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The open string tachyon andUð1Þ gauge field as longitudinal fluctuations and the velocity as a transverse
fluctuation of an arbitrary dimensional D-brane are considered as boundary deformations of a closed

superstring free action. The path integral approachwill be applied to calculate the corresponding generalized

boundary states using supersymmetrized boundary actions. Obtaining the disk partition functions from the

boundary states and studying the effect of tachyon condensation on both of them in the Neveu-Schwarz-

Neveu-Schwarz and Ramond-Ramond sectors, leads to results that differ from the established ones.

DOI: 10.1103/PhysRevD.85.086011 PACS numbers: 11.25.�w, 11.25.Hf

I. INTRODUCTION

D-branes, as unavoidable objects of string theory, can be
studied through two different approaches. On one hand, we
can regard D-branes as open strings boundaries because
open strings are quantum excitations ofD-branes [1,2]. On
the other hand, since the boundary itself shows the creation
out of vacuum [3], we can provide any D-brane with a
boundary state that represents the closed string creation
and shows the coupling of all closed string states to the
D-brane [4].

The Uð1Þ gauge field (photon) and tachyon are two
important states in open string spectrum so that the former
appears because of the ending of open strings on the
D-brane, and the latter points out the instability of the
D-brane. These are in fact fluctuations along the D-brane
world volume while the D-brane itself as a dynamic object
can be influenced by transverse fluctuations, too. These
transverse fluctuations, which are equivalent to taking into
account scalar fields from the world sheet point of view [5],
can be interpreted as D-brane velocity. Boundary states
corresponding to each of these deformations (longitudinal
and transverse) have been investigated, separately, in dif-
ferent papers [3,6–17]. But our main task in this article
is taking into account these longitudinal and transverse
fluctuations simultaneously as supersymmetrized deforma-
tions of the original theory and obtaining more generalized
boundary states by the path integral method.

Actually, open strings ending on bosonic and non-BPS
D-branes (Dp-branes with odd dimensions in the type IIA
theory and even dimensions in the type IIB theory), and also
stretched between D �D-branes, contain tachyons that make
these systems unstable. Because of the tachyon influence,
an unstable D-brane decays to lower dimensional configu-
rations, and this process is called tachyon condensation
[18–21]. During this process the negative energy density
of the tachyon potential at its minimum point, cancels the
tension of the D-brane (or D-branes) [22], and the final
product is a closed string vacuum without a D-brane or
stable lower dimensional D-branes [23,24].

Studying tachyon condensation is possible via two main
tools, open string field theory [25–27] and boundary string
field theory [18,28–33]. The discussion about tachyon
condensation using boundary state formalism, which is
our approach in this article, is closely related to the latter
because the boundary state normalization factor corre-
sponds to the disk partition function, which is the main
component of the latter approach.
In our previous paper [11] we have also considered at the

same time the presence of theUð1Þ gauge field, the tachyon
field, and the velocity of the Dp-brane, but the procedure
of calculating the boundary state was completely different.
Besides, in [11] the main goal was calculating the cylin-
drical amplitude between two Dp1 �Dp2-branes while in
this article we are interested in disk partition functions and
the effect of tachyon condensation on them.
So in this article we consider a Uð1Þ gauge field and

tachyon both living on a Dp-brane world volume with
arbitrary dimension. Then, we let the Dp-brane have ve-
locity along normal directions to its world volume. Each
one of these longitudinal and transverse fluctuations will be
added as a boundary action to the free action of the theory.
Then, we will introduce superfields, bosonic and fermionic
boundary coordinates, and boundary superderivatives to
find the supersymmetrized form of the mentioned defor-
mations, which is one of the goals of this article. Having
boundary actions, bosonic and fermionic boundary states
are calculated by the path integral approach. The profound
relation between the boundary state and the disk partition
function will help us to find the Neveu-Schwarz-Neveu-
Schwarz (NSNS) and Ramond-Ramond (RR) partition
functions. Finally, the effect of the tachyon and its con-
densation on boundary states will be investigated.
Simultaneous consideration of longitudinal and trans-

verse fluctuations (in spite of some technical difficulties),
studied in the framework of superstring theory and taking
into account zero modes of boundary actions and their role
in the boundary state, are the main distinctions from the
conventional literature. This generality has caused interest-
ing deviations from standard results, both in the boundary
state and the tachyon condensation discussion, to appear.
Briefly, the disk partition function (as the normalization*z.rezaei@aut.ac.ir
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factor of the boundary state) lacks the conventional depen-
dence on the tachyon, and it causes the process of tachyon
condensation to be different. In fact, during tachyon con-
densation the dimensional reduction of the Dp-brane
occurs but the tachyon does not completely vanish and
affects the boundary state of the newly constructed
D-brane in the form of a constant factor.

