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We study both the large and small U-duality charge orbits of extremal black holes appearing in D = 5
and D =4 Maxwell-Einstein supergravity theories with symmetric scalar manifolds. We exploit a
formalism based on cubic Jordan algebras and their associated Freudenthal triple systems, in order to
derive the minimal charge representatives, their stabilizers and the associated ‘“moduli spaces.” After
recalling N = 8 maximal supergravity, we consider N' = 2 and /N = 4 theories coupled to an arbitrary
number of vector multiplets, as well as N° = 2 magic, STU, ST? and T3 models. While the STU model
may be considered as part of the general N" = 2 sequence, albeit with an additional triality symmetry, the
ST? and T3 models demand a separate treatment, since their representative Jordan algebras are Euclidean
or only admit nonzero elements of rank 3, respectively. Finally, we also consider minimally coupled

N =2, matter-coupled N = 3, and pure N = 5 theories.
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L. INTRODUCTION
A. Background

A concerted effort has been made to understand the
physically distinct black-hole (BH) solutions appearing
in various four-dimensional supergravity theories. The ex-
tremal solutions typically carry electromagnetic charges
transforming linearly under G4, the D =4 U-duality
group." BHs with charges lying in different orbits of G4
therefore correspond to distinct solutions. Moreover,
thanks to the attractor mechanism [3-7] the entropy of
the extremal BH solutions loses all memory of the scalars
at infinity and is a function of only the charges.
Consequently, the Bekenstein-Hawking [8,9] entropy is
given by a U-duality-invariant quartic in the electromag-
netic charges. Hence, the classification of the U-duality
charge orbits captures many significant features of the
possible BH solutions, which in turn have provided a range
of important string or M-theoretic insights.

We focus on those theories in which the scalars live in
a symmetric coset G,/H,. The orbits of the four-
dimensional /N = 8 [1] and the exceptional octonionic
“magic” N = 2 [10] supergravities were obtained in [11]
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"We work in the classical regime for which the electromag-
netic charges are real valued. Here U-duality G, is referred to as
the “‘continuous’ symmetries of [1]. Their discrete versions are
the nonperturbative U-duality string theory symmetries de-
scribed in [2].
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for both large and small BHs, which have nonvanishing or
vanishing classical entropy, respectively. The large orbits
of the N = 2 Maxwell-Einstein supergravities coupled to
ny vector multiplets, which also include the three nonex-
ceptional magic examples, were analyzed in [11,12]. The
small orbits of the STU model [13-19], which exhibits a
discrete triality, exchanging the roles of S, T and U, over
and above the continuous U-duality group, were found in
[20]. Meanwhile, for the infinite sequence of N = 4, 2,
theories coupled to ny vector multiplets the U-duality-
invariant charge constraints defining the distinct orbits
and their supersymmetry-preserving properties, for both
large and small cases, were obtained in [21,22], and further
discussed in [23,24].

In the present work, we aim at essentially completing
this story in D = 4. In particular, we obtain the small orbits
for the N = 2 R, C, H magic supergravities, N = 2, 4
supergravity coupled to an arbitrary number of vector
multiplets including the special cases of the STU, ST?
and T° models, as well as the minimally coupled
N =2, matter-coupled N =3, and pure N =5
theories.

We begin by repeating the N° = 8 theory as it provides
an instructive example, setting the stage for all the other
cases. We then study both the large and small U-duality BH
charge orbits of the D = 4, N = 4 and N = 2 Maxwell-
Einstein supergravity theories coupled to an arbitrary num-
ber ny of vector multiplets, including the magic theories.
The N = 2 STU model is re-treated as part of the generic
sequence (ny = 3), revealing additional subtleties which
were previously obscured by the triality symmetry. Its
degeneration into the ST? and 73 models is also treated.
A formalism based on cubic Jordan algebras and their
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associated Freudenthal triple systems (FTS) is used to
derive the minimal charge orbit representatives, their sta-
bilizers and the associated ‘“moduli spaces” of attractor
solutions. In particular, we make use of [25-27]. While the
STU model may be considered as part of the general
N = 2 sequence, albeit with an additional triality sym-
metry, the ST? and 7° models demand a separate treatment.
This is due to their representative Jordan algebras being,
in some sense, degenerate: the S7T> Jordan algebra is
Euclidean, as opposed to the Lorentzian nature of the
general sequence, while the T7° Jordan algebra only con-
tains nonzero elements of rank 3. Finally, in Secs. III G,
IITH, and IITI, we, respectively, include the analogous
treatment of the minimally coupled N = 2, matter-
coupled N = 3, and pure JN' = 5 theories, which cannot
all be uplifted to D = 5 space-time dimensions.
Physically speaking, the FTS makes the symmetries of
the parent D = 5 theory manifest. This allows us to make
extensive use of the orbits and their minimal charge rep-
resentatives of the D = 5 theories, which are simpler to
derive and have already appeared in the literature. In
particular, we exploit the analysis of [11,22,24,28-30].
Note that one may also use the integral FTS to address
the orbit classification of the discrete stringy U-duality
groups [2], as was done for the maximally supersymmetric
D =6, 5, 4 theories in [31,32]. Moreover, for D = 4,
N = 8 it has recently been observed that some of the
orbits of E7(7)(Z) should play an important role in counting
microstates of this theory [33,34]. The importance of dis-
crete invariants and orbits to the dyon spectrum of string
theory has been the subject of much investigation [34—41].

B. Summary

We summarize the key results here. For each of the
theories considered (aside from the N = 2 minimally
coupled, N =3 and N = 5 theories), the electromag-
netic BH charges may be regarded as elements of a
Freudenthal triple system

F(F) =ReRe J; 0 J;, (1)

defined over a cubic Jordan algebra 3. The electric (mag-
netic) BH (black string—BS) charges of the parent D = 5
theory may be regarded as elements of 3. The FTS comes
equipped with three maps: (i) a bilinear antisymmetric
form {e, o}: T X ¥ — R, which encodes the symplectic
structure of the charge representations (see, for example,
[42], and references therein); (ii) a quartic norm
A: § — R; (iii) a triple product 7: § X § X F — F. A
brief summary may be found in Sec. III A. Full details can
be found in [25] and references therein. The automorphism
group Aut(¥) = Conf(3) is the set of invertible R-linear
transformations preserving the quartic norm and bilinear
form. It coincides with the D =4 U-duality group:
Aut(§) = G,. Hence, the unique quartic G,-invariant,
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denoted 1,4, is given by A. The Bekenstein-Hawking en-
tropy therefore reads

Spu = mVIA| = my|L4]. (2)

Let us briefly review some of the analogous features of
cubic Jordan algebras and the BHs (BSs) in D = 5, which
we will make extensive use of throughout. A cubic Jordan
algebra 5 is a vector space equipped with an admissible
cubic norm N: ;3 — R and an element ¢ € 3, referred to
as a base point, satisfying N(c) = 1. The cubic norm
defines the Jordan product, — o —: J3 X {3 — I3, satis-
fying

X?o0(XoY)=Xo(X?0Y), VX YESZ; 3

A brief summary may be found in Sec. IIT A. Full details
can be found in [25] and references therein. For each of the
theories considered in the present investigation (but the
N =2 minimally coupled, N =3 and N =5 theo-
ries), the electromagnetic BH charges may be regarded
as elements of some cubic Jordan algebra §3. The auto-
morphism group Aut(J3) is the set of invertible R-linear
transformations preserving the Jordan product. The re-
duced structure group Stry(J;) is the set of invertible
R-linear transformations preserving the cubic norm N
[25]. Stry(J3) is the D = 5 U-duality group, Stry(J3) =
Gs. Hence, the unique cubic Gs-invariant, denoted I3, is
given by N. The Bekenstein-Hawking BH (BS) entropy is
therefore

SBH - Wm (4)

The models we consider are itemized here:

(1) N = 8: 28 + 28 electric/magnetic BH charges be-
long to 39 1= F(IY'), where I is the cubic
Jordan algebra of 3 X 3 Hermitian matrices defined
over the split octonions. The 56 charges transform
linearly as the fundamental 56 of Aut(F9') =
E;q) = Conf(?s?"‘), the maximally noncompact
(split) real form of E;(C). The scalar manifold is
given by (apart from discrete factors, see, e.g., [43])

Eqq)
SU)” ©)
(i) Magic N =2 theories: Given by N =2

supergravity coupled to (3 + 3dimA) vector mul-
tiplets, where A = R, C, H, O. The (4 + 3 dimA) +
(4 + 3dimA) electric/magnetic BH charges belong
to = F(J5), where Jj is the cubic Jordan
algebra of 3 X 3 Hermitian matrices defined over
one of the four division algebras A = R, C, H, O.
The (8 + 6 dimA) charges transform linearly as the
threefold antisymmetric traceless tensor 14/, the
threefold antisymmetric self-dual tensor 20,
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the chiral spinor 32 and the fundamental 56 of
Aut(F*) = Conf(J5') = Sp(6, R), SU(3, 3), SO*(12),
E;—ss5 for A = R, C, H, O, respectively. The scalar
manifolds are given by (apart from discrete factors,
see, e.g., [43])

Sp(6, R) SU(3, 3)
u@) -’ U(1) X SU3) x SU3)’
* (6)
SO*(12) Eq(-25)
ue) ’ U(1) X Eg—7g)

(iii) N = 4 supergravity (6 graviphotons) coupled to

@iv)

)

n = ny vector multiplets: the (ny, + 6) + (ny + 6)
electric/magnetic BH charges belong to %" :=
¥(Js5.,—1), where Js,—; = R @ I's,_; is the cubic
Jordan algebra of pseudo-Euclidean spin factors
[44] (see also [25]). In general, T',,, is a Jordan
algebra with a quadratic form of pseudo-Euclidean
signature (m, n), ie., the Clifford algebra of
O(m, n) [45]. The 2(ny + 6) charges transform
linearly as the (2,6 +ny) of Aut(F") =
Conf(J5,-1) = SL(2, R) X SO(6, ny). The scalar
manifolds are given by the infinite sequence of
globally symmetric Riemannian manifolds

SL(2,R) SO(6, ny)
SO(2) ~ SO(6) X SO(ny)’

ny=0. (7)

N = 2 supergravity (1 graviphoton) coupled to ny
vector multiplets: the (ny + 1) + (ny + 1) electric/
magnetic BH charges belong to " := F(J;,-1),
where J; ,—; =R @I, is the cubic Jordan al-
gebra of Lorentzian spin factors [44] (see also [25]),
and n = ny — 1. The 2(ny + 1) charges transform
linearly as the (2,1+ny) of Aut(F>") =
Conf(J; ,—1) = SL(2, R) X SO(2, n). The scalar
manifolds are given by the infinite sequence of
globally symmetric special Kdhler manifolds

SL(2,R) SO(2,ny — 1)
SO(2) ~ SO(2)XSO(n, —1)’

nv22.

®)

N =2 STU model: it is nothing but ny, = 3 ele-
ment of the Jordan symmetric sequence (8), but we
single it out for two reasons. First, over and above
the continuous U-duality group it has a discrete
triality symmetry which swaps the roles of the three
complex moduli S, 7, U [14], and is manifested in
the structure of the duality orbits. Second, it may be
considered as the common sector of all D =4
Maxwell-Einstein supergravity theories with a
rank-3 symmetric vector multiplets’ scalar manifold
and related to Jordan algebras (which we will dub
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“symmetric” supergravities). Furthermore, it also
provides a link to the degenerate cases described
below. The 4 + 4 electric/magnetic BH charges be-
long to Fsry ‘= F(Jsry), where Jsrp = ROR @
R is isomorphic to the Lorentzian spin factor J;
[25,44]. The eight charges transform linearly as the
(2,2,2) of Aut(Fgry) = Conf(Isry) = SL(2, R) X
SL(2, R) X SL(2, R). This symmetry is made mani-
fest by organizing the charges into a 2 X2 X 2
hypermatrix a,pc, where A, B, C = 0, 1, transform-
ing under SL, (2, R) X SL;(2, R) X SL-(2, R) [46].
The scalar manifold is given by

[SL(Z, [Ri)]3‘

SO(2) ©

It is worth noting that, by using U-duality, the
charge vectors of the symmetric supergravity theo-
ries described above may be reduced to a subsector
living in Fgpy. Hence, the STU charges are com-
mon to all the above theories which, indeed, may
all be consistently truncated to the STU model.
Moreover, the special Kihler geometry characteriz-
ing the completely factorized rank-3 symmetric
manifold (9) is defined by the triality-symmetric
prepotential

F=STU. (10)

See, for example, [3,47-49] for the details of special
geometry. By identifying 7 = Uand S = T = U in
(10) we obtain the ST? and 7> models, respectively,
(see, e.g., [18] for the consistent exploitation of such
a degeneration/reduction procedure). In this sense,
the STU model is the linchpin of all the theories
considered here.

