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We investigate static, planar solutions of Einstein-scalar gravity admitting an anti-de Sitter (AdS)

vacuum. When the squared mass of the scalar field is positive and the scalar potential can be derived from

a superpotential, minimum energy theorems indicate the existence of a scalar soliton. On the other hand,

for these models, no-hair theorems forbid the existence of hairy black brane solutions with AdS

asymptotics. By considering a specific example (an exact integrable model which has the form of a

Toda molecule) and by deriving explicit exact solution, we show that these models allow for hairy black

brane solutions with non-AdS domain wall asymptotics, whose extremal limit is a scalar soliton.

The soliton smoothly interpolates between a non-AdS domain wall solution at r ¼ 1 and an AdS

solution near r ¼ 0.
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Static black hole and black brane (BB) solutions of
Einstein-scalar gravity with nontrivial scalar hair and
anti-de Sitter (AdS) asymptotics are a crucial ingredient
in the recent developments of the AdS/conformal field
theory correspondence. The coordinate-dependent scalar
hair of the black brane solutions has a field theory dual
interpretation as a scalar condensate triggering spontane-
ous symmetry breaking and/or phase transitions [1–10].
Alternatively, the bulk scalar can be seen as a running
coupling constant and it is very useful for setting up holo-
graphic renormalization group methods [11].

Usually, these solutions have been derived in the context
of Einstein-Maxwell-scalar(dilaton) gravity. An interesting
feature of these models is the presence, typically in the
near-horizon approximation, of black brane solutions with
non-AdS asymptotics (e.g. Lifshitz solutions characterized
by an anisotropic scaling isometry)[6,7,12,13]. These solu-
tions may be relevant for quantum phase transitions and
more in general for the description of the IR dynamics of
effective holographic theories [14–18].

An interesting generalization of the Lifshitz metric is
represented by solutions with non-AdS asymptotics, which
are characterized by scaling violation. They exhibit a
logarithmic violation of the area law of entanglement
entropy, which in turn can be used to characterize the
existence of Fermi surfaces in the dual theory [19,20].

Although most of the above-described solutions have
been derived in the context of Einstein-Maxwell-scalar
gravity, the investigation of pure Einstein-scalar gravity
is of great interest. This is not only because the theory
without the Maxwell field is simpler but also because one
can focus on its most relevant feature, namely, the exis-
tence of solutions with scalar hair.

A particularly simple and interesting example of
Einstein-scalar gravity is represented by the so-called fake

supergravity (SUGRA) [21–23]. In this case, the potential
Vð�Þ for the scalar field can be derived from a superpoten-
tial Pð�Þ and one can write down first-order—fake
Bogomol’nyi-Prasad-Sommerfield—equations, whose solu-
tions automatically satisfy the second-order field equations.
If there are no singularities, the Witten-Nester theorem
[24–26] assures stability of these solitonic solutions.
Until now, this scheme has been only used for potentials

V having a negative maximum and with squared mass
m2 of the corresponding tachyonic excitation slightly
above the Breitenlohner-Freedman (BF) bound, m2

BF �
m2 <m2

BF þ 1. In this range of values ofm2, rather generic
boundary conditions for the r ¼ 1 behavior of the scalar
field � are possible, giving rise to the so-called ‘‘designer
gravity’’ theories, in which the mass of the solitons can be
preordered [27].
In the case of spherical solutions, boundary conditions

can be found, which break the AdS symmetries and allow
for stable solitonic solutions [28]. But, unfortunately, in the
case of planar solutions only AdS-symmetry preserving
boundary conditions are possible. These boundary condi-
tions do not allow for a stable ground state unless the
potential V has a second extremum [23]. If this is not the
case, the scalar behaves logarithmically and the solution
interpolates between AdS at r ¼ 1 and a domain wall
(DW) near r ¼ 0, which is singular at r ¼ 0.
In this paper, we will consider potentials V that

have a minimum instead of a maximum and standard,
AdS-symmetry preserving, Dirichlet boundary conditions
for the r ¼ 1 behavior of the scalar �. In this case,
positive-energy theorems allow for a stable ground state
solitonic solution, but standard no-hair theorems forbid the
existence of BB solutions with a regular horizon [29,30].
For this reason, models whose potential V has a minimum
have not been taken into consideration in this context.
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However, recently formulated no-hair theorems indicate
that only BB solutions with AdS asymptotics are forbidden
[31], leaving open the possibility of having BB solutions
with generic domain wall asymptotics. We show that this
is the case by considering a specific example. We will
consider a fake SUGRA model, which can be recast in
the form of a Toda molecule and is exactly integrable. We
derive explicit exact solutions and show that the model
allows for black brane solutions with non-AdS domain
wall asymptotics, whose extremal limit is a scalar soliton.
This soliton smoothly interpolates between a non-AdS
domain wall solution at r ¼ 1 and an AdS solution near
r ¼ 0.