II. BULK ACTIONAND BASIS BOUNDARY STATES

In order to calculate the full boundary state of a moving
Dp-brane in the presence of a background tachyon and U(1)
gauge field, the full sigma model action of the closed super-
string is needed. This action can be divided into two parts,
bulk andboundary. The boundary actionswill be investigated
comprehensively in the next section. Bulk action actually is
the superstring free action in d ¼ 10 dimensional spacetime,
and its form in terms of superfield Y� is

S ¼ � 1

4��0
Z
�
dzd�zd#d �#g��DY� �DY�; (1)

where

z ¼ �þ i�; �z ¼ �� i�;

and

# ¼ #þ þ i#�; �# ¼ #þ � i#�:

(�, �) and (#þ,#�) are bosonic and Grassmann coordinates
of the world sheet �, respectively [34]. D and �D are super-
derivatives that can be shown as

D ¼ i
@

@ �#
þ 1

2
�#
@

@z
�D ¼ i

@

@#
þ 1

2
#

@

@�z
:

The superfield Y� is defined in terms of spacetime coordi-
nates X� and their fermionic partners c �

Y� ¼ X� þ #c �
þ þ i� �#c �� þ i# �#B�; (2)

where c �
þ and c �� are the components of the doublet c �

c � ¼ c �
þ

c ��

� �
:

Combining all the above relations, superstring action (1) can
be expressed in the Ramond-Neveu-Schwarz formulation as
follows:

S ¼ � 1

4��0
Z
�
d2�ðg��@aX

�@aX� � ig��
�c ��a@ac

�Þ;
(3)

where �’s are Dirac matrices in two dimensions and g�� is

constant. X� and c � as the solution of closed superstring
equations of motion are defined in terms of their oscillating
and zero modes as

X�ð�; �Þ ¼ x
�
0 þ 2�0p��

þ
ffiffiffiffiffi
�0

2

s X
m>0

m�1=2ðx�me2im� þ �x
�
me�2im�Þ; (4)

c �
þ ¼ X

m>0

f ~c �
me�2imð�þ�Þ þ ~c ��me2imð�þ�Þg; (5)

c �� ¼ X
m>0

fc �
me�2imð���Þ þ c ��me2imð���Þg: (6)

In the expansion (4) p� is the closed superstring momentum
and, x and �x are linear combinations of the bosonic oscillators
a and ~a

xm ¼ ame
�2im� þ ~ayme2im�;

�xm ¼ ayme2im� þ ~ame
�2im�;

(7)

where the standard harmonic oscillators að~aÞ and ayð~ayÞ are
related to annihilation and creation operators �ð~�Þ and
�yð~�yÞ in the following manner:

a
�
m ¼ iffiffiffiffi

m
p �

�
m; a

y�
m ¼ �iffiffiffiffi

m
p �

��m;

~a
�
m ¼ iffiffiffiffi

m
p ~�

�
m; ~a

y�
m ¼ �iffiffiffiffi

m
p ~�

��m:

Also, ~c �
mð ~c ��mÞ and c �

mðc ��mÞ are fermionic oscillators in
(5) and (6). Defining 	� as the boundary fermion, it should
be written as a linear combination of c �

þ and c ��
	� ¼ c �

þ þ i�c ��: (8)

By considering the following oscillating form for 	�

	� ¼ X
m>0

ð	�me�2im� þ �	�me2im�Þ; (9)

its components 	
�
m and �	

�
m are defined as a combination of

fermionic oscillators

�	
�
m ¼ ~c �y

m e2im� þ i�c �
me�2im�;

	
�
m ¼ ~c �

me�2im� � i�c �y
m e2im�;

(10)

in analogy with (7) for the bosonic part. The relations be-
tween fermionic oscillators are

~c ��m ¼ ~c �y
m ; c ��m ¼ �c �y

m :

Equations (7) and (10) can be considered as the eigenvalue
equations [3], and the corresponding eigenstates for
� ¼ 0 are

jx; �xi¼ Y1
m¼1

exp

�
�1

2
�xmxm�aym~aymþaymxmþ �xm~a

y
m

�
jvaci

(11)

as the bosonic state and

j	; �	i ¼ Y1
m¼1

exp

�
� 1

2
�	m	m þ i�c y

m
~c y
m

þ c y
m	m � i� �	m ~c y

m

�
jvaci (12)

as the fermionic state. Actually, these states are basis bound-
ary states resulting from the action (3) which is not accom-
panied by any deformations. These sets of basis boundary
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states can be used tomakemore complicated boundary states
related to nontrivial backgrounds that couple to the original
theory.