(vi) N =2 ST? model: coupled to two vector multip-

lets. The 3 + 3 electric/magnetic BH charges be-
long to {2 = F(IJgz2), Where Jg2 = RO R is
isomorphic to the Euclidean spin factor §; [25,44].
The six charges transform linearly as the (2, 3) of
Aut(Fgr2) = SL(2, R) X SL(2, R). This symmetry
is made manifest by organizing the charges into a
partially symmetrized hypermatrix a4z, z,), where
A, B;, B, = 0, 1, transforming under SL,4(2, R) X
SL;(2, R) [18]. The scalar manifold is given by

[SL(Z, [RR):IZ‘

SO(2) (D

(vii) N = 2 T3 model: this is a nongeneric irreducible

model, coupled to a single vector multiplet. May
be obtained as a circle compactification of minimal
supergravity in five dimensions. The 2 + 2 elec-
tric/magnetic BH charges belong to Fys =
&(J73), where 5 =[R. The four charges
transform linearly as the 4 (spin s = 3/2) of
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Aut(Fs) = Conf(F73) = SL(2, R). This symme-
try is made manifest by organizing the charges into
a totally symmetrized hypermatrix @, 4,4,), where
Ay, Ay, A5 =0, 1, transforming under SL4(2, R)
[18] (see also, e.g., [50], as well as the recent
discussion in [51]). The scalar manifold is given
by the special Kihler manifold (with scalar curva-
ture R = —2/3 [52])
SL(2, R)

“s00) (12)

In all aforementioned cases, excluding the 73 model,
the charge orbits are split into four classes first identified
in [11]. There are three small classes with vanishing
Bekenstein-Hawking entropy: doubly critical, critical and
lightlike. There is one large class with nonzero Bekenstein-
Hawking entropy, which actually is a one-parameter (/4)
family of orbits. The 73 model is the exception in that the
doubly critical and critical classes collapse into a single
orbit. This is precisely due to the fact that the underlying
cubic Jordan algebra J7s only admits nonzero elements of
rank 3, as opposed to the other examples, which all possess
elements of rank 1, 2 and 3 (including the ST? model).
From a physical perspective, this is equivalent to the fact
that there is only one gauge potential (namely, only one
Abelian vector multiplet) outside the gravity multiplet to
support both the doubly critical and critical orbits.

These four classes are coded in the “rank” of the FTS
element: ranks 1, 2, 3 and 4 imply doubly critical, critical,
lightlike and large, respectively. For the N = 8 (maximal
supersymmetry) theory the ranks are sufficient to capture
all the orbit details, i.e., there is precisely one orbit per
rank. The only subtlety is that the large BHs are supported
by a 1/8-Bogomol’nyi-Prasad-Sommerfield (BPS) or a
non-BPS orbit, depending on whether 7, >0 or I, <0,
respectively [11]. For theories of gravity with nonmaximal
local supersymmetry, this identification between rank and
orbit generally becomes more subtle: while rank-1 (doubly
critical) elements lie in a single orbit, higher ranks split
into two or more orbits. Moreover, BHs with I, > 0 may
also be non-BPS; in contrast, all BHs with /7, < 0 are non-
BPS. In every case, there is only one /, < 0 orbit.

We summarize the key features of this orbit splitting
here, while laying out the organization of the letter.

First, let us mention that the technical aspects of Jordan
algebras, the FTS and the proofs of the associated theorems
used here may be found in [25] and in references therein.
We begin in Sec. II with a summary of the D = 5 parent
theories: their Jordan algebras, minimal charge orbit rep-
resentatives, cosets and moduli spaces. This lays the foun-
dations for the D = 4 analysis. In Sec. III the details of
D = 4 minimal charge orbit representatives, cosets and
moduli spaces are presented for each of the aforemen-
tioned theories. The N = 8 treatment, while having
been well-understood for sometime now [11,32], is given
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first as the simplest example (only one orbit per rank of
FTS element), with ranks 1, 2, 3 corresponding to 1/2-,
1/4- and 1/8-BPS states, respectively. As mentioned, the
unique subtlety is that the rank-4 large orbit is 1/8-BPS or
non-BPS orbit depending on whether /, > 0 or I, < 0. The
orbits and their representatives are given in Table V and
Theorem 5, respectively. Also, notice that the super-
symmetry BPS-preserving features are not sufficient to
uniquely characterize the charge orbits; indeed, there are
two 1/8-BPS orbits, one large (rank 4) and one small
lightlike (rank 3). All subsequent treatments may be seen
as a fine-graining of the treatment of N° = 8 orbits. Only
the rank-1 (doubly critical) and the rank-4 (I, < 0) cases
do not split, remaining as a single 1/2-BPS and non-BPS
orbit, respectively, for all nonmaximally supersymmetric
theories. The next simplest cases are the magic N = 2
supergravities. Here the rank-2, -3 and -4 (I, > 0) orbits
split into one 1/2-BPS and non-BPS orbit each. The non-
BPS large (1, > 0) orbit has vanishing central charge at the
unique BH event horizon. The orbits and their representa-
tives are given in Table VI and Theorem 6, respectively.
The exceptional octonionic case is given as a detailed
example in Sec. A 1, which thus provides an alternative
derivation of the result obtained in [11]. Next, comes N =
4 Maxwell-Einstein supergravity. The major difference is
that the corresponding FTS is reducible. As a consequence,
as proved in [25], an extra rank-2 orbit is introduced,
making a total of three: 1/2-BPS, 1/4-BPS and non-
BPS. Rank 3 has one 1/4-BPS and one non-BPS, as does
rank 4 (I, > 0). The orbits and their representatives are
given in Table V and Theorem 5, respectively. Finally, we
consider N = 2 Maxwell-Einstein supergravity based on
the Jordan symmetric sequence (8), which has the most
intricate orbit structure. However, it may be derived di-
rectly from the N = 4 case by splitting each 1/4-BPS
orbit into one 1/2-BPS and one non-BPS (with vanishing
central charge at the horizon); see Sec. III D. We conclude
with the “degenerate” cases of ST? (nongeneric reducible)
and T3 (nongeneric irreducible) N =2, D = 4 super-
gravity models in Sec. III F.

Finally, we consider the remaining D = 4 theories with
symmetric scalar manifolds, which cannot be uplifted to
D =5, namely:

(1) N = 2 supergravity minimally coupled to n vector
multiplets [53] (in Sec. III G). It has a quadratic
U-invariant polynomial, and it does not enjoy a
Jordan algebraic formulation.

(i) N =3 matter-coupled supergravity [54] (in
Sec. IITH). It has a quadratic U-invariant polyno-
mial, and it does not enjoy a Jordan algebraic
formulation.

(iii) N = 5 pure supergravity [55] (in Sec. IIIT). It
enjoys a formulation in terms of M,;(0), the
Jordan triple system generated by the 2 X1
vector over the octonions O [10,56]. Among the
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symmetric supergravities with guartic U-invariant
polynomial, it stands on a special footing, because
its U-invariant polynomial is a perfect square when
written in terms of the scalar-dependent skew-
eigenvalues of the 5 X 5 complex antisymmetric
central charge matrix Z4 ;. This property, discussed
in [57], drastically simplifies the case study of
charge orbits.

For the convenience of the reader we summarize here
our main original results together with where they appear
in the text:

(1) In Sec. IIIC the small (rank-3, -2, -1) orbits and
moduli spaces of the magic D = 4, N = 2 models
based on degree-3 quaternionic, complex, real
Jordan algebras are derived. The results are pre-
sented in the three A =R, C, H sub-blocks of
Table VI. The A = O orbits as well as the large
A =R, C, H orbits appearing in Table VI were
previously obtained in [11]. In Sec. the N = 2,
D = 4 magic quaternionic case is compared to its
“twin” N = 6 theory [12,57,58] and the super-
symmetry analysis of twin black-hole charge orbits
is carried out and presented in (65).

(2) In Sec. IIID the small (rank-3, -2, -1) orbits and
moduli spaces of the infinite sequences of D = 4,
N =4 and D=4, N =2 Maxwell-Einstein
theories are derived. The results are presented in
Table VII and VIII, respectively. The large orbits
appearing in Table VII and VIII were previously
obtained in [11,12,22,59]. In Sec. IIIF1 it is ob-
served that for the triality symmetric N = 2 STU
model each of the rank 3-and rank-2 orbits split into
two isomorphic yet physically distinct (BPS vs non-
BPS) orbits.

(3) In Sec. III F2 and IIT F 3 the small orbits and moduli
spaces of the ST? and T3 models are derived. For the
ST? model the small orbits may be obtained from
Table VIII by setting n = 1 (when this is still well-
defined—when it is not, the orbit is not present). The
T3 orbits are presented in Table IX. It is established
that while the BPS large orbit of the 7° model
(which one could think of as the simplest example
of BPS-supporting charge orbit in D =4, N =2
Maxwell-Einstein supergravity) has no continuous
stabilizer it does in fact have a Z5 stabilizer.

(4) In Secs. III G, IITH, and III Ithe unique small orbits
and moduli spaces of the N =2 minimally
coupled, N' = 3 matter-coupled and N = 5 pure
supergravities are obtained, respectively.

II. BH CHARGE ORBITSIN D =5
SYMMETRIC SUPERGRAVITIES

A. Cubic Jordan Algebras

A Jordan algebra ¥ is a vector space defined over a
ground field [ equipped with a bilinear product satisfying
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XoY=YoX,

13
X2o0(XoY)=Xo(X20Y), (13

VXYESD

The class of cubic Jordan algebras is constructed as follows
[44]. Let V be a vector space equipped with a cubic norm,
i.e., an homogeneous map of degree three,

N:V—F, where N(AX)=AN(X), VAEF, X€V,
such that
N(X,Y,Z):={NX+Y+Z) - NX+Y) - NX+2)
— N(Y + Z) + N(X) + N(Y) + N(2Z)]
(14)

is trilinear. If V further contains a base point N(c) = 1,
¢ € V one may define the following three maps,

Tr:V—F; X—3N(c ¢ X),
S:VXV—-F, (X,Y)—6N(X,Y,c),
Tr: VXV—F;, (X,Y)~>Tr(X)Tr(Y)—-S(X,Y). (15)

A cubic Jordan algebra , with multiplicative identity
1 = ¢, may be derived from any such vector space if N
is Jordan cubic. That is: if (i) the trace bilinear form
(15) is nondegenerate, and if (ii) the quadratic adjoint
map

- (16)

uniquely defined by

Tr(X* Y) =3N(X, X, Y), (17)

satisfies (X*)# = N(X)X, V X € . The Jordan product
can then be implemented as follows:

X oY =1XXY+Te(X)Y + Tr(Y)X — S(X, Y)1),
(18)

where, X X Y is the linearization of the quadratic ad-
joint: X X Y := (X + Y)# — X* — y#,

The degree of a cubic Jordan algebra is defined as the
number of linearly independent irreducible idempotents:

EoE=E Ti(E)=1 = EE€X

Two important symmetry groups, Aut() and Stry(J), are
given by the set of [-linear transformations preserving the
Jordan product and cubic norm, respectively. In particular,
Stro(J) is the U-duality group Gs of the corresponding
D = 5 supergravity, and the corresponding vector multip-
lets’ scalar manifold is given by

Str(:3)
Aut(y)’

19)

which is isomorphic to the BPS rank-3 orbit in the sym-
metries theories with eight supersymmetries—related to

086002-5



BORSTEN et al.

Jordan algebras—in which Aut({) is the maximal compact
subgroup (mcs) of Stry(J), as well.

