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We study oscillons, extremely long-lived localized oscillations of a scalar field, with three different

potentials: quartic, in sine-Gordon model and in a new class of convex potentials. We use an absorbing

boundary at the end of the lattice to remove emitted radiation. The energy and the frequency of an oscillon

evolve in time and are well fitted by a constant component and a decaying, radiative part obeying a power

law as a function time. The power spectra of the emitted radiation show several distinct frequency peaks

where oscillons release energy. In two dimensions, and with suitable initial conditions, oscillons do not

decay within the range of the simulations, which in quartic theory reach 108 time units. While it is known

that oscillons in three-dimensional quartic theory and sine-Gordon model decay relatively quickly, we

observe a surprising persistence of the oscillons in the convex potential with no sign of demise up to 107

time units. This leads us to speculate that an oscillon in such a potential could actually live infinitely long

both in two and three dimensions.
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I. INTRODUCTION

The theorem by Derrick states that there are no non-
trivial static solutions of finite energy in scalar theories
above one dimension [1]. This does not say anything about
time-dependent solutions. Example of such are Q-balls [2],
whose stability is guaranteed by a conservation law (for
more recent studies on Q-balls, see e.g. [3,4]) and that have
been studied e.g. as a dark matter candidate (see for
instance [5]). There is, however, no obvious reason why
oscillations of a real scalar field can persist and stay
localized, yet such configurations, oscillons exist in
many models (we will use the term oscillon, presented
originally in [6], in a slightly loose manner throughout
this study). There is a stable breather solution in one-
dimensional sine-Gordon model that during its period de-
forms to a separated kink and antikink. There is no such
exactly stable solution in �4 theory [7]. However, even
though the solution radiates energy away, there remains a
possibility that the radiation rate is so suppressed that it
will take indefinitely long for the dissipation to complete.

Oscillons were first found already in the ’70s [8,9] and
then rediscovered in the ’90s when the dynamics of phase
transitions was studied [6]. There has been substantial
interest in oscillons recently. On the theoretical side of
understanding the dynamics of oscillons, there have been
a number of studies of oscillons of �4 theory in small-
amplitude approximation [10–13]. Furthermore, the attrac-
tor basin of oscillons and its fractal nature have been
studied both analytically [14] and numerically [15]. Very
recently there has been interest in oscillons coupled to
gravity, oscillatons [16–18]. Oscillons have also been

found in dilaton-scalar theories [19]. A new class of solu-
tions, called flat-top oscillons by the authors, were reported
in [20]. While the body of work mentioned above has been
on a classical level, the study in [21] considered quantum
corrections oscillons are subject to, redeeming oscillons
considerably less robust against the quantum effects than
often previously has been assumed.
Though stability or finite lifetime are of considerable

theoretical interest, from the point of view of a many
phenomenological consequences, it is not important if
the nontrivial solutions are actually stable like the breather
in one-dimensional sine-Gordon model as long as they are
far longer-lived than the natural time scale related to the
process on which they will have an effect. A natural realm
of oscillons to appear is in the early Universe and such a
process there could be baryogenesis. The role oscillons
could potentially have on baryogenesis is providing the
necessary nonequilibrium needed for successful creation
of matter-antimatter asymmetry analogous to Q-balls
whose cosmological impact has been studied extensively
(for a review, see e.g. [22]). In this context it is very
interesting that an oscillon solution has been found in the
bosonic sector of the standard model [23–25]. When the
scalar and vector masses in the theory are set to be mH ¼
2mW , the oscillon is sufficiently long-lived that it has not
been seen to decay in any numerical simulation to date
[23–25]. Oscillons have also been found in two and three-
dimensional Abelian-Higgs model in deep type I regime
[26,27]. A number of studies have considered oscillons in
the early Universe. While the oscillons in the standard
model or Abelian-Higgs model are obviously objects in
several fields, a recent study [28] found that oscillons can
also form in two scalar fields in models that are relevant
from the point of view of hybrid inflation (on that topic, see
also [29]). Other recent studies of formation of oscillons
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after an inflationary epoch but in single field models in-
clude [30–32]. Regarding the subsequent evolution of os-
cillons after their formation in a cosmological setting, both
numerical [33] and analytical [34] considerations in one
dimension have shown that oscillons can persist for a
considerably long time in expanding backgrounds (see
also [20]). The proposal of oscillons facilitating vacuum
tunneling in the context of the string landscape [35] is an
application quite far from the original idea of oscillons
affecting the bubble nucleation process, the resonant nu-
cleation studied e.g. in [36] (for a study of bubble colli-
sions, see also [37]). A recent study considered the
formation of oscillons in the quintessence field at the
present epoch of the Universe [38].

Lastly, regarding the significance of the oscillons, it
should be mentioned that they are an interesting link
between particles and solitons. Several numerical studies
in one dimension have considered the formation of kink-
antikink pairs. It has been found that scattering of breathers
can create a kink and an antikink [39]. Oscillons can also
decay to a kink and antikink when the potential of the
model is distorted [40], as well as oscillons being an
intermediate state in the process of formation of the kink-
antikink pair [41].

In an earlier work [42], we studied oscillons in two
dimensions on the lattice with periodic boundary condi-
tions. The aim of this study is to examine in detail the
evolution of oscillons and the properties of the radiation
they emit, in order to better understand the reasons for their
longevity with the use of absorbing boundary conditions.

Previous work in a theory with a quartic potential has
identified stable periodic solutions with incoming radia-
tion, called quasibreathers, which are closely related to
oscillons [43,44]. There is a critical oscillation frequency
at which the quasibreather has the minimum energy
[43,44], and once the incoming radiation is removed, the
frequency of the resulting solution evolves towards its
critical value according to a power law in time [44].
Power laws featured also strongly in [45,46] where the
radiation rates of oscillons were studied, starting from the
assumption of a strictly Gaussian form for the oscillon, and
a decay width calculated by comparison to linear theory.
An equation relating the energy loss rate to the rate of
change of the oscillon amplitude was derived, with power
law solutions for the time evolution. Note that oscillons in
the small-amplitude expansion [12,13] behave differently,
in that they shed energy in an exponentially suppressed
way as the amplitude goes to zero, and do not obey a
simple power law.

