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We consider the low-energy effective field theory describing the infrared dynamics of nondissipative

fluids. We extend previous work to accommodate conserved charges, and we clarify the matching between

field-theory variables and thermodynamical ones. We discuss the systematics of the derivative expansion,

for which field theory offers a conceptually clear and technically neat scheme. As an example, we

compute the correction to the sound-wave dispersion relation coming from a sample second-order term.

This formalism forms the basis for a study of anomalies in hydrodynamics via effective field theory, which

is initiated in a companion paper.
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I. INTRODUCTION

Low-energy effective field theory is an extremely
powerful tool to describe the dynamics of various experi-
mentally accessible physical systems and to parametrize
our ignorance of short distance physics. Techniques based
on effective field theory are especially successful when
symmetries determine the low-energy particle content
and interactions. A classic example of such a situation is
provided by the chiral Lagrangian, describing Goldstone
bosons such as pions. As a consequence of the symmetries,
interaction between Goldstone bosons are weak at energies
small compared to the symmetry breaking scale, so that the
derivative expansion is a natural perturbative scheme to
describe their dynamics.

A rich class of phenomenawhere the low-energy degrees
of freedom and their interactions are also fixed by symme-
tries to a large extent is provided by hydrodynamics. Like
the chiral Lagrangian, hydrodynamics is naturally organ-
ized as a derivative expansion, with the mean free time and
the mean free path playing a role similar to the symmetry
breaking scale for the chiral Lagrangian. The similarity
with the pion chiral Lagrangian goes even further. Indeed,
hydrodynamical degrees of freedom are actually Goldstone
modes, either of space translations spontaneously broken by
the presence of the medium (phonons) [1], or of global
conserved charges carried by the fluid [2].

Nevertheless, the traditional approach to hydrodynamics
is quite different from conventional effective field theory.
One starts with a set of conservation law for a set of
‘‘composite’’ objects—the energy-momentum tensor and
the conserved currents. The derivative expansion enters at
the level of the ‘‘constitutive relations,’’ which express the

composite objects in terms of more elementary fluid quan-
tities—the fluid velocity field and local thermodynamical
variables. As discussed in more detail below, this prescrip-
tion becomes somewhat ambiguous as one goes to higher
orders in the derivative expansions.
The main goal of this paper is to demonstrate that, at

least for a fluid without dissipation, hydrodynamics can be
recast into the traditional effective-field-theory language.
Namely, just like for the pion chiral Lagrangian, we start
with a set of Goldstone fields determined by the symme-
tries of the fluid. Then, we write the most general effective
action compatible with the symmetries, and make use of
the conventional derivative expansion employed in effec-
tive field theories. The main nontrivial step in this program
is identifying the relevant symmetries; once it is done,
the rest is automatic. However, the translation from field
theory to the conventional language of hydrodynamics
requires more work, and can become quite laborious as
one goes to higher orders in the derivative expansion. To a
large extent, this is related to the aforementioned subtleties
in the traditional hydrodynamical derivative expansion at
higher orders.
Our viewpoint here is that for many purposes it is

convenient and instructive to consider effective field theory
as a definition of what dissipationless hydrodynamics is.
As illustrated in the main text, it is straightforward then to
calculate various physical effects, such as higher-derivative
corrections to the sound-wave dispersion relation. To find
what a particular field-theory operator corresponds to in
the traditional language of constitutive relations may be
more challenging (technically, not conceptually), but also
not really necessary.
The organization of this paper is as follows. In Sec. II,

we identify the symmetries relevant for describing a gen-
eral perfect fluid at non-zero temperature and chemical
potential. Here, we build on the previous results of
Refs. [1,2], where the effective-field-theory formalism for
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zero-temperature superfluids and barotropic normal fluids
was developed. We extend that formalism to incorporate
conserved charges. In Sec. III, we establish the dictionary
between field theory and conventional thermodynamical
variables at the leading order in the derivative expansion.

We continue in Sec. IV by extending the dictionary
between field theory and hydrodynamics to higher orders
in the derivative expansion, following the standard proce-
dure (see, e.g., Ref. [3]). We exemplify this prescription by
working out explicitly several simple examples. First, we
consider one-derivative corrections on the field-theory
side. From hydrodynamics, one does not expect any non-
dissipative terms at this order. In agreement with this
expectation, we show that on the field-theory side these
corrections can be shifted to higher orders by a field
redefinition. As a cross-check of our prescription, in the
Appendix we show that the same procedure of field re-
definition can be performed in the hydrodynamic theory.
(In Sec. V, we prove that the same property holds at all
orders in the derivative expansion: if a Lagrangian term can
be removed via a field redefinition, it has no effects on the
hydrodynamics of the system.) We also calculate the cor-
rection to the sound-wave dispersion relation following
from a sample nontrivial two-derivative term.

We conclude in Sec. VI by mentioning a number of
possible applications of our formalism, some of which
we are already investigating in detail.