Let us investigate static, radially symmetric, planar
solutions of Einstein gravity minimally coupled to a scalar
field with self-interaction potential Vð�Þ. The action is

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½R� 2ð@�Þ2 � Vð�Þ�: (1)

We assume that Vð�Þ has a negative minimum at � ¼ 0,
thus allowing anAdS4 vacuum, corresponding to a positive
squared mass m2 for the scalar excitation. For �, we adopt
standard (Dirichlet) boundary conditions at r ¼ 1, which
preserve the asymptotic symmetry group of AdS4. We also
assume that Vð�Þ can be derived from a superpotential
Pð�Þ,

Vð�Þ ¼ 2

�
dP

d�

�
2 � 6P2: (2)

This means that our theory is a fake SUGRA model
[21–23], namely, one can define a spinor energy using
fake transformations similar to real SUGRA theories. In
particular, if we parametrize the spacetime metric as ds2 ¼
r2ð�dt2 þ dxidx

iÞ þ h�1dr2, the second-order field equa-
tions stemming from (1) reduce to first-order equations
[21–23]

�0ðrÞ ¼ � P;�

rPð�Þ ; hðrÞ ¼ r2P2ð�Þ: (3)

Using the standard Witten-Nester procedure [24–26], one
can then show that the energy of any singularity-free
solution of the first-order equations (3) is bounded from
below.

For definiteness, we will focus on a fake SUGRA model
defined by (L is the AdS length)

Vð�Þ ¼ � 6

�L2
ðe2

ffiffi
3

p
�� � �2eð2

ffiffi
3

p
=�Þ�Þ;

Pð�Þ ¼ 1

�L
ðe

ffiffi
3

p
�� � �2eð

ffiffi
3

p
=�Þ�Þ; � ¼ 1� �2:

(4)

The potential is defined for every � � 0, 1. It has always a
minimum at� ¼ 0, with Vð0Þ ¼ �6=L2, corresponding to
the AdS4 solution and to a scalar excitation with positive
squared mass m2 ¼ 18=L2. We use standard (Dirichlet)
boundary conditions for �, which set to zero the dominant

term in the r ! 1 expansion. The falloff behavior of the

scalar field is therefore given by �� �
r6
.

The above-mentioned stability theorem allows in prin-
ciple for the existence of a stable ground state hairy soli-
tonic solution, but standard no-hair theorems forbid the
existence of BB solutions with AdS asymptotics when m2

is positive [29,30]. Even if a solitonic solution exists, it
cannot be obtained as the extremal limit of an asymptoti-
cally AdS solution. Wewill therefore look for BB solutions
of (1) with asymptotics,

ds2 ¼ r�ð�dt2 þ dxidx
iÞ þ r��dr2; (5)

with 0 � � � 2. For � ¼ 0, 2, Eq. (5) describes flat
or AdS spacetime, respectively. When 0<�< 2 (5)
describes a brane, which we call non-AdS domain wall.
These kinds of spacetimes have been already investigated
in the literature. In particular, it has been show that they
admit an holographic interpretation for 1 � � � 2 [32,33].
Moreover, this background solution can be considered as a
particular case (z ¼ 1) of the hyperscaling violating solu-
tions of Ref. [19].
The field equations of the Einstein-scalar gravity model

with potential (4) can be exactly integrated. This can be
achieved using a parametrization of the metric introduced
in [34] and used in several investigations of dilatonic black
holes [35–41]

ds2 ¼ �e2�dt2 þ e2�þ4�d�2 þ e2�dxidx
i: (6)

Using this parametrization, the field equations can be
recast in the form of the SUð2Þ � SUð2Þ Toda molecule

[42]. In fact, defining new variables � ¼ �þ 2�þffiffiffi
3

p
��;� ¼ �þ 2�þ

ffiffi
3

p
� �, and taking into account that

the field equations imply � ¼ �þ c�, with c an integra-
tion constant, one obtains the second-order equations

€� ¼ 9

L2
e2�; €� ¼ 9

L2
e2�; (7)

subject to the constraint

_� 2 � �2 _�2 � �c2 ¼ 9

L2
ðe2� � �2e2�Þ: (8)

These equations can be solved to give the general solution

e2� ¼
�
2L

3

�
2=3

a2=3�b�2�2=3�e2b�
2�0=3�e2ða��2b�2�cÞ�=3�

�
�ð1� e2bð���0ÞÞ�2

1� e2a�

�
2=3�

;

e2� ¼
�
2L

3

�
2=3

a2=3�b�2�2=3�e2b�
2�0=3�e2ða��2bþ�cÞ�=3�

�
�ð1� e2bð���0ÞÞ�2

1� e2a�

�
2=3�

;

� ¼ �ffiffiffi
3

p
�
log

�
b sinha�

a sinhbð�� �0Þ
�
; (9)
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where �0 is an arbitrary integration constant and a; b; c
must satisfy the constraint �c2 ¼ a2 � �2b2.