In this paper, we determine these power laws in three
models in two and three dimensions, consisting of a single
canonically normalized real scalar field � with potentials
listed in Table I, and examine the power spectra of the
emitted radiation. Our power spectra show that for the
quartic and sine-Gordon theories the radiation is

predominantly emitted at an integer multiple of the basic
oscillation frequency, either 3 or 2 depending whether the
potential is symmetric or not. For the convex potential, the
radiation is emitted just above the threshold set by the mass
parameter. A fundamental assumption made in [46] in
developing a theory of oscillons in the quartic theory was
that the radiation is predominantly emitted just above
threshold, which we see is incorrect. Nonetheless, good
fits to the time evolution of the energy, frequency and
amplitude were obtained in that work.
An important technical development in our work is the

construction of absorbing boundary conditions for a mas-
sive field, which provides an economical alternative to the
adiabatic damping technique, introduced in [47], and also
used in [44], which sets a location dependent friction
coefficient on the lattice. Absorbing boundaries provide
an alternative approach to remove the dispersive waves
from the lattice, requiring no extra lattice sites for its
operation.
The paper is organized as follows. The numerical setup

is briefly reviewed in the following section. While the
equations of the absorbing boundary conditions are pre-
sented in the Appendix, we briefly discuss their implica-
tions for simulations together with the data obtained using
quartic theory as an example. We then proceed to present
the results for the power laws and the radiation power
spectra in the three theories in two and three dimensions.
We find a surprising stability for the oscillon in the convex
potential, which leads us to conjecture that it may be stable
in three dimensions.

II. NUMERICAL SETUP

The Lagrangian for a single real scalar field � is given
by

L ¼ 1

2
@��@��� Vð�Þ; (1)

and the equation of motion thus reads

€��r2�þ V0ð�Þ ¼ 0: (2)

This field equation is evolved using a leapfrog update and a
three-point spatial Laplacian accurate to Oðdx2Þ. We per-
form (1þ 1)-dimensional simulations assuming radial
symmetry. These permit the choice of a much finer lattice
spacing compared with (2þ 1)-dimensional simulations

TABLE I. Potentials for the three models considered in this
paper. In the convex potential, p is a real parameter, with p < 1.
For the data shown p ¼ 0:45.

model potential Vð�Þ
quartic (�4) 1

4 ð�2 � 1Þ2
sine-Gordon 1

�2 ð1þ cosð��ÞÞ
convex �2

1þ�2p
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carried out in a previous study [42]. We kept the ratio of
time step and lattice spacing fixed and matching to the one
used in (2þ 1)-dimensional simulations, dt:dx ¼ 1:5. The
size of the one-dimensional grid was chosen so that
the physical distance from the core of the oscillon to the
absorbing boundary was always 100 units. The simulations
are performed on a grid of 10 001 lattice points and
dx ¼ 0:01, dt ¼ 0:002.

We set the field� and the field momentum� ¼ _� at the
origin r ¼ 0 to have the same value as on the next lattice
site with a nonzero value of the radius r. The updates used
at the far end of the grid, where the absorbing boundary is
located, are derived in the appendix, while we comment the
simulations with the absorbing boundaries shortly in the
next section. We use three consecutive points in the grid to
evaluate the gradients with the precision also accurate to
Oðdx2Þ.

III. QUARTIC POTENTIAL

We study here the degenerate double-well quartic po-
tential which defines the model that we refer to also as �4

theory

Vð�Þ ¼ 1

4
�ð�2 � v2Þ2; (3)

which sets the mass of the theory to bem2 ¼ 2�v2. Scaling
out the vacuum expectation value and coupling the poten-
tial can be written

Vð�Þ ¼ 1

4
ð�2 � 1Þ2 (4)

so that the minima are located at � ¼ �1 and the local
maximum at � ¼ 0. We use the following Gaussian initial
data to create an oscillon:

�ðrÞ ¼ 1� C � expð�r2=r20Þ; (5)

where r is the distance to the center of an oscillon. The
width of the distribution is set to be r0 ’ 2:9 (in units of

ð ffiffiffiffi
�

p
�Þ�1) in two and r0 ’ 3:0 in three dimensions, sug-

gested optimal choices in [48]. The maximum displace-
ment in two dimensions is set to beC ¼ 1 so that the center
of the oscillon starts from the local maximum of the
potential, while we use C ¼ �1 in three dimensions again
following [48].

A. Properties in �4 theory in two dimensions

As we kick off the oscillon by the somewhat arbitrary
initial condition (5), it naturally sheds at least some frac-
tion of the energy in the form of propagating waves moving
away. As long as that emission is not too violent and at
least further distance away from the oscillon core spread-
ing and consequently damped in two or higher dimensions
these waves can be assumed to be well characterized just
by a linear approximation of the equation of motion (2),

see (A1). Once the wave reaches the boundary of the grid,
it is absorbed and the energy carried by the wave removed
from the lattice. We thus expect monotonically decreasing
total energy in the system, and this is also what we observe.
Figure 1 shows the total energy (top line) in the lattice at
the very early stage of the simulation. The total energy in
the lattice will always include the radiative component
emitted by the oscillon which has not yet reached the
boundary of the grid. Thus we measure also the energy
inside the radius r ¼ 5r0 from the center of the oscillon
and refer this as the energy of the oscillon. The oscillon is
generally well localized inside this volume, but it covers
less than 15% of the lattice used here. The energy inside
this shell is also depicted in Fig. 1 (bottom line). In the
beginning it takes a finite time for the wave to reach the
boundary and even then the decrease in total energy is
more gradual compared with the energy inside the shell;
this is caused by the dispersion of the emitted waves.
However, after the initial transient phase, these two ways
to measure energy track each other well; there is only a
time delay between them. This also provides a crucial
check for the adequacy of the absorbing boundary condi-
tions we use. Any reflected waves will travel back and
reach the inner shell consequently increasing energy mea-
sured inside the radius there. There is no sign of such a
burst at a visible level in Fig. 1 and we expect only a very
minor reflection taking place at the boundary. We monitor
the total energy and the energy inside the aforementioned
shell throughout the simulations.
While at the early stage there is seemingly linear de-

