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Chern-Simons (CS) forms generalize the minimal coupling between gauge potentials and point charges

to sources represented by charged extended objects (branes). The simplest example of such a CS-brane

coupling is a domain wall coupled to the electromagnetic CS three-form. This describes a topologically

charged interface where the CS form A ^ dA is supported, separating two three-dimensional spatial

regions in 3þ 1 spacetime. Electrodynamics at either side of the brane is described by the same

Maxwell’s equations, but those two regions have different vacua characterized by a different value of

the �-parameter multiplying the Pontryagin form F ^ F. The �-term is the Abelian version of the concept

introduced by ’t Hooft for the resolution of the Uð1Þ problem in QCD. We point out that CS-generalized

classical electrodynamics show new phenomena when two neighboring regions with different �-vacua are

present. These topological effects result from surface effects induced by the boundary, and we explore the

consequences of such boundary effects for the propagation of the electromagnetic field in Maxwell theory.

Several features including optical and electrostatic/magnetostatic responses, which may be observable in

condensed matter systems like topological insulators, are discussed.
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I. INTRODUCTION

Chern-Simons (CS) forms were accidentally found in
mathematics in an attempt to obtain a combinatorial for-
mula for the Pontryagin invariant in four dimensions. The
attempt failed, as the authors confessed, ‘‘by the emergence
of a boundary term which did not yield to a simple combi-
natorial analysis’’ [1]. It turns out that the annoying
boundary-term has found wide applications in physics, pro-
viding Lagrangians for gauge field theories [2], including
three-dimensional gravity [3,4], and applications to
condensed-matter physics such as the quantum Hall effect
[5,6].

CS theories have a number of remarkable features be-
sides the fact that they are gauge systems, which makes
them interesting as dynamical models for quantum field
theories and even potential candidates for gravity and
supergravity in higher dimensions (see, e.g., [7]). The
topological nature of the CS forms is reflected in the fact
that the CS Lagrangians have no free parameters, no
dimensionful coupling constants and, therefore no adjust-
able parameters that run under renormalization. The
Lagrangian does not require a metric, and the multiplica-
tive constant in front of the action k can take only quan-
tized values [2].

It has been noticed that these functionals have another
use: they provide consistent, gauge-invariant couplings
between non-Abelian gauge potentials and extended
sources (branes) [8,9]. The fundamental feature that makes
this possible is that under a gauge transformation, the CS
forms are not invariant but quasi-invariant, C ! Cþ d�,

where� stands for any form of even degree. Although this
might seem trivial, it is the key feature that allows coupling
the electromagnetic potential A ¼ A�dx

� to a conserved

electric current. In fact, in retrospect this can be viewed as
a consequence of the fact that the one-form A is itself a
CS form. So, it is ironic that physicists had been coupling
CS forms to sources for more than a century before math-
ematicians stumbled upon them, although the recognition
of this fact only took place recently.
The CS coupling works in complete analogy with the

minimal coupling between the electromagnetic field and a
point particle (0-brane) of charge e

I�1 ¼ e
Z
�1
A�ðzÞdz� ¼ e

Z
�1
A; (1.1)

where �1 is the worldline describing the history of the point
particle. Similarly, the coupling of a 2p-brane and a
(2pþ 1)-CS form is defined as

I�2pþ1 ¼ e
Z
�2pþ1

C2pþ1ðAÞ; (1.2)

where C2pþ1 ¼ Tr½A ^ ðdAÞp þ �1A
3 ^ ðdAÞp�1 þ

� � ��pA
2pþ1� is a ð2pþ 1Þ-CS form; the coefficients �k

are fixed rational numbers (see, e.g., [10]) and �2pþ1 is the
world volume embedded in spacetime swept by the
2p-brane in its time evolution. That C2pþ1 transforms by

a closed form under a gauge transformation A ! A0 ¼
g�1Agþ g�1dg is far from obvious. This is a conse-
quence of the relation between CS forms and characteristic
classes such as the Pontryagin and the Euler topological
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invariants P2n ¼ Tr½Fn�, where F ¼ dAþA2 is the field
strength. The fact that the characteristic classes are closed
(dP2n ¼ 0) implies that they can be locally written as the
derivative of some (2n� 1)-forms (precisely the annoying
boundary-terms discovered by Chern and Simons),

P2n ¼ dC2n�1: (1.3)

Since the CS forms are odd, the couplings of the form (1.2)
are appropriate for even-dimensional branes that sweep
odd-dimensional histories in spacetime (�2pþ1).

