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We show that the differences between correlators of the critical OðNÞ vector model in three dimensions

and those of the free theory are precisely accounted for by the change of boundary condition on the bulk

scalar of the dual higher spin gauge theory in AdS4. Thus, the conjectured duality between Vasiliev’s

theory and the critical OðNÞ model follows, order by order in 1=N, from the duality with free field theory

on the boundary.
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I. INTRODUCTION

One of the simplest nontrivial examples of the anti–
de Sitter/conformal field theory (AdS/CFT) correspon-
dence [1] is the conjectured duality [2,3] between
Vasiliev’s higher spin gauge theory in AdS4 [4] and OðNÞ
vector models. At the classical level, Vasiliev’s system
gives a set of nonlinear equations of motion for an infinite
set of gauge fields of spins s ¼ 2; 4; 6; . . . and a scalar field
withm2 ¼ �2=R2

AdS.
1 The mass is precisely in the window

which allows a choice of two different boundary conditions
on the bulk scalar field ’, such that the dual operator has
classical dimension � ¼ 1 or � ¼ 2. The bulk theory with
� ¼ 1 boundary condition is conjectured to be dual to the
free theory of N massless scalars �i in three dimensions,
restricted to the OðNÞ singlet sector, whereas the bulk
theory with � ¼ 2 boundary condition is conjectured to
be dual to the critical OðNÞ vector model, which may be
described by the critical point of the SN�1 nonlinear �
model with Lagrangian

L ¼ N

2

�
ð@��iÞ2 þ ~�

�
�i�i � 1

g

��
: (1.1)

Here ~� is a Lagrange multiplier field, and the critical point
is achieved by sending g ! 1. A systematic 1=N expan-
sion of the critical OðNÞ model has been studied in [5,6].
Alternatively, the critical theory may be defined as the IR
fixed point of a relevant ð�i�iÞ2 deformation of the free
theory.

In principle, the bulk Vasiliev’s theory is computable
perturbatively, which corresponds to the 1=N expansion
of the dual OðNÞ vector model. The first such perturbative
computation was carried out in [7,8], and highly nontrivial

agreement of three-point functions between the bulk
and boundary theories has been found at leading order in
1=N, for both � ¼ 1 and � ¼ 2 boundary conditions (see
[9–12] for earlier works, and [13,14] for some new
perspectives).
Eventually, one would like to compute all the n-point

functions from the bulk theory, and have a perturbative
proof of the duality. While the agreement between
Vasiliev’s system with � ¼ 1 boundary condition and the
free OðNÞ theory may not be surprising, given that the free
theory is our only known example of CFTs in dimension
greater than two with exactly conserved higher spin cur-
rents, the duality in the case of � ¼ 2 boundary condition,
which breaks higher spin symmetry in the bulk through
loop effects, has been more mysterious (see [15,16] for
earlier work on this mechanism). This is perhaps also the
more interesting case as the dual CFT is an interacting
theory.
In this paper, we will address the duality in the case of

� ¼ 2 boundary condition. Thanks to a simple factoriza-
tion identity involving the bulk scalar propagators for the
two different boundary conditions, we will give a perturba-
tive argument that the difference between correlators in the
� ¼ 2 and � ¼ 1 theories as computed from the bulk
theory precisely accounts for the difference between those
corresponding correlators in the criticalOðNÞ vector model
and the free theory. The duality in the � ¼ 2 case, to all
order in 1=N, then follows from the duality in the � ¼ 1
casewhere the higher spin symmetry is preserved. This also
clarifies and confirms the breaking of higher spin symmetry
through loops of bulk scalars, which gives a finite mass
renormalization of the bulk higher spin fields through its
mixing with two-particle states involving a higher spin field
and a scalar [15]. In some sense our arguments are an
extension of theLegendre transform relating the two bound-
ary conditions [17,18] to all order in 1=N.
We now begin with the simple examples of tree level

three- and four-point functions, which illustrate our argu-
ment, and then discuss the general n-point functions and
loop corrections.