The conventional concept of matrix rank may be
generalized to a cubic Jordan algebra in a natural and
Stry(X)-invariant manner. The rank of an arbitrary element
X € ¥ is uniquely defined by [60]

RankX = 1 & X¥ = 0;

RankX =2 < N(X) =0, X*¥ #0; (20)
RankX =3 & N(X) # 0.
B. N =38

The 27 = 3 + 3dimgQ* electric BH charges may be
represented as elements

q1 Qs Qc
Q = Qs q2 Qv >
Qc Qv q3

where ¢, 95,93 €ER and Q,,., €0° (21)

of the 27-dimensional Jordan algebra I of 3 X3
Hermitian matrices over the split octonions O*. The cubic
norm is defined as

N(Q) = 419295 — 10,0, — 920.0, — 40,0,

+(0,0)0; + 0,(0.0,). (22)
One finds that the quadratic adjoint (16) is given by
4295 =10, > 0.0, = ;0 0,0, — 920,
0=|0,0 —90, qigz—101 0, 0.~ ¢:0, |
0,0, — 20, 0.0, — 10, q192 — 10,
(23)

from which it is derived that Q o P = %(QP + PQ). The
cubic Jordan algebra Qg?& has irreducible idempotents

given by
/1
E,=10
0
/0
E,=10
0
/0
Es=10
\ 0
The D = 5, N = 8 U-duality group is given by the re-

duced structure group Stry(IY") = Eg), which is the
maximally noncompact (split) form of E¢x(C) under which

(24)

S O O = O O O O

- O O O O o o o ©

[e]
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XS %9“ transforms as the fundamental 27. The BH en-
tropy is then given by [recall Eq. (4)]

Sp=ssu = m|3(Q)| = mIN(Q)I. (25)

The U-duality charge orbits are classified according to the
E¢()-invariant Jordan rank of the charge vector, as defined
in (20). This precisely reproduces the classification origi-
nally obtained in [11,61]. The maximally split form of the
U-duality group, which corresponds to the use of the split
octonions,2 is the most powerful in the sense that for each
rank there is a unique canonical form to which all elements
may be transformed. More precisely, we have the
following

Theorem 1. [11,62] Every BH charge vector Q € S?J of
a given rank is E¢g) related to one of the following canoni-
cal forms:

(1) Rank 1

(a) Ql = (1, O, O) = El'

(2) Rank 2

(a) QZ = (1) 1) 0) = E] + Ez.
(3) Rank 3

(a) O3 =(1,1,k) = E, + E, + kE;.

The orbit stabilizers are summarized in Table I. We will
see that the orbit structure of theories with less super-
symmetry is a progressive splitting of this exceptionally
simple case.

C. /N = 2 magic

The 3 + 3 dimA electric BH charges may be represented
as elements

q1 Qs Qc
Q = Q_s q2 Qv ’
Qc Qv q3

where ¢, 9,93 ER and Q,, . €EA (26)

of the (3 + 3 dimA)-dimensional Jordan algebra 5 of
3 X 3 Hermitian matrices over the division algebra A
[56]. The irreducible idempotents, quadratic adjoint and
cubic norm are as in Sec. II B. The magic D = 5, N =2
U-duality groups GSA are given by the reduced structure
group Stro(%_@). For A = R, C, H, O the U-duality GSA is
SL(3, R), SL(3, C), SU*(6), E¢(—26) under which Q € \ng\
transforms as a 6, 9, 15, 27, respectively. The BH entropy is
given by Eq. (25). Once again, the U-duality charge orbits
are classified according to the G?—invariant Jordan rank of
the charge vector. More precisely, we have the following

Theorem 2. [11,27] Every BH charge vector Q € Sé\ of
a given rank is G? related to one of the following canonical
forms:

>The split octonions are not division, but are composition:
lab| = |allbl.
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TABLE 1.
supergravity defined over \“59 [11].

PHYSICAL REVIEW D 85, 086002 (2012)

Charge orbits, corresponding moduli spaces and the number # of “nonflat” scalar directions of D =5, N =38

I, M = Eg)/Usp(8)

Rank BH Susy Charge orbit O Moduli space M #
1 small critical 1/2 ﬁ o3 KR! 1
2 small lightlike 1/4 o ol xR16 6
3 large 1/8 % m 14

(1) Rank 1 For A €R, A € SO(5,n — 1), its action on the charge

(@ Q1,=(1,0,0) = E,

(b) 01, =(=1,0,0)= —E,.

(2) Rank 2

(@ 0y =(1,1,0)=E, + E,

() 0y =(-1,1,0) = —E, + E,

(©) Q) =(—1,-1,0)= —E, — E,.

(3) Rank 3

(@) Q3, = (1,1,k) = E; + E, + kE;

() 03, = (=1, -1,k) = —E, — E;, + kE3.

Note that the orbits generated by the conical forms Q,
and Q,, are isomorphic, as are those generated by Q,, and
Q5. The lightlike 1/4-BPS orbit of the N = 8 splits into
one 1/2-BPS and one non-BPS orbit, as does the large
1/8-BPS orbit. Note that the critical 1/2-BPS orbit re-
mains intact [30]. The orbits are summarized in Table II
(the exceptional—octonionic—case was first derived in
[11]). Note that the N =2 %g"” theory has a “dual”
interpretation as N = 6 supergravity, as described in [30].

D. The N = 4 and N = 2 reducible
Jordan symmetric sequences

1. N =4

For N = 4 supergravity coupled to ny vector multip-
lets, the n + 5 electric BH charges may be represented as
elements (u =0, I, where [ = 1,...,n + 3)

0 =1(g:9u)

of the (n + 5)-dimensional reducible cubic Jordan algebra
Js..—1 (note that the index O pertains to one of the five
graviphotons). Note that we have adopted the (5, n — 1)
convention to emphasize the relation to the corresponding
D = 4 theory, whereas in [30] the (5, nyy) convention was
used, i.e., n = ny + 1. The cubic norm is defined as

N(Q) = 99,.9",

where the index u has been raised with the (+3, —="1)
signature metric n*”; the positive signature pertains to the
five graviphotons of the theory, whereas the negative one
pertains to the n — 1 Abelian matter (vector) supermultip-
lets coupled to the gravity multiplet. The reduced structure
group reads

G5 = Stro(f\\SS’n_l) = SO(l, 1) X SO(S, n— 1)

where ¢ ER, ¢, ER™! (27)

(28)

(29)

vector reads

(45q,) = (e**gie A" q,). (30)
One finds that the quadratic adjoint (16) is given by
0* = (q,.9"; 990, —qq)). (31)
from which it is derived that?
Qo P=(qp;qoro — 4,0’ qorr + Poqr),  (32)

where the index I has been raised with the (+% —"~1)
signature metric 1". Consequently, the automorphism
group is given by

Aut (Js,-1) = SO, n — 1). (33)
Three irreducible idempotents are given by
1 1
B = (10; B =(0:,0000,0..)
(34)

1 1
E;=10;-,0,000 —-=,0,...).
’ ( 2 2 )

The U-duality charge orbits are classified according to
the SO(1, 1) X SO(5, n — 1)-invariant Jordan rank of the
charge vector. More precisely, the following theorem [25]
holds.

Theorem 3. Every BH charge vector Q = (¢;:9,) €
Js..—1 of a given rank is SO(1, 1) X SO(5, n — 1) related
to one of the following canonical forms:

(1) Rank 1

(a) Qla = El

() Oy, = —E,

(©) Qi = Es.

(2) Rank 2

(@) Oy =Ey + Ej

*Note that this construction appears to be undemocratic in the
sense that it picks out one of the graviphotons ¢, as special. This
is due to the undemocratic choice of base point ¢ = (1; 1, 0) we
have used. This choice was made for convenience, but one could
have equally used a “‘democratic” base point, valid for any
signature J,, with p=1, ¢=(p~11,1,...,1,0,0,...,0),
which for p = 5 treats all five graviphotons on the same footing.
Of course, this is just a matter of conventions and the results are
unaffected.
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TABLE II.

PHYSICAL REVIEW D 85, 086002 (2012)

supergravities defined over J5', A = R, C, H, O [28,30].

Charge orbits, corresponding moduli spaces, and number # of “nonflat” scalar directions of the magic D = 5, /N =2

Y, ny =26, M = Eg_26)/Fa—s52)

Rank BH Susy Charge orbit @ Moduli space M #
1 small critical 1/2 % % xR0 1
2a small lightlike 0 o SO w16 2
2b small lightlike 1/2 S(’fg;;gém R16 10
3a(k > 0) large 1/2 £§—> = - 26
3b(k > 0) large 0(Zy #0) poa o 10
JY, ny = 14, M = SU*(6)/Usp(6)
Rank BH Susy Charge orbit O Moduli space M #
1 small critical 1/2 W %&5) xR*2) 1
2a small lightlike 0 m S R4 2
2b small lightlike 1/2 W&w’ R“2 6
3a(k > 0) large 1/2 %Ii;((g)) =M - 14
3b(k > 0) large 0 (Zy # 0) i Tl 6
3%, ny =8, M = SL(3,C)/SU(3)
Rank BH Susy Charge orbit @ Moduli space M #
1 small critical 1/2 W %}5) xR22) 1
2a small lightlike 0 W o xR 2
2b small lightlike 1/2 W R22 4
3a(k>0) large 1/2 St =M - 8
3b(k > 0) large 0 (Zy # 0) ol Tt 4
J%, ny =5, M = SL(3, R)/SO(3)
Rank BH Susy Charge orbit @ Moduli space M #
1 small critical 1/2 T S wR? 1
2a small lightlike 0 % SO(1, 1)xR2 2
2b small lightlike 1/2 Sﬁ;;%'g R2 3
3a(k > 0) large 1/2 SSL(()3(’3”$) =M - 5
3b(k > 0) large 0 (Zy # 0) e o 3
TABLE III. Charge orbits, corresponding moduli spaces and number # of “nonflat” scalar directions of the reducible D = 5,

N =4 supergravities defined over Js,_; =R @®I5,_; [30]. The scalar manifold reads M =[SO(l, 1) X SO(5,n — 1]/

[SO(5) X SO(n — 1)], with dimg = 57 — 4.

Rank BH Susy Charge orbit O Moduli space M #
la small critical 1/2 SO Lot} R 1
1c 1/2 I N
2a 1/2 S0t eSOz s "
2b small lightlike 0 SOl LS00 1) o 6
2c 1/4 Ssoéwfi%f;l) sosony <R 2
3ab(k > 0) large 1/4 SOl LS00 iy n
3b(k < 0) 0 Zagy = 0) oy e 6
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(b) Qo = E; — E5

(©) Qo =E| t E

(d) Qg = —E, — E,.

(3) Rank 3

(@) O3, = Ey + Ey + kEj

(b) Q3, = —E; + E; + kE;.

Note that the orbits 1a and 15 are physically equivalent,
and have isomorphic cosets. The same applies to 2¢ and
2d. The orbits are summarized in Table III [30].

2N =2

For N = 2 theories coupled to ny vector multiplets,
whose scalar manifolds belong to the so-called Jordan
symmetric sequence of the real special geometry, the
n + 1 electric BH charges may be represented as elements
(w:=0,1,where I =1,...,n—1)

0 =(q:q,),

of the (n + 1)-dimensional reducible cubic Jordan algebra
1..—1- Once again, let us note that we have adopted the
(1, n — 1) convention, in order to emphasize the relation
to the corresponding D = 4 theory, whereas in [30] the
(1, ny) convention was used, i.e., n = ny + 1. The setup
and analysis is essentially as for the N = 4 case. The
principal difference is that the 1/4-BPS orbits split into one
1/2-BPS and one non-BPS orbit. This is captured in the
connectedness of the charge orbits [30], as we will discuss
below. This may be seen as a consequence of the
Lorentzian nature of J;,_;, contrasted to the genuine
pseudo-Euclidean nature of Js5,_;. As for N = 4, the
cubic norm is defined by (28), but now the index w is
raised with the (+, —"!) signature metric n*”. The re-
duced structure group is therefore

Gs = Stro(J1.,—1) = SO(1, 1) X SO(1,n — 1).  (36)

where g ER, ¢, € RL2=1 (35)

For A € R, A € SO(1,n — 1), its action on the charge
vector is given by Eq. (30). Then, one finds that the
quadratic adjoint (16) is given by

0% = (q,9": 99", (37)

from which Eq. (32) can be derived. Consequently, the
automorphism group is given by

Aut (3 ,-1) = SO(n — 1) = mes(Stro(Jy,—-1))-  (38)

Three irreducible idempotents are given by

11
E,=10;=,-,0,...);
: ( 2’2 )

1 1
E,=(0;=,—=,0,...).
: ( 2" 2 )

The U-duality charge orbits are classified according to
the SO(1, 1) X SO(1, n — 1)-invariant Jordan rank of the
charge vector. More precisely, the following theorem [25]
holds.