crease in energy of the oscillon as shown in Fig. 1, this rate
of energy loss flattens out. Figure 2 shows the energy inside
the radius r ¼ 5r0 over the simulation that reaches over
108 time units. First of all, there is no sign of the demise of
the oscillon by this point in time. The energy is naturally
monotonically decreasing function of time, but the rate of
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FIG. 1. The total energy in the lattice (top) and energy inside a
shell of radius r ¼ 5r0 (bottom) in �4 theory in two dimensions.
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decrease slows down raising the question if the energy
approaches asymptotically a constant value, which we
denote by E0 from now on. We searched for a power law
of the form ðEðtÞ � E0Þ � t��. In practice, we performed
least-square fit with three free parameters, the asymptotic
energy E0, the exponent � and an amplitude in the power
law for the data. The best fit for the data presented in Fig. 2
is shown in Fig. 3 where we plot the difference of the
energy inside the shell and the constant E0 ¼ 4:613 on a
logarithmic scale. The grey line is a guide to eye of a slope
�0:152. There is very good agreement to this over three
orders of magnitude in time providing strong evidence for
the power law decay of the radiative component governed
by a small exponent � ¼ 0:1520� 0:0005 (we quote

hereafter uncertainties in quantities based on 68% confi-
dence intervals derived from standard regression analysis
applied to the subset of the data used for the fit). Moreover,
there exist asymptotic value for the energy E0 of the
oscillon with a value E0 ¼ 4:613� 0:003, thus E0 * 4:6.
The decrease in energy is a consequence of the decline

in the amplitude of the oscillations, i.e. the maximum
excursion the field makes at the center of the oscillon,
which we take to be towards the local maximum of the
potential, initially set by C ¼ 1. The amplitude A as a
function of time is shown in Fig. 4. Also this quantity is
fitted relatively well by a power law, ðAðtÞ � A0Þ � t�%.
The best-fit values for the asymptotic value of the ampli-
tude is A0 ¼ 0:33� 0:06 and for the exponent governing
the power law % ¼ 0:13� 0:02. The comparison between
the best fit and the data is shown in the inset in Fig. 4. This
suggests that the oscillations would still undergo a sub-
stantial decrease in size before reaching the asymptotic
value A0. It should be noted that as the amplitude is not an
integrated quantity like the energy of the oscillon, the
uncertainty in the fit is prominently larger, and there re-
mains scatter as can be seen in the inset in Fig. 4.
With decreasing amplitude the frequency of the oscillon

increases. We measure the frequency through the oscilla-
tion period, determined from the field’s three consecutive
crossings of the minimum of the potential at the center of
the oscillon. Based on the time step used we expect the
accuracy in determining the frequency from the data to be
around 0.0001. Figure 5 shows the frequency as a function
of time over the simulation. At the end of the simulation
the frequency is ! ¼ 0:964, still considerably below the
threshold for radiation, !=m ¼ 1.
Previous numerical studies of quasi- or pseudobreathers

have established that there exists a critical frequency !?
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FIG. 3. The difference of the energy inside a shell of radius
r ¼ 5r0 and the constant E0 ¼ 4:613 in �4 theory in two
dimensions. The grey straight line is a guide to eye of a power
law ðE� E0Þ � t�� with the slope � ¼ 0:152.
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FIG. 2. The energy inside a shell of radius r ¼ 5r0 in �4

theory in two dimensions over the span of the simulation up to
108 time units.
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FIG. 4. The amplitude as a function of time in�4 theory in two
dimensions. The inset shows the data points in the fit A� A0 for
A0 ¼ 0:33 for time greater than 105. The grey straight line is the
best-fit power law ðA� A0Þ � t�% with the slope % ¼ 0:13.
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such that !? < 1 and above which the oscillon disinte-
grates when the dimensionality in �4 theory is more than
two [43,44]. Furthermore, it has been suggested that the
approach of the frequency towards its critical value is
governed by a power law as ð!? �!ðtÞÞ � t�� in [44].
Thus we searched again a power law by performing the
least-square fit to the data. The best fit yields the critical
frequency !? ¼ 0:981� 0:003 and the exponent govern-
ing the power law � ¼ 0:18� 0:02. The data points for
!? �!ðtÞ are depicted in the inset of Fig. 5. There remains
a considerable scatter from the central value, the grey
straight line that demonstrates the best-fit power law t��,
but there is evidence for a critical frequency !? < 1.

In addition to the oscillation frequency, the whole power
spectrum of an oscillon is of interest and insight to the
properties of oscillons can be gained by a study in fre-
quency space. We denote the oscillation frequency now by
!0 to distinguish it from other frequencies present and
secondly, to highlight that it can be considered a constant
for any practical purposes in relatively short time intervals
considered here. A separable ansatz consisting of a sum of
multiplies of this frequency each with a separate spatial
dependence has seen to converge quickly [43,44,49]

�ðr; tÞ ¼ X1
n¼0

fnðrÞ cosðn!0tÞ: (6)

In an earlier work [50], we used a method inspired by
one-particle spectral function at zero momentum in classi-
cal approximation (for spectral function, see [51,52]). This
technique, employed to trace oscillons moving with vary-
ing speed, could be utilized here as well. As the spectral
function involves a volume average, it produces generally
quite a clean signal and reduces background noise.