We are interested in solutions with a regular horizon at
� ¼ �h. Requiring e2�ð�hÞ ¼ 0 and e2�ð�hÞ ¼ const, one
easily realizes that this is only possible for �h ! �1,
when �c ¼ �2b� a. This condition, together with the
constraint, implies a ¼ b ¼ �c. In the case �0 ¼ 0,
we obtain the planar Schwarzschild–anti-de Sitter solution
with� ¼ 0. As one can show by expanding (9) near � ¼ 0
and � ¼ �1, all the other solutions with AdS asymptotics
and nontrivial scalar hair have a naked singularity at r ¼ 0
with �� logr. This is in complete accordance with the
results of well-established no-hair theorems.

In the general case �0 � 0, we have solutions with a
regular horizon, but they do not approach AdS4 asymptoti-
cally, and it is not possible to write them in a Schwarzschild
form in terms of elementary functions. Let us first consider
the case �2 < 1. In this case, the asymptotic region corre-
sponds to the limit � ! 0. Defining the new radial coor-

dinate �r ¼ ð1� e2a�Þ�ð1þ3�2Þ=3� with � constant, for
0< �0 <1 the solution (9) becomes

ds2 ¼
�
1þ	2

r


�
2�2=3�

�
�
�
1�	1

r


�
r2=ð1þ3�2Þdt2

þ Eð1þ	2=r

Þ4�2=3�dr2

ð1�	1=r

Þr2=ð1þ3�2Þ þ r2=ð1þ3�2Þdxidxi�;

e2� ¼ D

�
1þ	2

r


��2�=
ffiffi
3

p
�
r�2

ffiffi
3

p
�=ð1þ3�2Þ; (10)

where 	1 � 0, 	2 > 0 are free parameters, 
 ¼
3�=ð1þ 3�2Þ, D ¼ ½	2ð	1 þ	2Þ��=

ffiffi
3

p
�, and E ¼

½�L=ð1þ 3�2Þ�2D� ffiffi
3

p
�.

The asymptotic behavior of this solution for r ! 1
is that of a domain wall (5) with � ¼ 2=ð1þ 3�2Þ and
� ¼ �½ð ffiffiffi

3
p

�Þ=ð1þ 3�2Þ� lnr. For	1 > 0, the metric (10)
exhibits a singularity at r ¼ 0 shielded by a horizon at

r ¼ 	1=

1 , and therefore represents a regular black brane.

Owing to the fact that the scalar � depends on 	1, the
existence of this BB solution is perfectly consistent with
the no-hair theorem of Ref. [31]. Notice that although the
scalar field remains finite at r ¼ 0, the scalar curvature R

of spacetime diverges as R� r�3ð1þ�2Þð1þ3�2Þ. The ex-
tremal, zero-temperature solution is obtained for 	1 ¼ 0,

ds2 ¼
�
1þ	2

r


�
2�2=3�

�
r2=ð1þ3�2Þð�dt2 þ dxidx

iÞ

þ Er�2=ð1þ3�2Þ
�
1þ	2

r


�
4�2=3�

dr2
�
; (11)

while the scalar field maintains the form of Eq. (10).
The extremal solution (11) represents a regular soliton.
In fact, not only the scalar field is finite at r ¼ 0

(e2� ¼ Dð	2Þ�ð2�Þ=ð ffiffi
3

p
�Þ) but also the scalar curvature of

the spacetime remains finite both at r ¼ 0 and r ¼ 1. The
extremal soliton has the form of a brane, for which the

metric behaves for small and large r as in Eq. (5) with a
different power of r in the r ¼ 1 and r ¼ 0 region.
Whereas for r ! 1, we have � ¼ 2=ð1þ 3�2Þ and
�� lnr, near the origin � ¼ 2 and � ¼ const. Hence,
our soliton (11) interpolates between a DW solution at
infinity and AdS spacetime at r ¼ 0. As expected, the
soliton (11) satisfies the fake Bogomol’nyi-Prasad-
Sommerfield equations (3).
A similar procedure allows one to find the solution when