Our main emphasis here is not on the reformulation
of the hydrodynamical equations as an action principle,
but rather on the underlying principles behind this construc-
tion: symmetry and symmetry breaking, Goldstone bosons,
and derivative expansion. Apart from Refs. [1,2] mentioned
above, earlier works similar in spirit to the present
paper include [4–7]. Our approach may be useful for
‘‘holographic fluids’’ where—as emphasized in Ref. [8]—
at low energies the Goldstone dynamics can be parame-
trized without any reference to the microscopic theory.

There has been recent interest in the hydrodynamics of
systems carrying anomalous charges, starting with Ref. [9].
Here, we restrict ourselves to fluids carrying ordinary
conserved charges, and we avoid the subtleties associated
with the presence of quantum anomalies. We are devoting a
companion paper precisely to those subtleties, and to the
resulting interesting effects [10].

Finally, we will deal directly with relativistic hydro-
dynamics, i.e., in our field theory we will impose (sponta-
neously broken) Lorentz rather than Galilei invariance.
This choice makes the treatment somewhat simpler. The
nonrelativistic limit can be taken at any stage in our
analysis, if needed.

II. FLUIDS WITH CONSERVED CHARGES

Consider a perfect fluid in d spatial dimensions. Its low-
energy degrees of freedom can be chosen to be d scalar
fields

�I ¼ �Ið ~x; tÞ I ¼ 1; . . . ; d; (1)

giving the comoving (Lagrangian) coordinates of the vol-
ume element occupying physical (Eulerian) position ~x at
time t. This description is reviewed extensively in
Refs. [1,7], to which we refer the reader for details [11].
There is an inherent arbitrariness in labeling the volume
elements via comoving coordinates. It can be fixed, for
instance, by choosing these to be aligned with the physical
ones when the fluid is in equilibrium at some reference
external pressure,

�I ¼ xI ðequilibriumÞ: (2)

With this choice of field variables, the fluid’s dynamics
must enjoy the internal symmetries [1]

�I ! �I þ aI; aI ¼ const; (3)

�I ! RI
J�

J; R 2 SOðdÞ; (4)

�I ! �Ið�Þ; detð@�I=@�JÞ ¼ 1 (5)

on top of (dþ 1)-dimensional Poincaré invariance. In
particular, Eq. (5) corresponds to the fluid’s insensitivity
to (static) noncompressional deformations. Note that even
though all small perturbations about (2) are allowed,
nonperturbatively every field configuration must define a
time-dependent diffeomorphism between physical and
comoving space. That is, at any given time it must be an
invertible function of ~x [14].
Suppose now that the fluid carries a conserved charge.

There should be an associated Uð1Þ symmetry in our field
theory. It does not seem sensible to realize this symmetry
using the �I fields only: they represent the comoving
coordinates and physically cannot transform under a par-
ticle number symmetry. Besides, the �I’s are noncompact.
We should augment the field content to represent the
particle number symmetry. The most economical addition
is a real phase c ð ~x; tÞ that shifts under it:

Uð1Þ: c ! c þ c: (6)

We are thus led to construct the low-energy effective
field theory for the �I’s and c , subject to the symmetries
(3)–(6) and to Poincaré invariance. However, there should
be an additional constraint on the theory, as we know that
in ordinary perfect-fluid hydrodynamics, the particle num-
ber current is comoving with the fluid:

j� ¼ nu�: (7)

(The fluid velocity u� can be defined through, e.g., the
entropy current of the fluid.) This guarantees that, in nor-
mal fluids, sound waves are the only propagating wave
solutions: the new charge degree of freedom does not
introduce new waves (in contrast to superfluids where there
are first and second sounds). From our discussion so far, it
is not obvious how this is going to arise. It turns out that
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enforcing Eq. (7) is equivalent to imposing a new symme-
try. If charge flows with the fluid, charge conservation is
obeyed separately within each comoving fluid element
(recall that diffusion is a dissipative effect and is outside
the scope of our theory). This means that charge conser-
vation is not affected by an arbitrary comoving position-
dependent redefinition of the charge units. In other words,
the Uð1Þ symmetry (6) can be made comoving position-
dependent:

c ! c þ fð�IÞ; (8)

where f is a generic function. We will see below that this is
exactly what we need to enforce (7) in our field theory.
Since the chemical potential will turn out to be the simplest
invariant under this symmetry, and for lack of a better term,
we dub this new symmetry ‘‘chemical shift.’’

Note that beyond the leading order in the derivative
expansion, the particle number current is not necessarily
parallel to the fluid flow. Nevertheless, from the field-
theory viewpoint, it is natural to impose the symmetry
(8) to all orders. This automatically implies the existence
of a quantity conserved along the flow. This property is not
obvious in the conventional hydrodynamic language, but
also the very notion of dissipationless fluid may be ambig-
uous there beyond the leading order. Our viewpoint is that
the effective field theory characterized by the symmetries
(3)–(6) and (8) provides a natural and unambiguous defi-
nition of dissipationless (nonanomalous) hydrodynamics
to all orders.