However, we wish to study the frequencies present at
different locations on the grid and thus choose to obtain
the straightforward Fourier transform of the field�ðrÞ on a
fixed lattice site over a time interval.
Figure 6 shows the Fourier transform of the field at the

center of the oscillon, �ðr ¼ 0Þ over the interval of length
5000 in time units starting at time t ¼ 1:024 � 108. The
oscillation frequency !0 (thus at this time !0 ¼ 0:964) is
naturally the most pronounced mode, its multiples appear-
ing in the spectra with starkly smaller amplitudes. This
suppression is clearly exponential, illustrated by the grey
straight line superimposed above the peaks in Fig. 6. One
should note here that when performing the discrete Fourier
transform in a limited time interval it is likely that we do
not capture the height of the very narrow peaks very
precisely. The exponential fit to the data with the slope
�2:2 should be thus considered rather indicative than
quantitative. The results are qualitatively very similar to
those obtained in [42] where periodic boundary conditions
were utilized in a two-dimensional lattice. However, the
signal here is very clean; there is hardly any noise present,
but the curve shown is a smooth line. We point out that fast
Fourier transform of Jacobi functions in an interval yields a
very similar signal, including the exponential suppression
of the amplitudes at which the higher multiples of the
basic frequency appear as well as similar patterns between
the peaks. An example is given in Fig. 7 where Jacobi
function dnð!; 1=2Þ is shown. The resemblance is not
coincidental—Jacobi functions are solutions to a type of
elliptic nonlinear differential equations that result also by
omitting the spatial dependence in the equation of motion
(2) in �4 theory. Elliptic partial differential equations have
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FIG. 5. The oscillation frequency as a function of time in �4

theory in two dimensions. The inset shows the data points in the
fit !? �! for !? ¼ 0:981 for time greater than 105. The grey
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also been shown to describe quasibreathers in �4 theory
[11].

The use of absorbing boundary on the grid offers the
opportunity to examine the outgoing radiation far away
from the oscillon and circumvent the influence of the
frequency directly related to oscillations at ! ¼ !0.
Figure 8 shows the Fourier transform of the field in the
same time interval as in Fig. 6, but at location r ¼ 80. This
choice guarantees that the observation point is a consid-
erable distance away from the oscillon core, but not at the
edge of the lattice either where the equation of motion (2)
is modified to create the absorbing boundary. There is
signal at radiation frequency ! ¼ 1 and just above it, but
the most prominent peak is at the frequency! ’ 1:93, thus

coinciding with the second frequency 2!0 in the expansion
(6). There is a peak in the spectra also at 3!0 and just a
visible structure at 4!0, but the signal at ! ¼ 2!0 is the
most dominant, the height of the peak being over 30 times
larger than that at other frequencies, though still almost 6
orders of magnitude below the main peak at the oscillon
core. This observation is evidence for that it is the first
mode in (6) for which the frequency is above the radiation
threshold (here n ¼ 2) that is primarily responsible for
carrying away the energy from the oscillon.

B. Properties in �4 theory in three dimensions

In three dimensions, we start with a slightly broader
width but considerably more energetic initial profile than
in two dimensions as we set C ¼ �1 and thus the ampli-
tude of the excursion away from the minimum is towards
the steeper side of the potential. The energy inside the
radius r ¼ 5r0 throughout the simulation is shown in
Fig. 9. There is a very abrupt drop in energy at the very
beginning, but then the decrease slows down and energy
stabilizes above the value E � 40 for a considerable period
of time, until the oscillon disintegrates around time t ¼
7200 which appears in the data as the second stark drop in
energy.
Even though the oscillon clearly has a finite lifetime

here, the steady decrease in energy is relatively well cap-
tured by a power law. This is demonstrated in Fig. 10 where
the difference between the energy inside the shell and a
constant E0 ¼ 41:56 is shown on a logarithmic scale. The
best-fit value for the exponent is � ¼ 0:65� 0:01, thus the
strength of the emitted radiation decays far faster in time
than in two dimensions. This is naturally only of secondary
importance because the asymptotic value for the energy
E0 ¼ 41:56� 0:05 is well below the value when the os-
cillon destabilizes, which is approximately at E ¼ 42:7.
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The evolution of the amplitude A of the oscillations is
shown in Fig. 11. On top of the general downward trend
that follows closely the time evolution of the energy, the
most notable feature is the growing fluctuation in this
quantity in the course of time. This amplified oscillation
in the amplitude around the central value with a decreasing
frequency makes a simple power law fit to the data
challenging. The best-fit to the data in the interval
500< time< 5000 yields A0 ¼ �1:4� 0:3 and % ¼
0:066� 0:007, but it should be emphasized that the values
in the fit are very sensitive to the selection of the time
interval. The residuals of the fit are shown on a linear scale
in the inset in Fig. 11. This highlights further the growing

fluctuations, the beat, in the amplitude; to capture the time
evolution of the amplitude entirely and adequately a model
with extra parameters to account for these oscillations
would be required. The negative value of the asymptotic
amplitude A0 indicates strongly the finite lifetime of the
oscillon.
The oscillation frequency as a function of time is shown

in Fig. 12. The frequency approaches! ’ 0:97 towards the
end of the simulation before the oscillon decays. The
fluctuations in the amplitude are naturally imprinted into
the frequency. However, these do not prevent reaching a
reasonable power law fit to the data over the whole span of
the oscillon lifetime. In the best fit, the asymptotic value of
the frequency is !? ¼ 1:030� 0:003 and the exponent
governing the power law � ¼ 0:20� 0:01. The power
law is demonstrated in the inset in Fig. 12. Like in the
case of the amplitude, the asymptotic value of the fre-
quency !? remains physically meaningless as !? > 1;
the oscillon has a finite lifetime and decays even before
the frequency reaches the threshold for radiation ! ¼ 1.
For more extensive studies of oscillons in quartic theory in
three dimensions, in particular, the effect of the initial
radius and amplitude, see [46].
While the decay of the oscillon in three dimensions

restricts the length of the time interval we can observe
the evolution, this fate merely enhances the importance to
examine the frequency spectrum of the oscillon before its
demise. Because of the relatively fast energy loss, the
oscillation frequency shifts steadily and to overcome this
effect we perform the Fourier transform over the interval of
length 200 in time units (the choice of the shorter interval
naturally compromises the resolution we can expect on the
frequency axis compared with the analysis in two dimen-
sions). We choose to start the interval at time t ¼ 4000,
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thus this interval is in the middle of the phase of relative
subdued radiation appearing as the plateau in energy in
Fig. 9.

The power spectrum at the center of the oscillon, r ¼ 0,
is shown in Fig. 13. It is qualitatively similar to the spec-
trum in two dimensions (Fig. 6) with peaks located at
multiples of the oscillation frequency, which is here lo-
cated approximately at !0 ’ 0:955. There are even similar
patterns between the peaks as those seen in two dimen-
sions. In addition, the suppression of the amplitudes which
the peaks appear is still exponential as well, the best-fit
value of the slope being �1:8, very comparable with
the value obtained in the two-dimensional theory.
Unsurprisingly, the form of the power spectrum is dictated
by the potential rather than the dimensionality of the
theory.

