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We present a solution of the coupled Einstein and rank-two antisymmetric tensor field equations where

Lorentz symmetry is spontaneously broken, and we discuss its observational signatures. Especially, the

deflection angles have important qualitative differences between tensor and scalar monopoles. If a

monopole were to be detected, it would be discriminated whether or not to correspond to a tensor one.

This phenomenon might open up new directions in the search of Lorentz violation with future

astrophysical observations.
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I. INTRODUCTION

Lorentz symmetry is a cornerstone in the foundation of
modern physics. The experimental tests of Lorentz
violation have been studied for more than a decade (see
Ref. [1] and references therein). The possibility of Lorentz-
violating field theory were intensively studied in the vari-
ous contexts, including Riemann-Cartan geometry [2],
Riemann-Finsler geometry [3], string theory [4], and non-
commutative geometry [5]. Especially, a tensor field theory
with dynamical Lorentz symmetry violating such that
the manifold of equivalent vacua after the violation is not
shrinkable to a point may contain monopole solutions
[6,7]. There exist monopole solutions in the minimal
model coupled to gravity [6,7] for antisymmetric 2-tensor
field, in which the far-field approximation and
Bogomol’nyi-Prasad-Sommerfield (BPS) limit are used.
It is worth noting that the above-mentioned solution is
not an exact one for the metric around a tensor monopole
since it is not the solution of the equation of the tensor field.
One must still find a solution of the coupled equations of
motion valid throughout space.

On the other hand, if the symmetry that is broken is a
global symmetry of scalar fields, the gravitational effect of
monopole configuration [8] is equivalent to that of a deficit
solid angle in the metric, plus that of a negative mass at the
origin [9,10]. The properties of scalar monopoles have
been investigated in various spacetimes [11]. Monopoles
could be produced by the phase transition in the early
Universe and their existence has important implications
in cosmology. It is possible that the monopoles still exist as
relic objects in the Universe today, since isolated topologi-
cal defect is stable. If a tensor monopole were to be
detected, it would offer precious enlightenment on funda-
mental symmetries in physics. For the scalar case, the
internal symmetry is spontaneously broken, and Lorentz
symmetry is exact. On the contrary, Lorentz symmetry will

be broken by the vacuum solution in the tensor case.
However, the signature of a tensor monopole is effectively
the same as a scalar one in the Seifert’s approximation.
It is of course not possible to use tensor monopole setups
to assess the existence of Lorentz violation in this
approximation.
In this paper, we propose a novel approach that might

relax the above problem and open new possibilities for the
detection of Lorentz violation in future astrophysical ob-
servations. We show the realistic solution for the coupled
system, and discuss its observational signatures. Using
standard techniques, we have calculated the light ray prop-
agating in these backgrounds. Note that the deflection
angles are dependent upon the ‘‘apparent impact parame-
ter.’’ From this point of view, the signature of an antisym-
metric tensor monopole can be distinguished from two
species of monopoles in future tests. Moreover, the tensor
monopole would provide inestimable insight into the role
played by Lorentz symmetry in physics.

II. THE FIELD EQUATIONS

We consider the 1þ 3-dimensional action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

16�G
�Lm

�
; (1)

where the gravity part of the action is the usual Einstein-
Hilbert action with the gravitational coupling constant G
and curvature scalar R. Lm is the Lagrangian of an anti-
symmetric 2-tensor field which takes on a background
expected value [6],

L m ¼ � 1

6
F���F��� � �

2
ðB��B�� � b2Þ2; (2)

where B�� is an antisymmetric tensor field and F��� ¼
3@½�B��� is its associated field strength. B�� is also known

as the Kalb-Ramond field [12,13]. For the metric, the
spherically symmetric ansätz in Schwarzschild-like coor-
dinates reads

ds2 ¼ �EðrÞdt2 þ FðrÞdr2 þ r2ðd�2 þ sin2�d’2Þ; (3)
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while for the Kalb-Ramond field, we also choose the
spherically symmetric ansätz [6]

Btr ¼ �Brt ¼ 0; B�’ ¼ �B’� ¼ gðrÞr2sin2�: (4)

Using Eqs. (1)–(4), the equation of motion for the Kalb-
Ramond field can be reduced to