From (1.3), it can be easily seen that under an infinitesi-
mal gauge transformation, C must change by a boundary-
term (exact form). Physically, this is the crucial feature that
guarantees the consistency and gauge invariance of the
coupling to a conserved source. In electromagnetism, the
relation between the quasi-invariance of the vector poten-
tial and the conservation of charge can be seen writing
(1.1) as

I�1 ¼
Z
MD

A ^ �j; (1.4)

where �j ¼ e�ð�1Þd�1 ^ � � � d�D�1 is the dual of the cur-
rent density with support on the worldline of the point
charge. Under a gauge transformation �A ¼ d�, �A ¼
d�,

�½A ^ �j� ¼ d� ^ �j ¼ d½� ^ �j� ��d � j; (1.5)

and therefore, gauge invariance follows from current con-
servation d � j� @�j

� ¼ 0. In the same manner, the CS

coupling between an Abelian connection and a conserved
current

�½C ^ �j� ¼ d� ^ �j ¼ d½� ^ �j� ��d � j: (1.6)

Hence, coupling a CS form to a conserved source guaran-
tees that this variation is a boundary-term.

Couplings of this sort have been considered in the past in
various settings including supergravity[11], 2þ 1 AdS
gravity[12], and higher dimensions [13–16]. In our four-
dimensional spacetime there are two types of branes that
can be coupled in this manner: 0-branes (point particles)
and 2-branes (ordinary two-dimensional surfaces evolving
in spacetime). We are quite familiar with the first type of
objects in dynamical theories with point sources, such as
electrodynamics and gravitation.

It is the goal of this paper to explore the second-type of
coupling in the simplest possible setting in four dimen-
sions, that is, the interaction between a charged 2-brane
and an Abelian connection [24]. This brane-CS coupling
may give rise to interesting observable effects in the
propagation of electromagnetic waves at the interface be-
tween regions of space characterized by different values of
a parameter � 2 ½0; 2��, the angle that multiplies the
Pontryagin density as originally proposed by ’t Hooft in
his famous resolution of the Uð1Þ problem in QCD, and is
related to the instanton number of the Euclidean theory.

This parameter, which may be related to the microscopic
nature of special materials, characterizes the topological
sector that defines the vacuum state in electromagnetism.
It must be emphasized that the phenomena described

below can be analyzed macroscopically as classical effects,
even if their microscopic origin is certain to be quantum. In
this spirit, the CS-electromagnetic coupling is the conse-
quence of introducing, in a region of space, the Pontryagin
invariant, which is the only bilinear for the electromagnetic
field that could be added to the classical Maxwell action
without spoiling Lorentz and gauge invariance.
A similar construction can be carried out for general

relativity. In that case, one could add to the Einstein-
Hilbert action a topological invariant-term in a bounded
region �M of spacetime. The resulting theory would have
the usual Einstein equations, describing a metric, torsion-
free pseudo-Riemannian manifold almost everywhere.
However, the boundary @ �Mwould act as a localized torsion
source[17]. Thus, the system analyzed here could be
viewed as a toy model that describes the analogue of a
cosmological model composed of domains with different
�-vacua, separated by domain walls containing torsion.