*sgiombi@pitp.ca
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1This is the spectrum of the so-called minimal bosonic

Vasiliev’s theory. It is a consistent truncation of the more general
nonminimal system, which also includes all odd spins. The dual
of the nonminimal theory is expected to be a UðNÞ vector model,
restricted to the UðNÞ singlet sector.
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II. THREE-POINT FUNCTIONS
WITH A SCALAR OPERATOR

The ‘‘single-trace’’ primary operators in the critical

OðNÞ vector model are the currents JðsÞ, s ¼ 2; 4; . . . of
dimension � ¼ sþ 1þOð1NÞ, and the scalar Lagrange

multiplier field � with � ¼ 2þOð1NÞ.2 Let JðsÞ�1����s
be

the spin s current. By definition it is symmetric and trace-
less in ð�1; � � � ; �sÞ, though not conserved for s > 2 at
finite N. It can be expressed in terms of the fundamental
scalar fields �i as

JðsÞðx; "Þ � JðsÞ�1����s
ðxÞ"�1 � � �"�s ¼ �ifð" � @Q ; " � ~@Þ�i;

(2.1)

where "� is an arbitrary null polarization vector, and the
function fðu; vÞ is given by

fðu; vÞ ¼ eu�v cosð2 ffiffiffiffiffiffi
uv

p Þ: (2.2)

The precise form of fðu; vÞ will not be needed in what
follows. Note that (2.1) and (2.2) represent the free field
expression for the higher spin currents [7], which also

holds in the critical OðNÞ theory. This is because JðsÞ has
classical dimension � ¼ sþ 1 and cannot mix with multi-
trace operators (which have �� s � 2) or operators that
involve � (the scalar operator of classical dimension 2),
and so (2.1) is the correct expression for the spin s primary
operator in the critical theory. In particular, it guarantees

that hJðsÞ�i ¼ 0.
Now consider the three-point function

h�ðx1ÞJðx2ÞJ0ðx3Þi, where J and J0 are two higher spin
operators. At leading order in 1=N, in momentum space,
this is given by the corresponding three-point function
hOðpÞJðqÞJ0ð�p� qÞi in the free OðNÞ theory (here O ¼
�i�i is the� ¼ 1 scalar operator), multiplied by the propa-
gator for �,

D�ðpÞ ¼ h�ðpÞ�ð�pÞi ¼ �jpj: (2.3)

In the bulk,� is dual to the scalar field’with boundary-to-
bulk propagator

K�ðx; ~x0Þ ¼ �ð�Þ
�ð3=2Þ�ð�� 3

2Þ
�

z

ð ~x� ~x0Þ2 þ z2

�
�

(2.4)

with � ¼ 2. Its Fourier transform in ~x is

K�¼2ðp; zÞ ¼
Z

d3xei ~p� ~xK�¼2ðx; ~x0Þ ¼ ze�jpjz: (2.5)

Similarly, the momentum space boundary-to-bulk propaga-
tor for the scalar in the � ¼ 1 case is

K�¼1ðp; zÞ ¼ � z

jpj e
�jpjz; (2.6)

and so

K�¼2ðp; zÞ ¼ �jpjK�¼1ðp; zÞ: (2.7)

Therefore, if we are to replace an external� ¼ 1 scalar line
of the Witten diagram by a � ¼ 2 scalar line, the resulting
boundary correlator in momentum space is multiplied by a
factor of�jpjwherep is the momentum of the correspond-
ing boundary scalar operator. This is precisely the correct
relation between the correlators in the critical and freeOðNÞ
vector models.
The bulk Witten diagrams and the boundary Feynman

diagrams for this three-point function are illustrated in
Figs. 1 and 2 [see [5,7] for detailed discussions of the
1=N expansion of the critical OðNÞ model].
This agreement illustrated in Figs. 1 and 2 also indicates

how higher spin symmetry is broken by the � ¼ 2 bound-
ary condition. While hOJJ0i clearly obeys the Ward iden-
tity due to the conservation of currents J and J0, h�JJ0i
generally violates such Ward identity even at leading order
in 1=N, when J and J0 have different spins. This is because
of the mixing of the divergence of the current with a double

trace operator (here JðsÞ is normalized such that its two-
point function does not scale with N),

