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We study both the large and small U-duality charge orbits of extremal black holes appearing in D ¼ 5

and D ¼ 4 Maxwell-Einstein supergravity theories with symmetric scalar manifolds. We exploit a

formalism based on cubic Jordan algebras and their associated Freudenthal triple systems, in order to

derive the minimal charge representatives, their stabilizers and the associated ‘‘moduli spaces.’’ After

recallingN ¼ 8maximal supergravity, we considerN ¼ 2 andN ¼ 4 theories coupled to an arbitrary

number of vector multiplets, as well as N ¼ 2 magic, STU, ST2 and T3 models. While the STU model

may be considered as part of the generalN ¼ 2 sequence, albeit with an additional triality symmetry, the

ST2 and T3 models demand a separate treatment, since their representative Jordan algebras are Euclidean

or only admit nonzero elements of rank 3, respectively. Finally, we also consider minimally coupled

N ¼ 2, matter-coupled N ¼ 3, and pure N ¼ 5 theories.
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I. INTRODUCTION

A. Background

A concerted effort has been made to understand the
physically distinct black-hole (BH) solutions appearing
in various four-dimensional supergravity theories. The ex-
tremal solutions typically carry electromagnetic charges
transforming linearly under G4, the D ¼ 4 U-duality
group.1 BHs with charges lying in different orbits of G4

therefore correspond to distinct solutions. Moreover,
thanks to the attractor mechanism [3–7] the entropy of
the extremal BH solutions loses all memory of the scalars
at infinity and is a function of only the charges.
Consequently, the Bekenstein-Hawking [8,9] entropy is
given by a U-duality-invariant quartic in the electromag-
netic charges. Hence, the classification of the U-duality
charge orbits captures many significant features of the
possible BH solutions, which in turn have provided a range
of important string or M-theoretic insights.

We focus on those theories in which the scalars live in
a symmetric coset G4=H4. The orbits of the four-
dimensional N ¼ 8 [1] and the exceptional octonionic
‘‘magic’’N ¼ 2 [10] supergravities were obtained in [11]

for both large and small BHs, which have nonvanishing or
vanishing classical entropy, respectively. The large orbits
of theN ¼ 2Maxwell-Einstein supergravities coupled to
nV vector multiplets, which also include the three nonex-
ceptional magic examples, were analyzed in [11,12]. The
small orbits of the STU model [13–19], which exhibits a
discrete triality, exchanging the roles of S, T and U, over
and above the continuous U-duality group, were found in
[20]. Meanwhile, for the infinite sequence of N ¼ 4; 2,
theories coupled to nV vector multiplets the U-duality-
invariant charge constraints defining the distinct orbits
and their supersymmetry-preserving properties, for both
large and small cases, were obtained in [21,22], and further
discussed in [23,24].
In the present work, we aim at essentially completing

this story inD ¼ 4. In particular, we obtain the small orbits
for the N ¼ 2 R, C, H magic supergravities, N ¼ 2, 4
supergravity coupled to an arbitrary number of vector
multiplets including the special cases of the STU, ST2

and T3 models, as well as the minimally coupled
N ¼ 2, matter-coupled N ¼ 3, and pure N ¼ 5
theories.
We begin by repeating the N ¼ 8 theory as it provides

an instructive example, setting the stage for all the other
cases. We then study both the large and small U-duality BH
charge orbits of theD ¼ 4,N ¼ 4 andN ¼ 2Maxwell-
Einstein supergravity theories coupled to an arbitrary num-
ber nV of vector multiplets, including the magic theories.
TheN ¼ 2 STU model is re-treated as part of the generic
sequence (nV ¼ 3), revealing additional subtleties which
were previously obscured by the triality symmetry. Its
degeneration into the ST2 and T3 models is also treated.
A formalism based on cubic Jordan algebras and their
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1We work in the classical regime for which the electromag-

netic charges are real valued. Here U-duality G4 is referred to as
the ‘‘continuous’’ symmetries of [1]. Their discrete versions are
the nonperturbative U-duality string theory symmetries de-
scribed in [2].
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associated Freudenthal triple systems (FTS) is used to
derive the minimal charge orbit representatives, their sta-
bilizers and the associated ‘‘moduli spaces’’ of attractor
solutions. In particular, we make use of [25–27]. While the
STU model may be considered as part of the general
N ¼ 2 sequence, albeit with an additional triality sym-
metry, the ST2 and T3 models demand a separate treatment.
This is due to their representative Jordan algebras being,
in some sense, degenerate: the ST2 Jordan algebra is
Euclidean, as opposed to the Lorentzian nature of the
general sequence, while the T3 Jordan algebra only con-
tains nonzero elements of rank 3. Finally, in Secs. III G,
III H, and III I, we, respectively, include the analogous
treatment of the minimally coupled N ¼ 2, matter-
coupled N ¼ 3, and pure N ¼ 5 theories, which cannot
all be uplifted to D ¼ 5 space-time dimensions.

Physically speaking, the FTS makes the symmetries of
the parent D ¼ 5 theory manifest. This allows us to make
extensive use of the orbits and their minimal charge rep-
resentatives of the D ¼ 5 theories, which are simpler to
derive and have already appeared in the literature. In
particular, we exploit the analysis of [11,22,24,28–30].
Note that one may also use the integral FTS to address
the orbit classification of the discrete stringy U-duality
groups [2], as was done for the maximally supersymmetric
D ¼ 6, 5, 4 theories in [31,32]. Moreover, for D ¼ 4,
N ¼ 8 it has recently been observed that some of the
orbits of E7ð7ÞðZÞ should play an important role in counting

microstates of this theory [33,34]. The importance of dis-
crete invariants and orbits to the dyon spectrum of string
theory has been the subject of much investigation [34–41].

B. Summary

We summarize the key results here. For each of the
theories considered (aside from the N ¼ 2 minimally
coupled, N ¼ 3 and N ¼ 5 theories), the electromag-
netic BH charges may be regarded as elements of a
Freudenthal triple system

F ðJ3Þ :¼ R � R � J3 � J3; (1)

defined over a cubic Jordan algebra J3. The electric (mag-
netic) BH (black string—BS) charges of the parent D ¼ 5
theory may be regarded as elements of J3. The FTS comes
equipped with three maps: (i) a bilinear antisymmetric
form f�;�g: F� F ! R, which encodes the symplectic
structure of the charge representations (see, for example,
[42], and references therein); (ii) a quartic norm
�: F ! R; (iii) a triple product T: F� F� F ! F. A
brief summary may be found in Sec. III A. Full details can
be found in [25] and references therein. The automorphism
group AutðFÞ ffi ConfðJ3Þ is the set of invertible R-linear
transformations preserving the quartic norm and bilinear
form. It coincides with the D ¼ 4 U-duality group:
AutðFÞ ¼ G4. Hence, the unique quartic G4-invariant,

denoted I4, is given by �. The Bekenstein-Hawking en-
tropy therefore reads

SBH ¼ �
ffiffiffiffiffiffiffi
j�j

p
¼ �

ffiffiffiffiffiffiffi
jI4j

q
: (2)

Let us briefly review some of the analogous features of
cubic Jordan algebras and the BHs (BSs) in D ¼ 5, which
we will make extensive use of throughout. A cubic Jordan
algebra J3 is a vector space equipped with an admissible
cubic normN: J3 ! R and an element c 2 J3, referred to
as a base point, satisfying NðcÞ ¼ 1. The cubic norm
defines the Jordan product, ���: J3 � J3 ! J3, satis-
fying

X2 � ðX � YÞ ¼ X � ðX2 � YÞ; 8 X; Y 2 J3: (3)

A brief summary may be found in Sec. III A. Full details
can be found in [25] and references therein. For each of the
theories considered in the present investigation (but the
N ¼ 2 minimally coupled, N ¼ 3 and N ¼ 5 theo-
ries), the electromagnetic BH charges may be regarded
as elements of some cubic Jordan algebra J3. The auto-
morphism group AutðJ3Þ is the set of invertible R-linear
transformations preserving the Jordan product. The re-
duced structure group Str0ðJ3Þ is the set of invertible
R-linear transformations preserving the cubic norm N
[25]. Str0ðJ3Þ is the D ¼ 5 U-duality group, Str0ðJ3Þ ¼
G5. Hence, the unique cubic G5-invariant, denoted I3, is
given by N. The Bekenstein-Hawking BH (BS) entropy is
therefore

SBH ¼ �
ffiffiffiffiffiffiffi
jNj

p
: (4)

The models we consider are itemized here:
(i) N ¼ 8: 28þ 28 electric/magnetic BH charges be-

long to FOs
:¼ FðJOs

3 Þ, where JOs

3 is the cubic

Jordan algebra of 3� 3 Hermitian matrices defined
over the split octonions. The 56 charges transform

linearly as the fundamental 56 of AutðFOsÞ ¼
E7ð7Þ ffi ConfðJOs

3 Þ, the maximally noncompact

(split) real form of E7ðCÞ. The scalar manifold is
given by (apart from discrete factors, see, e.g., [43])

E7ð7Þ
SUð8Þ : (5)

(ii) Magic N ¼ 2 theories: Given by N ¼ 2
supergravity coupled to ð3þ 3 dimAÞ vector mul-
tiplets, whereA ¼ R,C,H,O. The ð4þ 3 dimAÞ þ
ð4þ 3 dimAÞ electric/magnetic BH charges belong
to FA :¼ FðJA

3 Þ, where JA
3 is the cubic Jordan

algebra of 3� 3 Hermitian matrices defined over
one of the four division algebras A ¼ R, C, H, O.
The ð8þ 6 dimAÞ charges transform linearly as the
threefold antisymmetric traceless tensor 140, the
threefold antisymmetric self-dual tensor 20,
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the chiral spinor 32 and the fundamental 56 of
AutðFAÞffiConfðJA

3 Þ¼Spð6;RÞ;SUð3;3Þ;SO?ð12Þ;
E7ð�25Þ forA ¼ R,C,H,O, respectively. The scalar

manifolds are given by (apart from discrete factors,
see, e.g., [43])

Spð6;RÞ
Uð3Þ ;

SUð3; 3Þ
Uð1Þ � SUð3Þ � SUð3Þ ;

SO?ð12Þ
Uð6Þ ;

E7ð�25Þ
Uð1Þ � E6ð�78Þ

:

(6)

(iii) N ¼ 4 supergravity (6 graviphotons) coupled to
n ¼ nV vector multiplets: the ðnV þ 6Þ þ ðnV þ 6Þ
electric/magnetic BH charges belong to F6;n :¼
FðJ5;n�1Þ, where J5;n�1 ffi R � �5;n�1 is the cubic

Jordan algebra of pseudo-Euclidean spin factors
[44] (see also [25]). In general, �m;n is a Jordan

algebra with a quadratic form of pseudo-Euclidean
signature ðm; nÞ, i.e., the Clifford algebra of
Oðm; nÞ [45]. The 2ðnV þ 6Þ charges transform
linearly as the ð2; 6þ nVÞ of AutðF6;nÞ ffi
ConfðJ5;n�1Þ ¼ SLð2;RÞ � SOð6; nVÞ. The scalar

manifolds are given by the infinite sequence of
globally symmetric Riemannian manifolds

SLð2;RÞ
SOð2Þ � SOð6;nVÞ

SOð6Þ�SOðnVÞ ; nV �0: (7)

(iv) N ¼ 2 supergravity (1 graviphoton) coupled to nV
vector multiplets: the ðnV þ 1Þ þ ðnV þ 1Þ electric/
magnetic BH charges belong to F2;n :¼ FðJ1;n�1Þ,
where J1;n�1 ffi R � �1;n�1 is the cubic Jordan al-

gebra of Lorentzian spin factors [44] (see also [25]),
and n ¼ nV � 1. The 2ðnV þ 1Þ charges transform
linearly as the ð2; 1þ nVÞ of AutðF2;nÞ ffi
ConfðJ1;n�1Þ ¼ SLð2;RÞ � SOð2; nÞ. The scalar

manifolds are given by the infinite sequence of
globally symmetric special Kähler manifolds

SLð2;RÞ
SOð2Þ � SOð2;nV�1Þ

SOð2Þ�SOðnV�1Þ ; nV �2:

(8)

(v) N ¼ 2 STU model: it is nothing but nV ¼ 3 ele-
ment of the Jordan symmetric sequence (8), but we
single it out for two reasons. First, over and above
the continuous U-duality group it has a discrete
triality symmetry which swaps the roles of the three
complex moduli S, T, U [14], and is manifested in
the structure of the duality orbits. Second, it may be
considered as the common sector of all D ¼ 4
Maxwell-Einstein supergravity theories with a
rank-3 symmetric vector multiplets’ scalar manifold
and related to Jordan algebras (which we will dub

‘‘symmetric’’ supergravities). Furthermore, it also
provides a link to the degenerate cases described
below. The 4þ 4 electric/magnetic BH charges be-
long to FSTU :¼ FðJSTUÞ, where JSTU ¼ R � R �
R is isomorphic to the Lorentzian spin factor J1;1

[25,44]. The eight charges transform linearly as the
ð2; 2; 2Þ of AutðFSTUÞ ffi ConfðJSTUÞ ¼ SLð2;RÞ �
SLð2;RÞ � SLð2;RÞ. This symmetry is made mani-
fest by organizing the charges into a 2� 2� 2
hypermatrix aABC, where A, B, C ¼ 0, 1, transform-
ing under SLAð2;RÞ � SLBð2;RÞ � SLCð2;RÞ [46].
The scalar manifold is given by�

SLð2;RÞ
SOð2Þ

�
3
: (9)

It is worth noting that, by using U-duality, the
charge vectors of the symmetric supergravity theo-
ries described above may be reduced to a subsector
living in FSTU. Hence, the STU charges are com-
mon to all the above theories which, indeed, may
all be consistently truncated to the STU model.
Moreover, the special Kähler geometry characteriz-
ing the completely factorized rank-3 symmetric
manifold (9) is defined by the triality-symmetric
prepotential

F ¼ STU: (10)

See, for example, [3,47–49] for the details of special
geometry. By identifying T ¼ U and S ¼ T ¼ U in
(10) we obtain the ST2 and T3 models, respectively,
(see, e.g., [18] for the consistent exploitation of such
a degeneration/reduction procedure). In this sense,
the STU model is the linchpin of all the theories
considered here.