1

2

�
E0

E
�F0

F

��
g0 þ 2

r
g

�
þ @

@r

�
g0 þ 2

r
g

�
� 2�Fgð2g2�b2Þ

¼ 0; (5)

where primes denote differentiation with respect to r.
As a general feature, a solution with gð0Þ ¼ 0 and

gðrÞ ! b=
ffiffiffi
2

p
as r ! 1 corresponds to a monopole con-

figuration since the vacuum manifold contains a noncon-
tractible two-sphere (i.e., �2ðMvacÞ ¼ Z). Let us mention,
by the way, that the equation of motion is analogous
between the tensor monopole and Oð3Þ scalar monopole.
In the both cases, no exact expression is known, although
series method [9] or numerical calculation [10] can be used
to approximate it for the Oð3Þ monopole. The energy-
momentum tensor of a tensor monopole configuration is

Tt
t ¼ � 1

F

�
g0 þ 2

r
g

�
2 � �

2
ð2g2 � b2Þ2; (6)

Tr
r ¼ 1

F

�
g0 þ 2

r
g

�
2 � �

2
ð2g2 � b2Þ2; (7)

T�
� ¼ T’

’

¼ 1

F

�
g0 þ 2

r
g

�
2 � �

2
ð2g2 � b2Þ2 þ 4�g2ð2g2 � b2Þ:

(8)

Varying the action (1) with respect to the metric fields
gives the Einstein equations

� 1

F

�
1

r2
� F0

Fr

�
þ 1

r2
¼ �

2b2

�
1

F

�
g0 þ2

g

r

�
2þ�

2
ð2g2�b2Þ2

�
(9)

� 1

F

�
1

r2
þ E0

Er

�
þ 1

r2
¼ �

2b2

�
� 1

F

�
g0 þ2

g

r

�
2þ�

2
ð2g2�b2Þ2

�
;

(10)

where the dimensionless quantity � � 16�Gb2.
In order to solve the system of Eqs. (5), (9), and (10)

uniquely, we have to introduce 6 boundary conditions,
which we choose to be

gð0Þ ¼ 0; Fð0Þ ¼ 1;

Eð0Þ ¼ e0; gðrÞjr!1 ¼ bffiffiffi
2

p ;

EðrÞr�2�jr!1 ¼ ð2�b2Þ�; FðrÞjr!1 ¼ 1þ �:

(11)

III. THIN-WALL APPROXIMATION

We start our discussion with a simplified model for the
monopole configuration, just to show the main features of
the exact solution in a simple manner. We model the
monopole configuration in the thin-wall limit,

g ¼
8<
: 0 if r < �

bffiffi
2

p if r > �
; (12)

where � is the core radius. Einstein equations inside the
core are solved by a de Sitter metric

ds2 ¼ �
�
1� ��b2r2

12

�
dt2 þ dr2

1� ��b2r2

12

þ r2d�2: (13)

The exterior solution is given by

ds2 ¼ �ð ffiffiffiffiffiffi
2�

p
brÞ2�

�
1� 2GM

ð ffiffiffiffiffiffi
2�

p
bÞ�r1þ�

�
dt2

þ 1þ �

1� 2GM
ð ffiffiffiffi

2�
p

bÞ�r1þ�

dr2 þ r2d�2; (14)

whereM is an arbitrary constant of integration. Both � and
M are determined by Eqs. (9) and (10) at the boundary
between the interior and exterior region, which correspond
to the continuity of the metric. The result is

� ¼ 1ffiffiffiffiffiffi
2�

p
b

�
1

1þ �

�
1=2�

(15)

M ¼ � 8�bffiffiffiffiffiffi
2�

p
�
1� ð1þ �Þ1�ð1=�Þ

24

��
1

1þ �

�
1þ�=2�

: (16)

We argue that it is possible to match an interior de Sitter
solution to an exterior tensor monopole solution, but
only for M< 0. This property is consistent with the nega-
tive mass of scalar monopole [9]. Furthermore, we have

1ffiffiffiffiffiffi
2�e

p
b
��� 1

2
ffiffiffi
�

p
b
and �23�bffiffiffiffiffiffi

72�
p �M��ð8e�1=2� 1

3e
�3=2Þ �bffiffiffiffi

2�
p

for 0 � � � 1, where e ¼ 2:71 828 � � � is the base of the
natural logarithm.
It is worth noting that the solution of BPS limit [6] is not

an exact solution for the metric around a tensor monopole,
since it is not the solution of Eq. (5). In other words,
Seifert’s result [6] only describes the scene of the far-field.
Equation (12) is an approximative solution of the
Kalb-Ramond field in the thin-wall limit. Therefore, the
simplified model shares some features of the realistic
solution for the coupled Einstein-Kalb-Ramond system
of Eqs. (5), (9), and (10), as we shall rigorously confirm
in the next section.