The major difference between two and three dimensions
is the far larger emitted radiation taking place in the latter
resulting to a greatly larger width of the peaks in frequency
space. This has been considered analytically in [45,46] in
the case of the oscillation frequency.

Figure 14 shows the Fourier transform of the field �
obtained in the same time interval as in Fig. 13, but at the
location r ¼ 80. The strength of radiation shows simply in
the far larger absolute values of the amplitudes compared
with the situation in two dimensions, see Fig. 8. There are
three distinctive peaks present in the spectrum. There is a
substantial structure rising immediately above the thresh-
old for radiation at ! ¼ 1. The origin of it can be traced to
the large width of the peak of the basic oscillation fre-
quency in Fig. 13, the part of this peak for which !> 1
overflows in the form of free radiation (for a quantitative
study, see [46]). The radiation signal at ! ’ 1 is far
stronger than in two dimensions. However, also in three

dimensions the dominant peak is at the frequency corre-
sponding the double of the oscillation frequency, 2!0. The
height of this peak is several factors larger than the one at
! ¼ 1. Moreover, as waves moving at frequency! ¼ 2!0

carry a far larger amount of energy than those barely in the
free, propagating domain at ! * 1, we conclude that the
dominant channel for the energy loss in three dimensions
is also through the frequency band at ! ’ 2!0. Finally,
there is inferior, but still a visible peak in the spectra at
! ¼ 3!0.

IV. SINE-GORDON MODEL

Sine-Gordon model is of considerable interest from the
point of view of oscillating solutions both on theoretical
and phenomenological grounds: in one-dimension it has a
stable breather solution and it is also the potential of axion
field (formation of oscillating energy concentrations in
axion field were studied in [53]). In [54], a fine-tuned
initial ansatz was reported to create almost dissipationless
breather in two dimensions. Here we start with the same
Gaussian ansatz as in �4 theory given by (5) with r0 ’ 2:9
and C ¼ 1. We scale the potential of sine-Gordon model

Vð�Þ ¼ �4

�2
ð1� cosð��ÞÞ (7)

to

Vð�Þ ¼ 1

�2
ð1þ cosð��ÞÞ; (8)

so that locations of the minima are the same as in �4

theory, but here the mass m2 ¼ 1.

A. Properties in two dimensions

Figure 15 shows the energy inside the shell with radius
r ¼ 5r0 in the simulation up to 5 � 107 time units. This is
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FIG. 13. The power spectrum of the field at the center of the
oscillon, r ¼ 0, in �4 theory in three dimensions. The grey
straight line is a guide to eye of the exponential expð�b!Þ
with the slope b ¼ 1:8.
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qualitatively very similar to the case in quartic theory. We
sought again for a power law using least-square fit.
The result is presented in Fig. 16 where the constant
E0 ¼ 4:769 is subtracted from the energy inside the shell.
The resulting curve has the slope �0:119 on the logarith-
mic scale, demonstrated by the grey straight line in the
figure. We lack some of the dynamical range reached in the
simulation in �4 theory, but there is evidence for a power
law roughly over three orders of magnitude in time with an
exponent � ¼ 0:119� 0:003. The rate of decrease is mar-
ginally smaller than what we observed in �4 theory, and
the asymptotic energy of the oscillon, E0 ¼ 4:77� 0:01, is
now slightly larger, but generally oscillons in both models
are comparatively similar lumps of energy.

The amplitude of the oscillations behaves also very
similar way compared with the quartic theory in two
dimensions. Figure 17 shows the amplitude over the course
of time. The inset demonstrates the best-fit power law
where A0 ¼ 0:37� 0:10 and % ¼ 0:13� 0:05. The de-
rived errors in the fit are quite large, it can be seen that
there is substantial scatter around the central value for time
<106, the oscillon in sine-Gordon model has a larger
asymptotic amplitude A0 than in �4 theory.
The evolution of the frequency as a function of time is

shown in Fig. 18. Like in the case of energy, the rate of
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FIG. 15. The energy inside a shell of radius r ¼ 5r0 in sine-
Gordon model in two dimensions over the span of the simulation
up to 5 � 107 time units.
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change is less than in quartic theory and the oscillation
frequency reaches value ! ¼ 0:961 at the end of the
simulation at time point t ¼ 5:12 � 107. The search for a
critical frequency and an associated power law here yields
quite a stringent results. There is a remarkably good fit
to the data with !? ¼ 0:991� 0:002 and � ¼ 0:120�
0:004. The data points for !? �!ðtÞ are shown in the
inset of Fig. 18 together with the grey straight line that
demonstrates the power law t��. This suggests now
that there exists a critical frequency !? < 1 in two-
dimensional sine-Gordon model that would correspond
an oscillon with a minimum energy.

The power spectrum of the oscillon in sine-Gordon
model is shown in Fig. 19 obtained by a Fourier transform
in an interval of length 500 in time units starting at time
t ¼ 5:12 � 107. There are no even multiples of the oscilla-
tion frequency!0 present in the spectra. This is simply due
to the symmetry of the potential (7) in sine-Gordon model
with respect to its minima-there cannot be nonzero terms
fnðrÞ in (6) for an even n. The remaining peaks are ex-
ponentially suppressed as a function of frequency !. This
suppression is even quantitatively very similar to the one in
quartic theory. The small difference in the slope we mea-
sure is well within the limits of uncertainty we can expect
in evaluating the height of the narrow peaks.

Figure 20 shows the Fourier transform of the field in the
same time interval as Fig. 19, but at location r ¼ 80. Now
the most dominant peak is at ! ¼ 2:88 ¼ 3!0, the first
radiative mode as the even multiples of !0, including 2!0,
do not exist. There is still a visible pinnacle at 5!0 and a
substantial peak just above the radiation frequency ! ¼ 1,
but exactly like in �4 theory that one is more than order of
magnitude suppressed compared with the prominent one at

the frequency 3!0. Also in sine-Gordon model, it is the
first nonzero multiple of the basic frequency !0 above the
threshold for radiation that leaks the energy from
the oscillon.
The Gaussian ansatz (5) does not create long-lived os-

cillons in sine-Gordon model in three dimensions. For an
investigation with fine-tuned initial conditions see [54].