(vi) N ¼ 2 ST2 model: coupled to two vector multip-
lets. The 3þ 3 electric/magnetic BH charges be-
long to FST2 :¼ FðJST2Þ, where JST2 ¼ R � R is
isomorphic to the Euclidean spin factor J1 [25,44].
The six charges transform linearly as the ð2; 3Þ of
AutðFST2Þ ¼ SLð2;RÞ � SLð2;RÞ. This symmetry
is made manifest by organizing the charges into a
partially symmetrized hypermatrix aAðB1B2Þ, where
A, B1, B2 ¼ 0, 1, transforming under SLAð2;RÞ �
SLBð2;RÞ [18]. The scalar manifold is given by�

SLð2;RÞ
SOð2Þ

�
2
: (11)

(vii) N ¼ 2 T3 model: this is a nongeneric irreducible
model, coupled to a single vector multiplet. May
be obtained as a circle compactification of minimal
supergravity in five dimensions. The 2þ 2 elec-
tric/magnetic BH charges belong to FT3 :¼
FðJT3Þ, where JT3 ¼ R. The four charges
transform linearly as the 4 (spin s ¼ 3=2) of
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AutðFT3Þ ffi ConfðJT3Þ ¼ SLð2;RÞ. This symme-
try is made manifest by organizing the charges into
a totally symmetrized hypermatrix aðA1A2A3Þ, where
A1, A2, A3 ¼ 0, 1, transforming under SLAð2;RÞ
[18] (see also, e.g., [50], as well as the recent
discussion in [51]). The scalar manifold is given
by the special Kähler manifold (with scalar curva-
ture R ¼ �2=3 [52])

SLð2;RÞ
SOð2Þ : (12)

In all aforementioned cases, excluding the T3 model,
the charge orbits are split into four classes first identified
in [11]. There are three small classes with vanishing
Bekenstein-Hawking entropy: doubly critical, critical and
lightlike. There is one large class with nonzero Bekenstein-
Hawking entropy, which actually is a one-parameter (I4)
family of orbits. The T3 model is the exception in that the
doubly critical and critical classes collapse into a single
orbit. This is precisely due to the fact that the underlying
cubic Jordan algebra JT3 only admits nonzero elements of
rank 3, as opposed to the other examples, which all possess
elements of rank 1, 2 and 3 (including the ST2 model).
From a physical perspective, this is equivalent to the fact
that there is only one gauge potential (namely, only one
Abelian vector multiplet) outside the gravity multiplet to
support both the doubly critical and critical orbits.

These four classes are coded in the ‘‘rank’’ of the FTS
element: ranks 1, 2, 3 and 4 imply doubly critical, critical,
lightlike and large, respectively. For the N ¼ 8 (maximal
supersymmetry) theory the ranks are sufficient to capture
all the orbit details, i.e., there is precisely one orbit per
rank. The only subtlety is that the large BHs are supported
by a 1=8-Bogomol’nyi-Prasad-Sommerfield (BPS) or a
non-BPS orbit, depending on whether I4 > 0 or I4 < 0,
respectively [11]. For theories of gravity with nonmaximal
local supersymmetry, this identification between rank and
orbit generally becomes more subtle: while rank-1 (doubly
critical) elements lie in a single orbit, higher ranks split
into two or more orbits. Moreover, BHs with I4 > 0 may
also be non-BPS; in contrast, all BHs with I4 < 0 are non-
BPS. In every case, there is only one I4 < 0 orbit.

We summarize the key features of this orbit splitting
here, while laying out the organization of the letter.

First, let us mention that the technical aspects of Jordan
algebras, the FTS and the proofs of the associated theorems
used here may be found in [25] and in references therein.
We begin in Sec. II with a summary of the D ¼ 5 parent
theories: their Jordan algebras, minimal charge orbit rep-
resentatives, cosets and moduli spaces. This lays the foun-
dations for the D ¼ 4 analysis. In Sec. III the details of
D ¼ 4 minimal charge orbit representatives, cosets and
moduli spaces are presented for each of the aforemen-
tioned theories. The N ¼ 8 treatment, while having
been well-understood for sometime now [11,32], is given

first as the simplest example (only one orbit per rank of
FTS element), with ranks 1, 2, 3 corresponding to 1=2-,
1=4- and 1=8-BPS states, respectively. As mentioned, the
unique subtlety is that the rank-4 large orbit is 1=8-BPS or
non-BPS orbit depending on whether I4 > 0 or I4 < 0. The
orbits and their representatives are given in Table V and
Theorem 5, respectively. Also, notice that the super-
symmetry BPS-preserving features are not sufficient to
uniquely characterize the charge orbits; indeed, there are
two 1=8-BPS orbits, one large (rank 4) and one small
lightlike (rank 3). All subsequent treatments may be seen
as a fine-graining of the treatment of N ¼ 8 orbits. Only
the rank-1 (doubly critical) and the rank-4 (I4 < 0) cases
do not split, remaining as a single 1=2-BPS and non-BPS
orbit, respectively, for all nonmaximally supersymmetric
theories. The next simplest cases are the magic N ¼ 2
supergravities. Here the rank-2, -3 and -4 (I4 > 0) orbits
split into one 1=2-BPS and non-BPS orbit each. The non-
BPS large (I4 > 0) orbit has vanishing central charge at the
unique BH event horizon. The orbits and their representa-
tives are given in Table VI and Theorem 6, respectively.
The exceptional octonionic case is given as a detailed
example in Sec. A 1, which thus provides an alternative
derivation of the result obtained in [11]. Next, comesN ¼
4 Maxwell-Einstein supergravity. The major difference is
that the corresponding FTS is reducible. As a consequence,
as proved in [25], an extra rank-2 orbit is introduced,
making a total of three: 1=2-BPS, 1=4-BPS and non-
BPS. Rank 3 has one 1=4-BPS and one non-BPS, as does
rank 4 (I4 > 0). The orbits and their representatives are
given in Table V and Theorem 5, respectively. Finally, we
consider N ¼ 2 Maxwell-Einstein supergravity based on
the Jordan symmetric sequence (8), which has the most
intricate orbit structure. However, it may be derived di-
rectly from the N ¼ 4 case by splitting each 1=4-BPS
orbit into one 1=2-BPS and one non-BPS (with vanishing
central charge at the horizon); see Sec. III D. We conclude
with the ‘‘degenerate’’ cases of ST2 (nongeneric reducible)
and T3 (nongeneric irreducible) N ¼ 2, D ¼ 4 super-
gravity models in Sec. III F.
Finally, we consider the remaining D ¼ 4 theories with

symmetric scalar manifolds, which cannot be uplifted to
D ¼ 5, namely:
(i) N ¼ 2 supergravity minimally coupled to n vector

multiplets [53] (in Sec. III G). It has a quadratic
U-invariant polynomial, and it does not enjoy a
Jordan algebraic formulation.

(ii) N ¼ 3 matter-coupled supergravity [54] (in
Sec. III H). It has a quadratic U-invariant polyno-
mial, and it does not enjoy a Jordan algebraic
formulation.

(iii) N ¼ 5 pure supergravity [55] (in Sec. III I). It
enjoys a formulation in terms of M2;1ðOÞ, the

Jordan triple system generated by the 2� 1
vector over the octonions O [10,56]. Among the
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symmetric supergravities with quartic U-invariant
polynomial, it stands on a special footing, because
its U-invariant polynomial is a perfect squarewhen
written in terms of the scalar-dependent skew-
eigenvalues of the 5� 5 complex antisymmetric
central charge matrix ZAB. This property, discussed
in [57], drastically simplifies the case study of
charge orbits.

For the convenience of the reader we summarize here
our main original results together with where they appear
in the text:

(1) In Sec. III C the small (rank-3, -2, -1) orbits and
moduli spaces of the magic D ¼ 4, N ¼ 2 models
based on degree-3 quaternionic, complex, real
Jordan algebras are derived. The results are pre-
sented in the three A ¼ R, C, H sub-blocks of
Table VI. The A ¼ O orbits as well as the large
A ¼ R, C, H orbits appearing in Table VI were
previously obtained in [11]. In Sec. the N ¼ 2,
D ¼ 4 magic quaternionic case is compared to its
‘‘twin’’ N ¼ 6 theory [12,57,58] and the super-
symmetry analysis of twin black-hole charge orbits
is carried out and presented in (65).

(2) In Sec. III D the small (rank-3, -2, -1) orbits and
moduli spaces of the infinite sequences of D ¼ 4,
N ¼ 4 and D ¼ 4, N ¼ 2 Maxwell-Einstein
theories are derived. The results are presented in
Table VII and VIII, respectively. The large orbits
appearing in Table VII and VIII were previously
obtained in [11,12,22,59]. In Sec. III F 1 it is ob-
served that for the triality symmetric N ¼ 2 STU
model each of the rank 3-and rank-2 orbits split into
two isomorphic yet physically distinct (BPS vs non-
BPS) orbits.

(3) In Sec. III F 2 and III F 3 the small orbits and moduli
spaces of the ST2 and T3 models are derived. For the
ST2 model the small orbits may be obtained from
Table VIII by setting n ¼ 1 (when this is still well-
defined—when it is not, the orbit is not present). The
T3 orbits are presented in Table IX. It is established
that while the BPS large orbit of the T3 model
(which one could think of as the simplest example
of BPS-supporting charge orbit in D ¼ 4, N ¼ 2
Maxwell-Einstein supergravity) has no continuous
stabilizer it does in fact have a Z3 stabilizer.

(4) In Secs. III G, III H, and III Ithe unique small orbits
and moduli spaces of the N ¼ 2 minimally
coupled, N ¼ 3 matter-coupled and N ¼ 5 pure
supergravities are obtained, respectively.

II. BH CHARGE ORBITS IN D ¼ 5
SYMMETRIC SUPERGRAVITIES

A. Cubic Jordan Algebras

A Jordan algebra J is a vector space defined over a
ground field F equipped with a bilinear product satisfying

X � Y ¼ Y � X;

X2 � ðX � YÞ ¼ X � ðX2 � YÞ; 8 X; Y 2 J:
(13)

The class of cubic Jordan algebras is constructed as follows
[44]. Let V be a vector space equipped with a cubic norm,
i.e., an homogeneous map of degree three,

N:V!F; whereNð�XÞ¼�3NðXÞ; 8�2F; X2V;

such that

NðX; Y; ZÞ :¼ 1
6½NðX þ Y þ ZÞ � NðX þ YÞ � NðX þ ZÞ
� NðY þ ZÞ þ NðXÞ þ NðYÞ þ NðZÞ�

(14)

is trilinear. If V further contains a base point NðcÞ ¼ 1,
c 2 V one may define the following three maps,

Tr:V!F; X�3Nðc;c;XÞ;
S:V�V!F; ðX;YÞ�6NðX;Y;cÞ;
Tr:V�V!F; ðX;YÞ�TrðXÞTrðYÞ�SðX;YÞ: (15)

A cubic Jordan algebra J, with multiplicative identity
1 ¼ c, may be derived from any such vector space if N
is Jordan cubic. That is: if (i) the trace bilinear form
(15) is nondegenerate, and if (ii) the quadratic adjoint
map

] : J ! J; (16)

uniquely defined by

Tr ðX]; YÞ ¼ 3NðX; X; YÞ; (17)

satisfies ðX]Þ] ¼ NðXÞX, 8 X 2 J. The Jordan product
can then be implemented as follows:

X � Y ¼ 1
2ðX � Y þ TrðXÞY þ TrðYÞX � SðX; YÞ1Þ;

(18)

where, X � Y is the linearization of the quadratic ad-
joint: X � Y :¼ ðX þ YÞ] � X] � Y].
The degree of a cubic Jordan algebra is defined as the

number of linearly independent irreducible idempotents:

E � E ¼ E; TrðEÞ ¼ 1; E 2 J:

Two important symmetry groups, AutðJÞ and Str0ðJÞ, are
given by the set of F-linear transformations preserving the
Jordan product and cubic norm, respectively. In particular,
Str0ðJÞ is the U-duality group G5 of the corresponding
D ¼ 5 supergravity, and the corresponding vector multip-
lets’ scalar manifold is given by

Str0ðJÞ
AutðJÞ ; (19)

which is isomorphic to the BPS rank-3 orbit in the sym-
metries theories with eight supersymmetries—related to
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Jordan algebras—in whichAutðJÞ is the maximal compact
subgroup (mcs) of Str0ðJÞ, as well.

The conventional concept of matrix rank may be
generalized to a cubic Jordan algebra in a natural and
Str0ðJÞ-invariant manner. The rank of an arbitrary element
X 2 J is uniquely defined by [60]

RankX ¼ 1 , X] ¼ 0;

RankX ¼ 2 , NðXÞ ¼ 0; X] � 0;

RankX ¼ 3 , NðXÞ � 0:

(20)

B. N ¼ 8

The 27 ¼ 3þ 3dimRO
s electric BH charges may be

represented as elements

Q ¼
q1 Qs

�Qc

�Qs q2 Qv

Qc
�Qv q3

0
BB@

1
CCA;

where q1; q2; q3 2 R and Qv;s;c 2 Os (21)

of the 27-dimensional Jordan algebra JOs

3 of 3� 3
Hermitian matrices over the split octonions Os. The cubic
norm is defined as

NðQÞ ¼ q1q2q3 � q1Qv
�Qv � q2Qc

�Qc � q3Qs
�Qs

þ ðQvQcÞQs þ �Qsð �Qc
�QvÞ: (22)

One finds that the quadratic adjoint (16) is given by

Q ¼
q2q3 � jQvj2 �Qc

�Qv � q3Qs QsQv � q2 �Qc

QvQc � q3 �Qs q1q3 � jQcj2 �Qs
�Qc � q1Qv

�Qv
�Qs � q2Qc QcQs � q1 �Qv q1q2 � jQsj2

0
BB@

1
CCA;

(23)

from which it is derived that Q � P ¼ 1
2 ðQPþ PQÞ. The

cubic Jordan algebra JOs

3 has irreducible idempotents

given by

E1 ¼
1 0 0

0 0 0

0 0 0

0
BB@

1
CCA;

E2 ¼
0 0 0

0 1 0

0 0 0

0
BB@

1
CCA;

E3 ¼
0 0 0

0 0 0

0 0 1

0
BB@

1
CCA:

(24)

The D ¼ 5, N ¼ 8 U-duality group is given by the re-

duced structure group Str0ðJOs

3 Þ ¼ E6ð6Þ, which is the

maximally noncompact (split) form of E6ðCÞ under which

Q 2 JOs

3 transforms as the fundamental 27. The BH en-

tropy is then given by [recall Eq. (4)]

SD¼5;BH ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jI3ðQÞj

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jNðQÞj

q
: (25)

The U-duality charge orbits are classified according to the
E6ð6Þ-invariant Jordan rank of the charge vector, as defined

in (20). This precisely reproduces the classification origi-
nally obtained in [11,61]. The maximally split form of the
U-duality group, which corresponds to the use of the split
octonions,2 is the most powerful in the sense that for each
rank there is a unique canonical form to which all elements
may be transformed. More precisely, we have the
following

Theorem 1. [11,62] Every BH charge vectorQ 2 JOs

3 of

a given rank is E6ð6Þ related to one of the following canoni-
cal forms:
(1) Rank 1
(a) Q1 ¼ ð1; 0; 0Þ ¼ E1:
(2) Rank 2
(a) Q2 ¼ ð1; 1; 0Þ ¼ E1 þ E2:
(3) Rank 3
(a) Q3 ¼ ð1; 1; kÞ ¼ E1 þ E2 þ kE3:
The orbit stabilizers are summarized in Table I. We will

see that the orbit structure of theories with less super-
symmetry is a progressive splitting of this exceptionally
simple case.