�2 > 1. Now, the asymptotic region r ! 1 corresponds
� ! �0. As before, the metric can be written in terms of a

new radial coordinate �r ¼ ð1� e2að���0ÞÞð3þ�2Þ=3�,

ds2 ¼
�
1þ	2

r


��2=3�
"
�
�
1�	1

r


�
r2�

2=ð3þ�2Þdt2

þ Eð1þ	2=r

Þ�4=3�dr2

ð1�	1=r

Þr2�2=ð3þ�2Þ þ r2�

2=ð3þ�2Þdxidxi
#
;

e2� ¼ D

�
1þ	2

r


�
2�=

ffiffi
3

p
�
r�2

ffiffi
3

p
�=ð3þ�2Þ; (12)

where now 
 ¼ �3�=ð3þ �2Þ> 0, D ¼ ½	2ð	1 þ
	2Þ��=

ffiffi
3

p
�, and E ¼ ½�L=ð3þ �2Þ�2D� ffiffi

3
p

�. At infinity,
the solution behaves as a domain wall with � ¼ 2�2=

ð3þ �2Þ and � ¼ �½ð ffiffiffi
3

p
�Þ=ð3þ �2Þ� lnr.

As in the previous case, if 	1 > 0, the metric exhibits a

singularity at r ¼ 0 and a horizon at r ¼ 	1=

1 , and there-

fore describes a regular black brane with non-AdS domain
wall asymptotics.
Also, in this case the extremal, zero-temperature solu-

tion, obtained for 	1 ¼ 0, is a regular soliton that satisfies
Eq. (3),

ds2 ¼
�
1þ	2

r


��2=3�
�
r2�

2=ð3þ�2Þð�dt2 þ dxidx
iÞ

þ Er�2�2=ð3þ�2Þ
�
1þ	2

r


��4=3�
dr2

�
: (13)

As expected, the soliton interpolates between the domain
wall solution (5) with � ¼ 2�2=ð3þ �2Þ at infinity and an
AdS solution with constant � near r ¼ 0.
It may be interesting to notice that the

Schwarzschild–anti-de Sitter solution is recovered in the
singular limit 	2 ! 1 of (10) or (12).
Let us now compare our results with those obtained

when the potential has a negative maximum with m2
BF �

m2 <m2
BF þ 1. If the potential Vð�Þ behaves exponen-

tially at large �, one has solutions with AdS4 asymptotics
at large r and singular DW behavior near r ¼ 0, with
�� lnr [23,31]. The only known case that does not
present a small-r singularity is when V has a second
extremum. Apart from this case, the solutions always
have opposite behavior with respect to the soliton that we
get in them2 > 0 case: the solution interpolates between an
AdS4 spacetime at r ¼ 1 and a DW solution near r ¼ 0
[31].
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In this context, it is interesting to notice
that also a pure exponential potential V ¼ �2�e�2h�

for h2 < 3 is a fake SUGRA model [23]. In fact,

V can be derived from the superpotential P ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð3� h2Þp

e�h�. Also, in this case the field equation
can be exactly integrated using the Toda molecule
parametrization (6) for the metric. BB solutions with
DW asymptotics can be found using the proce-
dure described above. Defining a new variable � ¼ �þ
2�� h�, the field equations can be recast in the form
€� ¼ ð3� h2Þ�e2�, together with a constraint involving
the integration constants. Solving these equations, one
can show that the solutions with a regular horizon can
be written in the form ds2 ¼ �UðrÞdt2 þUðrÞ�1dr2 þ
RðrÞ2dxidxi, with

U ¼ ð1�	rðh2�3Þ=ð1þh2ÞÞr2=ð1þh2Þ;

RðrÞ ¼ r1=ð1þh2Þ;

e2� ¼ Cr2h=ð1þh2Þ;

where 	 is an integration constant and C ¼
½ð�ð1þ h2Þ2=ð2ð3� h2ÞÞ�1=h. For 	 ¼ 0, we get a DW
solution, which is singular at r ¼ 0. This form of the
solution has been already derived in Ref. [31], using a
different method.

In this paper, we have derived explicit exact black brane
solutions of Einstein-scalar gravity with positive squared
mass for the scalar field, whose extremal limit is a regular
scalar soliton. We have circumvented standard no-hair
theorems by allowing for solutions with non-AdS domain
wall asymptotics. We have derived the solutions for four-
dimensional Einstein-scalar gravity but our derivation
could be easily extended to arbitrary spacetime dimen-
sions. The scalar soliton interpolates between AdS4 for
small r and non-AdS brane at large r. The soliton has an
holographic interpretation in terms of a flow of a dual
three-dimensional quantum field theory between an IR
fixed point at r ¼ 0 and an UV Poincaré invariant vacuum
at r ¼ 1. Our results may have very useful applications
in the AdS/conformal field theory correspondence
context. In the IR, our solution is characterized by confor-
mal invariance and could therefore be used, holographi-
cally, to describe quantum field theories at the critical
point. Conversely, in the UV our solution exhibits, apart
from Poincaré invariance, the hyperscaling violation de-
scribed in Ref. [19], which may be used to generate loga-
rithmic corrections to the area law of entanglement
entropy.
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