E; = (1;0);
(39)

PHYSICAL REVIEW D 85, 086002 (2012)

Theorem 4. Every BH charge vector Q = (¢;:9,) €
S1..—1 of a given rank is SO(1, 1) X SO(1, n — 1) related
to one of the following canonical forms:

(1) Rank 1

(a) Qla = El

() Oy, = —E,

(©) Qi = Es.

(2) Rank 2

(@) Oy, = Ey + Ej

(b) Qo = E; — E

(©) Qo =E t E

(d) Qrg = —E, — Es.

(3) Rank 3

(@) O3, = E\ + Ey + kE;

(b) Q3b = _El + Ez + kE3

Note that, if one restricts to the identity-connected compo-
nent of SO(1, n — 1), each of the orbits Q,., Q». and Oy,
splits into two cases, Q7., Q5. and Q5;, corresponding to
the future and past light cones. Similarly, Q,, splits into
two disconnected components, Q5,,, corresponding to the
future and past hyperboloids. For k > 0 the orbits 05, and
Q35,;, also split into disconnected future and past hyperbol-
oids, O3, and Q3.

The orbits are summarized in Table I'V. As described in
[30], the orbits 05, 05, 03, and Q5 are BPS or non-BPS
depending on whether the sign +/— of ¢ is correlated or
anticorrelated, respectively, with the future/past branch on
which the orbit is defined.

The non-Jordan symmetric sequence [63]

SO(1, n

M, 5, = ﬁn)) n=ny €N, (40)
(ny being the number of Abelian vector supermultiplets
coupled to the N =2, D = 5 supergravity one) is the
only (sequence of ) symmetric real special geometry which
is not related to a cubic Jordan algebra. It is usually
denoted by L(—1,n — 1) in the classification of homoge-
neous Riemannian d-spaces (see, e.g., [64], and references
therein).

As discussed in [63], the isometries of the symmetric
real special space (40) are not all contained in the invari-
ance group of the corresponding supergravity theory, de-
spite the fact that the latter group still acts transitively on
the space. By using the parametrization introduced in the
last section of [65] and comparing, e.g., Eq. (5.1) of [64]
to Eq. (7) of [63], we can conclude immediately that the
D =5, N =2 Maxwell-Einstein supergravity theory
whose scalar manifold is given by (40) can be uplifted to
a D=6, (1, 0) supergravity theory with n — 1 vector
multiplets, but no tensor multiplets at all (ny = 0). Thus,
in absence of matter fields charged under a nontrivial
gauge group, the gravitational anomaly-free condition im-
plies that [66,67] ny = 272 + n hypermultiplets must be
coupled to the theory. On the other hand, this theory is
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TABLE IV. Charge orbits, corresponding moduli spaces, and number # of “‘nonflat” scalar directions of the reducible D = 5, N =
2 supergravities defined over J,,_; = R@® ' ,_; [30]. The scalar manifold reads M = [SO(1, 1) X SO(1, n — 1]/SO(n — 1), with

dimpM = n.

Rank BH Susy Charge orbit O Moduli space M #
K omall il 2 D B 1
e 1/2 o SO(1, 1) X R"~2 >
2b small lightlike 0 SO(LSI(;(XI,S;? 7(12,),1—_1) Ssoéz;ln:z? )
2c* 1/2 SOLLXSO(Ln 1) RA-2 )
2 0 oot e :
- 12 s ot - :
- 0 sog oo e :
3at(k>0) 1/2 30(1,1S)Ox(§9(11),n—1) ) i
3a” (k> 0) large 0 (Zy # 0) SOULpxS0(Lr=1) ) .
30~ (k>0) 1/2 SO(l,lS)O><(§(3(11),;1—1) i ;
3b™ (k> 0) 0(Zy #0) S0 )xs0kn—1) )

3ab(k <0) 0(Zy # 0) %ﬁ%ﬂ Ssoéf;":z?

known not to satisfy the condition of conservation of the
gauge vector current (required by the consistency of the
gauge invariance [68-72]); therefore, it seemingly has a
D = 6 uplift to (1, 0) chiral supergravity which is not
anomaly-free, unless it is embedded in a model where a
nontrivial gauge group is present, with charged matter (see,
e.g., [73,74]).

We will not further consider this theory in the present
investigation, because it does not correspond to symmetric
spaces in D = 4 [63].

III. BH CHARGE ORBITS IN D = 4
SYMMETRIC SUPERGRAVITIES

A. The Freudenthal triple system

Given a cubic Jordan algebra § defined over a field F,
one is able to construct a FTS by defining the vector space

S =),
SX)=FoFoIoJ. 41)

An arbitrary element x € ¥(J) may be written as a formal
“2 X 2 matrix,”

xz(; ),8() where o, BEF and X, Y €. (42)

The FTS comes equipped with a nondegenerate bilinear
antisymmetric quadratic form, a quartic form and a tri-
linear triple product [75,76]:

(1) Quadratic form {x, y}: § X § — [
{x,y} = ad — By + Tr(X, W) — Tr(Y, Z),

43
wherex=(§; 2),)):(8{/ g) (432)

(2) Quartic form ¢g: ¥ — F
q(x) = —2[aB — Tr(X, )]
— 8[aN(X) + BN(Y) — Tr(X*, Y#)]. (43b)

(3) Triple product T:{F X F X F—F which is
uniquely defined by

{T(x, y,w), 2} = q(x, y, w, 2) (43c)

where ¢(x, y, w, z) is the full linearization of g(x)
such that g(x, x, x, x) = g(x).

The automorphism group is given by the set of invertible
[F-linear transformations preserving the quadratic and
quartic forms [75,76],

Aut(F) := {o € Isop(3¥)

q(ox) = q(x), {ox, oy}

={xy, Vxy€F = Conf(J). (44)

Generally, the automorphism group corresponds to the
U-duality group of corresponding four-dimensional super-
gravities (see, for example, [12,32,77,78], and references
therein). The conventional concept of matrix rank may be
generalized to Freudenthal triple systems in a natural and
Aut(3¥)-invariant manner. The rank of an arbitrary element
x € & is uniquely defined by [26,79]
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TABLE V. Charge orbits, moduli spaces, and number # of “nonflat” scalar directions of D = 4, /N = 8, supergravity defined over

&Y. M = E;3)/SU(8), dimg = 70 [11].

Rank BH Susy Charge orbit O Moduli space M #
1 doubly critical 1/2 Eij!ﬁ” Ub;g?é) xR27 1
2 critical 1/4 O aTR oS xR X R 7
3 lightlike 1/8 P T <R 16
E7q Es
4(A>0) large 1/8 56:2: W(S)U(z) 30
-0 0 Fa Gt 28
Rankx=1<3T(x,x,y) +x{x,y}x=0 V y; (c) Rank 3
a
Rankx=2< Jys.t.3T7(x, x,y) + x{x, y}x #0, T(x,x,x)=0; @ 1 (1,1,0)
X3 = )
Rankx=3<T(x,x,x) #0, g(x)=0; ’ (0 0 )
Rank x =4 < ¢g(x) # 0. (45) (d) Rank 4
(a)
B.N=8 Xag k(é (_1) _()1:_1))
The (1 +27)+ (1 +27) electric + magnetic BH
charges may be represented as elements )
J— 1 (1’ 1’ 1)
x = ( o P0>, where p°, ¢ € R and Xap = k<0 0 )
Q p (46)
o PeJY
where k > 0.

of the Freudenthal triple system §* := F(IY). The
details may be found in Sec. II A of [25], and
in the references therein. The automorphism group
Aut(FP') = Conf(IY') = E7) is the D=4, N =38
U-duality group, where x € §* transforms as the funda-
mental 56. The BH entropy is given by Eq. (2), where
I1,(x) = A(x) = 5¢(x) is Cartan’s unique quartic invariant
polynomial of E;(;) [80]. The U-duality charge orbits are
classified according to the E7-invariant FTS rank of the
charge vector, as defined in (45). This reproduces the
classification originally obtained in [11,61]. More pre-
cisely, we have the following:

Theorem 5. [11,26,50] Every BH charge vector x € §9°
of a given rank is E;(;) related to one of the following

canonical forms:
(a) Rank 1

(a)
a=( 0)

(b) Rank 2
(a)

_((1) (1,8,0))

=
N
|

As anticipated, there is one orbit per rank, but with
rank 4 splitting into 4a (A > 0) 1/8-BPS and 4b (A < 0)
non-BPS. The orbits are summarized in Table V.

C. N = 2 magic

The (4 + 3dimA) + (4 + 3dimA) electric + magnetic
BH charges may be represented as elements

(¢

0, PEY

P0>, where p°, ¢ € R and
P 47)

of the Freudenthal triple system §* := F(J4'). The details
may be found in Sec. IIT A, Ref. [25], and in the references
therein. The magic D =4, N =2 U-duality groups
G} are given by the automorphism group Aut(F") =
Conf(J%). For A = R, C, H, O the U-duality group G4
is Sp(6, R), SU(3, 3), SO*(12), E7(—,5). The (8 + 6 dimA)
charges transform linearly as the threefold antisymmetric
traceless tensor 14/, the threefold antisymmetric self-dual
tensor 20, the chiral spinor 32 and the fundamental 56 of
Sp(6, R), SU(3, 3), SO*(12) and E7(_,s), respectively.

The BH entropy is given by Eq. (2), where I,(x) =
A(x) = 5¢q(x) is the unique quartic invariant polynomial
of Gf. The U-duality charge orbits are classified according
to the Gf—invariant FTS rank of the charge vector, as
defined in (45). More precisely, we have the following:
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Theorem 6. [11,27] Every BH charge vector x € " of a
given rank is Gf related to one of the following canonical
forms:

(1) Rank 1
(a)
w=(o o)
(2) Rank 2
(a)
- (b 009)
(b)
o = (1 (—1,00,0))'
(3) Rank 3
(@)
X = <(1) (1,1, O))
(b)
Xy = ((1) (—1,(;1,0)).
(4) Rank 4
(a)
X, = k((l) (—1, —01, —1))
© 1 (1,1,-1)
b (0 0 )
(c)
!
where k > 0.

Here, we see that the rank-2 and -3 orbits of the N = §
theory split into one 1/2-BPS orbit and one non-BPS orbit
each. The splitting of the large BHs is a little more subtle
[12]. There is, as always for N" = 2, one 1/2-BPS (I, > 0)
orbit, which we label 4a. However, there is also one non-
BPS orbit for 7, > 0, which has vanishing central charge at
the horizon Z;; = 0. Finally, there is the universal non-BPS
1, <0, which has nonvanishing central charge at the hori-
zon. The orbit stabilizers are summarized in Table VI. The
exceptional octonionic case is given as a detailed example
in Sec. A 1, which thus provides an alternative derivation
of the result obtained in [11].

PHYSICAL REVIEW D 85, 086002 (2012)

N = 2 Magic quaternionic versus N = 6

As is well-known [12,57,58], N = 2 magic quater-
nionic and N = 6 supergravity share the very same bo-
sonic sector; they are both related to the simple, rank-3

Jordan algebra %g’” over the quaternions, and their scalar
SO*(12)
ue) -

It should also be noticed that the two real, noncompact
forms of E; given by E7(7y and E;(_,s) contain SO*(12) X
SU(2) as a maximal subgroup, and indeed both manifolds

manifold is the rank-3 symmetric coset

Ef;('éf;) (rank-3 special Kihler, with dimg = 27) and s%((g)
(rank-7, with dimg = 70) contain the coset space S%U2 a5
R P T6)

a submanifold. Such an observation reveals the dual role of
the manifold %: it is at the same time the o-model
scalar manifold of N = 6 supergravity and of N = 2
magic quaternionic Maxwell-Einstein supergravity.
Starting from N = 8, the supersymmetry truncation

down to N = 6 goes as follows:

N = 8:[(2),80), 28(1), 56(}), 70(0)]gravity mult.
|

3 1 .
N =6 [(2), 6(5), 16(1), 26(3), 30(0)]%r.aV1ty mult. )
2[(3), 6(1), 15(3), 20(0), Jgravitino mults.