C. N ¼ 2 magic

The 3þ 3 dimA electric BH charges may be represented
as elements

Q ¼
q1 Qs

�Qc

�Qs q2 Qv

Qc
�Qv q3

0
BB@

1
CCA;

where q1; q2; q3 2 R and Qv;s;c 2 A (26)

of the ð3þ 3 dimAÞ-dimensional Jordan algebra JA
3 of

3� 3 Hermitian matrices over the division algebra A
[56]. The irreducible idempotents, quadratic adjoint and
cubic norm are as in Sec. II B. The magic D ¼ 5, N ¼ 2
U-duality groups GA

5 are given by the reduced structure

group Str0ðJA
3 Þ. For A ¼ R, C, H, O the U-duality GA

5 is

SLð3;RÞ, SLð3;CÞ, SU?ð6Þ, E6ð�26Þ under which Q 2 JA
3

transforms as a 6, 9, 15, 27, respectively. The BH entropy is
given by Eq. (25). Once again, the U-duality charge orbits
are classified according to the GA

5 -invariant Jordan rank of

the charge vector. More precisely, we have the following
Theorem 2. [11,27] Every BH charge vector Q 2 JA

3 of

a given rank isGA
5 related to one of the following canonical

forms:

2The split octonions are not division, but are composition:
jabj ¼ jajjbj.
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(1) Rank 1
(a) Q1a ¼ ð1; 0; 0Þ ¼ E1

(b) Q1b ¼ ð�1; 0; 0Þ ¼ �E1:
(2) Rank 2
(a) Q2a ¼ ð1; 1; 0Þ ¼ E1 þ E2

(b) Q2b ¼ ð�1; 1; 0Þ ¼ �E1 þ E2

(c) Q2c ¼ ð�1;�1; 0Þ ¼ �E1 � E2:
(3) Rank 3
(a) Q3a ¼ ð1; 1; kÞ ¼ E1 þ E2 þ kE3

(b) Q3b ¼ ð�1;�1; kÞ ¼ �E1 � E2 þ kE3:
Note that the orbits generated by the conical forms Q1a

and Q1b are isomorphic, as are those generated by Q2a and
Q2c. The lightlike 1=4-BPS orbit of the N ¼ 8 splits into
one 1=2-BPS and one non-BPS orbit, as does the large
1=8-BPS orbit. Note that the critical 1=2-BPS orbit re-
mains intact [30]. The orbits are summarized in Table II
(the exceptional—octonionic—case was first derived in
[11]). Note that the N ¼ 2 JH

3 theory has a ‘‘dual’’

interpretation asN ¼ 6 supergravity, as described in [30].

D. The N ¼ 4 and N ¼ 2 reducible
Jordan symmetric sequences

1. N ¼ 4

For N ¼ 4 supergravity coupled to nV vector multip-
lets, the nþ 5 electric BH charges may be represented as
elements (� :¼ 0, I, where I ¼ 1; . . . ; nþ 3)

Q ¼ ðq;q�Þ; where q 2 R; q� 2 R5;n�1; (27)

of the (nþ 5)-dimensional reducible cubic Jordan algebra
J5;n�1 (note that the index 0 pertains to one of the five

graviphotons). Note that we have adopted the ð5; n� 1Þ
convention to emphasize the relation to the corresponding
D ¼ 4 theory, whereas in [30] the ð5; nVÞ convention was
used, i.e., n ¼ nV þ 1. The cubic norm is defined as

NðQÞ ¼ qq�q
�; (28)

where the index � has been raised with the ðþ5;�n�1Þ
signature metric ���; the positive signature pertains to the
five graviphotons of the theory, whereas the negative one
pertains to the n� 1 Abelian matter (vector) supermultip-
lets coupled to the gravity multiplet. The reduced structure
group reads

G5 ¼ Str0ðJ5;n�1Þ ¼ SOð1; 1Þ � SOð5; n� 1Þ: (29)

For � 2 R, � 2 SOð5; n� 1Þ, its action on the charge
vector reads

ðq; q�Þ � ðe2�q; e����
�q�Þ: (30)

One finds that the quadratic adjoint (16) is given by

Q] ¼ ðq�q�; qq0;�qqIÞ; (31)

from which it is derived that3

Q � P ¼ ðqp; q0p0 � qJp
J; q0pI þ p0qIÞ; (32)

where the index I has been raised with the ðþ4;�n�1Þ
signature metric �nm. Consequently, the automorphism
group is given by

Aut ðJ5;n�1Þ ¼ SOð4; n� 1Þ: (33)

Three irreducible idempotents are given by

E1 ¼ ð1; 0Þ; E2 ¼
�
0;
1

2
; 0; 0; 0; 0;

1

2
; 0; . . .

�
;

E3 ¼
�
0;
1

2
; 0; 0; 0; 0;� 1

2
; 0; . . .

�
:

(34)

The U-duality charge orbits are classified according to
the SOð1; 1Þ � SOð5; n� 1Þ-invariant Jordan rank of the
charge vector. More precisely, the following theorem [25]
holds.
Theorem 3. Every BH charge vector Q ¼ ðq;q�Þ 2

J5;n�1 of a given rank is SOð1; 1Þ � SOð5; n� 1Þ related
to one of the following canonical forms:
(1) Rank 1
(a) Q1a ¼ E1

(b) Q1b ¼ �E1

(c) Q1c ¼ E2:
(2) Rank 2
(a) Q2a ¼ E2 þ E3

TABLE I. Charge orbits, corresponding moduli spaces and the number # of ‘‘nonflat’’ scalar directions of D ¼ 5, N ¼ 8
supergravity defined over JOs

3 [11].

JOs

3 , M ¼ E6ð6Þ=Uspð8Þ
Rank BH Susy Charge orbit O Moduli space M #

1 small critical 1=2
E6ð6Þ

SOð5;5Þ2R16
SOð5;5Þ

SOð5Þ�SOð5Þ 2R16 1

2 small lightlike 1=4
E6ð6Þ

SOð5;4Þ2R16
SOð5;4Þ

SOð5Þ�SOð4Þ 2R16 6

3 large 1=8
E6ð6Þ
F4ð4Þ

F4ð4Þ
Uspð6Þ�SUð2Þ 14

3Note that this construction appears to be undemocratic in the
sense that it picks out one of the graviphotons q0 as special. This
is due to the undemocratic choice of base point c ¼ ð1; 1; 0Þ we
have used. This choice was made for convenience, but one could
have equally used a ‘‘democratic’’ base point, valid for any
signature Jp;q with p � 1, c ¼ ðp�1; 1; 1; . . . ; 1; 0; 0; . . . ; 0Þ,
which for p ¼ 5 treats all five graviphotons on the same footing.
Of course, this is just a matter of conventions and the results are
unaffected.
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TABLE II. Charge orbits, corresponding moduli spaces, and number # of ‘‘nonflat’’ scalar directions of the magic D ¼ 5, N ¼ 2
supergravities defined over JA

3 , A ¼ R, C, H, O [28,30].

JO
3 , nV ¼ 26, M ¼ E6ð�26Þ=F4ð�52Þ

Rank BH Susy Charge orbit O Moduli space M #

1 small critical 1=2
E6ð�26Þ

SOð1;9Þ2R16
SOð1;9Þ
SOð9Þ 2R16 1

2a small lightlike 0
E6ð�26Þ

SOð1;8Þ2R16
SOð1;8Þ
SOð8Þ 2R16 2

2b small lightlike 1=2
E6ð�26Þ

SOð9Þ2R16 R16 10

3aðk > 0Þ large 1=2
E6ð�26Þ
F4ð�52Þ

¼ M - 26

3bðk > 0Þ large 0 (ZH � 0)
E6ð�26Þ
F4ð�20Þ

F4ð�20Þ
SOð9Þ 10

JH
3 , nV ¼ 14, M ¼ SU?ð6Þ=Uspð6Þ

Rank BH Susy Charge orbit O Moduli space M #

1 small critical 1=2 SU?ð6Þ
½SOð1;5Þ�SOð3Þ�2Rð4;2Þ

SOð1;5Þ
SOð5Þ 2Rð4;2Þ 1

2a small lightlike 0 SU?ð6Þ
½SOð1;4Þ�SOð3Þ�2Rð4;2Þ

SOð1;4Þ
SOð4Þ 2Rð4;2Þ 2

2b small lightlike 1=2 SU?ð6Þ
½SOð5Þ�SOð3Þ�2Rð4;2Þ Rð4;2Þ 6

3aðk > 0Þ large 1=2 SU?ð6Þ
Uspð6Þ ¼ M - 14

3bðk > 0Þ large 0 (ZH � 0) SU?ð6Þ
Uspð2;4Þ

Uspð2;4Þ
Uspð2Þ�Uspð4Þ 6

JC
3 , nV ¼ 8, M ¼ SLð3;CÞ=SUð3Þ

Rank BH Susy Charge orbit O Moduli space M #

1 small critical 1=2 SLð3;CÞ
½SOð1;3Þ�SOð2Þ�2Rð2;2Þ

SOð1;3Þ
SOð3Þ 2Rð2;2Þ 1

2a small lightlike 0 SLð3;CÞ
½SOð1;2Þ�SOð2Þ�2Rð2;2Þ

SOð1;2Þ
SOð2Þ 2Rð2;2Þ 2

2b small lightlike 1=2 SLð3;CÞ
½SOð3Þ�SOð2Þ�2Rð2;2Þ Rð2;2Þ 4

3aðk > 0Þ large 1=2 SLð3;CÞ
SUð3Þ ¼ M - 8

3bðk > 0Þ large 0 (ZH � 0) SLð3;CÞ
SUð1;2Þ

SUð1;2Þ
Uð1Þ�SUð2Þ 4

JR
3 , nV ¼ 5, M ¼ SLð3;RÞ=SOð3Þ

Rank BH Susy Charge orbit O Moduli space M #

1 small critical 1=2 SLð3;RÞ
SOð1;2Þ2R2

SOð1;2Þ
SOð2Þ 2R2 1

2a small lightlike 0 SLð3;RÞ
SOð1;1Þ2R2 SOð1; 1Þ2R2 2

2b small lightlike 1=2 SLð3;RÞ
SOð2Þ2R2 R2 3

3aðk > 0Þ large 1=2 SLð3;RÞ
SOð3Þ ¼ M - 5

3bðk > 0Þ large 0 (ZH � 0) SLð3;RÞ
SOð1;2Þ

SOð1;2Þ
SOð2Þ 3

TABLE III. Charge orbits, corresponding moduli spaces and number # of ‘‘nonflat’’ scalar directions of the reducible D ¼ 5,
N ¼ 4 supergravities defined over J5;n�1 ¼ R � �5;n�1 [30]. The scalar manifold reads M ¼ ½SOð1; 1Þ � SOð5; n� 1�=
½SOð5Þ � SOðn� 1Þ�, with dimR ¼ 5n� 4.

Rank BH Susy Charge orbit O Moduli space M #

1a small critical 1=2 SOð1;1Þ�SOð5;n�1Þ
SOð5;n�1Þ

SOð5;n�1Þ
SOð5Þ�SOðn�1Þ 1

1c 1=2 SOð1;1Þ�SOð5;n�1Þ
SOð1;1Þ�SOð4;n�2Þ2R4;n�2

SOð1;1Þ�SOð4;n�2Þ
SOð4Þ�SOðn�2Þ 2R4;n�2 2

2a 1=2 SOð1;1Þ�SOð5;n�1Þ
SOð4;n�1Þ

SOð4;n�1Þ
SOð4Þ�SOðn�1Þ n

2b small lightlike 0 SOð1;1Þ�SOð5;n�1Þ
SOð5;n�2Þ

SOð5;n�2Þ
SOð5Þ�SOðn�2Þ 6

2c 1=4 SOð1;1Þ�SOð5;n�1Þ
SOð4;n�2Þ2R4;n�2

SOð4;n�2Þ
SOð4Þ�SOðn�2Þ 2R4;n�2 2

3abðk > 0Þ large 1=4 SOð1;1Þ�SOð5;n�1Þ
SOð4;n�1Þ

SOð4;n�1Þ
SOð4Þ�SOðn�1Þ n

3bðk < 0Þ 0 (ẐAB;H ¼ 0) SOð1;1Þ�SOð5;n�1Þ
SOð5;n�2Þ

SOð5;n�2Þ
SOð5Þ�SOðn�2Þ 6
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(b) Q2b ¼ E2 � E3

(c) Q2c ¼ E1 þ E2

(d) Q2d ¼ �E1 � E2:
(3) Rank 3
(a) Q3a ¼ E1 þ E2 þ kE3

(b) Q3b ¼ �E1 þ E2 þ kE3:
Note that the orbits 1a and 1b are physically equivalent,

and have isomorphic cosets. The same applies to 2c and
2d. The orbits are summarized in Table III [30].

2. N ¼ 2

For N ¼ 2 theories coupled to nV vector multiplets,
whose scalar manifolds belong to the so-called Jordan
symmetric sequence of the real special geometry, the
nþ 1 electric BH charges may be represented as elements
(� :¼ 0, I, where I ¼ 1; . . . ; n� 1)

Q ¼ ðq;q�Þ; where q 2 R; q� 2 R1;n�1; (35)

of the (nþ 1)-dimensional reducible cubic Jordan algebra
J1;n�1. Once again, let us note that we have adopted the

ð1; n� 1Þ convention, in order to emphasize the relation
to the corresponding D ¼ 4 theory, whereas in [30] the
ð1; nVÞ convention was used, i.e., n ¼ nV þ 1. The setup
and analysis is essentially as for the N ¼ 4 case. The
principal difference is that the 1=4-BPS orbits split into one
1=2-BPS and one non-BPS orbit. This is captured in the
connectedness of the charge orbits [30], as we will discuss
below. This may be seen as a consequence of the
Lorentzian nature of J1;n�1, contrasted to the genuine

pseudo-Euclidean nature of J5;n�1. As for N ¼ 4, the
cubic norm is defined by (28), but now the index � is
raised with the ðþ;�n�1Þ signature metric ���. The re-
duced structure group is therefore

G5 ¼ Str0ðJ1;n�1Þ ¼ SOð1; 1Þ � SOð1; n� 1Þ: (36)

For � 2 R, � 2 SOð1; n� 1Þ, its action on the charge
vector is given by Eq. (30). Then, one finds that the
quadratic adjoint (16) is given by

Q] ¼ ðq�q�;qq�Þ; (37)

from which Eq. (32) can be derived. Consequently, the
automorphism group is given by

Aut ðJ1;n�1Þ ¼ SOðn� 1Þ ¼ mcsðStr0ðJ1;n�1ÞÞ: (38)

Three irreducible idempotents are given by

E1 ¼ ð1; 0Þ; E2 ¼
�
0;
1

2
;
1

2
; 0; . . .

�
;

E3 ¼
�
0;
1

2
;� 1

2
; 0; . . .

�
:

(39)

The U-duality charge orbits are classified according to
the SOð1; 1Þ � SOð1; n� 1Þ-invariant Jordan rank of the
charge vector. More precisely, the following theorem [25]
holds.

Theorem 4. Every BH charge vector Q ¼ ðq;q�Þ 2
J1;n�1 of a given rank is SOð1; 1Þ � SOð1; n� 1Þ related
to one of the following canonical forms:
(1) Rank 1
(a) Q1a ¼ E1

(b) Q1b ¼ �E1

(c) Q1c ¼ E2:
(2) Rank 2
(a) Q2a ¼ E2 þ E3

(b) Q2b ¼ E2 � E3

(c) Q2c ¼ E1 þ E2

(d) Q2d ¼ �E1 � E2:
(3) Rank 3
(a) Q3a ¼ E1 þ E2 þ kE3

(b) Q3b ¼ �E1 þ E2 þ kE3:

Note that, if one restricts to the identity-connected compo-
nent of SOð1; n� 1Þ, each of the orbits Q1c, Q2c and Q2d

splits into two cases, Q	
1c, Q

	
2c and Q	

2d, corresponding to

the future and past light cones. Similarly, Q2a splits into
two disconnected components, Q	

2a, corresponding to the
future and past hyperboloids. For k > 0 the orbits Q3a and
Q3b also split into disconnected future and past hyperbol-
oids, Q	

3a and Q	
3b.