II. ELECTRODYNAMICS OFA �-VACUUM IN A
BOUNDED REGION

Adding the Pontryagin topological invariant ð�=2ÞF ^ F
to the Maxwell action does not affect field equations since
its variation is a boundary-term that can be dropped under
the usual boundary conditions in electromagnetic theory
(vanishing fields on the boundary or at infinity). The situ-
ation, however, is not the same if the Pontryagin-term is
present in a bounded domain surrounded by a larger region,
where � ¼ 0. In this case, matching conditions, relating
fields on both sides of the interface, are not those derived
from the purely Maxwellian theory. This results, for
example, in a modification of the Casimir energy inside a
spherical region characterized by a nonvanishing � sur-
rounded by empty space [18]. In that case, the boundary
spoils the topological invariance of the �-term, producing a
correction to the zero-point energy that is neither negli-
gible nor periodic in �, as would be expected if the addition
were a true topological invariant [19].
Consider an electromagnetic field in four-dimensional

spacetime M, where a region ~M � M is filled by some
material characterized by a parameter �, such that the
action reads

I½A� ¼ 1
2

Z
M
F ^ �F� �

2

Z
~M�M

F ^ F: (2.1)

The last term has the form of a topological invariant, but
it fails to be topological precisely because it is defined over
a bounded region. With the help of the characteristic
function
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�ðxÞ ¼
�
� x 2 ~M
0 x =2 ~M

; (2.2)

the �-term can also be written as a coupling between the
Chern-Simons and a surface current

Z
M

�
2F ^ F ¼

Z
@ ~M

j ^ A ^ dA: (2.3)

The surface current is the one-form j ¼ d� ¼ ��ð�Þdz,
where z is the coordinate along outward normal to the surface
of ~M, � ¼ @ ~M. Since the �-term is locally exact, the field
equations, both1 inside and outside ~M, are the same as in
vacuum. However, this term modifies the behavior of the
field at the surface �. In fact, varying the action (2.1) yields

d � F ¼ j ^ F

or, in more familiar notation,

@�F
�� ¼ �

2�ð�Þ�n���F��; (2.4)

where the index n refers to the normal direction to �. The
peculiar feature of the source in (2.4) is that it is proportional
to the electromagnetic field itself. Writing (2.4) in coordi-
nates adapted to the surface, one finds2

r �E ¼ ��ð�Þ B � n (2.5)

r �B� @tE ¼ ��ð�ÞE�n; (2.6)

where n is the unit normal to �. In the steady state or static
case (@t � 0) in the vicinity of the surface� these equations
imply that the normal component of E and the tangential
components of B are discontinuous,

½En� ¼ �Bn (2.7)

½Bk� ¼ ��Ek (2.8)

On the other hand, from the identity dF 	 0 (r � B ¼ 0,
@tBþ r� E ¼ 0), it follows that the normal component of
B and the tangential component ofEmust be continuous (in
the static limit),

½Bn� ¼ 0 (2.9)

½Ek� ¼ 0 (2.10)

These continuity conditions imply that the right-hand sides of
(2.7) and (2.8) are well-defined, and they represent surface
charge and current densities, respectively.

The phenomenological novelty here is that these sources
are given by components of the electromagnetic field itself.
The ‘‘surface charge’’ that appears on the right-hand side
of (2.5) is proportional to the normal component of the
magnetic field (which is well defined on �). This is similar
to the behavior of vortices with magnetic flux as carriers of

electric charge in superconductors. An immediate conse-
quence of this is that the presence of a magnetic field
crossing the surface � is sufficient to generate an electric
field, even in the absence of free electric charges. For
instance, a monopole of magnetic charge g surrounded
by a spherical region in a �-vacuum would seem electri-
cally charged for an exterior observer with charge q ¼ g�,
as in the so-called Witten effect [20].
On the other hand, the components of the electric field

tangent to � act as surface currents that induce a magnetic
field. For example, a static sphere of this �-material,
immersed in a uniform electric field, would respond by
generating a magnetic field identical to that of a spinning
sphere covered by a uniform-charge density.
In these effects, the interface partially transforms elec-

tric and magnetic fields into each other, a particular form of
duality transformation [21]. This form of duality trans-
formation has also potentially observable consequences
in the transmission of electromagnetic waves as discussed
in the next section.

III. ELECTROMAGNETIC WAVES PROPAGATION
ACROSS �-BOUNDARY

Wave propagation in both media M and ~M is governed
by Maxwell’s equations. However, since the boundary
conditions depend on �, the propagation of electromag-
netic waves across the interface @ ~M is necessarily affected,
and as a consequence both the reflected and refracted
waves experience changes in polarization. On the other
hand, the standard geometric laws for reflection and re-
fraction of the wave-vectors at the interface hold since
those relations are independent of the polarization plane.

