online). Spin-independent interquark potentials
calculated from both the BS wave function of the charmonium
states (+ and d) and the standard Polyakov line correlator
(� and j). Filled symbols represent on-axis data. The constant
terms are subtracted from both potentials to set to Vðr0Þ ¼ 0.
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The Cornell parametrization is simply adopted for fitting
our data of the spin-independent central potential:

VðrÞ ¼ �A

r
þ �rþ V0; (7)

with the Coulombic coefficient A, the string tension �,
and a constant V0. We have carried out correlated �2 fits
with full covariance matrix for on-axis data over range
4 � r=a � 10, while uncorrelated fits are adopted in full
data analysis including all off-axis data points due to high
correlation between different r points. The fitting results
are listed in Table I together with the phenomenological
values employed by a nonrelativistic potential (NRp)
model in Ref. [5]. From on-axis data only, we get the
Cornell parameters of the charmonium potential: A ¼
0:861ð17Þ and

ffiffiffiffi
�

p ¼ 0:394ð7Þ MeV with acceptable
�2=dofð� 2:2Þ. The quoted errors represent only the sta-
tistical errors given by the jackknife analysis.

In Fig. 2, we show on-axis data points of the spin-
independent charmonium potential with the fitted curve
(dashed curve). The phenomenological potential used in
NRp models [5] is also plotted as a solid curve for com-
parison. As shown in Fig. 2, although the charmonium
potential obtained from lattice QCD is quite similar to
the one in the NRp models, the string tension of the
charmonium potential is slightly stronger than the phe-
nomenological one. Therefore our result indicates that
there are only minor modifications required for the spin-
independent central potential in the NRp models.

Moreover, it seems that a gap for the Coulombic coef-
ficients between the conventional static potential from
Wilson-loops and the phenomenological potential used in
the NRp models closes by our new approach, which non-
perturbatively accounts for a finite quark mass effect.

It is worth mentioning that the string breaking, which
would be induced by the presence of dynamical quarks,
was not observed at least in the range r & 1 fm, where we

still get a better signal-to-noise ratio. It is indeed what we
expected, since we cannot access information of the
potential outside of the localized wave function, which
represents the charmonium bound state within the BS
amplitude method. We here calculate only the BS wave
functions of 1S charmonium states, which are quickly
dumped around outside of r * 1 fm. Therefore, at least
the similar calculation for the higher-lying charmonium
states, whose wave function can be extended until the
string breaking sets in, is demanded to observe such effect.
In this calculation, the kinetic mass of the charm quark is

determined self-consistently within the BS amplitude
method as well. (See Ref. [9] for details.) The charm quark
mass obtained in this study is about 17% heavier than the
one adopted in the NRp models, of which value is also
listed in Table II. This difference should not be taken
seriously since the spatial profile of the spin-spin potential
from lattice QCD is slightly different from the one used in
the NRp models as we will discuss later.
In Fig. 3, we show the spin-spin term of the charmonium

potential and the corresponding phenomenological one
found in Ref. [5]. Our spin-spin potential exhibits the
short-range repulsive interaction, which is required by the
charmonium spectroscopy, where the higher spin state in
hyperfine multiplets receives heavier mass. It should be
reminded that the Wilson loop approach fails to reproduce
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FIG. 2 (color online). Spin-independent charmonium potential
calculated from the BS wave function. The dashed curve is the
fitting result by the Cornell parametrization. The shaded band
shows statistical fitting uncertainty calculated by the jackknife
method. For comparison, the phenomenological potential
adopted in a NRp model [5] is also included as solid curve.

TABLE II. Summary of the Cornell parameters and the quark
mass determined from lattice QCD. For comparison, the corre-
sponding values adopted in a NRp model [5] are also included.

This work

On-axis Full set Polyakov lines NRp model

A 0.861(17) 0.813(22) 0.403(24) 0.7281ffiffiffiffi
�

p ½GeV� 0.394(7) 0.394(7) 0.462(4) 0.3775

mQ½GeV� 1.74(3) � � � 1 1.4794
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FIG. 3 (color online). Spin-spin charmonium potential calcu-
lated from the BS wave function. The dashed, dotted, and dash-
dotted curve correspond to fitting results of Yukawa, exponential,
and Gaussian functional forms, respectively. For comparison, the
phenomenological potential adopted in a NRp model [5] is also
included as solid curve.
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the correct behavior of the spin-spin interaction, since the
leading-order spin-spin potential classified in potential non-
relativistic QCD becomes attractive at short distances [8].

In contrast of the case of the spin-independent potential,
the spin-spin potential obtained here is absolutely different
from a repulsive �-function potential generated by perturba-
tive one-gluon exchange,which iswidely adopted in theNRp
models. However, such the contact form/ �ðrÞ of the Fermi-
Breit type potential is not reliable since the pointlike spin-
spin interaction can not give a finite hyperfine mass splitting
of the P- or higher-wave charmonia [1]. Indeed, the finite-
range spin-spin potential described by the Gaussian form is
adopted in Ref. [5], where many properties of conventional
charmonium states at higher masses are predicted.

This phenomenological spin-spin potential is also plot-
ted in Fig. 3 for comparison. Although there is a slight
difference at very short distances, where systematic un-
certainties become severe due to lattice discretization er-
rors, the spin-spin potential from first principles QCD is
barely consistent with the phenomenological one.

To examine the appropriate functional form for the spin-
spin potential, we have tried three types of functional
forms:

VSðrÞ ¼

8>>><
>>>:

� expð��rÞ=r : Yukawa form

� expð��rÞ : Exponential form

� expð��r2Þ : Gaussian form.

(8)

We then determine which functional form can give a
reasonable fit over the range of r=a from 2 to 10. All results
of correlated �2 fits are summarized in Table III. The long-
range screening observed in the spin-spin potential is more
easily accommodated by the Yukawa form or the exponen-
tial form than the Gaussian form that is often employed in
the NRp models. Although the exponential form provides
the smaller �2=dof than the Yukawa form, a solid conclu-
sion requires more accurate information on the short-range
behavior of the spin-spin potential.

In this paper, we have studied both spin-independent and
spin-dependent parts of the charmonium potential by
means of the BS wave function of 1S charmonium states
in dynamical lattice QCD simulations. The spin-
independent charmonium potential obtained from lattice
QCD with almost physical quark masses is quite similar to
the one used in the NRp models. The spin-spin potential,
which is, for the first time, determined in dynamical lattice
simulations, exhibits not pointlike, but finite-range repul-
sive interaction. Its r-dependence is barely consistent with
the phenomenological one adopted in Ref. [5]. Thus, a full
set of the reliable spin-dependent potentials derived from
lattice QCD within our approach can provide new and
valuable information to the NRp models. This improve-
ment of the spin-dependent potentials will help in making
accurate theoretical predictions about the higher-mass
charmonium states. We plan to extend our research to
determine all spin-dependent terms in the charmonium
potential, including the tensor and spin-orbit forces and
also to address all the possible systematic uncertainties
described in the text.
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