We are thus looking for the most general relativistic
Lagrangian that is invariant under (3)–(6) and under (8).
At low energies, it should be organized as a derivative
expansion. At lowest order, we should have one derivative
per field, because of (3) and (6):

L ¼ Lð@�I; @c Þ: (9)

Because of (4) and (5), the @�I’s should enter in the
combination [1,7]

J� � ���1...�d@�1
�1 . . . @�d

�d (10)

¼ 1

d!
���1...�d�I1...Id@�1

�I1 . . . @�d
�Id : (11)

[We define the (dþ 1)-dimensional � tensor by �01...d ¼
þ1.] J� has an important property: it is a vector field along
which the comoving coordinates do not change:

J�@��
I ¼ 0; I ¼ 1; . . . ; d: (12)

Thus, it is natural to define the fluid’s four-velocity as a unit
vector aligned with J�:

u� ¼ 1

b
J�; b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�J�J

�
q

: (13)

We use the ‘‘mostly plus’’ signature. From a geometric
viewpoint, J� is the current of fluid points [1].

Now, we make use of the chemical shift (8). We notice
that, because of (12), the combination

J�@�c (14)

is invariant. In fact, it is the only invariant at this order in
derivatives. The reason is that the only vector that is
orthogonal to @�f for generic fð�IÞ, is the ‘‘vector

product’’ of all the @�I’s, Eq. (11).
To summarize, at lowest order in the derivative expan-

sion, the Lagrangian can depend on the �I’s and on c
through J� and J�@�c only. It must be a Poincaré scalar.

We choose to parametrize it as

S ¼
Z

d4xFðb; yÞ; (15)

where b is given above, y is defined as

y � u�@�c ¼ 1

b
J�@�c ; (16)

and F is a generic function. We will see below that F is
related to the equation of state of our fluid.
The same field-theoretical description of conserved

charges in hydrodynamics—with emphasis on the same
symmetry (8)—has been worked out independently by
Sibiryakov [15].
The Noether current associated with c ’s shift symmetry

(6) is

j� ¼ @F

@y
u� � Fyu

�; (17)

and is indeed comoving with the fluid, as desired. The
chemical shift (8) is an infinite-dimensional symmetry,
and as a consequence there are infinitely many currents
associated with it. They are

j
�
ðfÞ ¼ Fyfð�IÞu� ¼ fð�IÞj�: (18)

Their conservation is implied by that of j�:

@�j
�
ðfÞ ¼ fð�IÞ@�j� þ Fy@�fð�IÞu�; (19)

the second term vanishes identically, thanks to (12).
To develop more intuition on why (15) is the correct

description of a fluid carrying a conserved charge, let us
consider how the system behaves in the presence of an
external gauge field A�. In the field theory, the natural way

to describe this is to gauge the c shift symmetry, i.e., to
replace @�c ! @�c þ A� everywhere in the action (15).

The resulting action has a nonlinear dependence on the
gauge field. This may appear puzzling from the hydro-
dynamical point of view, where on physical grounds one
may expect the following linear coupling between the
gauge field and the fluid,

Sint ¼
Z

d4xNð�IÞA�J
� ¼

Z
d3�d�Nð�IÞu�A�; (20)
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whereNð�IÞ is the comoving charge density, and at the last
step we switched to the comoving frame, i.e., chose �I as
space coordinates and used ~xð�; �Þ as the dynamical var-
iables, with � denoting the proper time along the comoving
worldline. This switch is performed by making use of the
identity [1]

d3�d� ¼
��������det

@�I

@xi

��������d3x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _~x2

p
dt ¼ bd4x: (21)

To see the relation between the two descriptions, let us
rewrite also the (gauged) fluid action [(15)] in comoving
coordinates,

S ¼
Z

d3�d�b�1Fðb; @�c þ u�A�Þ: (22)

The action (22) depends on c only through its time de-
rivative, so that the canonically conjugate momentum

�c ¼ b�1Fy

is time-independent on the classical solutions, �c ¼
�c ð�IÞ. By making the Legendre transform with respect

to (w.r.t.) @�c (i.e., switching to the Routhian description
[16]) we arrive at the classically equivalent action,

Z
d3�d�½b�1Fðb;yðb;�c ÞÞ��c yðb;�c Þþ�cu

�A��;
(23)

with a linear dependence on A�. So, the two descriptions

are indeed equivalent upon the identification Nð�Þ ¼
�c ð�Þ, which is consistent with the field-theory/

thermodynamics dictionary we are now going to establish.

III. THERMODYNAMICS

We now want to make contact with the standard hydro-
dynamic and thermodynamic description of a fluid carry-
ing a conserved charge. From the action

S ¼
Z

ddþ1xFðb; yÞ; (24)

we can derive the stress-energy tensor by varying with
respect to the metric. We get

T�� ¼ ðFyy� FbbÞB�1
IJ @��

I@��
J þ ðF� FyyÞ���;

(25)

where Fb is the b-derivative of F, and the matrix BIJ is
defined as

BIJ � @��
I@��J: (26)

From the definition of J�, it is straightforward to see that

detBIJ ¼ b2 (27)

—which we used to derive T��—and

B�1
IJ @��

I@��
J ¼ ��� þ u�u� � P��: (28)

We can thus rewrite the stress-energy tensor in a more
familiar form:

T�� ¼ ðFyy� FbbÞu�u� þ ðF� FbbÞ���: (29)

The fluid’s energy density and pressure therefore are

	 ¼ Fyy� F; p ¼ F� Fbb: (30)