In order to truncate the two N = 6 gravitino multiplets
away, one has to consider the U-duality branching for
vectors, which reads

E7(7y DSO*(12) X SU(2);  56=(32,1)+(12,2), (49)
implying the truncation condition

SO*(12) X SU(2): (12,2) =0, (50)

as well as the R-symmetry branching (omitting U(1)
charges)

N = 8 R-symmetry
SU(8)

N = 6 R-symmetry
u(6)
8=(6,1) + (1, 2);
28=(151)+(1,1) + (6,2);
56 = (20,1) + (6,1) + (15,2);
70 = (15,1) + (15,1) + (20,2), (51)

X SU(2);

implying the truncation conditions
U (6) X SU2): (1,2) = (6,2) = (15,2) = (20,2) = 0.
(52)

Note that the commuting SU(2) factor in (51) may be
regarded as the “extra” R-symmetry truncated away in
the supersymmetry reduction N° = 8 — N = 6 obtained
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TABLE VL

Charge orbits, moduli spaces, and number # of ‘“‘nonflat”

PHYSICAL REVIEW D 85, 086002 (2012)
scalar directions of the of the magic D =4, N =2

supergravities defined over %, A = R, R, C, H, O. M = Aut(F*)/mes(F3). dimgM = 6 + 6 dimA [11].

Rank BH Susy  ®O, ny =27, M = Eq_55)/[U(1) X Eg_3)] FM, ny =15, M = SO*(12)/U(6)
Orbit O Moduli space M # Orbit O Moduli space M #
1 small d. critical ~ 1/2 o P R 1 T T kRIS 1
2a  small critical 0 oooamen | oo RIOR 3 Sl s RO R O R 3
26 smalleritical  1/2 gt SRR OR 11 SO 0O, Ri e R GR T
3a  small lightlike 0 o s KR 12 T s % xR 8
3b  small lightlike  1/2 s R26 28 s R 16
4a  large timelike  1/2 e - 54 o - 30
4b  large timelike 0 (Zy; = 0) % ST 22 s s 13
4c  large spacelike 0 (Zy # 0) % ij‘ :: 28 ss%**((lg)) % 16
Rank BH Susy €, ny =9, M = SU(3,3)/[U(1) X SUB3) X SUB)] IR, ny =6, M = Sp(6, R)/U(3)
Orbit O Moduli space M # Orbit @©  Moduli space M #
I small d. critical ~ 1/2 s SO DR 1 e SO KR 1
2a small critical 0 506 z)xsonO ?KRM%R so(sz())(xzs% xR*oR*®oR 3 50(2 ;fxﬁim SO(ngzszo(z) xR*eR 3
2b  small critical 1/2 ST s iR ORI @R 5 wiiveer  snRieR 4
3 small lightlike 0 TR xRS L SRS 6
3b  small lightlike — 1/2 S R® 10 e RS 7
4a  large timelike 1/2 S - 18 eY - 12
4b  large timelike 0 (Zy =0)  sorocsris SRS 9 6B N 8
4c large spacelike 0 (Zy # 0) % Sé‘&‘f)) 10 Sﬂg% SSL((;(‘;};{) 7

by imposing (50) and (52), which corresponds to the
following scalar manifold embedding:

SO*(12)
U(6)

E;()

SUG) (53)

On the other hand, the supersymmetry truncation N =
8 — N = 2 goes as follows:

= 8: [(2), 8(3), 28(1), 56(2), 70(0)]gravity mult.
|
[(2), 2( ), (1)]gravity mult.
6[(3), 2(1), (})Jgravitino mults.
15[(1), 2(3), 2(0) Jvector mults.
10[2(3), 4(0) Jhyper mults.

(54)

In order to truncate the six N = 2 gravitino multiplets
away, the same condition (50) on U-irreps. has to be
imposed. On the other hand, by reconsidering (51) with

the different interpretation of R-symmetry branching
N =8 — N =2 (the commuting SU(6) factor in (51)
now refers to the extra R-symmetry truncated away), the
following truncation conditions, different from (52), are
obtained:

U (6) X SU(2): (6,1) = (6,2) = 0. (55)

Thus, by imposing (50) and (55), one achieves a consistent
truncation of N = 8 down to /N' = 2 magic octonionic
supergravity coupled to 15 vector multiplets and 10 hyper-
multiplets, which at the level of the scalar manifold reads

Eq¢7) SO*(12) Eg2)

SU(8) u(6) SuU(6) X SU2)"
The N = 2 hyper sector can be consistently truncated
away, by further imposing

U (6) X SU(2): (20,1) = (20,2) =0,

thus yielding (53).

On the other hand, starting from the /N° = 2 exceptional
magic supergravity with no hypermultiplets, the truncation
down to its N = 2 magic quaternionic subtheory is

(56)

(57)
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dictated by the following branchings (H is the local sym-
metry group of the scalar manifold, up to a U(1) factor):

Ey(_25) D SO*(12) X SU(2),

U-duality: { 58
Y 56 = (32,1) + (12, 2); %)

Eg—75) D SU(6) X SU(2),
H-symmetry: o 78)_ ©) @ (59)

27 =(6,2) + (15, 1),
implying the truncation conditions

SO*(12) X SU(2): (12,2) = 0; (60)
SU (6) X SU(2): (6,2) = 0. (61)

Under such positions, one achieves a consistent truncation
of N =2 exceptional Maxwell-Einstein supergravity
down to its JN' = 2 magic quaternionic subtheory which
at the level of the scalar manifold reads

SO*(12)
u(6)

Once their origin as truncation has been clarified, it is
thus evident that N° = 2 quaternionic and N = 6, D = 4
supergravities exhibit indistinguishable bosonic sectors,
and therefore their charge orbits are the same, and their
attractor equations [12] have the same solutions.

In order to elucidate the different supersymmetry prop-
erties of the charge orbits, by recalling the spin content of
the N' = 6 gravity multiplet, it should be noticed that its
16 vector fields decompose as 15 + 1 with respect to the
N = 6 R-symmetry (as well as the 26 gauginos and the
30 scalar fields decompose as 20 + 6 and 15 + 15, respec-
tively). Thus, the N = 6 dyonic charge vector 9 splits as

E7(-2s)
Eg—75 X U(1)

(62)

N =6: Q = (X, ZABJ ZAB, X), (63)

0O N=2J8

4a 1/2-BPS

4b nBPS: Z,; =0

4c nBPS: Z,; # 0

3a nBPS(Z = 0)

3b 1/2 — BPS(Z # 0)
2a nBPS(Z = 0)

2b 1/2 — BPS(Z # 0)
1 1/2 — BPS(Z # 0)

For analogue treatment in D = 5, see [30].

PHYSICAL REVIEW D 85, 086002 (2012)

where X is a complex SU(6)-singlet, and Z,p
(A=1,...,6) is the complex 6 X 6 antisymmetric
central charge matrix. The intertwining supersymmetry-
preserving properties for the “twin” theories N =2
magic quaternionic versus pure N = 6 can be obtained
by noticing that the N* = 2 counterpart of (63) is given by

N =2:9=(22,7; 2), (64)

where Z; = D,Z are the so-called matter charges (namely,
the Kihler-covariant derivatives of the N = 2 central
charge Z). As summarized in Table 9 of [12], (63) and
(64) imply that the role of large BPS orbits and non-BPS
orbits with (all) central charge(s) vanishing is flipped under
the exchange N =2 «— N = 6; as mentioned, such a
kind of ““cross-symmetry” is easily understood when no-
ticing that the N = 2 central charge Z corresponds to the
SU(6)-singlet component X of @ (63), and that the 15
complex N = 2 matter charges Z; correspond to the 15
independent complex elements of the 6 X 6 antisymmetric
N = 6 central charge matrix Z,z.

These considerations can be extended to small charge
orbits by observing that orbits with representatives having
Z = O necessarily are non-BPS orbits (because they cannot
saturate any BPS bound) and, in light of the above reason-
ing, they correspond to JN° = 6 orbits with X = 0 repre-
sentative. These simple arguments, combined with the
nilpotent orbits’ analysis summarized in Table V of [81],
allow one to determine the intertwining supersymmetry-
preserving properties related to the charge orbits, listed in
the table below (we use the orbit nomenclature reported in
Table VI, and for small orbits the representatives are
reported in brackets):

N =6J4

nBPS: Xy # 0, Zypy =0
1/6-BPS: Xy = 0,Z,3 # 0
nBPS: Xy # 0, Zygy # 0
1/6 — BPS(X = 0)

nBPS(X # 0)

1/3 —BPS(X = 0)

1/6 — BPS(X # 0)

1/2 — BPS(X # 0)

(65)
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D. The N = 4 and /N = 2 Reducible Jordan
Symmetric sequences
1. N =4
For N = 4 supergravity coupled to ny vector multip-

lets, the (n + 6) + (n + 6) electric + magnetic BH charges
(where n = ny = 0) may be represented as elements

_(—49 P ) 0 0
X = ,  where p¥,¢” € R and
( o p (66)
O, PE Js,
of the Freudenthal triple system %" := F(Js5,-1).

The details may be found in Sec. II A of [25], and
in the references therein. The reducible D = 4, N = 4
U-duality group is given by the automorphism group
Aut(F®") = Conf(Js,-;) = SL(2,R) X SO(6,n) under
which x € F%" transforms as a (2, 6 + n). The BH entropy
is once again given by Eq. (2), where I,(x) = A(x) =
1q(x) is the unique quartic invariant polynomial of
SL(2, R) X SO(6, n). The U-duality charge orbits are clas-
sified according to the SL(2, R) X SO(6, n)-invariant FTS
rank of the charge vector. More precisely, we have the
following theorem [25].

Theorem 7. Every BH charge vector x € §%" of a given
rank is SL(2, R) X SO(6, n) related to one of the following
canonical forms:

(a) Rank 1
(a)
1 0
X, = (0 O)
(b) Rank 2
(a)
1 E
Xog = (0 0 )
(b)
1 _El
2 (0 0 )
()
Xoe = ((1) %2 )
Rank 3
® 1 E,+E
X3a = (0 : 0 3)
(b)
1 E,—E
X3p = (0 2 0 3 )

PHYSICAL REVIEW D 85, 086002 (2012)

Rank 4
(a)
1 —E,+E,+E
x4a=k(0 1 02 3)
(b)
1 E\+E,—E
x4b—k(0 1 02 3)
(©)
1 —-E,+E,—E
(b BB

where k > 0 and the E; are as given in (34).
The orbit stabilizers are summarized in Table VII.

2N =2

For N" = 2 supergravity theories coupled to ny vector
multiplets whose scalar manifolds belong to the so-called
Jordan symmetric sequence of special Kihler geometry,
the (n +2) + (n + 2) electric + magnetic BH charges
(where n = ny — 1 = 1) may be represented as elements

_ (‘Clo p )
X = >
Q p
where p%, ¢ €ER and Q,PE Y, (67)

of the Freudenthal triple system §>" := J(3J;,_;). The
details may be found in Sec. IIT A of [25], as well as
in references therein. The reducible D =4, IN =2
U-duality group is given by the automorphism group
Aut(F>") = Conf(J; ,—;) = SL(2,R) X SO(2,n) under
which x € ¥>" transforms as a (2, 2 + n). The BH entropy
is once again given by Eq. (2), where I,(x) = A(x) =
1q(x) is the unique quartic invariant polynomial of
SL(2, R) X SO(2, n). The U-duality charge orbits are clas-
sified according to the SL(2, R) X SO(2, n)-invariant FTS
rank of the charge vector. The orbit representatives are as
in Theorem 7 [25]. However, physically each 1/4-BPS
orbit of Table VII splits into one 1/2-BPS orbit and one
non-BPS orbit; see Table VIIIL. This splitting is determined
by the sign of the quantity [12]

I, =12 - IDsZI. (68)

Here, Z is the central charge and DgZ is the axion-dilaton
matter charge, where Dy is the Kédhler-covariant derivative
on the scalar manifold along the axion-dilaton direction;
this is a “privileged” scalar direction, because the scalar
manifold is factorized. In fact, noting that the N = 4,
D = 4 1/4-BPS canonical forms all have a Jordan algebra
element that has two disconnected components under
Stro(J1.,—1). the sign condition on (68) can be rephrased
in terms of the charges.
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TABLE VII. Charge orbits, moduli spaces, the number # of “nonflat” scalar directions of the reducible D = 4, N = 4 super-
gravities defined over F%" := F(Js,-1).- M = SL(2, R)/SO(6, n)]/[SO(2) X SO(6) X SO(n)]. dimg(M) = 6n + 2. For comparison
we have included the orbit labeling used in [22], and then in [23,24]. The table is split depending on whether the BHs are small or

large.