@�JðsÞ��1����s�1ðxÞ �
1ffiffiffiffi
N

p X
nþmþs0¼s�1

@n�ðxÞ@mJðs0ÞðxÞ; (2.8)

which may be derived by applying the classical equation of
motion from the critical OðNÞ model Lagrangian.3 An
explicit example is discussed in more detail in the
Appendix.

FIG. 1. Bulk tree level three-point function with � ¼ 2 and
� ¼ 1 boundary conditions.

FIG. 2. The corresponding computation in the critical and free
OðNÞ vector models.

2Here and later on, � will be normalized by a canonical
normalization on its two-point function, which differs from
that of ~� in (1.1).

3Such mixing between the divergence of the current and
double trace operators is explored in detail in [19].
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In the bulk computation, naively, the boundary-to-bulk
propagator is divergence free with respect to the boundary
source, and one might have expected that all correlators are
also divergence free which would contradict (2.8). What
must happen is that the divergence on the boundary-to-bulk
propagator gives a contact term on the boundary, and the
resulting divergence of the three-point function reduces to
the product of two-point functions. This is illustrated in the
following diagram.

III. FOUR-POINT FUNCTIONS
IN THE CRITICAL OðNÞ MODEL

The four-point function

hJðs1Þðx1; "1ÞJðs2Þðx2; "2ÞJðs3Þðx3; "3ÞJðs4Þðx4; "4Þi (3.1)

can be calculated in 1=N expansion, as explained in [5].
We will focus on the difference between this four-point
function and the corresponding four-point function of con-
served currents in the free OðNÞ vector theory. At leading
order in 1=N, we have

�hJðs1ÞJðs2ÞJðs3ÞJðs4Þi � hJðs1ÞJðs2ÞJðs3ÞJðs4Þicritical
� hJðs1ÞJðs2ÞJðs3ÞJðs4Þifree

¼
Z

d3yd3zhJðs1ÞJðs2Þ�ðyÞi
�D�1

� ðy; zÞh�ðzÞJðs3ÞJðs4Þi
þ ð2 $ 3Þ þ ð2 $ 4Þ; (3.2)

where D�1
� ðy; zÞ is the inverse propagator for the

Lagrangian multiplier field � in position space, obtained
from integrating out �i at one-loop (the diagrams contrib-
uting to the four-point function at leading order in 1=N are
depicted in Fig. 3). The right hand side is expressed in
terms of three-point functions in the critical OðNÞ model.

In momentum space, we have (still suppressing the polar-
ization vectors)

�hJðs1Þðp1ÞJðs2Þðp2ÞJðs3Þðp3ÞJðs4Þðp4Þijp1þp2þp3þp4¼0

¼ � 1

jp1 þ p2j hJ
ðs1Þðp1ÞJðs2Þðp2Þ�ð�p1 � p2Þi

� h�ðp1þp2ÞJðs3Þðp3ÞJðs4Þðp4Þiþð2$ 3Þþð2$4Þ:
(3.3)

In the next section, we will see that this structure arises
naturally in the bulk higher spin gauge theory.