Likewise, by comparing (17) and (7) we get that the fluid’s
charge density is

n ¼ Fy: (31)

We can get the chemical potential�, the entropy density
s, and the temperature T by imposing the thermodynamics
identities

	þ p ¼ Tsþ�n; d	 ¼ Tdsþ�dn: (32)

Before doing so, it is worth pointing out that our vector J�

is an identically conserved current:

@�J
� ¼ 0 ðidentityÞ: (33)

This follows straightforwardly from its definition.
Moreover, as we already mentioned, it is aligned with the
fluid’s four-velocity, J� ¼ bu�. These two properties
invite identifying J� with the entropy current, and b with
the entropy density,

s ¼ b: (34)

That entropy is conserved identically—i.e., ‘‘off shell’’—
in our nondissipative field theory makes perfect sense. We
could imagine coupling our field-theory Lagrangian to
external sources. These sources could perform work on
the system, but would not exchange heat with it. In such an
instance, our fluid would be off shell, but entropy would
still be conserved [18]. The interpretation of b as entropy
density has been derived independently in [15].
From the first identity in Eq. (32), we thus get

T ¼ �Fb; � ¼ y; (35)

which is consistent with the second identity too. (For the
differential identity, one should express d	 in terms of db
and dFy ¼ dn.) There is of course an ambiguity in the

overall normalization of s and T—we could multiply s and
divide T by the same constant, without affecting the ther-
modynamical identities. This is of course related to
Boltzmann’s constant, which does nothing but define the
units of temperature.
In conclusion, our Lagrangian F (15) is naturally a

function of the entropy density b and of the chemical
potential y. It can be thought of as a somewhat unusual
thermodynamic potential: dF ¼ �Tdsþ nd�. It is re-
lated to the equation of state 	ðs; nÞ or pðT;�Þ via either
of the Legendre transforms in (30).
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IV. HIGHER-DERIVATIVE CORRECTIONS

Hydrodynamics is naturally organized as a derivative
expansion. For instance, for the hydrodynamic regime of
a weakly coupled system of particles, the natural expansion
parameters are the fields’ time derivatives times the mean
free time, and the fields’ spacial gradients times the mean
free path. The standard hydrodynamical and thermo-
dynamical variables 	, p, u�, etc., correspond in our field
theory to ‘‘composite operators’’ involving one derivative
per �I or c field. To reproduce higher-order corrections to
the perfect-fluid hydrodynamics, involving derivatives of
such variables, we need to include in our field theory
Lagrangian terms involving correspondingly more deriva-
tives than the lowest-order ones. Because of this, we will
number higher-derivative corrections starting from our
lowest-order Lagrangian. That is, when we talk about
‘‘one-derivative terms,’’ we mean terms involving overall
onemore derivative than one per field; and so on. Of course,
sincewewill work at the level of the action, our field theory
will be conservative by construction. That is, our approach
will not be able to reproduce dissipative effects.

We can adapt to our field-theoretical framework the
procedure of dealing with higher-derivative hydrodynam-
ics outlined by Israel and Stewart (IS) [3]. The question
is—essentially—how to apply thermodynamics to a fluid
in the presence of spacial gradients and time derivatives,
which typically signal that the system is not in complete
equilibrium, even though there is some form of local
thermodynamic equilibrium. IS argue that one should
proceed as follows. At any given spacetime point x, the
stress-energy tensor T��ðxÞ and the charge current j�ðxÞ
are perfectly well-defined quantities, even for out-of-
equilibrium systems. For us, they descend straightfor-
wardly from the Lagrangian, respectively, by varying
with respect to the metric and as the Noether current
associated with the shift symmetry (6). One defines the
local energy density 	ðxÞ and the local charge density nðxÞ
by taking contractions with the local u�ðxÞ:

	 � u�u�T��; n � �u�j�; (36)

(u� is timelike—hence the minus sign.) In the presence of
gradients, the fluid velocity field u� is itself ambiguous.
For instance, the energy flow and the charge flow are
typically not aligned with each other. Such an ambiguity
is harmless [3], and in fact, typically it can be used to
simplify some algebra. Moreover, 	 and n are particularly
well behaved from this viewpoint, since they are unaf-
fected by small variations of u�, at first order in these
variations. One then defines the local values of all other
thermodynamic variables by applying the equilibrium
equation of state to the local 	 and n thus defined:

pðxÞ ¼ p0ð	; nÞ; �ðxÞ ¼ �0ð	; nÞ; etc: (37)

The subscript zeros are there to remind us that we should
use precisely the same functions of 	 and n as for the fluid

in equilibrium, i.e., in the absence of gradients. Finally, one
goes back to the stress-energy tensor and the current,
subtracts the perfect-fluid part according to the above
identifications, and interprets whatever is left as the
higher-derivative corrections:

T�� ¼ ð	þ pÞu�u� þ p��� þ 
T��; (38)

j� ¼ nu� þ 
j�: (39)

The IS prescription is in a sense merely a convenient
definition of what we might want to mean by thermo-
dynamical quantities for an out-of-equilibrium fluid. It
has the advantage of establishing an unambiguous dictio-
nary. Moreover, at first order in gradients all such quanti-
ties are independent of the precise choice of u�, thus
appearing perfectly well defined, and physical. On the
other hand, at second order and up they all become inher-
ently u�-dependent, and attaching any precise physical
meaning to them becomes more and more dubious [3].
As an important example for us, the entropy density de-
fined as above,

s � s0ð	; nÞ (40)

will not coincide in general with the ‘‘observed’’ entropy
density�u�s

�, where s� is the entropy current [3]. This is

well defined even for (slightly) out-of-equilibrium systems,
because the second law has to hold for them: @�s

� � 0.