IV. THE SOLUTION FOR THE COUPLED SYSTEM

The asymptotic form of the functions EðrÞ, FðrÞ, and
gðrÞ can be systematically constructed in both regions, near
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the origin and for r ! 1. Expanding the functions around
the origin gives

EðrÞ ¼ e0

�
1þ

�
3�

b2
g21 �

b2��

12

�
r2

þ
�
27�2

10b4
g41 þ

�
7��

10
þ 3�2�

40

�
g21

�
r4 þOðr6ÞÞ (17)

FðrÞ ¼ 1þ
�
3�

2b2
g21 þ

b2��

12

�
r2 þ

��
13�2�

40
� 4��

5

�
g21

� 9�2

20b4
g41 þ

b4�2�2

144

�
r4 þOðr6Þ (18)

gðrÞ¼g1ðrþ
��

�

20
�1

5

�
�b2� 9�

20b2
g21

�
r3

þ
��

1

5
�13�

60
þ�2

24

�
�2b4

14

þ
�
1�3�

10
�3�2

20

�
�g21
7

þ27�2g41
160b4

�
r5þOðr7ÞÞ (19)

where g1 and e0 � Eð0Þ are free parameters to be
determined numerically. The asymptotic behavior

(r � ð ffiffiffiffiffiffi
2�

p
bÞ�1) is given by

EðrÞ ¼ ð ffiffiffiffiffiffi
2�

p
brÞ2�

�
1þ ð1� �Þ�

4�b2ð1þ �Þ
1

r2

� �ð1� �Þ3
8�2b4ð3� �Þð1þ �Þ2

1

r4
þO

�
1

r6

��
; (20)

FðrÞ ¼ ð1þ �Þ
�
1� �ð1� �Þ

4�b2ð1þ �Þ
1

r2

þ �ð�� 1Þð�3 � 4�2 � 5�þ 16Þ
16�2b4ð3� �Þð1þ �Þ2

1

r4
þO

�
1

r6

��
;

(21)

gðrÞ ¼ bffiffiffi
2

p � 1� �

2
ffiffiffi
2

p
�bð1þ �Þ

1

r2

� ð1� �Þð3� �2Þ
8

ffiffiffi
2

p
�2b3ð1þ �Þ2

1

r4
þO

�
1

r6

�
: (22)

It is obvious that FðrÞ will converge to ð1þ �Þ, but EðrÞ
grows without bound as r ! 1 and EðrÞ / r2�. From
Eqs. (6)–(8), we have

�þ pr þ 2p� ¼ 4b2

r2
þ ð1� �Þ3

ð1þ �Þ2�
1

r4
þO

�
1

r6

�
(23)

which is proportional to the tt component of the trace-
reversed energy-momentum tensor and couples to the tt
component of the metric in the linearized approximation
[6]. On the contrary, �þ pr þ 2p� falls off as r�4 for the
Oð3Þ scalar monopole. Therefore, their gravitational fields
have essential differences. If the mass scale b is well below

the Planck scale, the far-field shall become sufficiently flat
so that the solution of a tensor monopole can be embedded
in one describing the suitable large-scale structure.
The limit of flat space is recovered for � ¼ 0, e0 ¼ 1 and

EðrÞ ¼ FðrÞ ¼ 1 in Eqs. (17)–(22), and g1 is determined
numerically. We do that through a fourth-order Runge-

Kutta method for the quantity ~gð~rÞ, where ~g � g
b and ~r ¼ffiffiffiffiffiffi

2�
p

br is a dimensionless parameter. We impose the initial
conditions at the origin ~gð0Þ ¼ 0 and _~gð0Þ ¼ g1ffiffiffiffi

2�
p

b2
, where

overdot denotes differentiation with respect to ~r. g1 is
adjusted so that ~g ! 1ffiffi

2
p for large ~r using the shooting

routine. We display ~gð~rÞ in Fig. 1 for the case of flat
spacetime. Next, we present the numerical solutions of
the full system of field equations coupled to gravity.
These solutions are the gravitating generalization of the
flat spacetime one. To evaluate the solutions of a full
system by numerical methods, the boundary conditions
(11) can be reduced to

~gð0Þ ¼ 0; Fð0Þ ¼ 1; Eð0Þ ¼ e0;

~gð ~RÞ ¼ 1ffiffiffi
2

p ; Eð ~RÞ ¼ ~R2�; Fð ~RÞ ¼ 1þ �;

(24)

up toOð ~R�2Þ order for large ~R, where ~R ¼ ffiffiffiffiffiffi
2�

p
bR. To use

the shooting method, we impose the initial conditions at

the origin ~gð0Þ ¼ 0, ~Eð0Þ ¼ 0, ~Fð0Þ ¼ 0, and _~Fð0Þ ¼ 1.