IV. FOUR-POINT FUNCTIONS FROM HIGHER
SPIN GAUGE THEORY IN AdS4

Vasiliev’s minimal bosonic higher spin gauge theory in
AdS4 with the ‘‘standard’’ � ¼ 1 boundary condition on
the bulk scalar ’ is believed to be dual to the free OðNÞ
vector theory, whereas the same bulk theory with � ¼ 2
boundary condition on ’ is expected to be dual to the
critical OðNÞ model. In perturbation theory, the boundary
condition affects correlation functions only through a
modification of the bulk scalar propagator [20,21],4

G�ðx; x0Þ ¼ 1

4�2

��

1� �2
; � ¼ 1

coshdðx; x0Þ ; (4.1)

where dðx; x0Þ is the geodesic distance between x and x0,
and� ¼ 1 or 2 is the dimension of the dual scalar operator.
In Poincaré coordinates ð ~x; zÞ, where the AdS4 metric is
written as

ds2 ¼ dz2 þ d~x2

z2
; (4.2)

we have

� ¼ 2zz0

ð ~x� ~x0Þ2 þ z2 þ z02
: (4.3)

The nonlinear bulk equation of motion for the scalar takes
the form

ðh�m2Þ’ðxÞ ¼ J ðxÞ; (4.4)

where J ðxÞ ¼ J ð2ÞðxÞ þ J ð3ÞðxÞ þ � � � is quadratic and
higher order in bulk fields of all spins. The difference
between the boundary four-point function of the � ¼ 1
and � ¼ 2 boundary condition,

�hJðs1ÞJðs2ÞJðs3ÞJðs4Þi; (4.5)

receives the contribution from a scalar intermediate chan-
nel only, and can be computed as

FIG. 3. Diagrams that contribute at leading order in 1=N to the
four-point function.

4For general mass m the bulk scalar propagator is written in
terms of the confluent hypergeometric function. In the special
case of m2 ¼ �2=R2, the expression reduces to elementary
functions.
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�hJðs1Þð ~x1; "1ÞJðs2Þð ~x2; "2ÞJðs3Þð ~x3; "3ÞJðs4Þð ~x4; "4Þi
¼

Z
d4x

ffiffiffiffiffiffiffiffiffi
gðxÞ

q Z
d4x0

ffiffiffiffiffiffiffiffiffiffi
gðx0Þ

q
½G�¼2ðx; x0Þ �G�¼1ðx; x0Þ�

� J ðs1;s2Þðxj ~x1; "1; ~x2; "2ÞJ ðs3;s4Þðx0j ~x3; "3; ~x4; "4Þ
þ ð2 $ 3Þ þ ð2 $ 4Þ: (4.6)

Here J ðs1;s2Þðxj ~x1; "1; ~x2; "2Þ, for instance, is defined as the
variation of the quadratic part J ð2ÞðxÞ of J ðxÞ, evaluated
on the solution of the linearized bulk higher spin equations
of motion, and varied with respect to the boundary sources
for the spin si field at xi with polarization vector "i, i ¼ 1,
2. In particular,

Z
d4x

ffiffiffi
g

p
K�ðx; ~x0ÞJ ðs1;s2Þðxj ~x1; "1; ~x2; "2Þ; (4.7)

where K�ðx; ~x0Þ is the boundary-to-bulk propagator for the
scalar ’, gives the tree level three-point function

hO�ðx0ÞJðs1Þðx1; "1ÞJðs2Þðx2; "2Þifree: (4.8)

We will now Fourier transform the correlators to their
momentum space expressions, and write G�ðp; z; z0Þ the
bulk scalar propagator after Fourier transforming ~x, ~x0 (but
not z, z0), and similarly K�ðp; zÞ the Fourier transformed
boundary-to-bulk propagator. The structure (3.3) will hold
if the following factorization property holds for the differ-
ence of the bulk propagator of two different boundary
conditions,

G�¼2ðp; z; z0Þ �G�¼1ðp; z; z0Þ
¼ � 1

jpjK�¼2ðp; zÞK�¼2ðp; z0Þ: (4.9)

Using

G�¼2ðx; x0Þ �G�¼1ðx; x0Þ

¼ � 1

2�2

zz0

ð ~x� ~x0Þ2 þ ðzþ z0Þ2 ;