As we already emphasized, for us there is no entropy
production, even off shell—because our system is conser-
vative, by construction—and the entropy current is natu-
rally identified with the identically conserved current (11):

s� � J�: (41)

J� also defines an unambiguous rest frame for the fluid,
which differs in general from those associated with the
Uð1Þ current j� and with the stress-energy tensor. We will
refer to this frame as the ‘‘field-theory frame’’ or the
‘‘entropy frame.’’
We want to stress that our field theory can be taken as an

independent definition of a nondissipative fluid with mild
gradients, that is, mildly out of equilibrium. Its thermody-
namics may be ambiguous—à la Israel and Stewart—but
its dynamics are not. For nonthermodynamical questions,
thermodynamics and the IS procedure can be bypassed
entirely and the relevant observables can be computed
directly from the field-theoretical description. For instance,
this is the case for the higher-derivative corrections to the
sound-wave dispersion law of Sec. IVC.
We start by considering one-derivative terms in our field

theory. As is well known, absent anomalies [9], the only
one-derivative corrections one can write down for hydro-
dynamics are dissipative—they are associated with shear
viscosity, bulk viscosity, and conductivity [19]. As such,
they cannot be reproduced by our field theory. We thus
expect that—once interpreted correctly—one-derivative
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corrections to our Lagrangian will be trivial. As a warm-
up, we consider one-derivative corrections to the dynamics
of a zero-temperature superfluid, which also turn out to be
trivial.

A. First-order superfluid dynamics

Consider a relativistic superfluid at zero temperature. Its
zeroth-order field-theoretical description has been worked
out in [2]. It involves a scalar field c with a shift symmetry
c ! c þ a, with a time-dependent vacuum expectation
value hc ðxÞi / t. The lowest-order Lagrangian is

L 0 ¼ PðXÞ; X � ð@c Þ2: (42)

The associated stress-energy tensor and current are

T0
�� ¼ �2P0ðXÞ@�c @�c þ P���; (43)

j0� ¼ 2P0ðXÞ@�c : (44)

At this order, it is natural to define u� along @�c :

u0� � � @�cffiffiffiffiffiffiffiffi�X
p : (45)

The minus sign up front is to some extent a matter of
convention. We are assuming that the superfluid’s ground
state has c / þt. Taking the appropriate contractions with
T
��
0 and j

�
0 , we get

	0¼2P0X�P; n0¼�2P0 ffiffiffiffiffiffiffiffi�X
p

; p0¼P: (46)

These are consistent with the zero-temperature thermody-
namic identities

	þ p ¼ �n; d	 ¼ �dn; (47)

with chemical potential

�0 ¼
ffiffiffiffiffiffiffiffi�X

p
: (48)

The function PðXÞ is thus naturally interpreted as the
equation of state, giving the pressure as a function of the
chemical potential [2]:

p0 ¼ Pð��2
0Þ: (49)

We now add all possible one-derivative corrections con-
sistent with the symmetries. They take the form

�L ¼ GðXÞ@�c @�X: (50)

There is another possible structure at this order—
HðXÞhc—which however can be rewritten as above
upon integrating by parts. This just redefines GðXÞ, which
is arbitrary anyway. Before proceeding with the IS pre-
scription, we notice that �L can be removed by a field
redefinition, at the price of introducing higher-derivative
corrections, with two or more derivatives. The reason is
that it vanishes on the zeroth-order equations of motion, for
any GðXÞ. Indeed:

�L ¼ GðXÞ
P0ðXÞ@�XP

0ðXÞ@�c (51)

¼ @� ~GðXÞP0ðXÞ@�c ; (52)

where ~G � R
G=P0dX. If we integrate by parts, we get

precisely the equations of motion associated with the
zeroth-order Lagrangian (42). As a result, �L can be
removed by redefining c :

c ¼ c 0 � 1
2
~GðX0Þ: (53)

As usual, as a by-product of this redefinition, we get
higher-order terms, with two or more derivatives. The
effects associated with �L can thus be deferred to higher
orders in the derivative expansion. Whenever something
like this happens, the corresponding Lagrangian term is
said to be ‘‘redundant’’. Not surprisingly, if one applies the
IS procedure to a redundant term before performing the
field redefinition that removes it, one also gets trivial
effects at the order under consideration. We prove this in
Sec. V in broad generality, and in the Appendix for the case
under consideration.