A. Boundary conditions at a �-interface

In order to isolate the problem of the �-interface from
other optical effects, let us consider the spacetime regions
M and ~M with unit-relative permittivity and permeability
�=�0 ¼ 1, �=�0 ¼ 1 (but � � 0). Assuming an incoming
electromagnetic wave of the form

�
E

B

�
¼

�
E0

B0

�
eið!t�k�rÞ; (3.1)

impinging on the surface of ~M. In general, there will be a
reflected wave, and since in this case the refraction index is
one, the transmitted wave emerges with a refraction angle
equal to the incidence angle.
The amplitudes and polarization-vectors of the reflected

and transmitted waves are obtained following the proce-
dure leading to standard Fresnel equations. As usual, the
electric and magnetic fields can be decomposed into their
parallel (p-wave with subscript k) and perpendicular
(s-wave with subscript ?) components to the plane of
incidence, which is defined as perpendicular to the inter-
face � and containing the direction of propagation. From

1This section is based on [19].
2Here ðEÞi ¼ Foi ¼ �F0i and ðBÞi ¼ 1

2 �ijkF
jk.
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Maxwell’s equations B ¼ k� E (with c ¼ 1), so it is
sufficient to write the equations for the electric field.
Using subscripts i, r, and t for the incident, reflected,
and transmitted (refracted) waves, respectively, we define
the relative amplitudes eik 	 Eik=Ei, erk 	 Erk=Ei, etk 	
Etk=Ei (and similar expressions for the ? components),

where Ei 	 jEj ¼ ðE2
ik þ E2

i?Þ1=2. Applying the boundary

conditions at the interface, one obtains

ðerk; er?Þ ¼ ��

4þ �2
ð�eik þ 2ei?; 2eik � �ei?Þ; (3.2)

ðetk; et?Þ ¼ 2

4þ �2
ð2eik � �ei?; �eik þ 2ei?Þ; (3.3)

for the relative amplitudes of the reflected and transmitted
waves. These results imply that the polarization plane of
these waves are rotated relative to the polarization plane of
the incident wave. If the polarization angle for the incident
wave with respect to the plane of incidence is �i, the
polarization planes of the reflected and transmitted waves
are rotated, respectively, by

4 �r 	 �r � �i ¼ arctan

�
�2

�

�
(3.4)

4 �t 	 �t � �i ¼ arctan

�
�
2

�
(3.5)

(we have assumed � � 0). Thus, independently of the
incident polarization plane we obtain j4�r�4�tj¼
�=2; that is, reflected and refracted waves polarization
are perpendicular to each other. This follows from the
boundary conditions that mix the electric and magnetic
fields. We see that a fully p-polarized reflected wave and a
fully s-polarized refracted wave simultaneously appear for
an incident wave polarization-angle given by tan�i ¼ 2=�,
measured respect to the incident wave. It might seem odd
that for � ! 0, the reflected wave would show a very
strong rotation (close to �=2), while we expect no effect
for � ¼ 0. The paradox is resolved by observing that
although the rotation angle can be very large, the amplitude
of the reflected wave approaches zero as well.

For � � 0 there is always a reflected wave, and therefore
transmittance of the interface is less than 1. In fact, the
reflectance R and transmittance T of the boundary surface
are given by

R ¼ e2
rk þ e2r? ¼ �2

4þ �2
(3.6)

T ¼ e2
tk þ e2t? ¼ 4

4þ �2
: (3.7)

Therefore, although the �-term does not influence the
local dynamics, the interface does. In particular, for large �
reflectance approaches unity and the boundary becomes a
perfect reflector for electromagnetic waves.