The values of _~gð0Þ and _~Eð0Þ are adjusted so that ~gð ~RÞ ¼ 1ffiffi
2

p
and ~Eð ~RÞ ¼ ~R1�2�, where ~E � ~r

E and ~F � ~r
F . In Fig. 1, we

display ~gð~rÞ for � ¼ 0 and 10�2. The profile of ~gð~rÞ is
insensitive to � for 0 � � � 1 not only asymptotically, but
also close to the origin. In Fig. 2, the components of metric
Eð~rÞ and Fð~rÞ are plotted vs the dimensionless coordinate

~r ¼ ffiffiffiffiffiffi
2�

p
br for different �. Moreover, both Eð~rÞ and Fð~rÞ

increase with � increasing.
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FIG. 1. The function of ~gð~rÞ corresponding to the monopole
configuration, is plotted vs the dimensionless coordinate ~r ¼ffiffiffiffiffiffi
2�

p
br for � ¼ 0 (dashed line) and 10�2 (solid line). The shape

of the curve is quite insensitive to the value � in the range of
0 � � � 1.
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V. OBSERVATIONAL SIGNATURES

We now study the motion of test photons around a tensor
monopole. Equations (20)–(22) are good approximations
unless we were interested in the test photons moving right

into the monopole core �� ð ffiffiffiffiffiffi
2�

p
bÞ�1. In the case of BPS

limit, Seifert has pointed out that the gravitational redshift
experienced by a photon in the background of tensor
monopole is within no more than �2 order if the mass scale
b is well below the Planck scale [7]. The redshift effect will
be negligible for the realistic solution of a coupled system.
However, the effect for the deflection of light by the
gravitational field is more interesting. A null geodesics
equation in the plane � ¼ �=2 reads

� EðrÞ _t2 þ FðrÞ _r2 þ r2 _’2 ¼ 0; (25)

where dot denotes the derivative with respect to some
affine parameter on the worldline. Since the metric is
spherically symmetric and static, there are two Killing
vector fields t� and ’� leading to two constants of the
motion: E ¼ E2 _t and J ¼ r2 _’. From Eq. (25), we have

d’

dr
¼ � 1

r2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	�2 1
EF � 1

Fr2

q ; (26)

where 	 ¼ J =E. If E2 < ð2þ 2
3 �� 7

9 �
2 þ 14

9 �
3Þ�b2J 2,

we have rm > ð ffiffiffiffiffiffi
2�

p
bÞ�1, where rm is the value of r for

which the denominator of Eq. (26) vanishes. In other
words, rm is the largest root of the equation 	2EðrmÞ ¼
r2m and is larger than the core radius of the monopole. The
orbit of the light ray will have a ‘‘turning point’’ at r ¼ rm.
In this case, we have approximate expression of the total

angular deflection up to ~r�4
m (~rm ¼ ffiffiffiffiffiffi

2�
p

brm) order

�’ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
1� �

ð�� 2Arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þ
2ð1þ �Þ

s
1

~rm

�
� ffiffiffi

�
p ð1� �Þ5=2

2
ffiffiffi
2

p ð3� �Þð1þ �Þ3=2 þ
�3=2ð1� �Þ3=2
4

ffiffiffi
2

p ð1þ �Þ3=2Þ
1

~r3m

��

þ 1

2

�ð1� �Þffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p ð5� 3�Þ
1

~r2m
� 1

2

�ð1� �Þ
ð1þ �Þ3=2

�
3� �2

5� �

þ 11� 7�� �2 þ �3

2ð3� �Þð7� 3�Þ þ 3�ð1� �Þ
4ð5� 3�Þ

�
1

~r4m
: (27)

Defining �’ � �’� � to be the angle between the
‘‘unperturbed’’ and ‘‘perturbed’’ directions of propagation
up to � order

�’ 	 3

2
��� ffiffiffiffiffiffi

2�
p

~r�1
m þ �

10
~r�2
m þ

ffiffiffiffiffiffi
2�

p
6

~r�3
m � 181�

420
~r�4
m :

(28)

Obviously, �’ 	 3
2�� in the case of ~rm � ��1, i.e., we

repeat Seifert’s approximation [7]. By using same tech-
niques, we obtain the angular deflection �’s for the case of
Oð3Þ scalar monopole [14]