Before introducing boundary actions coupled to the
original theory we need to determine the world sheet
boundary. Here, we set the boundary of the closed string
world sheet at � ¼ 0 and #� ¼ 0 so the coordinates of this
boundary are (�, #þ). Besides, tangential and normal
boundary derivatives are

Dþ �Djð�¼0;#�¼0Þ � Dt ¼ i@#þ þ 1

2
#þ@�;

D� �Djð�¼0;#�¼0Þ � Dn ¼ �@#� � i

2
#þ@�; (13)

which we need in the next section to couple the boundary
deformations to the theory.

III. BOUNDARYACTIONS

After writing the supersymmetrized free action, (3), to
have generalized boundary states we should add boundary
actions corresponding to boundary deformations. These
boundary actions will be supersymmetrized by construc-
tion. As mentioned before, these deformations are open
string tachyon, an Uð1Þ gauge field and the velocity of
the Dp-brane so that the former fields are parallel to the
Dp-brane while the latter is normal to it. We show the
directions along the Dp-brane with X� where � 2
f0; 1; . . . ; pg and the directions perpendicular to the
Dp-brane with Xi so that i 2 fpþ 1; . . . ; d� 1g. p and d
respectively are the Dp-brane and spacetime dimensions.
Also, hereafter we put �0 ¼ 1 for further convenience where
wewant to compare bosonic and fermionic partition functions.

A. Photon

Photons are massless particles and therefore an impor-
tant part of the open string spectrum. Since deformations
related to open string states couple to the original theory
via boundary terms, the bosonic case vector potential A�

(photon) of the gauge field Uð1Þ couples to the closed
string world sheet such as SF � R

@� d�F�
X
�@�X


. In

this action F�
 is the field strength of A� and @� is

derivative along the boundary. Also, @� shows the bound-
ary of theworld sheet. Since theUð1Þ gauge field originates
from the ending of the open string on theDp-brane, so F is
an antisymmetric ðpþ 1Þ � ðpþ 1Þ matrix with compo-
nents along the X� directions.

In analogy with the above bosonic SF, by substituting
superfield Y� instead of X� and tangential superderivative
Dt instead of @�, we can write the supersymmetric form of
SF as

SF ¼ 1

2�

Z
@�

d�d#þF�
Y
�DtY


:

Now we make use of the complete form of superfield Y�,
(2), and perform Grassmannian integration over #þ to find
the explicit supersymmetric form of SF as the follows:

SF ¼ 1

2�

Z
@�

d�F�
ðX�@�X

 þ i	�	
Þ; (14)

where 	 is the boundary fermion. Expansions of X and 	 in
terms of their oscillators help us to write the following
bosonic and fermionic forms of photon boundary action:

SbF ¼ i
X
m>0

F�
 �x
�
mx



m; (15)

SfF ¼ i
X
r>0

F�

�	�r 	



r : (16)

Upper indices b and f in (15) and (16) stand for bosonic
and fermionic, respectively. The index F indicates that the
boundary action is related to the Uð1Þ gauge field. The
mode number m in the bosonic part runs over the integers
while the mode number r in the fermionic part runs over
the integers in the R sector and half-integers in the NS
sector. In the bosonic part there is no contribution of zero
modes but since r chooses integers in the R sector of the
fermionic part, there is a zero mode contribution in the
boundary action from this sector as

S0F ¼ iF�

�	�0 	



0 : (17)

B. Velocity

To obtain the boundary state corresponding to a moving
Dp-brane, the boundary state in the presence of a sta-
tionary Dp-brane can be obtained and then be affected
by the boost operator [7]. However, there is another equiva-
lent method [13] in which the Dp-brane velocity is
considered as transverse fluctuations to the Dp-brane and
so can be added as a boundary term to the original action
of the theory. Accordingly, the boundary action due to
the Dp-brane velocity in the bosonic case is SV �R
@� d�X0Vi@�X

i, with Vi the Dp-brane velocity along

the Xi direction and @� the normal derivative to the bound-
ary. Consequently, its supersymmetric form can be written
by analogy as

SV ¼ 1

2�

Z
@�

d�d#þY0ViDnY
i;

whereDn is normal superderivative to the boundary. When
we use the complete form of Y�, (2), and Dn, (13), the
supersymmetric SV is given by

SV ¼ 1

2�

Z
@�

d�ViðX0@�X
i

� iðc 0þ þ i�c 0�Þðc iþ � i�c i�ÞÞ: (18)

Careful calculation gives the velocity action in terms of
oscillating modes in the bosonic and fermionic sectors as
the following forms:

SbV ¼ i

2
Vi

X
m>0

f �x0mð~aiym � aimÞ þ ðaiym � ~aimÞx0mg; (19)
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SfV ¼� i

2
Vi

X
r>0

f �	0rð ~c i
rþ i�c iy

r Þ�ð ~c iy
r � i�c i

rÞ	0rg: (20)

Contribution of zero modes in the velocity action limits to
the bosonic part because the equality of 	00 ¼ �	00 causes

zero mode terms in the R sector of the fermionic part to
cancel each other, so

S0V ¼ Vix00p
i; (21)

according to (4).