V. A CONVEX POTENTIAL

Majority of the studies on oscillons has been carried out
in the context of �4 theory (see e.g., [6,10,44,48]) or in
sine-Gordon model. Both potentials (3) and (7) have de-
generate vacua and inflections points. In [55], the study
dealt potentials that are nearly quadratic. In particular a
quadratic potential with a negative logarithmic correction
was reported to support long-lived lumps (called I-balls by
the authors). Very recently there has been interest in con-
vex potentials and a study [32] considered the formation of
oscillons in the following potential:

Vð�Þ ¼ m2M2

2	

��
1þ �2

M2

�
	 � 1

�
; (9)

which is motivated by a number of supergravity and su-
perstring scenarios.
It was the work in [55] that initially lead us to study the

effects of the form of potential on the existence of long-
lived oscillating solutions. We have chosen to study the
following convex function:

Vð�Þ ¼ �2

1þ�2p
; (10)

which reduces into a quadratic form �2=2 when exponent
p ¼ 0. Figure 21 shows the potential (10) close to its
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oscillon, r ¼ 0, in sine-Gordon model in two dimensions. The
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minimum for values p ¼ 0:4, 0.3 and 0.2 together with the
quadratic potential �2=2 indicated by the grey line. For
positive values of the exponent p and in the vicinity of the
minimum, j�j< 1, Vð�Þ>�=2, thus for the range of
values of the field where the oscillations take place the
potential Vð�Þ is steeper than quadratic �2=2.

The potential (10) sets far greater challenge for the
absorbing boundary conditions than �4 theory or sine-
Gordon model. This becomes readily apparent in Fig. 22
where the second derivative of the potential is shown for
the same values of parameter p. Already small deviations
from the vacuum � ¼ 0 create large variations in V00, the
greater the smaller parameter p is. This is a drawback from
the point of view of the absorbing boundary conditions
used because they are based on the assumption that the

potential can be linearized in the equation of motion. Once
the fluctuations create large corrections, the absorption can
be expected to be only partial or, in the worst case, the
update on the boundary even pumps energy into the lattice.
We restrict considerations from now on to values 1=2>
p � 0:4 which yield less stark variations and for which the
radiation is clearly adequately removed from the lattice.
Potential (10) is also more time consuming to evaluate
numerically and consequently the simulations do not reach
such a long final time as the one presented in�4 theory, but
typically order of 106 time units.

A. Properties in two dimensions

Also here the oscillon is initialized by a Gaussian de-
viation from the vacuum

�ðrÞ ¼ C � expð�r2=r20Þ; (11)

with the same width as before r0 ’ 2:9, but due to the
steepness of the potential (10) we set the amplitude of
the displacement to be smaller, C ¼ 0:6. The oscillons
formed are well described by a Gaussian shape though
with a slightly larger width and a longer tail. After a short
initial phase of radiation, the oscillon settles into a state
characterized by a very constant energy. We present the
data from simulation when the exponent was set to p ¼
0:45. The energy inside the radius r ¼ 5r0 for this choice
remains above E ¼ 3:8. We carried out the least-square fit
for the energy. Now far more fine-tuningis required for
seeking the asymptotic energy E0. Figure 23 shows the
constant E0 ¼ 3:80343 subtracted from the energy inside
the shell. The radiative component decays now almost
inversely proportional to time, the best-fit exponent being
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� ¼ 0:97 and the corresponding power law demonstrated
by the grey line in the figure. There is agreement with this
power law over two orders of magnitude in time during
which the difference ðEðtÞ � E0Þ drops below 10�4. The
best-fit values for the asymptotic energy and the exponent
governing the power law are E0 ¼ 3:80343ð4Þ and � ¼
0:974� 0:003, respectively. The diminutive uncertainty in
the value of energy reflects the fine-tuning needed in the fit,
and in turn the stability of the value the energy reaches in
the simulation.

Nearly constant energy implies also very stable oscilla-
tion frequency. After initial phase the oscillation frequency
settles to !0 ¼ 0:879 and we do not observe any increase
in this, but within the accuracy to determine frequencies it
remains the same until the end of the simulation beyond
time t ¼ 4 � 106. It is noteworthy that this value is consid-
erably below the threshold for radiation. The amplitude of
the oscillations settles to a value A ’ 0:49.

We show the power spectrum of the oscillon in the
potential (10) for p ¼ 0:45 obtained in the previously
used time interval starting at time t ¼ 4 � 106 in Fig. 24.
Because the potential (10) is symmetric around its mini-
mum, there are only peaks at odd multiples of the oscil-
lation frequency as in sine-Gordon model. But it is
surprising that the suppression is governed by a power
law, we plot also the frequency axis on a logarithmic scale
in Fig. 24. On the basis of the stability and weak radiation
from the oscillon a strong exponential suppression of
radiative modes would have been likely. The power law
decrease as a function of the frequency is considerably
quick though, the amplitudes are suppressed roughly as
!�5 though the exponent should be considered only
indicative.

Figure 25 shows the frequencies present far away from
the oscillon core at r ¼ 80. There is a peak at frequency
! ¼ 2:64, thus at 3!0, but this one is not the dominant.
Instead, the amplitude of the peak just above the radiation
frequency at ! ¼ 1:07 is over 70 times higher. The domi-
nant radiative mode is not related to multiples of the
oscillation frequency !0.