�’s 	 �

4
�s �

ffiffiffiffiffiffiffiffiffiffiffiffi
3�s=2

q
~r�1=2
m þ 25�s

96
~r�2
m

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2�s=3

q
~r�5=2
m � �s

8
~r�4
m ; (29)

where �s ¼ 16�G
2 and
 is mass scale in theOð3Þ scalar
monopole. For contrasting the two species of monopoles,

we take 
 ¼ ffiffiffiffiffiffiffiffi
3=2

p
b, Eq. (29) can be rewritten as

1.1 10 2

1.0 10 2

1.1 10 2

1.0 10 2

0 2 4 6 8 10

1.00

1.01

1.02

1.03

1.04

1.05

r

FIG. 2. Eð~rÞ (solid line) and Fð~rÞ (dashed line) are plotted vs
the dimensionless coordinate ~r ¼ ffiffiffiffiffiffi

2�
p

br for different values of
�. This figure shows that both Eð~rÞ and Fð~rÞ increase with �
increasing.

s

0 20 40 60 80 100

0

1
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5

rm

FIG. 3. The functions �’ and �’s are plotted for � ¼
16�Gb2 ¼ 10�6, where the unit of rm is 1ffiffiffiffi

2�
p

b�
and the unit of

deflection angle is �. The shape of the �’ curve is quite
insensitive to the value of rm in the interval 1ffiffiffiffi

8�
p

b�
� rm �

25ffiffiffiffi
8�

p
b�
. On the contrary, the shape of �’s is sensitive in this

interval.
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�’s 	 3

2
��� 3

ffiffiffi
�

p
~r�1=2
m þ 25�

16
~r�2
m

þ 2
ffiffiffi
�

p
~r�5=2
m � 3�

4
~r�4
m : (30)

Therefore, the deflection angles have important qualitative
differences between the tensor and scalar monopoles. It
furnishes a possibility that two species are discriminated
by the observation of light rays in these backgrounds. In
Fig. 3, we plotted the �’ and �’s vs the parameter rm for a
typical grand unification scale b� 1016 GeV. By the nu-
merical calculation, we show that �’ is quite insensitive
and �’s is sensitive in the same interval of rm. In Fig. 4, we
plotted the �’ and �’s vs the apparent impact parameter	
for � ¼ 10�2. Both tensor and scalar monopoles have a

tiny core radius �� �s � ð ffiffiffiffiffiffi
2�

p
bÞ�1, therefore, Eqs. (28)

and (30) are very accurate expressions when rm is far larger
than the core radius. Set �max is the maximum of

j�’s � �’j, we have �max �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��=rm

p
. If the source of

light, the monopole, and the observer are aligned exactly,

all the rays that pass at the appropriate parameter rm around
the monopole, at any azimuth, reach the position of the
observer. Under this special circumstance, the observer
sees an infinite number of images, which form a ring
around the monopole. Assuming the source is much farther
from the monopole, its rays are then nearly parallel to the
line of alignment, and the deflection angle required for the
ray to reach the observer is rm=D, where D is the distance
from the monopole to the observer. Thus, the angular
radius of the Einstein ring is rm=D 	 3

2�� unless a mono-

pole is nearing the Solar System, which leads to �max 

10�9 radians. For � ¼ 10�2 and D 	 104 light-years, we
have rm=D 	 0:05 radians and �max 	 10�25 radians. By
means of observation of the Einstein ring, a monopole is
able to find but it is powerless to determine whether or not
to correspond to a tensor one. Once that the Einstein rings
are discovered, we have to go a step further by the de-
flection of light near the monopole.
For a light ray just grazing the monopole, the effect is

quite evident. If rm � 1018��, we have �max � 10�9 radi-
ans. This angle is at the limit of resolution of telescopes at
present, so it can be observed when rm < 1018��. On the
other hand, the stars near the Sun are visible only during a
total eclipse of the Sun, and even then the brightness of the
solar corona restricts observations to rm > 2R�. In the case
of a monopole, there do not exist these difficulties since the
monopole is a cold and dark object.
In conclusion, we have found that the deflection angles

have important qualitative differences between tensor and
scalar monopoles. This phenomenon might open up new
directions in the search of Lorentz violation. If a monopole
were detected, it would be discriminated whether or not
corresponding to a tensor one. Furthermore, tensor mono-
pole would provide insight into the roles played by Lorentz
symmetry in physics.
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