C. Tachyon

Tachyon is an inevitable part of the bosonic open and
closed string spectrum. Although in superstring theories
closed string tachyons are removed by the Gliozzi, Scherk
and Olive projection, there are still combinations in these
theories that include tachyon. What we want to do here is
consider the open string tachyon as a deformation to the
original theory that appears as a coupling to the boundary
of the closed string world sheet. This coupling in the
bosonic case is ST � R

@� d�TðXÞ, where TðXÞ is the

tachyon profile. In superstring theory, we introduce

�� ¼ x� þ #�
�
þ þ i� �#��� þ i# �#B� (22)

as an auxiliary superfield in which x� and �� are analo-
gous to X� and c � in the main superfield Y�. By consid-
ering TðYÞ as a function of superfield Y�, the
corresponding action can be written in the following form:

ST ¼ 1

2

Z
d�d#þð�Dt�þ TðYÞ�Þ;

so thatDt is the tangential derivative to the boundary. After
expanding TðYÞ, using the � andDt relations, (22) and (13)
, and applying the Grassmannian integration over #þ, ST is
obtained as

ST ¼ 1

2

Z
@�

d�ðiT2 þ ð	�@�TÞ@�1
� ð	�@�TÞÞ: (23)

Since the components of the auxiliary field do not appear in
the bulk action, they can completely be eliminated by their
equations of motion. This fact has been applied to obtain
(23). To have a Gaussian integral we consider a linear
profile for the tachyon, i.e. T2ðXÞ ¼ X�u��X

�, so that

u�� is a constant symmetric matrix. @�1
� actually is a

Green function that by using its following form in terms
of the sign function �ðxÞ,

@�1
� fð�Þ ¼ 1

2

Z
d�0�ð�� �0Þfð�0Þ;

�ðxÞ ¼
��1 x < 0

1 x > 0;

the bosonic and fermionic parts of the tachyon action are
derived in terms of oscillators as

SbT ¼ i
X
m>0

�u�

2m

�x�mx


m; (24)

SfT ¼ i
X
r>0

�u�

2r

�	�r 	


r : (25)

Because the tachyon lives on the Dp-brane world volume,
u is a ðpþ 1Þ � ðpþ 1Þmatrix that has components along
the X� directions.
Furthermore, just the bosonic part contributes in the zero

mode action as

S0T ¼ i�

2
u�
 �x

�
0 x



0 : (26)

It seems that there is a contribution of zero modes in the R
sector in which r is an integer. But careful calculation of
(23) for r ¼ r0 ¼ 0 shows that

R
�
0 d�ð	0 þ �	0Þ 12 �R

�
0 d�0�ð�� �0Þð	0 þ �	0Þ is equal to zero. So the fermi-

onic part has no role in the tachyon zero mode action.

IV. BOUNDARY STATES AND DISK PARTITION
FUNCTIONS

For an arbitrary boundary action Sboundary, bosonic and

fermionic boundary states are defined as

jB;Sbboundaryibosonic ¼
Z

D½x; �x�eiSbboundary jx; �xi; (27)

jB;Sfboundaryifermionic ¼
Z

D½	; �	�eiSfboundary j	; �	i; (28)

where jx; �xi and j	; �	i are basis bosonic, (11), and fermi-
onic, (12), boundary states, respectively. Boundary states
(27) and (28) are due to inclusion of external background
fields which present in the form of boundary terms added to
the original action. These boundary terms are called de-
formations because they disturb the conformal field theory
properties of the world sheet. D½x; �x� and D½	; �	� show the
path integral over x, �x, 	, and �	.
To write the total boundary action we should add the

boundary actions corresponding to the boundary deforma-
tions, (15)–(17), (19)–(21), and (24)–(26). Moreover, the
bulk action itself contributes to the boundary. The oscillat-
ing part of this contribution helped us to form basis bound-
ary states jx; �xi and j	; �	i, and the zero mode part is
included in the following boundary actions:

Sbboundary ¼ SbF;T;V

¼ Vx00p
i0 þ i�

2
u�
 �x

�
0 x



0 � 1

2
g��x

�
0 p

�

þ i
X
m>0

F�
 �x
�
mx



m þ i

X
m>0

�u�

2m

�x�mx


m

þ i

2
V
X
m>0

f �x0mð~ai0ym � a
i0
mÞ þ ðai0ym � ~a

i0
mÞx0mg;

(29)
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Sfboundary ¼ SfF;T;V

¼ iF�

�	�0 	



0 þ i

X
r>0

F�

�	�r 	



r þ i

X
r>0

�u�

2r

�	�r 	


r

� i

2
V
X
r>0

f �	0rð ~c i0
r þ i�c i0y

r Þ

� ð ~c i0y
r � i�c i0

r Þ	0rg: (30)

The third term in (29) is the contribution of the bulk to the
boundary. We have supposed that the Dp-brane moves
with the velocity V along the Xi0 direction, and the other
components of Vi are zero. Therefore, V and i0 have
appeared in (29) and (30).
Boundary actions (29) and (30) help us to calculate the

bosonic and fermionic boundary states according to (27)
and (28):

jB;SbF;T;Vibosonic ¼
Y
m¼1

½detð�2RðmÞÞ��1 expð� X1
m¼1

aym � SðmÞ � ~aymÞjvaci �
Tp

ffiffiffiffiffiffiffiffiffiffi
2pþ1

p
ffiffiffiffiffiffiffiffiffi
detu

p
Z

dp�

� exp

�
� 1

2
PTu�1P

�

ðxi00 � Vx00 � yi0Þ � Y

i0�i0


ðxi00 � yi
0 ÞY

�

jp�iY
i0�i0

jpi0 ¼ 0ijpi0 ¼ Vp0i; (31)

jB; SfF;T;Vifermionic ¼ Y
r>0

½detð�2RðrÞÞ�

� expði�X1
r>0

c y
r � SðrÞ � ~c y

r Þjvac; 	0i:

(32)

In these boundary states, matrices R and S are

R�� ¼ � 1

2
g�� � F�



�
�




� � �u�


2r

�
�




� ; (33)

S��ðrÞ ¼ V2

4
ðR�1

ðrÞ Þ00
i0
�


i0
� þ ðR�1

ðrÞ Þ�

�
�




� þ g��; (34)

where r ¼ m in the bosonic case and the integer or half-
integer in the R or NS sectors of the fermionic case,
respectively. The vector P in the bosonic boundary state
(31) is defined in terms of the velocity of theDp-brane and
the momenta of closed superstring as

P� ¼ Vpi0
0
� � 1

2p�:

The bosonic boundary state, (31), consists of two oscillat-
ing and zero mode parts. The first line in (31) with the
infinite determinant and the exponential factor is the con-
tribution of oscillators which act on the jvaci of the
oscillators. The remaining part of (31) belongs to the
zero modes with some constant factors, two delta functions
which have been included to determine the position of the
Dp-brane and a momentum dependent exponential which
comes from taking the zero mode action into account. By
integration over the momenta we consider the effect of all
momentum components along the X� directions since P�

are parallel to these directions.
Equation (32) indicates the fermionic boundary state.

Notice that the effect of the zero mode action S0F ¼
iF�


�	�0 	


0 on the boundary state appears as a modification

of the fermionic vacuum from jvaci to jvac; 	0i. Since our
goal in this section is calculating the disk partition func-
tion, which is obtained by projecting vacuum onto bra-

vacuum, the only state which survives is jvac; 	0 ¼ 0i.
Therefore, we do not study the explicit form of jvac; 	0i.
In fact, when S0F acts on the fermionic vacuum, the poly-
nomials of the � matrices appear which affect the spin
structure of the boundary state and is discussed in different
references [3].
When all the background fields and the velocity are set

to zero, ðR�1Þ�
 ¼ �2g�
 and hence S�� decomposes

into two parts, S�
 ¼ �g�
 and Sij ¼ gij. Then, this

boundary state belongs to a stationary Dp-brane without
any background fields and shows that the directions
X�, � ¼ f0; 1; . . . ; pg, and Xi, � ¼ fpþ 1; . . . ; d� 1g,
obey Neumann and Dirichlet boundary conditions, respec-
tively [9].
Since in the closed string theory, the disk partition

function represents propagation of a closed string from
the boundary of the disk and then its disappearance, so
there should be a profound relation between the boundary
state and the disk partition function. This relationship can
be expressed as [35]

Z Sboundary ¼ hvacjB;Sboundaryi: (35)

The index Sboundary indicates that the partition function is

corresponding to the boundary action.
Therefore, by being equipped with the generalized

bosonic and fermionic boundary states from (31) and (32)
, the corresponding disk partition functions are attainable
according to (35). The bosonic disk partition function is