G�¼2ðp; z; z0Þ �G�¼1ðp; z; z0Þ ¼ � zz0

jpj e
�jpjðzþz0Þ; (4.10)

and

K�¼2ðx; ~x0Þ ¼ 1

�2

�
z

ð ~x� ~x0Þ2 þ z2

�
2
;

K�¼2ðp; zÞ ¼ ze�jpjz;
(4.11)

(4.9) is easily verified. This shows that the four-point
function computed from the bulk theory with � ¼ 2
boundary condition indeed knows the intermediate� chan-
nel contribution of the critical OðNÞ vector model (see
Fig. 4). Note that our derivation here does not rely on the
details of interactions in Vasiliev’s theory, but only the
structure of bulk scalar propagators. The structure we
find here is somewhat reminiscent of [22].

V. A GENERAL ARGUMENT
FOR n-POINT FUNCTIONS

To begin with, consider an n-point function of higher
spin currents in the criticalOðNÞmodel, without any scalar
operator, written in momentum space as

hJ1ðp1Þ � � � JnðpnÞi: (5.1)

Denote byG a bulk ‘-loop Witten graph, and by hGi�¼2 its
contribution to the n-point boundary correlator with� ¼ 2
boundary condition. Let I be the index set labeling all
internal scalar lines in G. For each subset I 0 � I , let
GI 0 ðfkð1Þi ; kð2Þi gi2I 0 Þ be the Witten graph obtained by cutting
open all scalar lines in I 0, and replace each cut scalar line,
say, the one labeled by i 2 I 0, with a pair of external scalar

FIG. 4. ‘‘Cutting’’ the bulk four-point function by means of the identity (4.9).
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lines with � ¼ 1 boundary condition and momenta kð1Þi ,

kð2Þi . (See Fig. 5.)
Now using

G�¼2ðq; z; z0Þ �G�¼1ðq; z; z0Þ
¼ �jqjK�¼1ðq; zÞK�¼1ð�q; z0Þ; (5.2)

we can write

hGi�¼2 ¼
X
I 0�I

Z Y
i2I 0

d3qið�jqijÞ

� hGI 0 ðfkð1Þi ¼ qi; k
ð2Þ
i ¼ �qigi2I 0 Þi�¼1; (5.3)

where on the right-hand side, hGI 0 i�¼1 is evaluated as a
Witten diagram with � ¼ 1 boundary condition (all inter-
nal scalar lines are replaced by G�¼1 as well). In writing
the above, a delta function imposing momentum conser-
vation is included in each connected correlation function,
and the integration over qi may involve nontrivial loop
integrals after the delta functions are integrated out. The
key observation here is that the 1=N diagrammatic expan-
sion of the critical OðNÞ model admits a decomposition
into diagrams for Wick contractions of currents in the free
theory, sewed together by � propagators in essentially the
same way. If we assume that the duality holds with � ¼ 1
boundary condition, namely, the sum of all Witten
diagrams hGi�¼1 with external legs J1ðp1Þ; � � � ; JnðpnÞ
produces the correct n-point function of the free OðNÞ
theory, then the n-point functions of higher spin currents
of the critical OðNÞ model are precisely reproduced by
summing over hGi�¼2, by virtue of (5.3).

The four-point function discussed in the previous sec-
tions is a special case of this construction. This cutting

procedure works for loop diagrams as well, and relates the
difference between loops of � ¼ 2 and � ¼ 1 scalar
propagators to diagrams in which the loop is cut open
and replaced by two external scalar lines. Note that
G�¼2 �G�¼1 is free of short distance singularity, and
we have assumed that the UV divergences cancel among
loop diagrams in Vasiliev theory with � ¼ 1 boundary
condition, due to higher spin symmetry, which is necessary
for the vanishing of 1=N corrections to correlators in the
free OðNÞ theory. It is also straightforward to generalize
the above construction to include the case where a number
of scalar operators � are inserted into the correlation
function.
Let us illustrate this further with the example of bulk

one-loop correction to the two-point function hJJi of a
higher spin current J. The bulk one-loop diagrams involv-
ing at least a scalar propagator give different contributions
in the case of � ¼ 2 boundary condition as opposed to
� ¼ 1 boundary condition. These diagrams are listed
below.