The orbits are summarized in Table IV. As described in
[30], the orbitsQ	

2c,Q
	
2d,Q

	
3a andQ

	
3b are BPS or non-BPS

depending on whether the sign þ=� of q is correlated or
anticorrelated, respectively, with the future/past branch on
which the orbit is defined.
The non-Jordan symmetric sequence [63]

MnJ;5;n 
 SOð1; nÞ
SOðnÞ ; n ¼ nV 2 N; (40)

(nV being the number of Abelian vector supermultiplets
coupled to the N ¼ 2, D ¼ 5 supergravity one) is the
only (sequence of) symmetric real special geometry which
is not related to a cubic Jordan algebra. It is usually
denoted by Lð�1; n� 1Þ in the classification of homoge-
neous Riemannian d-spaces (see, e.g., [64], and references
therein).
As discussed in [63], the isometries of the symmetric

real special space (40) are not all contained in the invari-
ance group of the corresponding supergravity theory, de-
spite the fact that the latter group still acts transitively on
the space. By using the parametrization introduced in the
last section of [65] and comparing, e.g., Eq. (5.1) of [64]
to Eq. (7) of [63], we can conclude immediately that the
D ¼ 5, N ¼ 2 Maxwell-Einstein supergravity theory
whose scalar manifold is given by (40) can be uplifted to
a D ¼ 6, (1, 0) supergravity theory with n� 1 vector
multiplets, but no tensor multiplets at all (nT ¼ 0). Thus,
in absence of matter fields charged under a nontrivial
gauge group, the gravitational anomaly-free condition im-
plies that [66,67] nH ¼ 272þ n hypermultiplets must be
coupled to the theory. On the other hand, this theory is
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known not to satisfy the condition of conservation of the
gauge vector current (required by the consistency of the
gauge invariance [68–72]); therefore, it seemingly has a
D ¼ 6 uplift to (1, 0) chiral supergravity which is not
anomaly-free, unless it is embedded in a model where a
nontrivial gauge group is present, with charged matter (see,
e.g., [73,74]).

We will not further consider this theory in the present
investigation, because it does not correspond to symmetric
spaces in D ¼ 4 [63].

III. BH CHARGE ORBITS IN D ¼ 4
SYMMETRIC SUPERGRAVITIES

A. The Freudenthal triple system

Given a cubic Jordan algebra J defined over a field F,
one is able to construct a FTS by defining the vector space
FðJÞð:¼ FÞ,

F ðJÞ ¼ F � F � J � J: (41)

An arbitrary element x 2 FðJÞ may be written as a formal
‘‘2� 2 matrix,’’

x ¼ � X
Y �

� �
where �;� 2 F and X; Y 2 J: (42)

The FTS comes equipped with a nondegenerate bilinear
antisymmetric quadratic form, a quartic form and a tri-
linear triple product [75,76]:

(1) Quadratic form fx; yg: F� F ! F

fx; yg ¼ ��� �	þ TrðX;WÞ � TrðY; ZÞ;

where x ¼ � X
Y �

� �
; y ¼ 	 Z

W �

� �
:

(43a)

(2) Quartic form q: F ! F

qðxÞ ¼ �2½��� TrðX; YÞ�2
� 8½�NðXÞ þ �NðYÞ � TrðX]; Y]Þ�: (43b)

(3) Triple product T: F� F� F ! F which is
uniquely defined by

fTðx; y; wÞ; zg ¼ qðx; y; w; zÞ (43c)

where qðx; y; w; zÞ is the full linearization of qðxÞ
such that qðx; x; x; xÞ ¼ qðxÞ.

The automorphism group is given by the set of invertible
F-linear transformations preserving the quadratic and
quartic forms [75,76],

AutðFÞ :¼ f
 2 IsoFðFÞjqð
xÞ ¼ qðxÞ; f
x;
yg
¼ fx; yg; 8 x; y 2 Fg ¼ ConfðJÞ: (44)

Generally, the automorphism group corresponds to the
U-duality group of corresponding four-dimensional super-
gravities (see, for example, [12,32,77,78], and references
therein). The conventional concept of matrix rank may be
generalized to Freudenthal triple systems in a natural and
AutðFÞ-invariant manner. The rank of an arbitrary element
x 2 F is uniquely defined by [26,79]

TABLE IV. Charge orbits, corresponding moduli spaces, and number # of ‘‘nonflat’’ scalar directions of the reducible D ¼ 5,N ¼
2 supergravities defined over J1;n�1 ¼ R � �1;n�1 [30]. The scalar manifold reads M ¼ ½SOð1; 1Þ � SOð1; n� 1�=SOðn� 1Þ, with
dimRM ¼ n.

Rank BH Susy Charge orbit O Moduli space M #

1a small critical 1=2 SOð1;1Þ�SOð1;n�1Þ
SOð1;n�1Þ

SOð1;n�1Þ
SOðn�1Þ 1

1c 1=2 SOð1;1Þ�SOð1;n�1Þ
SOð1;1Þ�SOðn�2Þ2Rn�2 SOð1; 1Þ � Rn�2 2

2a 1=2 SOð1;1Þ�SOð1;n�1Þ
SOðn�1Þ - n

2b small lightlike 0 SOð1;1Þ�SOð1;n�1Þ
SOð1;n�2Þ

SOð1;n�2Þ
SOðn�2Þ 2

2cþ 1=2 SOð1;1Þ�SOð1;n�1Þ
SOðn�2Þ2Rn�2 Rn�2 2

2c� 0 SOð1;1Þ�SOð1;n�1Þ
SOðn�2Þ2Rn�2 Rn�2 2

2d� 1=2 SOð1;1Þ�SOð1;n�1Þ
SOðn�2Þ2Rn�2 Rn�2 2

2dþ 0 SOð1;1Þ�SOð1;n�1Þ
SOðn�2Þ2Rn�2 Rn�2 2

3aþðk > 0Þ 1=2 SOð1;1Þ�SOð1;n�1Þ
SOðn�1Þ - n

3a�ðk > 0Þ large 0 (ZH � 0) SOð1;1Þ�SOð1;n�1Þ
SOðn�1Þ - n

3b�ðk > 0Þ 1=2 SOð1;1Þ�SOð1;n�1Þ
SOðn�1Þ - n

3bþðk > 0Þ 0 (ZH � 0) SOð1;1Þ�SOð1;n�1Þ
SOðn�1Þ - n

3abðk < 0Þ 0 (ZH � 0) SOð1;1Þ�SOð1;n�1Þ
SOð1;n�2Þ

SOð1;n�2Þ
SOðn�2Þ 2
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Rank x¼1,3Tðx;x;yÞþxfx;ygx¼0 8 y;

Rank x¼2,9ys:t:3Tðx;x;yÞþxfx;ygx�0; Tðx;x;xÞ¼0;

Rank x¼3,Tðx;x;xÞ�0; qðxÞ¼0;

Rank x¼4,qðxÞ�0: (45)

B. N ¼ 8

The ð1þ 27Þ þ ð1þ 27Þ electricþmagnetic BH
charges may be represented as elements

x ¼ �q0 P
Q p0

� �
; where p0; q0 2 R and

Q;P 2 JOs

3

(46)

of the Freudenthal triple system FA :¼ FðJOs

3 Þ. The

details may be found in Sec. III A of [25], and
in the references therein. The automorphism group

AutðFOsÞ ffi ConfðJOs

3 Þ ¼ E7ð7Þ is the D ¼ 4, N ¼ 8
U-duality group, where x 2 FA transforms as the funda-
mental 56. The BH entropy is given by Eq. (2), where
I4ðxÞ ¼ �ðxÞ ¼ 1

2qðxÞ is Cartan’s unique quartic invariant

polynomial of E7ð7Þ [80]. The U-duality charge orbits are

classified according to the E7ð7Þ-invariant FTS rank of the

charge vector, as defined in (45). This reproduces the
classification originally obtained in [11,61]. More pre-
cisely, we have the following:

Theorem 5. [11,26,50] Every BH charge vector x 2 FOs

of a given rank is E7ð7Þ related to one of the following

canonical forms:
(a) Rank 1
(a)

x1 ¼ 1 0
0 0

� �
:

(b) Rank 2
(a)

x2 ¼ 1 ð1; 0; 0Þ
0 0

� �
:

(c) Rank 3
(a)

x3 ¼ 1 ð1; 1; 0Þ
0 0

� �
:

(d) Rank 4
(a)

x4a ¼ k
1 ð�1;�1;�1Þ
0 0

� �
:

(b)

x4b ¼ k
1 ð1; 1; 1Þ
0 0

� �
:

where k > 0.
As anticipated, there is one orbit per rank, but with

rank 4 splitting into 4a (�> 0) 1=8-BPS and 4b (�< 0)
non-BPS. The orbits are summarized in Table V.

C. N ¼ 2 magic

The ð4þ 3 dimAÞ þ ð4þ 3 dimAÞ electricþmagnetic
BH charges may be represented as elements

x ¼ �q0 P
Q p0

� �
; where p0; q0 2 R and

Q;P 2 JA
3

(47)

of the Freudenthal triple system FA :¼ FðJA
3 Þ. The details

may be found in Sec. III A, Ref. [25], and in the references
therein. The magic D ¼ 4, N ¼ 2 U-duality groups
GA

4 are given by the automorphism group AutðFAÞ ffi
ConfðJA

3 Þ. For A ¼ R, C, H, O the U-duality group GA
4

is Spð6;RÞ, SUð3; 3Þ, SO?ð12Þ, E7ð�25Þ. The ð8þ 6 dimAÞ
charges transform linearly as the threefold antisymmetric
traceless tensor 140, the threefold antisymmetric self-dual
tensor 20, the chiral spinor 32 and the fundamental 56 of
Spð6;RÞ, SUð3; 3Þ, SO?ð12Þ and E7ð�25Þ, respectively.
The BH entropy is given by Eq. (2), where I4ðxÞ ¼

�ðxÞ ¼ 1
2qðxÞ is the unique quartic invariant polynomial

ofGA
4 . The U-duality charge orbits are classified according

to the GA
4 -invariant FTS rank of the charge vector, as

defined in (45). More precisely, we have the following:

TABLE V. Charge orbits, moduli spaces, and number # of ‘‘nonflat’’ scalar directions of D ¼ 4, N ¼ 8, supergravity defined over
FOs

. M ¼ E7ð7Þ=SUð8Þ, dimR ¼ 70 [11].

Rank BH Susy Charge orbit O Moduli space M #

1 doubly critical 1=2
E7ð7Þ

E6ð6Þ2R27

E6ð6Þ
Uspð8Þ 2R27 1

2 critical 1=4
E7ð7Þ

SOð6;5Þ2R32�R
SOð6;5Þ

SOð6Þ�soð5Þ 2R32 � R 7

3 lightlike 1=8
E7ð7Þ

F4ð4Þ2R26

F4ð4Þ
Uspð6Þ�SUð2Þ 2R26 16

4ð�> 0Þ large 1=8
E7ð7Þ
E6ð2Þ

E6ð2Þ
SUð6Þ�SUð2Þ 30

4ð�< 0Þ 0
E7ð7Þ
E6ð6Þ

E6ð6Þ
Uspð8Þ 28
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Theorem 6. [11,27] Every BH charge vector x 2 FA of a
given rank is GA

4 related to one of the following canonical
forms:

(1) Rank 1
(a)

x1 ¼ 1 0
0 0

� �
:

(2) Rank 2
(a)

x2a ¼ 1 ð1; 0; 0Þ
0 0

� �

(b)

x2b ¼ 1 ð�1; 0; 0Þ
0 0

� �
:

(3) Rank 3
(a)

x3a ¼ 1 ð1; 1; 0Þ
0 0

� �

(b)

x3b ¼ 1 ð�1;�1; 0Þ
0 0

� �
:

(4) Rank 4
(a)

x4a ¼ k
1 ð�1;�1;�1Þ
0 0

� �

(b)

x4b ¼ k
1 ð1; 1;�1Þ
0 0

� �

(c)

x4c ¼ k
1 ð1; 1; 1Þ
0 0

� �
:

where k > 0.
Here, we see that the rank-2 and -3 orbits of the N ¼ 8
theory split into one 1=2-BPS orbit and one non-BPS orbit
each. The splitting of the large BHs is a little more subtle
[12]. There is, as always forN ¼ 2, one 1=2-BPS (I4 > 0)
orbit, which we label 4a. However, there is also one non-
BPS orbit for I4 > 0, which has vanishing central charge at
the horizon ZH ¼ 0. Finally, there is the universal non-BPS
I4 < 0, which has nonvanishing central charge at the hori-
zon. The orbit stabilizers are summarized in Table VI. The
exceptional octonionic case is given as a detailed example
in Sec. A 1, which thus provides an alternative derivation
of the result obtained in [11].

N ¼ 2 Magic quaternionic versus N ¼ 6

As is well-known [12,57,58], N ¼ 2 magic quater-
nionic and N ¼ 6 supergravity share the very same bo-
sonic sector; they are both related to the simple, rank-3
Jordan algebra JH

3 over the quaternions, and their scalar

manifold is the rank-3 symmetric coset SO�ð12Þ
Uð6Þ .