Z b
disk ¼

Tp

ffiffiffiffiffiffiffiffiffiffi
2pþ1

p
ffiffiffiffiffiffiffiffiffi
detu

p Y
m>0

½detð�2RðmÞÞ��1

�
Z

dp� exp

�
� 1

2
PTu�1P

�
: (36)

The partition function (36) has the factors 1=
ffiffiffiffiffiffiffiffiffi
detu

p
and the

infinite determinant in common with conventional partition
functions [15]. A significant difference is the presence
of the exponential factor of momenta, which is due to
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inclusion of the zeromode parts of the boundary action [first
three terms in (29)]. By performing the integration, the
bosonic partition function takes the form

Z b
disk ¼

Tp

ffiffiffiffiffiffiffiffiffiffi
2pþ1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�Þpþ1
p

2ðV2 � 1=2Þ
Y
m>0

½detð�2RðmÞÞ��1: (37)

After the integration over the momenta it is seen that the
velocity has appeared as a coefficient and the factor

1=
ffiffiffiffiffiffiffiffiffi
detu

p
has disappeared contrary to the case of a stationary

Dp-brane [15]. Actually, in the absence of velocity, just the
tachyon contributes to the zero mode boundary action and

affects the partition function by the factor 1=
ffiffiffiffiffiffiffiffiffi
detu

p
. But

with the presence of velocity in the zero mode boundary

action, the factor
ffiffiffiffiffiffiffiffiffi
detu

p
appears in the partition function

which cancels the former.
Also, in the same manner fermionic partition function is

derived as

Z f
disk ¼

Y
r>0

½detð�2RðrÞÞ�; (38)

in which r is the integer in the RR sector and the half-
integer in the NSNS sector. As is obvious, these bosonic
and fermionic partition functions actually are the coeffi-
cients of the boundary states (31) and (32).

V. TACHYON CONDENSATION

As previously mentioned, the presence of open string
tachyon can be interpreted as D-brane instability and
shows that we have not chosen a proper vacuum for per-
turbative expansion. In the other language, since our non-
linear sigma model has broken the conformal invariance
the renormalization group (RG) flow starts from a confor-
mal fixed point and leaves for another fixed point. This RG
flow occurs under the influence of tachyon, which is a
relevant operator.

The tachyon potential has a minimum for TðXÞ tending
to infinity [24] that for a profile of the form T2ðXÞ ¼
u��X

�X� is equivalent to u ! 1. The transition from

the UV fixed point that corresponds to the presence of an
unstable D-brane to the IR fixed point by tachyon con-
densation is accompanied by the decay of an unstable
D-brane to a stable vacuum or a stable D-brane. In the
conventional literature, the linear evolution of a single
parameter u is responsible for this RG flow. Here, we
have instead a multiparameter situation that is implied by
the u�� matrix. Since we work in a flat spacetime, by

writing down the beta functions it will be clear that the
condensation process is independent in each coordinate.
This means condensation in one direction never stimulates
condensation in the other directions. It is different in
curved backgrounds.

Endowed with the explicit form of the boundary states
and partition functions, it seems reasonable to study the
effect of tachyon condensation on them. Apart from the

normalization factors of the boundary states (31) and (32),
which are partition functions, the dependence of the
boundary states on the parameters u and F is summarized
in the matrix S, (34). It is immediately clear what happens
to this matrix in the limit of infinite u. It will result in
SðrÞ ! �g.
In order to understand this result better, suppose F ¼

V ¼ 0. In this artificial situation consider a Dp-brane with
a single dimensional tachyon field, upp, along the Xp

direction switched on, so

RðrÞ�
 ¼ � 1

2
g�
 � upp

2r

p
�


p

;

SðrÞ�� ¼ ðR�1
ðrÞ Þ�

�

�



� þ g��;

and

S ! gij ��g�0
0 �
��
�g

2
� u

2r

��1 þ g

�
pp
:

We have decomposed the� and � indices into three parts: i
and j show the perpendicular directions to the Dp-brane,
�0 and 
0 are used for directions parallel to the Dp-brane
world volume except Xp, and the index p shows the Xp

direction. Therefore, the matrix S with and without the
influence of the tachyon will be

S !
�
gij ��g�0
0 � �gpp u ! 0
gij ��g�0
0 � þgpp u ! 1:

Thus, with the change of the sign of gpp, obviously, the

Neumann boundary condition has been changed into a
Dirichlet boundary condition. The newly generated object
must therefore be a Dðp� 1Þ-brane. Now if in a more
general situation we consider the tachyon field to have
components along all the directions of theDp-brane world
volume (i.e. u�
 where �, 
 ¼ f0; 1; . . . ; pg), in the limit

u ! 1 all the pþ 1 Neumann boundary conditions con-
vert to Dirichlet boundary conditions