B. First-order fluid dynamics

For our fluid, the most general first-order terms consis-
tent with our symmetries are

�L ¼ f1ðb; yÞJ�@�bþ f2ðb; yÞJ�@�y; (54)

where f1 and f2 are generic functions. There is in principle
another one-derivative structure,

f3ðb; yÞJ�J�@�J�; (55)

but this is in fact of the same form as the first term in (54),
as J�@�J� ¼ � 1

2 @�b
2. We now show that �L is redun-

dant, and it can thus be removed via a field redefinition. To
this end, it is useful to inspect the zeroth-order equation of
motion for c . It is the conservation of j�:

@�ðFyu
�Þ ¼ 0: (56)

Given that J� is identically conserved, it can be pulled out
of the derivative. One gets

J�@�N ¼ 0; N � Fy=b: (57)

N is the inverse ‘‘entropy per particle,’’ and the above
equation states the well-known fact that—at zeroth
order—such a quantity is conserved along the flow. N is
of course a function of b and y. It is useful to change
variables in (54) and express everything in terms of
b and N:

�L ¼ ~f1ðb; NÞJ�@�bþ ~f2ðb; NÞJ�@�N: (58)

The second term vanishes on the zeroth-order equation of
motion (57). The first does not, but we can get rid of it via
the following trick. We define a new function gðb; NÞ such
that
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~f 1ðb;NÞ ¼ @bgðb; NÞ; (59)

that is, gðb; NÞ � R
~f1ðb;NÞdb. We thus get

�L ¼ J�@�gðb; NÞ þ ~f3ðb;NÞJ�@�N; (60)

where ~f3 � ~f2 � @Ng. The first term now is a total deriva-
tive—because J� is identically conserved—while the
second vanishes on the zeroth-order field equations. As a
result, all physical effects associated with �L can be
moved via a field redefinition to higher orders in the
derivative expansion. As we mentioned, this is consistent
with the absence of nondissipative one-derivative correc-
tions to hydrodynamics.

C. Sample second-order correction

We leave for future work a thorough study of second-
order corrections in our field theory. Here, instead, as an
illustration, we apply the IS procedure outlined above to a
sample two-derivative term allowed by all symmetries:

�L ¼ �@�b@
�b; (61)

where � is an arbitrary coupling constant. Also, for sim-
plicity we assume that our fluid does not carry any con-
served charge, in which case the lowest-order Lagrangian
does not depend on our charge field c ,

L 0 ¼ FðbÞ: (62)

The contribution to the stress-energy tensor associated
with �L is

�T�� ¼ �2�@�b@�bþ 2�bhbP��; (63)

where P�� is the transverse projector of Eq. (28). As u�,

we will still use our zeroth-order definition (13)—i.e., that
associated with the entropy current J�. The correction to
the energy density coming from �L therefore is

�	 � u�u��T�� ¼ �2�ðu � @bÞ2: (64)

We are now supposed to derive the other thermodynamic
variables via the zeroth-order relations between 	, s, and
p, which define the equilibrium equation of state. We find
it convenient to express everything in terms of the entropy
density. From Eqs. (34) and (30), and setting Fy ! 0 we

get

	 ¼ 	0 � F0ðs0Þ�s; (65)

p ¼ p0 � s0F
00ðs0Þ�s; (66)

where s0 � b is the zeroth-order entropy density. A com-
parison with (64) gives immediately

�s ¼ 1

F0 2�ðu � @bÞ2 (67)

and therefore

�p ¼ � bF00

F0 2�ðu � @bÞ2: (68)

Notice that the combination bF00=F0 is precisely the
squared speed of sound [1,7], so that �p ¼ c2s�	, as
implied by our using the zeroth-order equation of state.
We can now rewrite the full stress-energy tensor in terms

of the ‘‘physical’’ quantities 	, p, s redefined as above. We
get

T���T0
��þ�T��

¼ð	þpÞu�u�þp���þ2�P��ðshsþ2c2sðu �@sÞ2Þ
þ�P��P��@

�s@�s�2�ðu �@sÞ@�sP�ð�u�Þ: (69)

The gap in simplicity and clarity between our field-
theoretical starting point—Eq. (61)—and themore standard
hydrodynamical parametrization of the same second-order
correction—Eq. (69)—is manifest. For instance, if we
expand Eq. (61) in small perturbations about a homogene-
ous and static background,

�I ¼ xI þ �I; (70)

we get directly a correction to the quadratic Lagrangian for
the sound waves [1,7]

L 0 þ�L ! 1
2ð	þ pÞ½ _~�2 � c2sð ~r � ~�Þ2� (71)

þ �ð@� ~r � ~�Þ2: (72)

At low momenta, this corresponds to a quartic correction to
the dispersion law:

!2 ’ c2sk
2 þ 2�

1� c2s
ð	þ pÞ k

4: (73)

Finally, notice what we anticipated above: that the en-
tropy density defined following the IS prescription does not
coincide, at second order, with that associated with the
entropy current:

s ¼ bþ�s � �u�J
� ¼ b: (74)