It should also be noticed that the two real, noncompact
forms of E7 given by E7ð7Þ and E7ð�25Þ contain SO�ð12Þ �
SUð2Þ as a maximal subgroup, and indeed both manifolds
E7ð�25Þ
E6�Uð1Þ (rank-3 special Kähler, with dimC ¼ 27) and

E7ð7Þ
SUð8Þ

(rank-7, with dimR ¼ 70) contain the coset space SO�ð12Þ
Uð6Þ as

a submanifold. Such an observation reveals the dual role of

the manifold SO�ð12Þ
Uð6Þ : it is at the same time the 
-model

scalar manifold of N ¼ 6 supergravity and of N ¼ 2
magic quaternionic Maxwell-Einstein supergravity.
Starting from N ¼ 8, the supersymmetry truncation

down to N ¼ 6 goes as follows:

N ¼ 8: ½ð2Þ; 8ð32Þ; 28ð1Þ; 56ð11Þ; 70ð0Þ�gravity mult:

#

N ¼ 6:

( ½ð2Þ; 6ð32Þ; 16ð1Þ; 26ð12Þ; 30ð0Þ�gravity mult:

2½ð32Þ; 6ð1Þ; 15ð12Þ; 20ð0Þ; �gravitino mults:
(48)

In order to truncate the two N ¼ 6 gravitino multiplets
away, one has to consider the U-duality branching for
vectors, which reads

E7ð7Þ �SO�ð12Þ�SUð2Þ; 56¼ð32;1Þþð12;2Þ; (49)

implying the truncation condition

SO �ð12Þ � SUð2Þ: ð12; 2Þ ¼ 0; (50)

as well as the R-symmetry branching (omitting Uð1Þ
charges)

N ¼ 8R-symmetry

SUð8Þ � N ¼ 6R-symmetry

Uð6Þ � SUð2Þ;
8 ¼ ð6; 1Þ þ ð1; 2Þ;

28 ¼ ð15; 1Þ þ ð1; 1Þ þ ð6; 2Þ;
56 ¼ ð20; 1Þ þ ð6; 1Þ þ ð15; 2Þ;
70 ¼ ð15; 1Þ þ ð15; 1Þ þ ð20; 2Þ; (51)

implying the truncation conditions

U ð6Þ � SUð2Þ: ð1; 2Þ ¼ ð6; 2Þ ¼ ð15; 2Þ ¼ ð20; 2Þ ¼ 0:

(52)

Note that the commuting SUð2Þ factor in (51) may be
regarded as the ‘‘extra’’ R-symmetry truncated away in
the supersymmetry reductionN ¼ 8 ! N ¼ 6 obtained
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by imposing (50) and (52), which corresponds to the
following scalar manifold embedding:

E7ð7Þ
SUð8Þ � SO�ð12Þ

Uð6Þ : (53)

On the other hand, the supersymmetry truncation N ¼
8 ! N ¼ 2 goes as follows:

N ¼ 8: ½ð2Þ; 8ð32Þ; 28ð1Þ; 56ð12Þ; 70ð0Þ�gravity mult:

#

N ¼ 2:

8>>>>>><
>>>>>>:

½ð2Þ; 2ð32Þ; ð1Þ�gravity mult:

6½ð32Þ; 2ð1Þ; ð12Þ�gravitino mults:

15½ð1Þ; 2ð12Þ; 2ð0Þ�vector mults:

10½2ð12Þ; 4ð0Þ�hyper mults:

(54)

In order to truncate the six N ¼ 2 gravitino multiplets
away, the same condition (50) on U-irreps. has to be
imposed. On the other hand, by reconsidering (51) with

the different interpretation of R-symmetry branching
N ¼ 8 ! N ¼ 2 (the commuting SUð6Þ factor in (51)
now refers to the extra R-symmetry truncated away), the
following truncation conditions, different from (52), are
obtained:

U ð6Þ � SUð2Þ: ð6; 1Þ ¼ ð6; 2Þ ¼ 0: (55)

Thus, by imposing (50) and (55), one achieves a consistent
truncation of N ¼ 8 down to N ¼ 2 magic octonionic
supergravity coupled to 15 vector multiplets and 10 hyper-
multiplets, which at the level of the scalar manifold reads

E7ð7Þ
SUð8Þ � SO�ð12Þ

Uð6Þ � E6ð2Þ
SUð6Þ � SUð2Þ : (56)

The N ¼ 2 hyper sector can be consistently truncated
away, by further imposing

U ð6Þ � SUð2Þ: ð20; 1Þ ¼ ð20; 2Þ ¼ 0; (57)

thus yielding (53).
On the other hand, starting from theN ¼ 2 exceptional

magic supergravity with no hypermultiplets, the truncation
down to its N ¼ 2 magic quaternionic subtheory is

TABLE VI. Charge orbits, moduli spaces, and number # of ‘‘nonflat’’ scalar directions of the of the magic D ¼ 4, N ¼ 2
supergravities defined over FA, A ¼ R, R, C, H, O. M ¼ AutðFAÞ=mcsðFA

3 Þ. dimRM ¼ 6þ 6 dimA [11].

Rank BH Susy FO, nV ¼ 27, M ¼ E7ð�25Þ=½Uð1Þ � E6ð�78Þ� FH, nV ¼ 15, M ¼ SO?ð12Þ=Uð6Þ
Orbit O Moduli space M # Orbit O Moduli space M #

1 small d. critical 1=2
E7ð�25Þ

E6ð�26Þ2R27

E6ð�26Þ
F4ð�52Þ

2R27 1 SO?ð12Þ
SU?ð6Þ2R15

SU?ð6Þ
Uspð6Þ 2R15 1

2a small critical 0
E7ð�25Þ

SOð2;9Þ2R32�R
SOð2;9Þ

SOð2Þ�SOð9Þ 2R32 � R 3 SO?ð12Þ
½SOð2;5Þ�SOð3Þ�2Rð8;2Þ�R

SOð2;5Þ
SOð2Þ�SOð5Þ 2R8 � R8 � R 3

2b small critical 1=2
E7ð�25Þ

SOð1;10Þ2R32�R
SOð1;10Þ
SOð10Þ 2R32 � R 11 SO?ð12Þ

½SOð1;6Þ�SOð3Þ�2Rð8;2Þ�R
SOð1;6Þ
SOð6Þ 2R8 � R8 � R 7

3a small lightlike 0
E7ð�25Þ

F4ð�20Þ2R26

F4ð�20Þ
SOð9Þ 2R26 12 SO?ð12Þ

Uspð2;4Þ2R14
Uspð2;4Þ

Uspð2Þ�Uspð4Þ 2R14 8

3b small lightlike 1=2
E7ð�25Þ

F4ð�52Þ2R26 R26 28 SO?ð12Þ
Uspð6Þ2R14 R14 16

4a large timelike 1=2
E7ð�25Þ
E6ð�78Þ

- 54 SO?ð12Þ
SUð6Þ - 30

4b large timelike 0 (ZH ¼ 0)
E7ð�25Þ
E6ð�14Þ

E6ð�14Þ
SOð10Þ�SOð2Þ 22 SO?ð12Þ

SUð4;2Þ
SUð4;2Þ

SUð4Þ�SUð2Þ 13

4c large spacelike 0 (ZH � 0)
E7ð�25Þ
E6ð�26Þ

E6ð�26Þ
F4ð�52Þ

28 SO?ð12Þ
SU?ð6Þ

SU?ð6Þ
Uspð6Þ 16

Rank BH Susy FC, nV ¼ 9, M ¼ SUð3; 3Þ=½Uð1Þ � SUð3Þ � SUð3Þ� FR, nV ¼ 6, M ¼ Spð6;RÞ=Uð3Þ
Orbit O Moduli space M # Orbit O Moduli space M #

1 small d. critical 1=2 SUð3;3Þ
SLð3;CÞ2R9

SLð3;CÞ
SUð3Þ 2R9 1 Spð6;RÞ

SLð3;RÞ2R6
SLð3;RÞ
SOð3Þ 2R6 1

2a small critical 0 SUð3;3Þ
½SOð2;3Þ�SOð2Þ�2Rð4;2Þ�R

SOð2;3Þ
SOð2Þ�SOð3Þ 2R4 � R4 � R 3 Spð6;RÞ

SOð2;2Þ2R4�R
SOð2;2Þ

SOð2Þ�SOð2Þ 2R4 � R 3

2b small critical 1=2 SUð3;3Þ
½SOð1;4Þ�SOð2Þ�2Rð4;2Þ�R

SOð1;4Þ
SOð4Þ 2R4 � R4 � R 5 Spð6;RÞ

SOð1;3Þ2R4�R
SOð1;3Þ
SOð3Þ 2R4 � R 4

3a small lightlike 0 SUð3;3Þ
SUð1;2Þ2R8

SUð1;2Þ
Uð1Þ�SUð2Þ 2R8 6 Spð6;RÞ

SUð1;1Þ2R5
SUð1;1Þ

Uð1Þ�Uð1Þ 2R5 6

3b small lightlike 1=2 SUð3;3Þ
SUð3Þ2R8 R8 10 Spð6;RÞ

SUð2Þ2R5 R5 7

4a large timelike 1=2 SUð3;3Þ
SUð3Þ�SUð3Þ - 18 Spð6;RÞ

SUð3Þ - 12

4b large timelike 0 (ZH ¼ 0) SUð3;3Þ
SUð1;2Þ�SUð1;2Þ

SUð1;2Þ�SUð1;2Þ
½Uð1Þ�SUð2Þ�2 9 Spð6;RÞ

SUð1;2Þ
SUð1;2Þ

Uð1Þ�SUð2Þ 8

4c large spacelike 0 (ZH � 0) SUð3;3Þ
SLð3;CÞ

SLð3;CÞ
SUð3Þ 10 Spð6;RÞ

SLð3;RÞ
SLð3;RÞ
SOð3Þ 7
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dictated by the following branchings (H is the local sym-
metry group of the scalar manifold, up to a Uð1Þ factor):

U-duality:

�E7ð�25Þ � SO�ð12Þ � SUð2Þ;
56 ¼ ð32; 1Þ þ ð12; 2Þ; (58)

H-symmetry:

8<
:E6ð�78Þ � SUð6Þ � SUð2Þ;
27 ¼ ð�6; 2Þ þ ð15; 1Þ; (59)

implying the truncation conditions

SO �ð12Þ � SUð2Þ: ð12; 2Þ ¼ 0; (60)

SU ð6Þ � SUð2Þ: ð�6; 2Þ ¼ 0: (61)

Under such positions, one achieves a consistent truncation
of N ¼ 2 exceptional Maxwell-Einstein supergravity
down to its N ¼ 2 magic quaternionic subtheory which
at the level of the scalar manifold reads

E7ð�25Þ
E6ð�78Þ � Uð1Þ � SO�ð12Þ

Uð6Þ : (62)

Once their origin as truncation has been clarified, it is
thus evident thatN ¼ 2 quaternionic andN ¼ 6,D ¼ 4
supergravities exhibit indistinguishable bosonic sectors,
and therefore their charge orbits are the same, and their
attractor equations [12] have the same solutions.

In order to elucidate the different supersymmetry prop-
erties of the charge orbits, by recalling the spin content of
the N ¼ 6 gravity multiplet, it should be noticed that its
16 vector fields decompose as 15þ 1 with respect to the
N ¼ 6 R-symmetry (as well as the 26 gauginos and the

30 scalar fields decompose as 20þ 6 and 15þ 15, respec-
tively). Thus, theN ¼ 6 dyonic charge vectorQ splits as

N ¼ 6: Q ¼ ðX; ZAB; �Z
AB; �XÞ; (63)

where X is a complex SUð6Þ-singlet, and ZAB

(A ¼ 1; . . . ; 6) is the complex 6� 6 antisymmetric
central charge matrix. The intertwining supersymmetry-
preserving properties for the ‘‘twin’’ theories N ¼ 2
magic quaternionic versus pure N ¼ 6 can be obtained
by noticing that theN ¼ 2 counterpart of (63) is given by

N ¼ 2: Q ¼ ðZ; Zi; �Z�i; �ZÞ; (64)

where Zi 
 DiZ are the so-called matter charges (namely,
the Kähler-covariant derivatives of the N ¼ 2 central
charge Z). As summarized in Table 9 of [12], (63) and
(64) imply that the role of large BPS orbits and non-BPS
orbits with (all) central charge(s) vanishing is flipped under
the exchange N ¼ 2 $ N ¼ 6; as mentioned, such a
kind of ‘‘cross-symmetry’’ is easily understood when no-
ticing that the N ¼ 2 central charge Z corresponds to the
SUð6Þ-singlet component X of Q (63), and that the 15
complex N ¼ 2 matter charges Zi correspond to the 15
independent complex elements of the 6� 6 antisymmetric
N ¼ 6 central charge matrix ZAB.
These considerations can be extended to small charge

orbits by observing that orbits with representatives having
Z ¼ 0 necessarily are non-BPS orbits (because they cannot
saturate any BPS bound) and, in light of the above reason-
ing, they correspond to N ¼ 6 orbits with X ¼ 0 repre-
sentative. These simple arguments, combined with the
nilpotent orbits’ analysis summarized in Table V of [81],
allow one to determine the intertwining supersymmetry-
preserving properties related to the charge orbits, listed in
the table below (we use the orbit nomenclature reported in
Table VI, and for small orbits the representatives are
reported in brackets):

O N ¼ 2; JH3 N ¼ 6; JH3

4a 1=2-BPS nBPS: XH � 0; ZAB;H ¼ 0

4b nBPS: ZH ¼ 0 1=6-BPS: XH ¼ 0; ZAB;H � 0

4c nBPS: ZH � 0 nBPS: XH � 0; ZAB;H � 0

3a nBPSðZ ¼ 0Þ 1=6� BPSðX ¼ 0Þ
3b 1=2� BPSðZ � 0Þ nBPSðX � 0Þ
2a nBPSðZ ¼ 0Þ 1=3� BPSðX ¼ 0Þ
2b 1=2� BPSðZ � 0Þ 1=6� BPSðX � 0Þ
1 1=2� BPSðZ � 0Þ 1=2� BPSðX � 0Þ

(65)

For analogue treatment in D ¼ 5, see [30].
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D. The N ¼ 4 and N ¼ 2 Reducible Jordan
Symmetric sequences

1. N ¼ 4

For N ¼ 4 supergravity coupled to nV vector multip-
lets, the ðnþ 6Þ þ ðnþ 6Þ electricþmagnetic BH charges
(where n ¼ nV � 0) may be represented as elements

x ¼ �q0 P
Q p0

� �
; where p0; q0 2 R and

Q;P 2 J5;n�1

(66)

of the Freudenthal triple system F6;n :¼ FðJ5;n�1Þ.
The details may be found in Sec. III A of [25], and
in the references therein. The reducible D ¼ 4, N ¼ 4
U-duality group is given by the automorphism group
AutðF6;nÞ ¼ ConfðJ5;n�1Þ ¼ SLð2;RÞ � SOð6; nÞ under

which x 2 F6;n transforms as a ð2; 6þ nÞ. The BH entropy
is once again given by Eq. (2), where I4ðxÞ ¼ �ðxÞ ¼
1
2 qðxÞ is the unique quartic invariant polynomial of

SLð2;RÞ � SOð6; nÞ. The U-duality charge orbits are clas-
sified according to the SLð2;RÞ � SOð6; nÞ-invariant FTS
rank of the charge vector. More precisely, we have the
following theorem [25].

Theorem 7. Every BH charge vector x 2 F6;n of a given
rank is SLð2;RÞ � SOð6; nÞ related to one of the following
canonical forms:

(a) Rank 1
(a)

x1 ¼ 1 0
0 0

� �
:

(b) Rank 2
(a)

x2a ¼ 1 E1

0 0

� �

(b)

x2b ¼ 1 �E1

0 0

� �

(c)

x2c ¼ 1 E2

0 0

� �
:

Rank 3
(a)

x3a ¼ 1 E2 þ E3

0 0

� �

(b)

x3b ¼ 1 E2 � E3

0 0

� �
:

Rank 4
(a)

x4a ¼ k
1 �E1 þ E2 þ E3

0 0

� �

(b)

x4b ¼ k
1 E1 þ E2 � E3

0 0

� �

(c)

x4c ¼ k
1 �E1 þ E2 � E3

0 0

� �
:

where k > 0 and the Ei are as given in (34).
The orbit stabilizers are summarized in Table VII.