B. Coherent waves across a �-vacuum slab

It is interesting to consider a thin (related to wavelength)
�-vacuum slab and the wave interference resulting when
electromagnetic radiation traverses the slab. Multiple in-
ternal reflections appear and rays are both transmitted
through and reflected from the slab. Constructive and
destructive wave interference can occur depending on the
optical path kd across the slab (d is the path length inside
the slab and k the wave number). It is readily seen that for
2kd ¼ 2n�, where n is an integer number, radiation is
completely transmitted through the slab. Otherwise, for
2kd ¼ ð2nþ 1Þ� the electromagnetic wave is partially
reflected. In this case, the effective reflectance and trans-
mittance coefficients of the slab are given by

R ¼ �2ð4þ �2Þ
ð2þ �2Þ2 (3.8)

T ¼ 4

ð2þ �2Þ2 : (3.9)

The effect discussed can be analyzed in other geometries
with the same qualitative consequences.

IV. DISCUSSION

Our results show that a compact region in spacetime
with a � � 0 could be detectable by the interaction of
electromagnetic waves with the boundary. Also, a thin
slab of nonzero � would produce radiation attenuation
and present interference fringes. Besides reflection, there
is a rotation of the polarization plane that is independent of
the polarization of the incident wave and of the angle
between the wave vector and the surface. This rotation is
analogous to the magneto-optical Kerr effect[22], in which
the wave reflected off a magnetic material has the polar-
ization plane rotated with respect to the incident wave. In
the Kerr effect, however, the rotation angle depends on the
relative orientation between the magnetization of the ma-
terial and the wave vector. Another situation where the
polarization plane is rotated is the Faraday effect, where
the polarization plane of a transmitted wave is rotated in an
optical medium in the presence of a magnetic field. In both
cases, the rotation is produced by off-diagonal components
of the dielectric tensor and can therefore be attributed to
the detailed microscopic interaction between the medium
and the electromagnetic wave.
The effect we discussed here is related to the one occur-

ring in topological insulators[23], a nonvacuum material
system. In those devices, a �-term is introduced as a
effective macroscopic parameter to account for the quan-
tum properties of those systems. Here, the � parameter is
understood as a property of the vacuum.
The presence of a �-term is a natural extension of clas-

sical electrodynamics that respects the fundamental prop-
erties of the theory, namely, gauge invariance and Lorentz
symmetry of the vacuum. If the boundary effects are not
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taken into account, regions with � � 0 would be indistin-
guishable from the ordinary vacuum space. The possibility
of introducing a �-term in a gauge theory follows from the
existence the characteristic classes in fiber bundles. These
topological invariants do not change the local behavior of
the dynamical fields. For example, the speed of light is the
same in regions with different values of �, which is why
there is no refraction at the interfaces. This gives rise to an
interesting cosmological possibility if the Universe con-
sisted of a number of regions with different values of �,
which were initially causally disconnected. As the Universe
expands, these regions might have grown to touch each
other. A remnant of that scenario today would be a universe
divided into distinct domains, like a ferromagnet. An inter-
esting feature of this scenario is that interfaces between
regions of different � could be detectable by the interaction
between electromagnetic waves and the boundaries.

Topological densities obeying relations like (1.3) exist
for any gauge theory, be it QCD or gravity. In QCD, the
existence of different �-vacua can lead to observable ef-
fects, like a shift in the zero-point energy if the gluons are
confined to a region B (bag), where � � 0 surrounded by a
� ¼ 0-vacuum [18]. In gravitation there are two character-
istic classes in four dimensions that can have a similar
effect, the Pontryagin invariant, P4 ¼ Ra

b ^ Rb
a and the

Euler density E4 ¼ �abcdR
ab ^ Rcd. To each of these invar-

iants a similar phenomenon could be associated. Although
the Einstein equations would not be affected, new

phenomena can be expected to arise at the interfaces be-
tween regions with different �’s. In particular, the bounda-
ries would act like sources of curvature and torsion. Again,
it must be stressed that such ‘‘sources’’ are not new forms of
matter, but they are produced by the geometry itself.
The effects produced by the �-terms in different regions

highlights the fact that our naive understanding of sources
for the electromagnetic or gravitational fields, as produced
by some forms of matter, may be too narrow. The effect of
a distribution of charges can be mimicked by a disconti-
nuity in the definition of vacuum state. We expect these and
other classical consequences of the introduction of a
�-vacuum will be repeated in other settings.
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[12] O. Mišković and J. Zanelli, Phys. Rev. D 79, 105011 (2009).
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