Here we have assumed some appropriate gauge fixing and
ghost contributions, which do not affect our argument in
relating the� ¼ 1 and� ¼ 2 correlators. We have omitted
tadpole diagrams so far, which are a priori included in the
cutting argument above. Nonetheless, the tadpole diagrams
should vanish by themselves, for the following reason.
While the tadpoles for higher spin fields clearly vanish
by symmetry, the tadpole for the bulk scalar in the � ¼ 1
theory must also vanish provided that the equation of
motion is not renormalized, due to higher spin gauge
symmetry. Changing from � ¼ 1 to � ¼ 2 boundary

condition does not shift the tadpole for the bulk scalar;
this is related to the vanishing of � tadpole in the critical
OðNÞ model, which amounts to tuning to criticality.5

FIG. 5. Cutting procedure: the difference between � ¼ 2 and
� ¼ 1 bulk propagators is replaced by the product of two
propagators to the boundary.

5Note however that the bulk diagrams, after cutting, are not in
one-to-one correspondence with Feynman diagrams for the 1=N
expansion of the critical OðNÞ model by cutting � propagators.
Rather, it is the sum of all bulk diagrams at a given order, with
the same external lines and � ¼ 1 internal scalar propagators,
that agrees with the sum of appropriate diagrams of free Wick
contractions in the boundary theory.
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The following is an example of cutting one internal
scalar line, from which we obtain a four-point tree diagram
with two J’s and two scalar operators on the boundary. The
remaining, uncut, internal propagator involves either the
scalar or higher spin fields.

When the other internal propagator is also a scalar line, it
was a � ¼ 2 propagator to begin with. In reducing it to a
� ¼ 1 propagator, one obtains an additional contribution

that is represented by cutting this scalar line as well. The
result is a product of two three-point functions in this case.

In the criticalOðNÞmodel, the diagrams that give rise to
the first 1=N correction to the two-point function hJJi are
listed below. The contributions from graphs (a), (b) alto-
gether are reproduced by cutting one internal scalar line of
the bulk one-loop diagrams, as explained above. (c) is
reproduced by the bulk contribution from cutting two
internal scalar lines.

Our argument also implies, in particular, that the 1=N
contributions to the anomalous dimensions of the higher
spin currents in the critical OðNÞ model, which can be
computed through the loop corrections to the two-point
functions, are indeed correctly produced by the bulk loop
computation, assuming that the duality with free OðNÞ
theory holds in the case of � ¼ 1 boundary condition.

VI. CONCLUDING REMARKS

The equations of motion of the (parity invariant)
Vasiliev system in AdS4 [4] are highly constrained by
higher spin gauge symmetries and are conceivably not
renormalized with � ¼ 1 boundary condition.6 Assuming
that the bulk tree level diagrams reproduce the correct
n-point functions of the free OðNÞ theory, and that all
loop corrections cancel with � ¼ 1 boundary condition,
our argument then shows that the theory with � ¼ 2
boundary condition has a (UV finite) perturbative

expansion, which order by order matches the 1=N expan-
sion of the critical OðNÞ vector model (where the loops are
built using � propagators).
While the higher spin symmetry is broken by the � ¼ 2

boundary condition, this breaking is controlled by the bulk
coupling constant (or 1=N), and the anomalous dimensions
of the boundary higher spin currents are suppressed by
1=N. Ultimately, one would be interested in bulk theories
in which the masses of the higher spin fields can be lifted
while keeping the gravity coupling weak. Though it is
unclear how to do this within Vasiliev’s framework, which
may require coupling the higher spin gauge fields to matter
fields in some way, we may suspect that a UV finite higher
spin gauge theory could be a useful starting point to under-
stand quantum gravity theories with a standard semiclas-
sical gravity limit.
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APPENDIX: AN EXAMPLE OF HIGHER
SPIN SYMMETRY BREAKING IN THE