V. REDUNDANT COUPLINGS

As we saw in the last section, at the level of our field
theory certain higher-derivative corrections will be remov-
able via field redefinitions. We nowwant to show that when
this happens, the corresponding corrections to hydrody-
namical quantities like the current and the stress tensor are
also trivial. That is, if one is not alert enough to detect the
possible field redefinitions directly at the level of the
Lagrangian and goes through the somewhat laborious IS
procedure, at the end one is left with vanishing corrections
to the hydrodynamics of the system [20].
To see this, suppose that the IS matching has been

carried out up to nth order in the derivative expansion.
One then adds to the action an nþ 1st order term:
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Snþ1½�� ¼ Sn½�� þ�Snþ1½��: (75)

By�, we are collectively denoting all our fields�I, c , and
in fact the argument we are going to give applies to more
general situations, e.g. for hydrodynamical systems involv-
ing more fields. If �Snþ1 is redundant, there is a field
redefinition

� ¼ �0 þG½�0� (76)

such that

Sn½�� þ �Snþ1½�� ¼ Sn½�0� þOð@nþ2Þ: (77)

At nþ 1st order, we can drop the Oð@nþ2Þ higher-order
correction. Clearly, if one applies the IS procedure directly
to the right-hand side of this equation, one recovers the nth
order results if expressed in terms of physical quantities
like 	, n, etc.—calling the fields � or �0 makes no
difference from this viewpoint. How does this relate to
applying the IS procedure to the left-hand side? Recall
that the starting point for the IS prescription is the stress-
energy tensor and the current, and everything else follows
from there. In our field-theoretical framework, these are
given by functional derivatives of the action with respect to
the metric and to @�c , respectively:

T�� ¼ �2

S


g�� ; j� ¼ 
S


ð@�c Þ : (78)

The functional derivative w.r.t.@�c should be evaluated by

treating @�c as a generic vector field, with arbitrary

variations that vanish at the boundary. This is totally un-
ambiguous because our action does not contain undiffer-
entiated fields.

Now, the crucial point is that the field redefinition (76)
will necessarily involve derivatives. The reason is that,
once plugged into Sn, it is supposed to get rid of a term
involving more derivatives than those contained in Sn. That
G contains derivatives has two effects:

(1) It mixes the fields with their derivatives;
(2) It mixes the metric with the fields, since the fields’

derivatives are implicitly contracted via the metric.

By ‘‘mixing’’ here we mean a reshuffling of how the action
depends on the variables involved.

As a direct consequence of item 2, the stress-energy
tensor gets ‘‘contaminated’’ with the equations of
motion—the functional derivative w.r.t. to the metric ac-
quires a piece proportional to the functional derivatives
w.r.t. to the fields:

T�� � �2

S


g��

���������
; (79)

T0
�� � �2


S


g��

���������0
¼ T�� � 2


S


�

��������g
� 
G


g��

���������0
; (80)

where the star denotes the standard integral convolution.
Therefore, the two stress-energy tensors agree on shell.
That the same happens for the current is less trivial to

see, but equally true. Roughly speaking, it follows from
item 1 above—the functional derivative w.r.t. @�c ac-

quires a piece proportional to the functional derivatives
w.r.t to the fields—but of course we cannot treat c and
@�c as independent functions in performing functional

variations, so we have to be more precise. A crucial fact
that helps us is the following. Not only does the field
redefinition (76) involve derivatives—it only involves
derivatives. Meaning: the G functional does not contain
undifferentiated fields. If it did, it would spoil the structure
of the nth order Lagrangian—instead of, or on top of
affecting terms of order nþ 1 and above. Recall that in
our field theory all fields enter the action with at least one
derivative acting on them. So, for instance, if we redefined
c as c 0 þ �c 0b and we plugged it into S0 ¼

R
Fðb; yÞ, we

would get corrections to the Lagrangian of the form �F0yb
and �F0c u�@�b. The first term redefines F. The second

does not belong in our power counting scheme, because of
the undifferentiated c . Perhaps more to the point: in order
for the field redefinition (76) to get rid of �Snþ1 starting
from Sn, it has to obey the same symmetries as Sn and
�Snþ1, in the sense that �

0 and� have to transform in the
same way under these symmetries. Among these symme-
tries, there is shift invariance for all the fields. Therefore,
G½�0� must be shift invariant.
We can now compare the currents we would get in the�

and �0 representations:

j� � 
S


ð@�c Þ ; (81)

j0� � 
S


ð@�c 0Þ ¼ j� þ 
S


ð@��Þ �

ð@�GÞ

ð@�c 0Þ : (82)

The fact that G only involves derivatives of the fields
allows us to pull the @� out of the last functional derivative.
We can then integrate it by parts (recall that the � denotes a
convolution), and finally use the fact that for a shift-
invariant theory, the equations of motion are just (minus)
the divergence of the corresponding Noether currents. We
thus get

j0� ¼ j� þ 
S


�
� 
G


ð@�c 0Þ : (83)

Like for the stress tensors, the two currents coincide on
shell. In the Appendix, we will carry out the IS matching
for the redundant coupling (50), and confirm these general
results for that case.
A careful examination of this argument shows that the

result which we proved has actually nothing to do with the
IS procedure. Namely, this proof demonstrates simply that
the on-shell energy-momentum and particle current do not
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change under field redefinitions. This resonates well with
the well-known result that the S-matrix is invariant under
field redefinitions [21,22].