Rank BH Susy Charge orbit O Moduli space M #
I SL(2,R)XSO(6,1) SO(1,1)XS0(5,n— 1) Sn—1
1/A.3 d. critical 1/2 [SO(I,1)><SO(5,n—1)]x(&XR5<"") WKR X R 1
- SL(2,R)XSO(6,1) SO(6,n—1)
2a/A.2 critical 0 so(é,n—])an SO(6)><SnO(n xR 7
2b/A.1  critical 1/2 S psoion) o9 <R 2n+2
" SL(2,R)XSO0(6,1) SO(2,1XS0(4,n—2) 4n—2 o Mhn—2
2¢/B critical 1/4 SOETRTXS0M, 7~ )T ] 50(2>xso(4)xsg oy XR X [R72 @ R 2] 4
3a/C.1  lightlike 1/4 o ot xR X R n
I SL(2,R)XSO(6.1) SO(5,n—2) Sn—2
3b/C2 llghthke 0 m W’g(ﬂ_z) xR X R>"~ 8
. . SL(2,R)XSO(6,1) SO(4,n)
4a/a timelike 1/4 WSO(‘LH’; Wst)(n) 2n +2
L 5 _ SL2,R)XSO(61) SO(6,1—2)
4b/y timelike 0 (Zagn = 0) SO SOMGA-2) 506X 5602 14
. L ’[R ) , n—
4c/B spacelike 0 (Zypy # 0) S D e saaa L) n+6
E. Interpretation of #;/2)-ps rank-1 = 1 This can be easily interpreted by recalling that the first-

As reported in the tables, all symmetric D = 4 theories
share the same result, namely,

ﬁ(l/2)-BPS,rank-l =1 (69)
Note that the rank-1, doubly critical orbit is always unique,
corresponding to the maximum weight vector in the rele-
vant representation space. Up to U-duality all rank-1
D = 4 black holes may be regarded as a pure KK state
of the five-dimensional parent theory. All along the %—BPS
rank-1 scalar flow [23], there is only one ‘“‘nonflat” scalar
degree of freedom.

TABLE VIIIL.
gravities defined over F>" 1= F(J; ,—1). M =

order superpotential of the N' = 2 BPS flows is nothing
but W = |Z|, where Z is the N" = 2 central charge [82].
Thus, by considering the general expression of Z in a
generic d-special Kéhler geometry (given by Eq. (4.9) of
[29]) for the relevant representative 1-charge configuration
in which the dependence on only one scalar field is mani-
fest (which turns out to be {g,}), one obtains

|610|
’\/—1/2’
22

where V = ri, rgg denoting the KK radius in the KK
reduction D =5 — D = 4 [29].

W (1/2)-BPS rank-1 = |Zlgy = (70)

Charge orbits, moduli spaces, and number # of “nonflat” scalar directions of the reducible D = 4, N" = 2 super-
[SL(2, R) X SO(2, n)]/[SO(2)?> X SO(n)]. dimg(M) = 2n + 2. For comparison, we

have included the orbit labeling used in [22], and then in [23,24]. The table is split depending on whether the BHs are small or large.

Rank [22] BH Susy Charge orbit O Moduli space M #
1 A3 d. critical 1/2 TR e T SOUL Yes0ln=ll R x R~ 1
2a A2 critical 0 %}S’% % xR 3
2b Al critical 1/2 S i) SR xR n+1
2¢* B critical 12,>0 o e SOV XR X [R"~2 @ R~2] 3
2¢” B critical 05,<0 rsoC l)xﬁiggﬁ)ﬁsﬁﬁﬁ)ﬁ o] 550522; xR X [R"2 @ R"2] 3
3a* C.1 lightlike 1/21,>0 % R x R~ n+2
3a~ C1 lightlike 0I,<0 o R x R n+2
3b (o) lightlike 0 ) S xR X R 4
4a* @ timelike 1/21,>0 ) 2n+2
4a” a timelike 0I,<0 LR o) 2n+2
4b y timelike 0Zy =0 SRt oo 2 8
4c B spacelike 0Zy #0 % W n+2
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In the cases N = 8 and N = 4, similar results can be
obtained from the treatment given in [22,83]. Analogous
explanations can be given for the result (69) for D =5
charge orbits, as reported in the relevant tables.

F. The N =2 STU, ST? and T3 models
1. STU

The STU model is IN' = 2 supergravity coupled to three
vector multiplets. However, it has an additional discrete
triality, which exchanges the roles of the three complex
moduli. This triality has a stringy explanation first identi-
fied in [14]. It is essentially a remnant of the D =6
equivalence between the heterotic string on 7*, the Type
IIA string on K3 and the Type IIB string on its mirror. The
STU model is thus a noteworthy element (n = 2) of the
N =2, D=4 Jordan symmetric sequence discussed
above.

The (1 + 3) + (1 + 3) electromagnetic charges may be
represented as elements

_( —4o (p;p“)>
X = 0 y
(¢:9,) P
where p%, ¢ €ER and (g:9,),(p:p*) €Iy (71)

of the Freudenthal triple system §§>2 := (I ).
|

( —qo (1, P2 P3)) — (
(91, 92, q3) PO

PHYSICAL REVIEW D 85, 086002 (2012)

The U-duality group Aut(Fgry) = Conf(J;; =
Rel,, =ReRe®R)=SL(2 R)XSO0(22) may be
recast in a form reflecting this triality symmetry using
the isomorphism SO(2, 2) = SL(2, R) X SL(2, R). From
the heterotic string perspective this corresponds to an
SL(2,Z)g strong/weak coupling duality and an
SL(2, Z); X SL(2, Z),, target space duality acting on the
dilaton/axion, complex Kéhler form and the complex struc-
ture fields S, 7, U respectively. At the level of the FTS
[20,50,84], this is realized by the Jordan algebra isomor-
phism J;; =ReI'|; =ReR®R = J57y which, for
(91, 92, 43) € Isry and (g5 9,) € Iy, is given by

q1 = q, 4> = q0 T q1, 9 =q0—q1, (72)

so that the STU cubic norm becomes

N(Q) = q192q5. (73)
By renaming
apoo (aollr aors allO)) (74)
(@100, @010, Aoo1) ay ’

the charges may be arranged into a 2 X 2 X 2 hypermatrix aypc, where A, B, C = 0, 1, transform as a (2, 2, 2) under
SL4(2, R) X SLg(2, R) X SL(2, R). In such a way, the quartic norm is given by Cayley’s hyperdeterminant Deta,z¢

[46,85],

1
A = —Deta = 3 etz B1By (C1C3 cAsAy B3By ¢

and

SD:4,BH = 7 |Deta| (76)

This observation lies at the origin of the ‘““black-hole/qubit
correspondence” [50,51,84,86-98]. The hyperdeterminant
is manifestly invariant under the triality A < B < C. The
role of more general hyperdeterminants in M-theory can be
found in [99,100].

The implication of this triality for the structure of the
orbits is that what are distinct cosets for generic ny become
isomorphic for the ST U case. In particular, we find that for
the STU model [20]

05, = 0y, = Oy, 05, = 0y, (77
as can be seen immediately from Table VIII setting n = 2.
However, while the cosets are isomorphic the distinct
physical properties of each orbit are preserved, so that

feNe)
274 B,C,AA,B,C, QA B, C AA,B,C, (75)

[

the STU model can really be included in the generic
sequence.

2. ST?

On the other hand, the orbit structure of the ST? model,
which can be seen as the first (n = 1) element of the Jordan
symmetric sequence, N = 2 coupled to two vector mul-
tiplets, does depart from the one discussed so far. The
(1 +2)+ (1 + 2) electromagnetic charges may be repre-
sented as elements

_( —q (p',pz))
.x_ 0 ’
(g1.92) p
where p°, g €R and (p', p?),(q1,q,) EROR  (78)

of the Freudenthal triple system &' := ®(;). Here,
Yy =Rel' =R®&R now has a “Euclidean” cubic
norm
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N(Q) = q1(g2)%, 0 € Jsr2 (79)

which implies there is only one rank-2 Q € Jg2 up to
Stro(Jg72) = SO(1, 1), which is now pure dilatation.
Consequently, the third rank-2 orbit (in the FTS) of the
generic sequence (ny = 3) vanishes [25].

The U-duality group is Aut(Fg;2) = Conf(R & R) =
SL,4(2, R) X SLz(2, R) under which the charges transform
as a (2,3). Again, this symmetry is made manifest by
writing the charges as a hypermatrix

Q = ax,s,): (30)

The BH entropy is given by Eq. (76), with the hyperdeter-
minant now being the “ST? degeneration” of the expres-
sion holding for the STU model (see, e.g., [18] for further
details). The canonical forms are presented in Theorem 8§
[25]. The orbits may be obtained from Table VIII by setting
n = 1 (when this is still well-defined—when it is not, the
orbit is not present).

Theorem 8. [25] Every element x € ¥ ¢;2 of a given rank
is SL(2, R) X SL(2, R) related to one of the following
canonical forms:

(1) Rank 1
(a)
w00
Rank 2
(a)
() 60)
(b)
o = ((1) (—(1);0))'
Rank 3
(a)
we(b o)
(2) Rank 4
(a)
ray = k((l) (—2);1))
(b)
(b DY

PHYSICAL REVIEW D 85, 086002 (2012)
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Finally, we come to the 7% model. Unlike all the other
cases treated here, the 73 has a cubic Jordan algebra,
Jrs = R, with a single nonzero rank. The cubic norm is
given by

N(Q) = ¢°,

Hence, there is only a single rank given by N(Q) # 0: all
nonzero elements are rank 3. Consequently, the rank-2,
where we now mean in the FTS §(J;3), orbit disappears
entirely [25]. That is, if a small BH is critical, then it is
doubly critical.

The U-duality group is Aut(Fs:) = Conf(R) =
SL, (2, R) under which the charges transform as a 4 (spin
s = 3/2). Again, this symmetry is made manifest by writ-
ing the charges as a hypermatrix

0 = apu,aa,)- (82)

The BH entropy is given by Eq. (76), with the hyperdeter-
minant now being the “7 degeneration” of the expression
holding for the STU model (see ,e.g., [18] for further
details).

Accounting for the vanishing rank-2 case, the remaining
SL, (2, R)-orbits are given in Theorem 9.

Theorem 9. Every element x € §;2 of s given rank is
SL(2, R) related to one of the following canonical forms:

(1) Rank 1
_(1 0
X1 0 0 .

g €R. (81)

()

(2) Rank 3
(a)

(3) Rank 4
(a)

iy )
(b)

1 1
X4b:k(0 O)

There are now just four orbits: small doubly critical
(rank-1) 1/2-BPS, small lightlike (rank-3) 1/2-BPS, large
(rank-4) 1/2-BPS and non-BPS. This is consistent with
the analysis of [101-103], which relies on the theory of
nilpotent orbits. The BPS nature of both small (rank-3 and
rank-1) charge orbits of this model can also be easily
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understood by recalling the result derived in Sec. 5.5 of
[23], namely, that the small limit of the first-order (*‘fake’”)
superpotentials of both BPS and non-BPS attractor scalar
flows yields nothing but the absolute value |Z| of the
N = 2 central charge.