S !
�
gij ��g�
 u ! 0
gij � g�
 u ! 1:

This means that our Dp-brane has lost its world volume
and has reduced to a D-instanton. Since the matrix S has
the same form in bosonic and fermionic boundary states
and the investigations show the same results for integer and
half-integer r, these arguments are valid for both the
bosonic and fermionic parts.
In the next step in order to complete the tachyon con-

densation discussion we focus on the influence of the
tachyon field on the partition functions. As mentioned
before, our tachyon background generally has components
along all the directions of the Dp-brane world volume. In
other words, for a Dp-brane, u is a ðpþ 1Þ � ðpþ 1Þ
matrix, as F is. Without loss of generality consider u as a
diagonal matrix. Here, we first study the effect of tachyon
condensation on the bosonic partition function then the
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method would be applied to the fermionic partition func-
tions in the RR and NSNS sectors, separately.

The only factor in (37) that includes the tachyon is
½detð�2RðmÞÞ��1. In the first step suppose that the compo-

nent upp tends to infinity

lim
upp!1

Y
m>1

det

�
g�� þ

�
2F�
 þ u�


m

�

�
�




�

��1

ðpþ1Þ�ðpþ1Þ

¼ lim
upp!1

Y
m>1

det

�
g�0�0 þ

�
2F�0
0 þ u�0
0

m

�

�0
�0



0
�0

��1

p�p

�
�
upp
m

��1
(39)

where

�0; �0 2 f0; 1; . . . ; dg � fpg and �0;


0 2 f0; 1; . . . ; p� 1g:
This means that when upp ! 1, ½detð�2RðmÞÞ��1 is

changed to another determinant which has lost its p
dimension and a factor of ðupp=mÞ�1 has appeared which

is equal to
ffiffiffiffiffiffiffiffi
upp

p
after regularization. So u�0
0 and F�0
0 are

symmetric and antisymmetric p� p matrices, respec-
tively. Applying the limit upp ! 1 after regularization

results in an infinite answer, which will be discussed later.
As we continue this procedure, each time by sending any
u�
 component to infinity, the corresponding dimension of

the determinant is reduced and a factor of ðu�
=mÞ�1

presents. Finally, after a successive process, when all the
components of u are tending to infinity, the following
relation is obtained:

lim
u!1

Y
m>1

det

�
g�� þ

�
2F�
 þ u�


m

�

�
�




�

��1

ðpþ1Þ�ðpþ1Þ

¼ lim
u!1

Y
m>1

ðdetg0Þ�1

�
det

u

m

��1

¼ lim
u!1

ffiffiffiffiffiffiffiffiffiffiffi
detg0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þpþ1 detu

q
; (40)

where the last equality is obtained after zeta function
regularization and by g0 we mean the matrix of gij ’s.

NSNS sector
To complete the tachyon condensation process we have

to study the fermionic partition function, too. The limit
u ! 1 of the fermionic partition function, (38), in the
NSNS sector that r is the half-integer, leads to the follow-
ing relation:

lim
u!1

Y
r¼1=2

det

�
g�� þ

�
2F�
 þ u�


r

�

�
�




�

�
ðpþ1Þ�ðpþ1Þ

¼ lim
u!1

Y
r¼1=2

ðdetg0Þ Y
r¼1=2

�
det

u

r

�
¼ lim

u!1
ffiffiffiffiffiffiffiffiffi
detu

p
; (41)

where again the zeta function regularization has performed
for the last equality. Here, because r is the half-integer,

Q
r¼1=2ðdetg0Þ ¼ 1. Therefore, the behavior of the total

disk partition function when u ! 1 in the NSNS sector
as a combination of the bosonic, (37) and (40), and fermi-
onic, (41), parts is given by

Z NSNS
disk ¼ lim

u!1
Tpð2�Þpþ1

ffiffiffiffiffiffiffiffiffiffi
2pþ1

p

2ðV2 � 1=2Þ
ffiffiffiffiffiffiffiffiffiffiffi
detg0

q
detu: (42)

The relation between a Dp-brane and a Dq-brane ten-

sions is Tp�q ¼ ð2� ffiffiffiffiffi
�0p ÞqTp. This is correct for D-branes

in bosonic string theory and also BPS branes in superstring
theories. But tensions of non-BPS branes are larger by a

factor
ffiffiffi
2

p
with respect to BPS branes [24]. So the relation

between tensions of a BPS Dp-brane and a non-BPS

Dðp� 1Þ-brane is ~Tp�1 ¼ 2�
ffiffiffiffiffiffiffiffi
2�0p

Tp, where ~T shows

the tension of a non-BPS brane. According to this relation
and the point that in this article �0 ¼ 1, we can read the
tension of a non-BPS D0-brane from (42) as