2. N ¼ 2

For N ¼ 2 supergravity theories coupled to nV vector
multiplets whose scalar manifolds belong to the so-called
Jordan symmetric sequence of special Kähler geometry,
the ðnþ 2Þ þ ðnþ 2Þ electricþmagnetic BH charges
(where n ¼ nV � 1 � 1) may be represented as elements

x ¼ �q0 P

Q p0

 !
;

where p0; q0 2 R and Q;P 2 J1;n�1 (67)

of the Freudenthal triple system F2;n :¼ FðJ1;n�1Þ. The
details may be found in Sec. III A of [25], as well as
in references therein. The reducible D ¼ 4, N ¼ 2
U-duality group is given by the automorphism group
AutðF2;nÞ ffi ConfðJ1;n�1Þ ¼ SLð2;RÞ � SOð2; nÞ under

which x 2 F2;n transforms as a ð2; 2þ nÞ. The BH entropy
is once again given by Eq. (2), where I4ðxÞ ¼ �ðxÞ ¼
1
2qðxÞ is the unique quartic invariant polynomial of

SLð2;RÞ � SOð2; nÞ. The U-duality charge orbits are clas-
sified according to the SLð2;RÞ � SOð2; nÞ-invariant FTS
rank of the charge vector. The orbit representatives are as
in Theorem 7 [25]. However, physically each 1=4-BPS
orbit of Table VII splits into one 1=2-BPS orbit and one
non-BPS orbit; see Table VIII. This splitting is determined
by the sign of the quantity [12]

I 2 ¼ jZj2 � jDSZj2: (68)

Here, Z is the central charge and DSZ is the axion-dilaton
matter charge, where DS is the Kähler-covariant derivative
on the scalar manifold along the axion-dilaton direction;
this is a ‘‘privileged’’ scalar direction, because the scalar
manifold is factorized. In fact, noting that the N ¼ 4,
D ¼ 4 1=4-BPS canonical forms all have a Jordan algebra
element that has two disconnected components under
Str0ðJ1;n�1Þ, the sign condition on (68) can be rephrased

in terms of the charges.
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E. Interpretation of ]ð1=2Þ-BPS;rank-1 ¼ 1

As reported in the tables, all symmetric D ¼ 4 theories
share the same result, namely,

] ð1=2Þ-BPS;rank-1 ¼ 1: (69)

Note that the rank-1, doubly critical orbit is always unique,
corresponding to the maximum weight vector in the rele-
vant representation space. Up to U-duality all rank-1
D ¼ 4 black holes may be regarded as a pure KK state
of the five-dimensional parent theory. All along the 1

2 -BPS

rank-1 scalar flow [23], there is only one ‘‘nonflat’’ scalar
degree of freedom.

This can be easily interpreted by recalling that the first-
order superpotential of the N ¼ 2 BPS flows is nothing
but W ¼ jZj, where Z is the N ¼ 2 central charge [82].
Thus, by considering the general expression of Z in a
generic d-special Kähler geometry (given by Eq. (4.9) of
[29]) for the relevant representative 1-charge configuration
in which the dependence on only one scalar field is mani-
fest (which turns out to be fq0g), one obtains

W ð1=2Þ-BPS;rank-1 ¼ jZjfq0g ¼
jq0j
2

ffiffiffi
2

p V�1=2; (70)

where V 
 r3KK, rKK denoting the KK radius in the KK
reduction D ¼ 5 ! D ¼ 4 [29].

TABLE VII. Charge orbits, moduli spaces, the number # of ‘‘nonflat’’ scalar directions of the reducible D ¼ 4, N ¼ 4 super-
gravities defined over F6;n :¼ FðJ5;n�1Þ. M ¼ SLð2;RÞ=SOð6; nÞ�=½SOð2Þ � SOð6Þ � SOðnÞ�. dimRðMÞ ¼ 6nþ 2. For comparison

we have included the orbit labeling used in [22], and then in [23,24]. The table is split depending on whether the BHs are small or
large.

Rank BH Susy Charge orbit O Moduli space M #

1=A:3 d. critical 1=2 SLð2;RÞ�SOð6;nÞ
½SOð1;1Þ�SOð5;n�1Þ�2ðR�R5;n�1Þ

SOð1;1Þ�SOð5;n�1Þ
SOð5Þ�SOðn�1Þ 2R� R5;n�1 1

2a=A:2 critical 0 SLð2;RÞ�SOð6;nÞ
SOð6;n�1Þ�R

SOð6;n�1Þ
SOð6Þ�SOðn�1Þ 2R 7

2b=A:1 critical 1=2 SLð2;RÞ�SOð6;nÞ
SOð5;nÞ�R

SOð5;nÞ
SOð5Þ�SOðnÞ 2R 2nþ 2

2c=B critical 1=4 SLð2;RÞ�SOð6;nÞ
½SOð2;1Þ2R��½SOð4;n�2Þ2ðR4;n�2�R4;n�2Þ�

SOð2;1�SOð4;n�2Þ
SOð2Þ�SOð4Þ�SOðn�2Þ 2R� ½R4;n�2 � R4;n�2� 4

3a=C:1 lightlike 1=4 SLð2;RÞ�SOð6;nÞ
½SOð4;n�1Þ2R4;n�1��R

SOð4;n�1Þ
SOð4Þ�SOðn�1Þ 2R� R4;n�1 n

3b=C:2 lightlike 0 SLð2;RÞ�SOð6;nÞ
½SOð5;n�2Þ2R5;n�2��R

SOð5;n�2Þ
SOð5Þ�SOðn�2Þ 2R� R5;n�2 8

4a=� timelike 1=4 SLð2;RÞ�SOð6;nÞ
SOð2Þ�SOð4;nÞ

SOð4;nÞ
SOð4Þ�SOðnÞ 2nþ 2

4b=	 timelike 0 (ẐAB;H ¼ 0) SLð2;RÞ�SOð6;nÞ
SOð2Þ�SOð6;n�2Þ

SOð6;n�2Þ
SOð6Þ�SOðn�2Þ 14

4c=� spacelike 0 (ẐAB;H � 0) SLð2;RÞ�SOð6;nÞ
SOð1;1Þ�SOð5;n�1Þ

SOð1;1Þ�SOð5;n�1Þ
SOð5Þ�SOðn�1Þ nþ 6

TABLE VIII. Charge orbits, moduli spaces, and number # of ‘‘nonflat’’ scalar directions of the reducible D ¼ 4, N ¼ 2 super-
gravities defined over F2;n :¼ FðJ1;n�1Þ. M ¼ ½SLð2;RÞ � SOð2; nÞ�=½SOð2Þ2 � SOðnÞ�. dimRðMÞ ¼ 2nþ 2. For comparison, we

have included the orbit labeling used in [22], and then in [23,24]. The table is split depending on whether the BHs are small or large.

Rank [22] BH Susy Charge orbit O Moduli space M #

1 A:3 d. critical 1=2 SLð2;RÞ�SOð2;nÞ
½SOð1;1Þ�SOð1;n�1Þ�2ðR�R1;n�1Þ

SOð1;1Þ�SOð1;n�1Þ
SOðn�1Þ 2R� R1;n�1 1

2a A:2 critical 0 SLð2;RÞ�SOð2;nÞ
SOð2;n�1Þ�R

SOð2;n�1Þ
SOð2Þ�SOðn�1Þ 2R 3

2b A:1 critical 1=2 SLð2;RÞ�SOð2;nÞ
SOð1;nÞ�R

SOð1;nÞ
SOðnÞ 2R nþ 1

2cþ B critical 1=2I2 > 0 SLð2;RÞ�SOð2;nÞ
½SOð2;1Þ2R��½SOðn�2Þ2ðRn�2�Rn�2Þ�

SOð2;1Þ
SOð2Þ 2R� ½Rn�2 � Rn�2� 3

2c� B critical 0I2 < 0 SLð2;RÞ�SOð2;nÞ
½SOð2;1Þ2R�½SOðn�2Þ2ðRn�2�Rn�2Þ�

SOð2;1Þ
SOð2Þ 2R� ½Rn�2 � Rn�2� 3

3aþ C:1 lightlike 1=2I2 > 0 SLð2;RÞ�SOð2;nÞ
½SOðn�1Þ2Rn�1��R

R� Rn�1 nþ 2

3a� C:1 lightlike 0I2 < 0 SLð2;RÞ�SOð2;nÞ
½SOðn�1Þ2Rn�1��R

R� Rn�1 nþ 2

3b C:2 lightlike 0 SLð2;RÞ�SOð2;nÞ
½SOð1;n�2Þ2Rn�1��R

SOð1;n�2Þ
SOðn�2Þ 2Rn�1 � R 4

4aþ � timelike 1=2I2 > 0 SLð2;RÞ�SOð2;nÞ
SOð2Þ�SOðnÞ    2nþ 2

4a� � timelike 0I2 < 0 SLð2;RÞ�SOð2;nÞ
SOð2Þ�SOðnÞ    2nþ 2

4b 	 timelike 0 ZH ¼ 0 SLð2;RÞ�SOð2;nÞ
SOð2Þ�SOð2;n�2Þ

SOð2;n�2Þ
SOð2Þ�SOðn�2Þ 8

4c � spacelike 0 ZH � 0 SLð2;RÞ�SOð2;nÞ
SOð1;1Þ�SOð1;n�1Þ

SOð1;1Þ�SOð1;n�1Þ
SOðn�1Þ nþ 2
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In the cases N ¼ 8 and N ¼ 4, similar results can be
obtained from the treatment given in [22,83]. Analogous
explanations can be given for the result (69) for D ¼ 5
charge orbits, as reported in the relevant tables.

F. The N ¼ 2 STU, ST2 and T3 models

1. STU

The STUmodel isN ¼ 2 supergravity coupled to three
vector multiplets. However, it has an additional discrete
triality, which exchanges the roles of the three complex
moduli. This triality has a stringy explanation first identi-
fied in [14]. It is essentially a remnant of the D ¼ 6
equivalence between the heterotic string on T4, the Type
IIA string on K3 and the Type IIB string on its mirror. The
STU model is thus a noteworthy element (n ¼ 2) of the
N ¼ 2, D ¼ 4 Jordan symmetric sequence discussed
above.

The ð1þ 3Þ þ ð1þ 3Þ electromagnetic charges may be
represented as elements

x¼ �q0 ðp;p�Þ
ðq;q�Þ p0

 !
;

wherep0;q02R and ðq;q�Þ;ðp;p�Þ2J1;1 (71)

of the Freudenthal triple system F2;2 :¼ FðJ1;1Þ.

The U-duality group AutðFSTUÞ ffi ConfðJ1;1 ¼
R � �1;1 ¼ R � R � RÞ ¼ SLð2;RÞ � SOð2; 2Þ may be

recast in a form reflecting this triality symmetry using
the isomorphism SOð2; 2Þ ffi SLð2;RÞ � SLð2;RÞ. From
the heterotic string perspective this corresponds to an
SLð2;ZÞS strong/weak coupling duality and an
SLð2;ZÞT � SLð2;ZÞU target space duality acting on the
dilaton/axion, complex Kähler form and the complex struc-
ture fields S, T, U respectively. At the level of the FTS
[20,50,84], this is realized by the Jordan algebra isomor-
phism J1;1 ¼ R � �1;1 ffi R � R � R ¼ JSTU which, for

ðq1; q2; q3Þ 2 JSTU and ðq;q�Þ 2 J1;1 is given by

q1 ¼ q; q2 ¼ q0 þ q1; q3 ¼ q0 � q1; (72)

so that the STU cubic norm becomes

NðQÞ ¼ q1q2q3: (73)

By renaming

�q0 ðp1; p2; p3Þ
ðq1; q2; q3Þ p0

� �
�

a000 ða011; a101; a110Þ
ða100; a010; a001Þ a111

� �
; (74)

the charges may be arranged into a 2� 2� 2 hypermatrix aABC, where A, B, C ¼ 0, 1, transform as a ð2; 2; 2Þ under
SLAð2;RÞ � SLBð2;RÞ � SLCð2;RÞ. In such a way, the quartic norm is given by Cayley’s hyperdeterminant DetaABC
[46,85],

� ¼ �Deta ¼ 1

2
�A1A2�B1B2�C1C3�A3A4�B3B4�C2C4aA1B1C1

aA2B2C2
aA3B3C3

aA4B4C4
(75)

and

SD¼4;BH ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDetaj

p
: (76)

This observation lies at the origin of the ‘‘black-hole/qubit
correspondence’’ [50,51,84,86–98]. The hyperdeterminant
is manifestly invariant under the triality A $ B $ C. The
role of more general hyperdeterminants in M-theory can be
found in [99,100].

The implication of this triality for the structure of the
orbits is that what are distinct cosets for generic nV become
isomorphic for the STU case. In particular, we find that for
the STU model [20]

O 2a ffi O2b ffi O2c; O3a ffi O3b (77)

as can be seen immediately from Table VIII setting n ¼ 2.
However, while the cosets are isomorphic the distinct
physical properties of each orbit are preserved, so that

the STU model can really be included in the generic
sequence.

2. ST2

On the other hand, the orbit structure of the ST2 model,
which can be seen as the first (n ¼ 1) element of the Jordan
symmetric sequence, N ¼ 2 coupled to two vector mul-
tiplets, does depart from the one discussed so far. The
ð1þ 2Þ þ ð1þ 2Þ electromagnetic charges may be repre-
sented as elements

x¼ �q0 ðp1;p2Þ
ðq1;q2Þ p0

 !
;

wherep0;q02R and ðp1;p2Þ;ðq1;q2Þ2R�R (78)

of the Freudenthal triple system F2;1 :¼ FðJ1Þ. Here,
J1 ¼ R � �1 ¼ R � R now has a ‘‘Euclidean’’ cubic
norm
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NðQÞ ¼ q1ðq2Þ2; Q 2 JST2 ; (79)

which implies there is only one rank-2 Q 2 JST2 up to
Str0ðJST2Þ ¼ SOð1; 1Þ, which is now pure dilatation.
Consequently, the third rank-2 orbit (in the FTS) of the
generic sequence (nV � 3) vanishes [25].

The U-duality group is AutðFST2Þ ffi ConfðR � RÞ ¼
SLAð2;RÞ � SLBð2;RÞ under which the charges transform
as a ð2; 3Þ. Again, this symmetry is made manifest by
writing the charges as a hypermatrix

Q ¼ aAðB1B2Þ: (80)

The BH entropy is given by Eq. (76), with the hyperdeter-
minant now being the ‘‘ST2 degeneration’’ of the expres-
sion holding for the STU model (see, e.g., [18] for further
details). The canonical forms are presented in Theorem 8
[25]. The orbits may be obtained from Table VIII by setting
n ¼ 1 (when this is still well-defined—when it is not, the
orbit is not present).