Performing a timelike reduction (since we are interested
in stationary solutions) the resulting three-dimensional 7°
model has G,(;) U-duality, with scalars parametrizing the
pseudo-Riemannian coset,

Gy

S0,(2,2) (83)

The nilpotent SOy (2, 2)-orbits of gy correspond to six
static (i.e., single or noninteracting center) extremal solu-
tions [101]. However, only four of these orbits, labeled @,
0,, O3k, Ok in [101], correspond to physically accept-
able static solutions [101]. From our perspective the un-
physical orbits cannot be seen and it can be checked that
the four orbits we describe correspond precisely to the four
physical orbits of [101-103]. Explicitly, where we use the
labeling in Theorem 9,

O, < 0, small doubly critical (rank 1) 1/2-BPS,
0, < 0,, small light-like (rank3) 1/2-BPS,

Ok < O,, large (rank 4) 1/2-BPS,

Ou < O,,, large (rank 4) non-BPS. (84)

The orbit stabilizers are summarized in Table IX. Note that
the two large (1/2-BPS and non-BPS) orbits have no
continuous stabilizers. However, the 1/2-BPS case does
have a discrete Z5 stabilizer generated by

_If -1 V3
M—2<_\/§ _1>, (85)

where M € SL(2, R). Note that this is a finite subgroup of
the SL(2, R) U-duality and should not be misconstrued as a
subgroup the STU triality symmetry, which collapses upon
identifying the moduli. The origin of Z5 is easily under-
stood in terms of the “parent” 1/2-BPS rank-4 STU orbit
stabilizer SO(2) X SO(2). Recall, the Lie algebra of the

TABLE IX. Charge orbits, moduli spaces, and number # of
“nonflat” scalar directions of the D =4, T° model. M =
SL(2, R)/SO(2), dimp = 2.L, is the generator of SL(2, R)
with positive grading with respect to its maximal subgroup
SO(1, 1).

Charge  Moduli
Rank BH Susy orbit O space M #
1 doubly critical 172 ~ SL2R) R 1
3 lightlike 12 SR 2
4(A>0) large 1/2 SLOR) 2
4(A < 0) 0 @ 2

PHYSICAL REVIEW D 85, 086002 (2012)

automorphism group t(F(T)) decomposes under the
reduced structure group Stry () according as

ANLFEQ) = Sty eI Je R (86)

The 1/2-BPS rank-4 STU stability group is conjugate to*
an SO(2) X SO(2) generated by (using the notation intro-
duced in appendix A) ® = (0, X, —X, 0), ® € Str,(I) &
J o I @R, such that Tr(X) = 0. One possible parametri-
zation of SO(2) X SO(2) C SL,4(2, R) X SL;(2, R) X
SL(2, R), obtained by exponentiating &, is given by,

(cos<¢> - sin<¢>) . (cosw) - sinw))
sin(d)  cos(®) ) ®\sin(y) cos(y)
cos(p + )  sin(d + )
®(— sin(eh + 4)  cos(p + w)' 87)

Symmetrizing down from the STU model to the T° model
implies identifying the three factors appearing in the above
parametrization. This gives (85) and its powers, hence
picking out a Z; finite subgroup. Alternatively, this may
be checked directly using the totally symmetrized hyper-
matrix, which transforms as

~ — Al Al Al
AA,4,45) T2 Q44,45 = MAI IMAZ 2MA3 3a(A']A'2Ag)’ (88)

4 _ 4
SL(2, R). (XIAZAB) B a(X1A2A3)’

a?jl AAs) is the orbit representative appearing in Theorem

under Solving where

9, yields the same conclusion. Since this Z3 forms a finite
subgroup of a compact stabilizer there should be no cor-
responding ““discrete” moduli space.

By considering its embedding in the STU model it is
also particularly easy to see why there is no discrete
stabilizer in the unique A < 0 non-BPS orbit. The A <0
non-BPS STU orbit stabilizer is conjugate to an SO(1, 1) X
SO(1,1) generated by ® = (¢,0,0,0), ¢ € Stry(J).
Equivalently, there is a U-duality frame in which only the
two graviphoton charges are turned on. Since the gravi-
photons are singlets under the D = 5 U-duality group the
stabilizer is precisely Stry(y). This is true for all D = 4
theories based on cubic Jordan algebras, explaining this
common feature of the A < 0 non-BPS orbits. However,
for the 7% model Stry(y) contains only the identity, hence
there can be no discrete stabilizer. This expectation is
borne out by explicit computation. Note that, since the
presence of only graviphoton charges implies A < 0, this
charge configuration is only possible for A < 0 non-BPS
states.

G. N = 2 minimally coupled
We now consider N = 2, d = 4 ungauged supergravity

minimally coupled (mc) [53] to ny Abelian vector

“In fact, for our orbit representative, equal to.
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multiplets, whose scalar manifold is given by the sequence
of homogeneous symmetric rank-1 special Kéhler mani-
folds

GN:chn U(l,l’l)
Cpr = ZN=2men _ ,
H.?V:Z,mc,n U(n) X U(l) (89)
n=ny €N

M N=2men —
dimg = 2n,

This theory cannot be uplifted to D = 5, and it does not
enjoy an interpretation in terms of Jordan algebras. The
1 + n vector field strengths and their duals, as well as their
asymptotical fluxes, sit in the fundamental 1 + n represen-
tation of the U-duality group G s =3 ., = U(1, n), in turn
embedded in the symplectic group Sp(2 + 2n, R). The
unique algebraically independent invariant polynomial in
the 1 + n of U(1, n) is quadratic

I,=1lq} - g7+ (p"* = (p)]=12 - z,Z". (90)

The general analysis of the attractor equations, BH
charge orbits, attractor moduli spaces and split attractor
of such a theory has been performed in [12,57,104,105];
here we recall it briefly, and further consider the small
charge orbit of such models.

(1) the large (rank-2) BPS charge orbit reads [12]

U(l, n)
@BPS,rank—Z = U(I’l) ’

dimg =2n+1,  I,>0. 1)

Thus, as for all large BPS charge orbits [7], there is
no associated attractor moduli space or, equiva-
lently, the number of ‘“‘nonflat” scalar directions
along the flow is # = 2n.

the large (rank-2) non-BPS charge orbit (with
Zy = 0) reads [12]

U(1, n)
O,18ps.rank—2 = 7U(1, n—1)

dimp = 2n + 1, I, <. (92)
Thus, the associated attractor moduli space reads

M nBPS,rank—2 — (]:Hj)n—ly #=2 (93)

(2) the unique small (rank-1) BPS charge orbit reads

0 _ U(1, n)
BESI=l g — ) X UG (94)
dimR=2n+1, 12:0,

where the subscript denotes charge with respect to
the U(1) commuting factor of the stabilizer. Thus,
the associated attractor moduli space reads

MBPS,rankfl = Cn*ly #=2. (95)

PHYSICAL REVIEW D 85, 086002 (2012)

It is worthy of notice that (noncompact forms of) CP”
spaces as moduli spaces of string compactifications have
appeared in the literature, either as particular subspaces of
complex structure deformations of certain Calabi-Yau
manifold [106,107] or as moduli spaces of some asymmet-
ric orbifolds of Type II superstrings [108-111], or of
orientifolds [112].

HN=3
The (Kéhler) scalar manifold is [54]
:}\/l _ G.’}\f:3,n _ U(3, n)
N=3m " Hoaey,  SUB) X Un) x U(1)’
dimp = 6n. (96)

This theory cannot be uplifted to D = 5, and it does not
enjoy an interpretation in terms of Jordan algebras.

The 3 + n vector field strengths and their duals, as well
as their asymptotical fluxes, sit in the fundamental 3 + n
representation of the U-duality group Ga—3, = U(3, n),
in turn embedded in the symplectic group Sp(6 + 2n, R).
The unique algebraically independent invariant polyno-
mial in the 3 +n of U(3, n) is quadratic, and it reads
A=1,2,3,1=1,...,n)[57]

1 . 1 _ _
I, = E[qﬁ —q7 + () = (p)*]= EZABZAB —- 7,7,
7

The general analysis of the attractor equations, BH charge
orbits, attractor moduli spaces and split attractor of such a
theory has been performed in [57,104,105]; here we recall
it briefly, and further consider the small charge orbit of this
theory (the results are also consistent with the D =3
analysis of [81]).

(1) the large (rank-2) %-BPS charge orbit reads [113]

0 ~U@B,n)
(1/3)—BPS,rank—2 U(2, l’l)’

dimg=2n+5, I,>0. (98)

The associated attractor moduli space, as all
the %-BPS attractor moduli spaces of N =
3-extended, D = 4 supergravity theories [58], is a
quaternionic symmetric space (recall Eq. (93)):

M(l/S)*BPS,rank72
B SU(2, n)
~ SU(2) X SU(n) X U(1)
= ¢(CP"™ 1

= C(MN=2,mc,nBPS,rank72)’ #=2n, (99)

where “c”” denotes the c-map [114].
(2) the large (rank-2) non-BPS charge orbit (with
Zp g = 0) reads [113]
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0 . UG,n)
nBPS,rank—2 U(3, n— 1),

dimg =2n+5  I,<0. (100)

Thus, the associated attractor moduli space reads

y _ UGB, n—1)
nBPS,rank—2 SUB) X U(n — 1) X U(1)
= Man—s30-1, #=06. (101)

(3) the unique small (rank-1) %—BPS charge orbit reads

U3, n)
U2, n — 1) X U(1)xC>", 1
I, =0 (102)

@(2/3)7BPS,rank71 =

dimg = 21 + 5,

where the subscript denotes charge with respect to
the U(1) commuting factor of the stabilizer. Thus,
the associated attractor moduli space reads (recall
Eq. (93))

M(2/3)—BPS,rank—1

_ SU@2,n—1)
SU(R2) X SU(n — 1) X U(1)
= ¢(CP"?)
= C(MN=2,mc,nBPS,rank72|n—>n*l); #=2
(103)
LN =5
The (special Kihler) scalar manifold is [55]
Gar=s SU(1, 5) .
—5 = = = 10.
M= =, .~ su) xuqy ~ dime=10
(104)

No matter coupling is allowed (pure supergravity). This
theory cannot be uplifted to D = 5, but it is associated to
the Jordan triple system M, (0) generated by the 2 X 1
vectors over O [10,56].

The 10 vector field strengths and their duals, as well as
their asymptotical fluxes, sit in the threefold antisymmetric
irrepr. 20 of the U-duality group Ga—s = SU(1, 5). As
discussed in [57], unique algebraically independent invari-
ant polynomial in the 20 of SU(1, 5) is quartic in the bare
charges (see, e.g., the treatment of [57]), but is a perfect
square of a quadratic expression when written in terms of
the scalar-dependent skew-eigenvalues Z; and Z, of the
central charge matrix Z,5 (A = 1,...,5):

PHYSICAL REVIEW D 85, 086002 (2012)

_ _ 1 _
I,(p,q) = ZypZBZcpZP4 — Z(ZABZAB)Z

= (Z1 - )% (105)
This property distinguishes the 2N" = 5 pure theory from
the previously treated N =2, D = 4 magic Maxwell-
Einstein theory associated to ?55‘:, whose U-duality group
SU(3,3) is a different noncompact from of SU(6), and
makes the discussion of charge orbits much simpler.

The general analysis of the attractor equations,
BH charge orbits and attractor moduli spaces of such a
theory has been performed in [57,59]; here we recall it
briefly, and further consider the small charge orbit of this
theory (the results are also consistent with the D =3
analysis of [81]).

(1) the large (rank-2) %—BPS charge orbit reads [113]

- SU(1, 5)
O (1/5)-BpS rank—2 = SUG) x SU@, 1)’
dimp = 19, I,>0.

(106)

The associated attractor moduli space, as all
the %-BPS attractor moduli spaces of N =
3-extended, D = 4 supergravity theories [58], is a
quaternionic symmetric space, namely, the univer-
sal hypermultiplet space:

SU@2, 1)

M(l/S)-BPS,rank—Z = m = ([:[FDZ’

#=0.