THREE-POINT FUNCTION

We have seen that the three-point functions of the scalar

operator and two higher spin currents, hJð0ÞJðsÞJðs0Þi, at
leading order in 1=N in the free OðNÞ and critical OðNÞ
vector models, are related simply by multiplying the propa-
gatorD�ðpÞ of � field in momentum space. From the bulk,
this was seen as due to the difference in the scalar
boundary-to-bulk propagators. When s and s0 are different
spins, say, s > s0, we have argued that the three-point

function h�JðsÞJðs0Þi is not conserved with respect to JðsÞ
at leading order in 1=N, in the critical theory. One may be

puzzled as to why h�@ � JðsÞJðs0Þi is nonzero whereas

hO@ � JðsÞJðs0Þi vanishes in the free theory, since the two
are simply related by a factor D�ðpÞ in momentum space.
This is because the latter is in fact a contact term, and when
transformed into momentum space is analytic at zero
momenta.

In the OðNÞ vector model there are only even spin
currents, and the first nontrivial example of a three-point
function that exhibits higher spin symmetry breaking at
leading order in 1=N would involve spins 4, 2, and 0. For
simplicity, we will consider below the UðNÞ version of the
vector model, and the example of a three-point function
involving currents of spins s ¼ 3, s0 ¼ 1, and the scalar
operator.

The tensor structure of hJð0ÞJð3ÞJð1Þi is uniquely
fixed by conformal symmetry up to normalization, as
explained in [23]. It is useful though to directly compute

hJð0Þð�p1 � p2ÞJð3Þðp1; "1ÞJð1Þðp2; "2Þi in momentum
space. Without loss of generality, the polarization vectors
"1, "2 are assumed to be null here. The result is

Z
d3q

"2 � ð2qþ p2Þf3ð"1 � q; "1 � ðp1 � qÞÞ
q2ðq� p1Þ2ðqþ p2Þ2

(A1)

in the free theory, and the same expression multiplied by
�jp1 þ p2j in the critical theory. Here f3 is the spin 3 part
of the generating function fðu; vÞ defined in Sec. II;
f3ðu; vÞ ¼ 1

6 ðu� vÞðu2 � 14uvþ v2Þ.
Now taking the divergence on the spin 3 current Jð3Þðp1Þ,

one obtains

1

2

Z
d3q"2 � ð2qþ p2Þ

�
hð"1 � q; "1 � ðp1 � qÞÞ
ðq� p1Þ2ðqþ p2Þ2

� hð"1 � ðp1 � qÞ; "1 � qÞ
q2ðqþ p2Þ2

�
(A2)

in the case of the free theory, where hðu; vÞ � u2 �
10uvþ 5v2, and the same result multiplied by �jp1 þ
p2j in the critical theory. The integral of (A2) is the sum of
two terms. The first term is analytic at p1 ¼ 0 or p2 ¼ 0,
when jp1 þ p2j is nonzero; the second term is analytic at
p1 ¼ 0 or p1 þ p2 ¼ 0, when jp1j is nonzero.
Consequently, both give contact terms when Fourier trans-
formed into position space.
If we multiply (A2) by �jp1 þ p2j, however, as in the

critical theory, then we obtain a nonanalytic term

jp1 þ p2j
2

Z
d3q"2 � ð2qþ p2Þ hð"1 � ðp1 � qÞ; "1 � qÞ

q2ðqþ p2Þ2
(A3)

which factorizes into the product of two-point functions

h�ðp1 þ p2Þ�ð�p1 � p2Þi and hJð1Þðp2; "1ÞJð1Þð�p2; "2Þi,
with an additional momentum factor.
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