Theorem 8. [25] Every element x 2 FST2 of a given rank
is SLð2;RÞ � SLð2;RÞ related to one of the following
canonical forms:

(1) Rank 1
(a)

x1 ¼ 1 0
0 0

� �
:

Rank 2
(a)

x2a ¼ 1 ð1; 0Þ
0 0

� �

(b)

x2b ¼ 1 ð�1; 0Þ
0 0

� �
:

Rank 3
(a)

x3a ¼ 1 ð0; 1Þ
0 0

� �
:

(2) Rank 4
(a)

x4a ¼ k
1 ð�1; 1Þ
0 0

� �

(b)

x4b ¼ k
1 ð1; 1Þ
0 0

� �
:

3. T3

Finally, we come to the T3 model. Unlike all the other
cases treated here, the T3 has a cubic Jordan algebra,
JT3 ¼ R, with a single nonzero rank. The cubic norm is
given by

NðQÞ ¼ q3; q 2 R: (81)

Hence, there is only a single rank given by NðQÞ � 0: all
nonzero elements are rank 3. Consequently, the rank-2,
where we now mean in the FTS FðJT3Þ, orbit disappears
entirely [25]. That is, if a small BH is critical, then it is
doubly critical.
The U-duality group is AutðFT3Þ ffi ConfðRÞ ¼

SLAð2;RÞ under which the charges transform as a 4 (spin
s ¼ 3=2). Again, this symmetry is made manifest by writ-
ing the charges as a hypermatrix

Q ¼ aðA1A1A2Þ: (82)

The BH entropy is given by Eq. (76), with the hyperdeter-
minant now being the ‘‘T3 degeneration’’ of the expression
holding for the STU model (see ,e.g., [18] for further
details).
Accounting for the vanishing rank-2 case, the remaining

SLAð2;RÞ-orbits are given in Theorem 9.
Theorem 9. Every element x 2 FT3 of s given rank is

SLð2;RÞ related to one of the following canonical forms:
(1) Rank 1
(a)

x1 ¼ 1 0
0 0

� �
:

(2) Rank 3
(a)

x3a ¼ 0 1
0 0

� �
:

(3) Rank 4
(a)

x4a ¼ k
1 �1
0 0

� �

(b)

x4b ¼ k
1 1
0 0

� �
:

There are now just four orbits: small doubly critical
(rank-1) 1=2-BPS, small lightlike (rank-3) 1=2-BPS, large
(rank-4) 1=2-BPS and non-BPS. This is consistent with
the analysis of [101–103], which relies on the theory of
nilpotent orbits. The BPS nature of both small (rank-3 and
rank-1) charge orbits of this model can also be easily
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understood by recalling the result derived in Sec. 5.5 of
[23], namely, that the small limit of the first-order (‘‘fake’’)
superpotentials of both BPS and non-BPS attractor scalar
flows yields nothing but the absolute value jZj of the
N ¼ 2 central charge.

Performing a timelike reduction (since we are interested
in stationary solutions) the resulting three-dimensional T3

model has G2ð2Þ U-duality, with scalars parametrizing the

pseudo-Riemannian coset,

G2ð2Þ
SO0ð2; 2Þ : (83)

The nilpotent SO0ð2; 2Þ-orbits of g2ð2Þ correspond to six

static (i.e., single or noninteracting center) extremal solu-
tions [101]. However, only four of these orbits, labeledO1,
O2, O3K, O4K0 in [101], correspond to physically accept-
able static solutions [101]. From our perspective the un-
physical orbits cannot be seen and it can be checked that
the four orbits we describe correspond precisely to the four
physical orbits of [101–103]. Explicitly, where we use the
labeling in Theorem 9,

O1 $ Ox1 small doubly critical ðrank 1Þ 1=2-BPS;
O2 $ Ox3 small light-like ðrank3Þ 1=2-BPS;

O3K $ Ox4a large ðrank 4Þ 1=2-BPS;
O4K0 $ Ox4b large ðrank 4Þ non-BPS: (84)

The orbit stabilizers are summarized in Table IX. Note that
the two large (1=2-BPS and non-BPS) orbits have no
continuous stabilizers. However, the 1=2-BPS case does
have a discrete Z3 stabilizer generated by

M ¼ 1

2
�1

ffiffiffi
3

p
� ffiffiffi

3
p �1

 !
; (85)

where M 2 SLð2;RÞ. Note that this is a finite subgroup of
the SLð2;RÞU-duality and should not be misconstrued as a
subgroup the STU triality symmetry, which collapses upon
identifying the moduli. The origin of Z3 is easily under-
stood in terms of the ‘‘parent’’ 1=2-BPS rank-4 STU orbit
stabilizer SOð2Þ � SOð2Þ. Recall, the Lie algebra of the

automorphism group AutðFðJÞÞ decomposes under the
reduced structure group Str0ðJÞ according as

AutðFðJÞÞ ¼ Str0ðJÞ � J � J � R: (86)

The 1=2-BPS rank-4 STU stability group is conjugate to4

an SOð2Þ � SOð2Þ generated by (using the notation intro-
duced in appendix A) � ¼ ð0; X;�X; 0Þ, � 2 Str0ðJÞ �
J � J � R, such that TrðXÞ ¼ 0. One possible parametri-
zation of SOð2Þ � SOð2Þ � SLAð2;RÞ � SLBð2;RÞ �
SLCð2;RÞ, obtained by exponentiating �, is given by,

cosð�Þ � sinð�Þ
sinð�Þ cosð�Þ

� �
� cosðc Þ � sinðc Þ

sinðc Þ cosðc Þ
� �

� cosð�þ c Þ sinð�þ c Þ
� sinð�þ c Þ cosð�þ c Þ

� �
: (87)

Symmetrizing down from the STU model to the T3 model
implies identifying the three factors appearing in the above
parametrization. This gives (85) and its powers, hence
picking out a Z3 finite subgroup. Alternatively, this may
be checked directly using the totally symmetrized hyper-
matrix, which transforms as

aðA1A2A3Þ � ~aðA1A2A3Þ ¼ MA1

A0
1MA2

A0
2MA3

A0
3aðA0

1
A0
2
A0
3
Þ; (88)

under SLð2;RÞ. Solving ~a4aðA1A2A3Þ ¼ a4aðA1A2A3Þ, where

a4aðA1A2A3Þ is the orbit representative appearing in Theorem

9, yields the same conclusion. Since this Z3 forms a finite
subgroup of a compact stabilizer there should be no cor-
responding ‘‘discrete’’ moduli space.
By considering its embedding in the STU model it is

also particularly easy to see why there is no discrete
stabilizer in the unique �< 0 non-BPS orbit. The �< 0
non-BPS STU orbit stabilizer is conjugate to an SOð1; 1Þ �
SOð1; 1Þ generated by � ¼ ð�; 0; 0; 0Þ, � 2 Str0ðJÞ.
Equivalently, there is a U-duality frame in which only the
two graviphoton charges are turned on. Since the gravi-
photons are singlets under the D ¼ 5 U-duality group the
stabilizer is precisely Str0ðJÞ. This is true for all D ¼ 4
theories based on cubic Jordan algebras, explaining this
common feature of the �< 0 non-BPS orbits. However,
for the T3 model Str0ðJÞ contains only the identity, hence
there can be no discrete stabilizer. This expectation is
borne out by explicit computation. Note that, since the
presence of only graviphoton charges implies �< 0, this
charge configuration is only possible for �< 0 non-BPS
states.

G. N ¼ 2 minimally coupled

We now considerN ¼ 2, d ¼ 4 ungauged supergravity
minimally coupled (mc) [53] to nV Abelian vector

TABLE IX. Charge orbits, moduli spaces, and number # of
’’nonflat’’ scalar directions of the D ¼ 4, T3 model. M ¼
SLð2;RÞ=SOð2Þ, dimR ¼ 2.Lþ is the generator of SLð2;RÞ
with positive grading with respect to its maximal subgroup
SO(1, 1).

Rank BH Susy

Charge

orbit O
Moduli

space M #

1 doubly critical 1=2 SLð2;RÞ
Lþ

R 1

3 lightlike 1=2 SLð2;RÞ
1    2

4ð�> 0Þ large 1=2 SLð2;RÞ
Z3

   2

4ð�< 0Þ 0 SLð2;RÞ
1    2

4In fact, for our orbit representative, equal to.
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multiplets, whose scalar manifold is given by the sequence
of homogeneous symmetric rank-1 special Kähler mani-
folds

MN¼2;mc;n ¼CPn 
GN¼2;mc;n

HN¼2;mc;n

¼ Uð1; nÞ
UðnÞ�Uð1Þ ;

dimR ¼ 2n; n¼ nV 2N:

(89)

This theory cannot be uplifted to D ¼ 5, and it does not
enjoy an interpretation in terms of Jordan algebras. The
1þ n vector field strengths and their duals, as well as their
asymptotical fluxes, sit in the fundamental 1þ n represen-
tation of the U-duality group GN¼2;mc;n ¼ Uð1; nÞ, in turn

embedded in the symplectic group Spð2þ 2n;RÞ. The
unique algebraically independent invariant polynomial in
the 1þ n of Uð1; nÞ is quadratic

I 2 ¼ 1
2½q20 � q2i þ ðp0Þ2 � ðpiÞ2� ¼ jZj2 � Zi

�Zi: (90)

The general analysis of the attractor equations, BH
charge orbits, attractor moduli spaces and split attractor
of such a theory has been performed in [12,57,104,105];
here we recall it briefly, and further consider the small
charge orbit of such models.

(1) the large (rank-2) BPS charge orbit reads [12]

OBPS;rank�2 ¼ Uð1; nÞ
UðnÞ ;

dimR ¼ 2nþ 1; I2 > 0: (91)

Thus, as for all large BPS charge orbits [7], there is
no associated attractor moduli space or, equiva-
lently, the number of ‘‘nonflat’’ scalar directions
along the flow is # ¼ 2n.
the large (rank-2) non-BPS charge orbit (with
ZH ¼ 0) reads [12]

OnBPS;rank�2 ¼ Uð1; nÞ
Uð1; n� 1Þ ;

dimR ¼ 2nþ 1; I2 < 0: (92)

Thus, the associated attractor moduli space reads

M nBPS;rank�2 ¼ CPn�1; # ¼ 2: (93)

(2) the unique small (rank-1) BPS charge orbit reads

O BPS;rank�1 ¼ Uð1; nÞ
Uðn� 1Þ � Uð1Þ2Cn�1

n

;

dimR ¼ 2nþ 1; I2 ¼ 0;

(94)

where the subscript denotes charge with respect to
the U(1) commuting factor of the stabilizer. Thus,
the associated attractor moduli space reads

M BPS;rank�1 ¼ Cn�1; # ¼ 2: (95)

It is worthy of notice that (noncompact forms of) CPn

spaces as moduli spaces of string compactifications have
appeared in the literature, either as particular subspaces of
complex structure deformations of certain Calabi-Yau
manifold [106,107] or as moduli spaces of some asymmet-
ric orbifolds of Type II superstrings [108–111], or of
orientifolds [112].

H. N ¼ 3

The (Kähler) scalar manifold is [54]

MN¼3;n ¼ GN¼3;n

HN¼3;n

¼ Uð3; nÞ
SUð3Þ � UðnÞ � Uð1Þ ;

dimR ¼ 6n: (96)

This theory cannot be uplifted to D ¼ 5, and it does not
enjoy an interpretation in terms of Jordan algebras.
The 3þ n vector field strengths and their duals, as well

as their asymptotical fluxes, sit in the fundamental 3þ n
representation of the U-duality group GN¼3;n ¼ Uð3; nÞ,
in turn embedded in the symplectic group Spð6þ 2n;RÞ.
The unique algebraically independent invariant polyno-
mial in the 3þ n of Uð3; nÞ is quadratic, and it reads
(A ¼ 1, 2, 3, I ¼ 1; . . . ; n) [57]

I 2 ¼ 1

2
½q2A � q2i þ ðpAÞ2 � ðpiÞ2� ¼ 1

2
ZAB

�ZAB � ZI
�ZI;

(97)

The general analysis of the attractor equations, BH charge
orbits, attractor moduli spaces and split attractor of such a
theory has been performed in [57,104,105]; here we recall
it briefly, and further consider the small charge orbit of this
theory (the results are also consistent with the D ¼ 3
analysis of [81]).
(1) the large (rank-2) 1

3 -BPS charge orbit reads [113]

Oð1=3Þ�BPS;rank�2¼Uð3;nÞ
Uð2;nÞ ;

dimR¼2nþ5; I2>0: (98)

The associated attractor moduli space, as all
the 1

N -BPS attractor moduli spaces of N �
3-extended, D ¼ 4 supergravity theories [58], is a
quaternionic symmetric space (recall Eq. (93)):

Mð1=3Þ�BPS;rank�2

¼ SUð2; nÞ
SUð2Þ � SUðnÞ � Uð1Þ

¼ cðCPn�1Þ
¼ cðMN¼2;mc;nBPS;rank�2Þ; # ¼ 2n; (99)

where ‘‘c’’ denotes the c-map [114].
(2) the large (rank-2) non-BPS charge orbit (with

ZAB;H ¼ 0) reads [113]
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OnBPS;rank�2 ¼ Uð3; nÞ
Uð3; n� 1Þ ;

dimR ¼ 2nþ 5; I2 < 0: (100)

Thus, the associated attractor moduli space reads

MnBPS;rank�2 ¼ Uð3; n� 1Þ
SUð3Þ � Uðn� 1Þ � Uð1Þ

¼ MN¼3;n�1; # ¼ 6: (101)

(3) the unique small (rank-1) 2
3 -BPS charge orbit reads

Oð2=3Þ�BPS;rank�1 ¼ Uð3; nÞ
Uð2; n� 1Þ � Uð1Þ2C2;n�1

nþ2

;

dimR ¼ 2nþ 5; I2 ¼ 0; (102)

where the subscript denotes charge with respect to
the U(1) commuting factor of the stabilizer. Thus,
the associated attractor moduli space reads (recall
Eq. (93))

Mð2=3Þ�BPS;rank�1

¼ SUð2; n� 1Þ
SUð2Þ � SUðn� 1Þ � Uð1Þ

¼ cðCPn�2Þ
¼ cðMN¼2;mc;nBPS;rank�2jn!n�1Þ; # ¼ 2:

(103)

I. N ¼ 5

The (special Kähler) scalar manifold is [55]

MN¼5 ¼ GN¼5

HN¼5

¼ SUð1; 5Þ
SUð5Þ � Uð1Þ ; dimR ¼ 10:

(104)

No matter coupling is allowed (pure supergravity). This
theory cannot be uplifted to D ¼ 5, but it is associated to
the Jordan triple system M2;1ðOÞ generated by the 2� 1
vectors over O [10,56].

The 10 vector field strengths and their duals, as well as
their asymptotical fluxes, sit in the threefold antisymmetric
irrepr. 20 of the U-duality group GN¼5 ¼ SUð1; 5Þ. As
discussed in [57], unique algebraically independent invari-
ant polynomial in the 20 of SUð1; 5Þ is quartic in the bare
charges (see, e.g., the treatment of [57]), but is a perfect
square of a quadratic expression when written in terms of
the scalar-dependent skew-eigenvalues Z1 and Z2 of the
central charge matrix ZAB (A ¼ 1; . . . ; 5):

I 4ðp; qÞ 
 ZAB
�ZBCZCD

�ZDA � 1

4
ðZAB

�ZABÞ2

¼ ðZ2
1 �Z2

2Þ2: (105)

This property distinguishes the N ¼ 5 pure theory from
the previously treated N ¼ 2, D ¼ 4 magic Maxwell-

Einstein theory associated to JC
3 , whose U-duality group

SU(3,3) is a different noncompact from of SU(6), and
makes the discussion of charge orbits much simpler.
The general analysis of the attractor equations,

BH charge orbits and attractor moduli spaces of such a
theory has been performed in [57,59]; here we recall it
briefly, and further consider the small charge orbit of this
theory (the results are also consistent with the D ¼ 3
analysis of [81]).
(1) the large (rank-2) 1

5 -BPS charge orbit reads [113]

O ð1=5Þ-BPS;rank�2 ¼ SUð1; 5Þ
SUð3Þ � SUð2; 1Þ ;

dimR ¼ 19; I4 > 0:

(106)

The associated attractor moduli space, as all
the 1

N -BPS attractor moduli spaces of N �
3-extended, D ¼ 4 supergravity theories [58], is a
quaternionic symmetric space, namely, the univer-
sal hypermultiplet space:

Mð1=5Þ-BPS;rank�2 ¼ SUð2;1Þ
SUð2Þ�Uð1Þ ¼CP2; #¼ 6:

(107)

(2) the unique small (rank-1) 2
5 -BPS charge orbit

reads

Oð2=5Þ-BPS;rank�1 ¼ SUð1; 5Þ
SUð3Þ2R8

; dimR ¼ 19;

I4 ¼ 0 , Z1 ¼ Z2: (108)

Thus, the associated attractor moduli space reads

M ð2=5Þ-BPS;rank�1 ¼ R8; # ¼ 2: (109)

Note that the stabilizer of Oð2=5Þ-BPS;rank�1 is the

same as the stabilizer of the rank-3 1
2 -BPS orbit of

the N ¼ 2 magic theory associated to JC
3 .