(107)

(2) the unique small (rank-1) %—BPS charge orbit

reads
SU(1, 5) .
O /5)- =, d =19,
(2/5)-BPS,rank—1 SU(3)I>(R8 1mp
]4=O<:>Zl =Zz. (108)

Thus, the associated attractor moduli space reads

M (2/5)-ps,rank—1 = RS, #=2 (109)
Note that the stabilizer of O(/s)-gpsrank—1 is the
same as the stabilizer of the rank-3 %—BPS orbit of

the N' = 2 magic theory associated to Sg‘:

By comparing Eqgs. (95), (103), and (109), it follows that
the N = 2 minimally coupled, N = 3 matter-coupled
and N = 5 pure theories, besides the fact that they cannot
be uplifted to D = 5, all share the property that the number
of “nonflat” directions supported by the unique rank-1
charge orbit is 2.
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APPENDIX A: ORBIT STABILIZERS

In order to determine the stabilizers of the orbits we
will use the infinitesimal Lie action of Aut(5%) = Conf(%)
acting on the corresponding representative canonical
forms. Hence, one needs to define the action of the
|

a A av + (Y, B)
P(p, X, Y, v) = |
B B —'¢B+3vB+2X XA+ aY

The maps & € Homg(3¥) are in fact Lie algebra elements.

Moreover, every Lie algebra element is given by some ®.

More precisely we have the following theorem [43]:
Theorem 10 (Imai and Yokota, 1980).

Aut(F) = {P(h, X, Y, v) € Homp(F)| b
€ Stry(J), X, Y EJ, v ER}, (A3)
where the Lie bracket

[q)(gﬁl’ Xlr Yl’ Vl)’ (I)(d)Zr XZ? Y2r VZ)] = CI)(Q’), XY, V)

(A4)
is given by
¢ =[d1 ] +2(X, VY, - X, VY))
2 2
X = (d’l + §V1)X2 - <¢2 + sz)Xl
(A5)

2 2
Y= (¢2 + sz)Y1 - (t¢1 + §V1)Y2
V= Tr(Xl, Y2) - Tr(Yl, Xz)

We will frequently consider (see also [25]) the Lie algebra
elements of the form

dX,Y) := B0, X, Y, 0). (A6)
The Hermitian conjugate is defined by
b, v) = d(, X). (A7)

Hermitian (resp. anti-Hermitian) generators are noncom-
pact (resp. compact) [12].

PHYSICAL REVIEW D 85, 086002 (2012)
Lie algebra 211t(%()) in the Stry()-covariant basis. To

this end, one can introduce the Freudenthal product,
A § X F — Homp(F), which for x = (a, B, A, B), y =
(8, v, C, D) is defined by
xAy=D(¢, X, Y, v),
¢=—(AVvD+BVO)
X=—1(BXD—aC-5A)
Y=§(A><C—BD—7B)
v=1(Tr(A,D) + Tr(C, B) — 3(ay + 89))

where

(AD)

and AV BE Stry(J) is defined by (AVB)C=
3 Tr(B, C)A + £ Tr(A, B)C — 3 B X (A X C). The action
of ®: § — § is given by

¢A—;VA+2Y><B+/3X> @2

—Br + (X, A)

|
1. An example: The exceptional magic theory

As an example, which may be quite simply generalized
to all models treated here, we examine the case of 84(?59).
In order to determine the stabilizers of the orbits, we will
use the infinitesimal Lie algebra action (A2) to fix the Lie
subalgebras annihilating the canonical forms presented in
Theorem 6 [27]. Note that in this specific case the con-
struction of the Lie algebra elements ®(¢, X, Y, v) corre-
sponds to the decomposition

E7(_25) D) E6(—26) 133 -1+ 27 + 27’ + 78 (Ag)

where ¢, X, Y, and v sit in the 78, 27, 27’ and 1,
respectively.
For all canonical forms one obtains

v A, —LivA
(I)(xcan) — ¢ can 3 can )
XXAum Y Tr(Y, Acyn)

( 1 ACZ[I] )
where x.,, = ,

A
0 o (A9)

so we may set the dilatation generator » to zero throughout.
(a) Rank 1: A,,, =0

cb(x,>=(§ 8)

= Y = 0 while X and ¢ are unconstrained. Hence,
the stability group is

Hl = Eé(_26)|>(|R27,

(A10)

(Al1)

where Eg_5) is generated by ¢ and the 27 trans-
lations are generated by X.
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(b) Rank 2a: A, = (1,0,0)

- 0 DAcan
(I)(-XZa) - <X XA +7Y TI'(Y, Acan)> (A12)

From the D =5 analysis [27] we know that the
Lie subalgebra of Stry(IY) satisfying ¢pAc, = 0
has 36 compact, 9 noncompact semisimple gener-
ators and 16 translational generators giving
30(1,9) ® R'®. For the remaining 27 + 27 genera-
tors we obtain the following constraints:

)]

Tr (Y, Acan) = 0=y, = 0. (A13)
(2)
0 0 0
XXAam TY=0=10  Xx33 —xp
0 —X3 xp
0 -y —Vi
=| V2 —yn —ya (Al4)

S AT S 1 T 2 ¥

This gives one compact and nine noncompact semisimple
generators

d(X, V), (A15)
where, writing x,, = x + y and x33 = x — y,
(O 0 0
X=10 x+y x» |
\0 % x-—y
{0 0 0
Y=10 —x+y X3 (A16)
\0  in —Xx-y

These, together with the 36 compact and 9 noncompact
generators from 30(1,9) C Stry(JY), give a total of 37
compact generators and 18 noncompact semisimple gen-
erators producing 30(2,9), where we have used the fact
that SO(m, n) has [m(m — 1) + n(n — 1)]/2 compact and
mn noncompact generators.

The other 1 + 16 components of X generate translations,

X11 0 0 0 X12 )_613
XI == 0 00 N X// = ()_Clz 0 0 )
0 0 0 x5 0 0

(A17)

where X’ commutes with $0(2, 9). The remaining 16 + 16
translational generators transform as the spinor of 30(2, 9).
Hence, the stability group is

PHYSICAL REVIEW D 85, 086002 (2012)

H,, = SO(2, 9)xR32 X R. (A18)
(¢) Rank 2b: A, = (—1,0,0)
0 Acan
Bx)) = ¢ (A19)
X XA =Y Tr(Y, Acm)

The analysis goes through as above but with the
sign of Y flipped. This gives a total of 45 compact
and 10 noncompact semisimple generators giving
30(1, 10). Hence, the stability group is

H,, = SO(1, 10)xR* X R. (A20)
(d) Rank 3a: A, = (1, 1,0)
O Acan
D(x3,) = ¢ (A21)
X XA +Y Tr(Y, Aun)

From the D =5 analysis [27], we know that the
Lie subalgebra of Str,(IY) satisfying ¢pA., = 0
has 36 compact semisimple generators and 16
translational generators, yielding 30(9) ® R'®. For
the remaining 27 + 27 generators, we obtain the
following constraints:

(D
Tr (Y, Acn) = 0= y1; = =y (A22)
(2)
( X33 0 —X3
X X Acan +Y=0= 0 X33 —X23
K_XIS —Xp3  Xyp T X
(_yn —Yi2 Vi3
=\| Y2 Yu —Ia3
K Vi3 TVxn TYV:
=x33 =y =0 (A23)
This gives 16 noncompact semisimple generators,
X, V), (A24)
where
0 0 X3
X3 X3 0

These, together with the 36 semisimple generators from
30(9) C Stry(IP), give a total of 36 compact generators
and 16 noncompact generators producing Fy_,g), which is
a noncompact form of Aut(JY).

The remaining 10 components of X generate transla-
tions which, together with the 16 preserved translational
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generators of Stry(JY), transform as the fundamental 26
of F. 4(—20)-
Hence, the stability group is

H3a = F4(_20)[><R26. (A26)

(e) Rank 3b: A, = (—1,—1,0)

0 (leCB.H

O(R,) =
(Ry) (XXAcan—Y Tr(Y, Auyy)

) (A27)

PHYSICAL REVIEW D 85, 086002 (2012)

X1 X2 X3
X=|xn x» X23 )
X3 X3 —(xp + xp)
[ —xn —xin —X13
Y= —-%, —x» —x3 | (A33)

—x;3 —Xn (X +xpn)

These, together with the 52 compact semisimple genera-
tors from Fy_s;), give a total of 78 compact generators

producing E¢(_ 7).

The analysis goes through as above, but with the
sign of Y flipped so that the 16 previously non-
compact semisimple generators become compact
giving the compact form Fy_sy = Aut(IY).
Hence, the stability group is

H3a = F4(_52)[>(R26. (A28)

(f) Rank 4a: A, = (—1, -1, —1)

0 PA
) = (s ay + v T, ) A2
From the D =5 analysis we know that the Lie
subalgebra of Stry(IY) satisfying ¢A, = 0 has
52 compact semisimple generators giving Fy_sp).
For the remaining 27 + 27 generators, we obtain the
following constraints:

(1
Tr (Y, Acn) = 0=y + ys +y33 = 0. (A30)
(2)
X1 X2 X13
X X Acan +Y=0= )_612 X2 X3
X3 Xz —(xp + x)
—Vir Y12 13
=| V2 —y» -y ,
=yi3 —Yiz it yn)
(A31)

where we have abused the notation by usng the
same symbols for X, Y after imposing the condi-
tion Tr(Y) = 0. We have also used the identity
XX (=1)=X—-Tr(X)1 so that X X A, + Y =0
implies Tr(X) = 0, therefore giving the implication
in (A31).

This gives 26 compact semisimple generators,
d(X, V), (A32)

where
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Hence, the stability group is

Hy, = Eg(-73). (A34)

(g) Rank 4b: A, = (1,1, —1)

0 PAcan

P = (ysay + ¥ Teroi) 43
From the D =5 analysis [27], we know that the
Lie subalgebra of Stry(JIF) satisfying ¢pA.,, =0
has 36 compact and 16 noncompact semi-
simple generators giving Fy_ ). For the remaining
27 + 27 generators, we obtain the following
constraints:

Tr(Y, Acan) = 0= yy1 + ¥y = y33. (A36)

X X —X13
X X Acan +Y=0= )_C12 X922 —X23

—X;3 —Xp3 Xyt

—Vir Y12 =13
=| Y2 Y2 —yn
=yi3 —Yuz —Ont+yn)

(A37)

This gives 10 compact and 16 noncompact semi-
simple generators,

DX, Y), (A38)

where

~ X X2 X3
X=\| X2 x» X23 ,
X3 X3 Xqp T X

~ X X X3
Y= —Xp —xp X23 .
X13 X3 —(x +xp)

These, together with the 36 compact and 16 non-
compact semisimple generators from Fjy_,), give a
total of 46 compact generators and 32 noncompact
generators producing Eg(_4).

(A39)
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Hence, the stability group is

()

)]

2

(1]
(2]

(3]

[4]
(5]

(7]

(8]
(9]

[10]
(1]
[12]

[13]
[14]

[15]

[16]

Hy, = Eg(-14)- (A40)

Rank 4¢: A, = (1, 1, 1)

B 0 ¢Acan
(D(X4C) B (X X Acan + Y Tr(Y’ ACﬁH)) (A41)

From the D = 5 analysis [27], we know that the Lie
subalgebra of Str,(JIP) satisfying pA, = 0 has
52 compact semisimple generators giving Fy_sy) =
Aut(I$). For the remaining 27 + 27 generators, we
obtain the following constraints:

Tr(Y,Acn) = 0= y1; Ty T y33 =0. (A42)
—Xip X —X13
X X Acan +Y=0= _)_C12 —X2) —X23
—X;3 TXp3 Xty

Y12 V13
) —V23 .
—¥3 Yt y»

(A43)

I
=1
Y13
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This gives 26 noncompact semisimple generators,

d(X, 7), (A44)
where
o X1 X2 X13
X=Y= XIZ X292 X3 . (A45)
X3 Xz —(xp + x)

These, together with the 52 compact semisimple
generators from Fy_sp), give a total of 52 compact
generators and 26 noncompact generators producing

Eg(—26) = Strp(I9).

Hence, the stability group is

Hye = Eg(-26) (A46)

This procedure can be repeated for all magical theories,
yielding the results reported in Table VI, as well as for all
N =2, D=4 symmetric supergravity theories with a
Jordan algebraic interpretation (see also the treatment of
[25]). For the D = 5 treatment, see [27].
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