A final comment is in order. Strictly speaking, for given
T�� and j� one can get different results via the IS pre-

scription for different choices of u�. So, the findings of this

section should be interpreted as saying ‘‘there is a choice of
u� for which the IS procedure applied to redundant cou-
plings gives vanishing corrections.’’ For different choices
of u�, one gets nontrivial-looking corrections, which how-
ever just amount to the ‘‘corrections’’ one would get by
boosting the nth order expressions for T�� and j�.

VI. CONCLUDING REMARKS

Let us conclude by mentioning a number of possible
future directions and open questions.

Clearly, the major deficiency of this formalism is that in
its present form it does not allow to discuss dissipative
phenomena. It appears to be possible to introduce these by
allowing couplings between the fluid Goldstones and an
additional soft sector, akin to what happens in holographic
fluids, where the near-horizon bulk modes are playing the
role of such a sector [8]. We leave this important challenge
for future work.

Apart from providing a straightforward and clean recipe
for organizing the derivative expansion, the effective
field-theory description brings in other benefits. Its self-
consistency implies constraints that are hard to impose in
the conventional hydrodynamical formalism, such as
unitarity—in the form of absence of ghosts, for example.
This may lead to universal inequalities restricting the fluid
properties, such as the null energy condition [1], or an
upper bound on anomaly coefficients [10].

It is straightforward to extend this formalism to incor-
porate a larger number of conserved currents. A more
interesting question could be to explore alternative choices
of symmetries acting on the fluid Goldstones and to see
which ones may lead to interesting systems that can be
realized in nature (some symmetries leading to interesting
systems that are very unlikely to be realized in nature have
been already explored in studies of massive gravity [23]).

Finally, given the recent interest in hydrodynamics with
anomalous charges, an obvious application of our methods
would be to reproduce the associated effects via effective
field theory. Like for the chiral Lagrangian, anomalies at
low energies should be encoded in our Goldstone
Lagrangian by a Wess-Zumino term. We initiate exploring
this in a companion paper [10].
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APPENDIX A: ISRAEL-STEWART MATCHING
FOR FIRST-ORDER SUPERFLUID DYNAMICS

Consider the first-order correction (50). Its contributions
to the stress-energy tensor and to the current are

�T�� ¼ �2G@ð�c @�ÞX þ 2Ghc @�c @�c þ ����L;

(A1)

�j� ¼ G@�X � 2Ghc @�c : (A2)

Notice that the tensor structure simplifies considerably if
one defines a new velocity field

u� ¼ N

�
u
�
0 þ 1ffiffiffiffiffiffiffiffi�X

p G

2P0 @
�X

�
; (A3)

where N is a normalization factor:

N2 ¼ 1þ �L=ðP0XÞ: (A4)

At first order in derivatives—or inG—this has the effect of
aligning the full j� with the velocity field and, simulta-

neously, of diagonalizing the full T��:

j� � j0� þ �j� ¼
¼ ð2P0 � 2Ghc þ�L=XÞ ffiffiffiffiffiffiffiffi�X

p
u� þOð@2Þ;

(A5)

T�� � T0
�� þ �T��

¼ ð2P0X� 2GXhc þ 2�LÞu�u� þ ðPþ �LÞ���

þOð@2Þ: (A6)

Notice also that this redefinition of the velocity field is
equivalent to the field redefinition (53).
The corrections to energy- and charge density associated

with our one-derivative term are

�	 � u�u��T�� ¼ G½@c � @X � 2hcX�; (A7)

�n � �u��j� ¼ G=
ffiffiffiffiffiffiffiffi�X

p ½@c � @X � 2hcX�: (A8)

We should now define the other thermodynamic variables
via the zeroth-order relations between 	, n, �, and p,
which define the equilibrium equation of state. We find it
convenient to express everything in terms of the chemical
potential. From Eqs. (49), (48), and (46), we get

p ¼ p0 � 2P0�0��; (A9)

	 ¼ 	0 � 2ðP0 � 2P00�2
0Þ�0��; (A10)

n ¼ n0 � 2ðP0 � 2P00�2
0Þ��: (A11)
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A comparison with (A7) and (A8) gives immediately

�� ¼ �G½@c � @X � 2hcX�
2ðP0 þ 2P00XÞ ffiffiffiffiffiffiffiffi�X

p (A12)

and therefore

�p ¼ P0G½@c � @X� 2hcX�
P0 þ 2P00X

: (A13)

The same redefinition of thermodynamic variables was
considered in [24], in a different context.

Finally, we should express the full current and stress-
energy tensor in terms of the corrected physical quantities
defined as above. For the current, we have simply

j� ¼ nu� (A14)

—unmodified w.r.t. the zeroth-order one. For the stress-
energy tensor:

T��¼ð	þpÞu�u�þp���þP��2G

�
@X �@c P00X

2P00XþP0

þXhc
P0

2P00XþP0

�
; (A15)

where P�� stands for the orthogonal projector ��� þ
u�u�. The second line is proportional to the zeroth-order

equations of motion

@�ðP0@�c Þ ¼ P0hc þ P00@�X@�c ; (A16)

and thus vanishes on shell, as predicted.
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