B. Properties in three dimensions

We use the same Gaussian initial ansatz (11) with the
same width and amplitude as in two dimensions. This
initial profile creates now an oscillating lump also in three
dimensions though the oscillon has a larger width and a
longer tail than the Gaussian distribution. The data shown
is for the same value p ¼ 0:45 in the potential (10). After
the initial stronger radiative phase, there remains energy
above the value E ¼ 13:9 within the radius r ¼ 5r0.
For the least-square fit, we use now the data on the total

energy in the lattice because the oscillon is more spatially
spread and due to the precision required in determining the
value of the constant E0 below 10�3 the fluctuations in the
energy inside the shell become apparent (they are to a
lesser extent already visible in Fig. 23). Figure 26 shows
the constant E0 ¼ 13:908 subtracted from the total energy.
The decaying component decreases fast in time, the best-fit
for the exponent governing the power law is � ¼ 1:09�
0:01 while the asymptotic value of the energy is E0 ¼
13:9081� 0:0002. There is fairly large uncertainty in the
value of the exponent, but there is good evidence that the
radiative part decays faster than inversely proportional to
time. The amplitude related to this energy is A ’ 0:34.
With the aforementioned energy the oscillation fre-

quency settles to ! ’ 0:939. Again we do not observe
increase in the frequency within the numerical accuracy
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FIG. 24. The power spectrum of the field at the center of the
oscillon, r ¼ 0, in the convex potential (10) for p ¼ 0:45 in two
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 ¼ 4:6. The inset shows the spectrum
around the oscillation frequency !0 ’ 0:88.
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after the initial phase. Figure 27 shows the power spectrum
of the three-dimensional oscillon obtained in the previ-
ously used time interval starting at time t ¼ 4 � 106. The
result is very similar to Fig. 24 with peaks at odd multiples
of the basic frequency !0. The suppression of the higher
amplitudes is again governed by a power law demonstrated
by the grey straight line in the figure. The measured slope is
slightly steeper than in two dimensions, but this difference
is hardly significant taking into account the accuracy of the
data we can expect.

Figure 28 shows the frequencies at the location r ¼ 80.
There is only barely visible structure above the background

at ! � 2:82, three times the value of the oscillation fre-
quency. The only peak of any note is located at frequency
! ¼ 1:04, thus barely above the threshold for propagating
radiation.
To summarize our findings of the oscillons in the convex

potential (10), the change from two to three dimensions
seem to have surprisingly small effect. In both dimensions
there remains a very stable lump of energy oscillating at
a constant frequency which emits only tiny amount of
radiation. While we do not have an explanation for their
longevity, the investigation in frequency space gives
one answer. As the oscillon can primarily only excite
modes that are just above the threshold for radiation, i.e.
ð!�mÞ � 1, obviously such modes can carry only lesser
amount of energy away from the core of the lump.
Consequently, we can expect far reduced emitted radiation
compared with �4 theory and sine-Gordon model as we
indeed observe (it cannot be excluded that some of the
signal we see is from relic radiation on the lattice that was
not absorbed by the boundary, but reflected back to the
grid).
We have considered here only very limited range of

values of the parameter p in the potential (10), but the
potential supports oscillons in a wider variety of the values
of the exponent p governing its steepness [56]. With a
different choice for lattice spacing and time step, oscillons
have survived up to 107 time units [56]. This is hardly a
surprising result taking into account their minuscule radia-
tion losses.
Finally, it should be noted that nonradiating oscillons

have been found in one-dimensional signum-Gordon
model [57] (more recently also a new class of swaying
oscillons have been discovered in the same model [58]). It
is defined by the potential
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E0 ¼ 13:908 in the convex potential (10) for p ¼ 0:45 in three
dimensions. The grey straight line is a guide to eye of a power
law ðE� E0Þ � t�� with the slope � ¼ 1:05.

1 2 3 4 5 10 20
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

ω / m

|Φ
(ω

)|

0.9 0.95 1
10

1

10
3

10
5

FIG. 27. The power spectrum of the field at the center of the
oscillon, r ¼ 0, in the potential (10) for p ¼ 0:45 in three
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Vð�Þ ¼ gj�j: (12)

The convex potential (10) reduces to linear for p ¼ 1=2 in
the limit of large field, j�j � 1. This is not the realm
where oscillations of the field take place, but it cannot be
excluded right away that there were no connection between
oscillons we have reported here and those described in
[57]. At very least, both are examples of oscillons appear-
ing in theories where the potential is not a smooth one.

VI. CONCLUSIONS

We have studied oscillons in �4 theory, sine-Gordon
model and in convex potentials, performing (1þ 1)-
dimensional simulations assuming radial symmetry. An
important ingredient was the development of absorbing
boundary conditions for a massive, real scalar field.
Generally absorbing boundary conditions work well and
radiation is removed from the lattice.

We showed that the time evolution of the energy and the
frequency of oscillons is well modeled by dividing it to a
constant and a decaying radiative part. There is strong
evidence that the decay of the radiative part is governed
by a power law in all models considered. We further
determined the values of the constant components as well
as values of the exponents in the power law decay, which
we summarize in Table II. The power law decay has been
previously reported in �4 theory [45,46] and for flat-top
oscillons in [20]. Note that for the oscillons in the convex
potentials the frequency remains constant, which is a
qualitatively new behavior for an oscillon.

We also studied the evolution of the amplitude and the
oscillation frequency over time, our results are summarized
in Tables III and IV. The oscillon amplitude also exhibits a
power law decay, which in three dimensions is strongly
modulated by a beat frequency, while in the case of the
convex potential it is constant.

Furthermore, we examined the power spectrum of field
at the center of oscillon and near the boundary. While in�4

theory and in sine-Gordon model there is an exponential
attenuation of higher multiples of the oscillation frequency,
the oscillons in the convex potential show only a power law
suppression.

Understanding the manner oscillons radiate and shed
their energy away is crucial in gaining insight for their
persistence and longevity. We studied the outgoing radia-
tion in frequency space. The emitted radiation in�4 theory
and in sine-Gordon model is strongly peaked at the first
nonzero multiple of the basic frequency, while in the
convex potential the oscillons radiate at a low frequency
just above the threshold to release radiation. Our results in
quartic theory, in particular, in two dimensions, agree well
with the study of quasibreathers in the same model [44].
There it was identified that the emissions take place at the
frequencies n!0, with n � 2with the frequency 2!0 being
the dominant one. The quasibreather approach, i.e. ansatz
(6), does not assign any width for the frequencies. This was
considered the starting point in the work [46] when dealing
with the basic oscillation frequency. Our results indicate
that there is a contribution from both sources, from higher
modes as well as from the spread related to the basic
oscillation frequency and once again highlight the richness
and complexity of oscillons. An approach that would ac-
count for both higher frequencies present in the spectra as
well as the width of the frequencies might capture the
problem of oscillon radiation in full.
What do the results tell about the lifetime of oscillons?