By comparing Eqs. (95), (103), and (109), it follows that
the N ¼ 2 minimally coupled, N ¼ 3 matter-coupled
andN ¼ 5 pure theories, besides the fact that they cannot
be uplifted toD ¼ 5, all share the property that the number
of ‘‘nonflat’’ directions supported by the unique rank-1
charge orbit is 2.
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APPENDIX A: ORBIT STABILIZERS

In order to determine the stabilizers of the orbits we
will use the infinitesimal Lie action of AutðFÞ ffi ConfðJÞ
acting on the corresponding representative canonical
forms. Hence, one needs to define the action of the

Lie algebra AutðFðJÞÞ in the Str0ðJÞ-covariant basis. To
this end, one can introduce the Freudenthal product,
^: F� F ! HomRðFÞ, which for x ¼ ð�;�; A; BÞ, y ¼
ð�; 	; C;DÞ is defined by

x^y¼�ð�;X;Y;�Þ;

where

8>>>>>><
>>>>>>:

�¼�ðA_DþB_CÞ
X¼�1

2ðB�D��C��AÞ
Y¼ 1

2ðA�C��D�	BÞ
�¼ 1

4ðTrðA;DÞþTrðC;BÞ�3ð�	þ��ÞÞ
(A1)

and A _ B 2 Str0ðJÞ is defined by ðA _ BÞC ¼
1
2 TrðB;CÞAþ 1

6 TrðA; BÞC� 1
2 B� ðA� CÞ. The action

of �: F ! F is given by

�ð�;X; Y; �Þ � A

B �

 !
¼ ��þ ðY; BÞ �A� 1

3�Aþ 2Y � Bþ �X

�t�Bþ 1
3�Bþ 2X� Aþ �Y ���þ ðX; AÞ

 !
: (A2)

The maps � 2 HomRðFÞ are in fact Lie algebra elements.
Moreover, every Lie algebra element is given by some �.
More precisely we have the following theorem [43]:

Theorem 10 (Imai and Yokota, 1980).

AutðFÞ ¼ f�ð�;X; Y; �Þ 2 HomRðFÞj�
2 Str0ðJÞ; X; Y 2 J; � 2 Rg; (A3)

where the Lie bracket

½�ð�1; X1; Y1; �1Þ;�ð�2; X2; Y2; �2Þ� ¼ �ð�;X; Y; �Þ
(A4)

is given by

� ¼ ½�1; �2� þ 2ðX1 _ Y2 � X2 _ Y1Þ

X ¼
�
�1 þ 2

3
�1

�
X2 �

�
�2 þ 2

3
�2

�
X1

Y ¼
�
�2 þ 2

3
�2

�
Y1 �

�
t�1 þ

2

3
�1

�
Y2

� ¼ TrðX1; Y2Þ � TrðY1; X2Þ:

(A5)

We will frequently consider (see also [25]) the Lie algebra
elements of the form

�̂ðX; YÞ :¼ �ð0; X; Y; 0Þ: (A6)

The Hermitian conjugate is defined by

�̂ yðX; YÞ ¼ �̂ðY; XÞ: (A7)

Hermitian (resp. anti-Hermitian) generators are noncom-
pact (resp. compact) [12].

1. An example: The exceptional magic theory

As an example, which may be quite simply generalized

to all models treated here, we examine the case of FðJO
3 Þ.

In order to determine the stabilizers of the orbits, we will
use the infinitesimal Lie algebra action (A2) to fix the Lie
subalgebras annihilating the canonical forms presented in
Theorem 6 [27]. Note that in this specific case the con-
struction of the Lie algebra elements �ð�;X; Y; �Þ corre-
sponds to the decomposition

E7ð�25Þ � E6ð�26Þ 133 ! 1þ 27þ 270 þ 78 (A8)

where �, X, Y, and � sit in the 78, 27, 270 and 1,
respectively.
For all canonical forms one obtains

�ðxcanÞ ¼
� �Acan � 1

3�Acan

X� Acan þ Y TrðY; AcanÞ

 !
;

where xcan ¼
1 Acan

0 0

 !
; (A9)

so we may set the dilatation generator � to zero throughout.
(a) Rank 1: Acan ¼ 0

�ðx1Þ ¼ 0 0
Y 0

� �
(A10)

) Y ¼ 0 while X and � are unconstrained. Hence,
the stability group is

H1 ¼ E6ð�26Þ2R27; (A11)

where E6ð�26Þ is generated by � and the 27 trans-

lations are generated by X.
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(b) Rank 2a: Acan ¼ ð1; 0; 0Þ

�ðx2aÞ ¼ 0 �Acan

X� Acan þ Y TrðY; AcanÞ
� �

(A12)

From the D ¼ 5 analysis [27] we know that the

Lie subalgebra of Str0ðJO
3 Þ satisfying �Acan ¼ 0

has 36 compact, 9 noncompact semisimple gener-
ators and 16 translational generators giving
soð1; 9Þ � R16. For the remaining 27þ 27 genera-
tors we obtain the following constraints:

(1)

Tr ðY; AcanÞ ¼ 0 ) y11 ¼ 0: (A13)

(2)

X � Acan þ Y ¼ 0 )
0 0 0

0 x33 �x23

0 � �x23 x22

0
BB@

1
CCA

¼
0 �y12 � �y13

� �y12 �y22 �y23

�y13 � �y23 �y33

0
BB@

1
CCA (A14)

This gives one compact and nine noncompact semisimple
generators

�̂ð ~X; ~YÞ; (A15)

where, writing x22 ¼ xþ y and x33 ¼ x� y,

~X ¼
0 0 0

0 xþ y x23

0 �x23 x� y

0
BB@

1
CCA;

~Y ¼
0 0 0

0 �xþ y x23

0 �x23 �x� y

0
BB@

1
CCA: (A16)

These, together with the 36 compact and 9 noncompact

generators from soð1; 9Þ � Str0ðJO
3 Þ, give a total of 37

compact generators and 18 noncompact semisimple gen-
erators producing soð2; 9Þ, where we have used the fact
that SOðm; nÞ has ½mðm� 1Þ þ nðn� 1Þ�=2 compact and
mn noncompact generators.
The other 1þ 16 components of X generate translations,

X0 ¼
x11 0 0
0 0 0
0 0 0

0
@

1
A; X00 ¼

0 x12 �x13
�x12 0 0
x13 0 0

0
@

1
A;
(A17)

where X0 commutes with soð2; 9Þ. The remaining 16þ 16
translational generators transform as the spinor of soð2; 9Þ.
Hence, the stability group is

H2a ¼ SOð2; 9Þ2R32 � R: (A18)

(c) Rank 2b: Acan ¼ ð�1; 0; 0Þ

�ðx1Þ ¼
0 �Acan

X � Acan � Y TrðY; AcanÞ

 !
(A19)

The analysis goes through as above but with the
sign of ~Y flipped. This gives a total of 45 compact
and 10 noncompact semisimple generators giving
soð1; 10Þ. Hence, the stability group is

H2b ¼ SOð1; 10Þ2R32 � R: (A20)

(d) Rank 3a: Acan ¼ ð1; 1; 0Þ

�ðx3aÞ ¼
0 �Acan

X � Acan þ Y TrðY; AcanÞ

 !
(A21)

From the D ¼ 5 analysis [27], we know that the

Lie subalgebra of Str0ðJO
3 Þ satisfying �Acan ¼ 0

has 36 compact semisimple generators and 16
translational generators, yielding soð9Þ � R16. For
the remaining 27þ 27 generators, we obtain the
following constraints:

(1)

Tr ðY; AcanÞ ¼ 0 ) y11 ¼ �y22: (A22)

(2)

X � Acan þ Y ¼ 0 )
x33 0 � �x13

0 x33 �x23

�x13 � �x23 x11 þ x22

0
BB@

1
CCA

¼
�y11 �y12 � �y13

� �y12 y11 �y23

�y13 � �y23 �y33

0
BB@

1
CCA

) x33 ¼ y11 ¼ 0: (A23)

This gives 16 noncompact semisimple generators,

�̂ð ~X; ~YÞ; (A24)

where

~X ¼ ~Y ¼
0 0 �x13
0 0 x23
x13 �x23 0

0
@

1
A: (A25)

These, together with the 36 semisimple generators from

soð9Þ � Str0ðJO
3 Þ, give a total of 36 compact generators

and 16 noncompact generators producing F4ð�20Þ, which is
a noncompact form of AutðJO

3 Þ.
The remaining 10 components of X generate transla-
tions which, together with the 16 preserved translational
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generators of Str0ðJO
3 Þ, transform as the fundamental 26

of F4ð�20Þ.
Hence, the stability group is

H3a ¼ F4ð�20Þ2R26: (A26)

(e) Rank 3b: Acan ¼ ð�1;�1; 0Þ

�ðR1Þ ¼
0 �Acan

X � Acan � Y TrðY; AcanÞ

 !
(A27)

The analysis goes through as above, but with the
sign of ~Y flipped so that the 16 previously non-
compact semisimple generators become compact

giving the compact form F4ð�52Þ ¼ AutðJO
3 Þ.

Hence, the stability group is

H3a ¼ F4ð�52Þ2R26: (A28)

(f) Rank 4a: Acan ¼ ð�1;�1;�1Þ

�ðx4aÞ ¼ 0 �Acan

X � Acan þ Y TrðY; AcanÞ
� �

(A29)

From the D ¼ 5 analysis we know that the Lie

subalgebra of Str0ðJO
3 Þ satisfying �Acan ¼ 0 has

52 compact semisimple generators giving F4ð�52Þ.
For the remaining 27þ 27 generators, we obtain the
following constraints:

(1)

Tr ðY; AcanÞ ¼ 0 ) y11 þ y22 þ y33 ¼ 0: (A30)

(2)

X � Acan þ Y ¼ 0 )
x11 x12 �x13

�x12 x22 x23

x13 �x23 �ðx11 þ x22Þ

0
BB@

1
CCA

¼
�y11 �y12 � �y13

� �y12 �y22 �y23

�y13 � �y23 ðy11 þ y22Þ

0
BB@

1
CCA;
(A31)

where we have abused the notation by usng the
same symbols for X, Y after imposing the condi-
tion TrðYÞ ¼ 0. We have also used the identity
X�ð�1Þ¼X�TrðXÞ1 so that X � Acan þ Y ¼ 0
implies TrðXÞ ¼ 0, therefore giving the implication
in (A31).

This gives 26 compact semisimple generators,

�̂ð ~X; ~YÞ; (A32)

where

~X ¼
x11 x12 �x13

�x12 x22 x23

x13 �x23 �ðx11 þ x22Þ

0
BB@

1
CCA;

~Y ¼
�x11 �x12 � �x13

� �x12 �x22 �x23

�x13 � �x23 ðx11 þ x22Þ

0
BB@

1
CCA: (A33)

These, together with the 52 compact semisimple genera-
tors from F4ð�52Þ, give a total of 78 compact generators

producing E6ð�78Þ.
Hence, the stability group is

H4a ¼ E6ð�78Þ: (A34)

(g) Rank 4b: Acan ¼ ð1; 1;�1Þ

�ðx4bÞ ¼ 0 �Acan

X � Acan þ Y TrðY; AcanÞ
� �

(A35)

From the D ¼ 5 analysis [27], we know that the

Lie subalgebra of Str0ðJO
3 Þ satisfying �Acan ¼ 0

has 36 compact and 16 noncompact semi-
simple generators giving F4ð�20Þ. For the remaining

27þ 27 generators, we obtain the following
constraints:

(1)

Tr ðY; AcanÞ ¼ 0 ) y11 þ y22 ¼ y33: (A36)

(2)

X � Acan þ Y ¼ 0 )
x11 x12 � �x13

�x12 x22 �x23

�x13 � �x23 x11 þ x22

0
BB@

1
CCA

¼
�y11 �y12 � �y13

� �y12 �y22 �y23

�y13 � �y23 �ðy11 þ y22Þ

0
BB@

1
CCA:

(A37)

This gives 10 compact and 16 noncompact semi-
simple generators,

�̂ð ~X; ~YÞ; (A38)

where

~X ¼
x11 x12 �x13
�x12 x22 x23
x13 �x23 x11 þ x22

0
@

1
A;

~Y ¼
�x11 �x12 �x13
� �x12 �x22 x23
x13 �x23 �ðx11 þ x22Þ

0
@

1
A:

(A39)

These, together with the 36 compact and 16 non-
compact semisimple generators from F4ð�20Þ, give a
total of 46 compact generators and 32 noncompact
generators producing E6ð�14Þ.
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Hence, the stability group is

H4b ¼ E6ð�14Þ: (A40)

(h) Rank 4c: Acan ¼ ð1; 1; 1Þ

�ðx4cÞ ¼ 0 �Acan

X� Acan þ Y TrðY; AcanÞ
� �

(A41)

From the D ¼ 5 analysis [27], we know that the Lie

subalgebra of Str0ðJO
3 Þ satisfying �Acan ¼ 0 has

52 compact semisimple generators giving F4ð�52Þ ¼
AutðJO

3 Þ. For the remaining 27þ 27 generators, we
obtain the following constraints:

(1)

Tr ðY; AcanÞ ¼ 0 ) y11 þ y22 þ y33 ¼ 0: (A42)

(2)

X� Acan þ Y ¼ 0 )
�x11 �x12 � �x13
� �x12 �x22 �x23
�x13 � �x23 x11 þ x22

0
@

1
A

¼
�y11 �y12 � �y13
� �y12 �y22 �y23
�y13 � �y23 y11 þ y22

0
@

1
A:
(A43)

This gives 26 noncompact semisimple generators,

�̂ð ~X; ~YÞ; (A44)

where

~X ¼ ~Y ¼
x11 x12 �x13
�x12 x22 x23
x13 �x23 �ðx11 þ x22Þ

0
@

1
A: (A45)

These, together with the 52 compact semisimple
generators from F4ð�52Þ, give a total of 52 compact

generators and 26 noncompact generators producing

E6ð�26Þ ¼ Str0ðJO
3 Þ.

Hence, the stability group is

H4c ¼ E6ð�26Þ: (A46)

This procedure can be repeated for all magical theories,
yielding the results reported in Table VI, as well as for all
N ¼ 2, D ¼ 4 symmetric supergravity theories with a
Jordan algebraic interpretation (see also the treatment of
[25]). For the D ¼ 5 treatment, see [27].
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