~T 0 ¼ ð ffiffiffi
2

p Þpð2�ÞpTp:

There is an interpretation for this result according to the
proposed system in this article. We can say that at the
beginning there is a non-BPS Dp-brane which is unstable
in all pþ 1 dimensions of its world volume due to the
extension of u in all of these pþ 1 directions. In the limit
u ! 1, condensation of the Dp-brane starts in all direc-
tions of its world volume. Depending on which compo-
nents of u tend to infinity, the corresponding dimensions of
the Dp-brane decrease. The resulting lower dimensional
D-brane is still non-BPS and unstable because some com-
ponents of u are still available in the remaining dimen-
sions. When the p components of u tend to infinity, the
Dp-brane loses its p spatial dimensions and a non-BPS
D0-brane remains. By considering the limit upþ1;pþ1 ! 1
for the last component of u, the non-BPS D0-brane
changes to a BPS D-instanton with tension

T�1 ¼
~T02�ffiffiffi

2
p

which is understandable from (42). In fact, the partition
function (42) can be written in the following form:

Z NSNS
disk ¼ lim

u!1
T�1

ðV2 � 1=2Þ
ffiffiffiffiffiffiffiffiffiffiffi
detg0

q
detu � T �1: (43)

The factor detu in the partition function (43), which is
absent in conventional partition functions, stems from
considering the contribution of zero modes in boundary
interactions. As an explanation, detu can be included in
D-instanton tension and defines an effective tension for it,
T �1. So the limit u ! 1 can be translated into infinite
tension. In other words, after tachyon condensation the
resulting D-instanton has an infinite tension that is equiva-
lent to say that even large interactions have no influence on
the brane [36]. It means that no higher vibration modes are
excited, and one expects the brane to appear concentrated,
or collapsed, in its own center of mass [37].
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RR sector
In the RR sector that r runs over integers,Q
r¼1½detð�2RðrÞÞ� in the fermionic partition function can-

cels
Q

m¼1½detð�2RðmÞÞ��1 in the bosonic one. So the total

disk partition function in this sector is just constructed by
the zero mode part, (37), as follows:

Z RR
disk ¼

Tp

ffiffiffiffiffiffiffiffiffiffi
2pþ1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�Þpþ1
p

2ðV2 � 1=2Þ : (44)

It is seen that background fields, tachyon and gauge fields,
have no contribution in this partition function. So, tachyon
condensation does not change the form of the disk partition
function in the RR sector. In other words, only the NSNS
sector states are involved in the phenomenon of tachyon
condensation.

So we studied the behavior of a kind of generalized
boundary state under the tachyon condensation process.
The process resembles the conventional tachyon conden-
sation process in decreasing the dimension of the
Dp-brane. But because of simultaneous consideration of
all contributions from zero modes in boundary interactions,
a tachyon dependent factor remains and defines an effec-
tive tension for the newly generated D-brane.

VI. SUMMARYAND CONCLUSION

In this article we considered a moving and arbitrary
dimensional D-brane whose background fields such as
open string tachyon and Uð1Þ gauge field live on its world
volume. Then we tried to couple these nonvanishing sur-
face terms (background fields and also Dp-brane velocity)
to the main action of the theory as longitudinal and trans-

verse boundary actions. The definition of the boundary
state in terms of boundary actions helped us to calculate
the boundary states with the path integral approach.
We divided these boundary states into zero and oscillat-

ing modes boundary states so that each part is constructed
by the corresponding action. Inclusion of D-brane velocity
in the problem, which is absent in conventional tachyon
literature, caused our zero mode boundary state to be
different. Since we have taken into account the zero modes
of all boundary deformations as well as the contribution of
the bulk to the boundary action, the dependence of the
partition function on the tachyon differs from conventional
partition functions. In this case, during the tachyon con-
densation process the phenomena of dimensional reduction
of the D-brane and the established relations between
D-branes tensions occur as expected. But a tachyon de-
pendent factor remains in the new partition function and
defines an effective tension for the new lower dimensional
D-brane.
Since we have allowed the tachyon to have components

along all the directions of the Dp-brane world volume,
condensation of all pþ 1 components of tachyon field (i.e.
u) results in a D-instanton with an effective tension that
tends to infinity. This infinite tension can be interpreted as
resistance against disturbances and fluctuations. Also, it is
verified that tachyon condensation is just definable in the
NSNS sector.
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