The appearance of the constant E0 now raises the question
of its physical interpretation. While it would be tempting to
define it as the energy of a nonradiating oscillon, this kind
of conclusion cannot be made straightforwardly. It is,
namely, not obvious at all that there are oscillon solutions
at such energy. While the energy decreases the oscillon
oscillates faster and the oscillation frequency!0 increases.
Once close enough to the threshold for radiation ! ¼ m
oscillon demises when it reaches its minimum energy state
[43,44]. This was well demonstrated in �4 theory in three
dimensions, there the asymptotic energy E0 is well below
the energy level that caused the oscillon to dissolve.

TABLE II. The values of the asymptotic energy E0 and the
exponent � in ðEðtÞ � E0Þ � t�� for the oscillons in the various
models studied with the initial conditions as mentioned in the
text.

model dim E0 �

quartic theory 2 4:613� 0:003 0:1520� 0:0005
quartic theory 3 41:56� 0:05 0:65� 0:01
sine-Gordon 2 4:77� 0:01 0:119� 0:003
convex potential 2 3:803430� 4 � 10�6 0:974� 0:003
convex potential 3 13:9081� 0:0002 1:09� 0:01

TABLE III. The values of the asymptotic amplitude A0 and the
exponent % in ðAðtÞ � A0Þ � t�% for the oscillons in the various
models studied with the initial conditions as mentioned in the
text.

model dimension A0 %

quartic theory 2 0:33� 0:06 0:13� 0:02
quartic theory 3 �1:4� 0:3 0:066� 0:007
sine-Gordon 2 0:37� 0:10 0:13� 0:05

TABLE IV. The values of the critical frequency !? and the
exponent � in ð!? �!ðtÞÞ � t�� in two dimensions for the
oscillons with the initial conditions as mentioned in the text.

model !? �

quartic theory 0:981� 0:003 0:18� 0:02
sine-Gordon model 0:991� 0:002 0:120� 0:004
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Because the radiative part shows a slow decay in time in
two dimensions, the energy oscillons have reached at the
end of simulations is still well above the asymptotic value
E0 in�

4 theory and sine-Gordon model, more precisely by
13% and 7%, respectively, (it should be noted that there are
some theoretical bounds on the minimum energy of lumps
[59]).

However, the case for the convex potentials presented
here is definitely intriguing. We have shown that there the
suppression of the radiation losses is quick, roughly in-
versely proportional to time. Thus only very small further
decrease in energy is to be expected to occur, orders of
magnitude less than in �4 theory or in sine-Gordon model.
Furthermore, the frequency of oscillons is well below the
threshold for radiation. This all makes it possible that these
oscillons could go on indefinitely long. Another open
question remaining is if it is possible to tailor potentials
in which the emission of radiation from oscillon is strongly
suppressed also in higher dimensions. The convex potential
we considered is not phenomenologically particularly well
motivated, but if this sort of oscillons can also appear in
more realistic theories their long life-time would almost
certainly make them viable to affect physics in the system
there.

APPENDIX: ABSORBING BOUNDARIES

In this appendix, the absorbing boundary conditions are
presented. As the starting point consider the following
linear wave equation

€’�r2’þ ’ � V00j’¼0 ¼ 0; (A1)

where ’ is now a small perturbation around a chosen
vacuum and V00 evaluated at that point. For example, in
�4 theory� ! v� ’ and V 00ð�Þj�¼v ¼ 2�v2 ¼ m2. The

treatment here follows closely the one presented in [60] for
a massless scalar field (for absorbing boundary conditions
in general, see also [61]).

1. Cylindrical Wave

When one assumes radial symmetry in two space di-
mensions the wave Eq. (A1) reads

@2’

@t2
� @2’

@r2
� 1

r

@’

@r
þm2’ ¼ 0: (A2)

The solutions of (A2) are Bessel functions, but considering
an absorbing boundary at far distance (r � 1) the approx-
imative solution reads

’ðt; rÞ ¼ 1ffiffiffi
r

p exp½ið
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 �m2

p
rþ!tÞ	; (A3)

where ! is a dual variable to t. This solution (A3) is

annihilated at the boundary r ¼ rb (to order r�5=2) by the
operator in the parenthesis

�
@

@r
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 �m2

p
þ 1

2r

�
’jr¼rb

¼ 0: (A4)

From the point of view of numerical implementation using
leap frog update, we aim to second order equations at the
boundary. Expanding the square root to second order in
(A4) and replacing the variable ! by the corresponding
time derivative one obtains an absorbing boundary condi-
tion on the edge of the one-dimensional grid

@

@t

@’

@r
þ @2’

@t2
� 1

2
m2’þ 1

2r

@’

@t
¼ 0: (A5)

The Eq. (A5) permits a straightforward time evolution
using leap frog algorithm. To be more precise, the condi-
tion (A5) yields a new evolution equation for the field
momentum� compared to that in the interior of the lattice,
whereas the update of the field � stays unaltered. The last
term in (A5), suppressed by inverse of physical distance r,
results from the treatment in the polar coordinates. It turns
out to be fairly insignificant with the numerical setup
used in this study, but in a smaller grids it increases the
absorption.

2. Spherical Wave in Three Dimensions

When one assumes spherical symmetry in three dimen-
sions, the solution for the wave equation

@2’

@t2
� @2’

@r2
� 2

r

@’

@r
þm2’ ¼ 0: (A6)

is given by

’ðt; rÞ ¼ 1

r
exp½ið

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 �m2

p
rþ!tÞ	: (A7)

This is annihilated at the boundary r ¼ rb by

�
@

@r
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 �m2

p
þ 1

r

�
’jr¼rb

¼ 0; (A8)

which leads to following absorbing boundary condition

@

@t

@’

@r
þ @2’

@t2
� 1

2
m2’þ 1

r

@’

@t
¼ 0; (A9)

appropriate when a three-dimensional system is considered
in a spherically symmetric geometry.
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