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All quadratic translation- and gauge-invariant photon operators for Lorentz breakdown are included

into the Stueckelberg Lagrangian for massive photons in a generalized R� gauge. The corresponding

dispersion relation and tree-level propagator are determined exactly, and some leading-order results are

derived. The question of how to include such Lorentz-violating effects into a perturbative quantum-field

expansion is addressed. Applications of these results within Lorentz-breaking quantum-field theories

include the regularization of infrared divergences as well as the free propagation of massive vector bosons.
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I. INTRODUCTION

Recent years have witnessed a growing interest in pre-
cision tests of Lorentz and CPT invariance. This interest
can be partly attributed to the availability of new observa-
tional data and the development of ultrasensitive experi-
mental techniques [1]. Moreover, minute departures from
Lorentz and CPT symmetry can be accommodated in
various theoretical ideas beyond established physics [2],
providing a phenomenological opportunity to search for
novel effects possibly arising at the Planck scale.

At presently attainable energies, Lorentz- and
CPT-violating effects are expected to be governed by
effective field theory [3]. The general framework based
on this premise is known as the standard-model extension
(SME) [4–6]. This framework contains the usual standard
model of particle physics and general relativity as limiting
cases and therefore permits the identification and analysis
of essentially all currently feasible Lorentz and CPT tests.
To date, the SME has been employed for phenomenologi-
cal studies involving cosmic radiation [7], meson factories
[8] and other particle colliders [9], resonance cavities
[10], neutrinos [11], precision spectroscopy [12], and
gravity [13].

The SME has also served as the basis for various theo-
retical investigations of Lorentz and CPT symmetry.
These investigations have shed light on the SME’s mathe-
matical structure [14], spontaneous Lorentz breakdown
and Nambu-Goldstone modes [15], classical limits of
Lorentz- and CPT-violating physics [16], quantum correc-
tions and renormalizability [17,18], features of nonrenor-
malizable contributions [19], etc. At the same time, these
analyses have solidified various aspects of the SME’s
theoretical foundation.

One topic that has remained comparatively unexplored
concerns Lorentz and CPT violations in massive vector
particles in the SME: published work [20] has been fo-
cused on phenomenological analyses confined to the
CPT-even Z0 and W� sectors of the minimal SME.

However, even for this small region in the full SME’s
parameter-space basic theoretical results, such as expres-
sions for the dispersion relation and propagator, are cur-
rently still lacking. The present investigation reports on
progress towards filling this gap.
Massive vector particles with Lorentz andCPT breaking

are not only of interest for phenomenological studies of the
heavy gauge bosons Z0 and W�. They have previously
served as a valuable tool for investigations of the mass-
dimension three Lorentz- and CPT-violating Maxwell-
Chern-Simons term [18]. More importantly, massive vector
fields play a key role for theoretical studies involving the
photon because they provide a popular method for regula-
rizing infrared divergences in perturbative quantum-field
calculations. In fact, this latter application represents the
primary focus of this study. But we anticipate that our
results for the expression of the dispersion relation and
the propagator are equally valid for the quadratic part of
the full SME’s Z0 and W� sectors.
The outline of the present work is as follows. Section II

provides the basic ideas behind the construction of the
model we are studying. A few remarks on the structure
of the resulting modified Maxwell-Stueckelberg equations
are contained in Sec. III. Section IV determines the
exact dispersion relation and propagator for our model.
Section V discusses some leading-order results that are
expected to be useful for practical calculations, and
Sec. VI gives a brief summary of our results. Some supple-
mentary material is collected in various appendices.

II. MODEL BASICS

Our primary goal is to introduce a photon mass for
regularizing infrared divergences in perturbative
quantum-field calculations in a general R� gauge. This

requires a smooth behavior of the internal-symmetry struc-
ture in the massless limit. Thus, the usual Proca term by
itself is insufficient, and the mass needs to be introduced
via, e.g., the Stueckelberg method [21]. The original
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version of this method is appropriate for Uð1Þ gauge theo-
ries. The method needs modifications for photons
embedded in the Uð1Þ � SUð2Þ gauge structure of the
standard model [22], and it generally fails for non-
Abelian vector fields. The Lorentz-violating generalization
of the Stueckelberg method, which is discussed in this
section and the subsequent one, therefore applies solely to
the SME’s QED limit. We do, however, expect the remain-
ing part of our study, contained in Secs. IV and V, to be
applicable to more general massive vector fields.

Our starting point is the usual free-photon Lagrangian
minimally coupled to an external conserved current j�.
The generalization of this Lagrangian to include arbitrary
local, coordinate-independent, translation- and gauge-
invariant physics with Lorentz- and CPT-symmetry break-
down can be cast into the following form [6]:

L � ¼ �1
4F

2 � A � j� 1
4F��ðk̂FÞ����F��

þ 1
2�

����A�ðk̂AFÞ�F��: (1)

Here, the field strengths and potentials are real-valued and
obey the conventional relation F�� ¼ @�A� � @�A�, and

����� denotes the totally antisymmetric symbol with
�0123 ¼ þ1. Lorentz and CPT breakdown is controlled

by the quantities k̂F and k̂AF, which are given explicitly
by the following expressions [6]

ðk̂FÞ���� ¼ X1
n¼2

ðkð2nÞF Þ�����1...�2n�4@�1
. . . @�2n�4

;

ðk̂AFÞ� ¼ X1
n¼1

ðkð2nþ1Þ
AF Þ��1...�2n�2@�1

. . . @�2n�2
:

(2)

Each kðdÞF coefficient as well as each kðdÞAF coefficient is taken

as nondynamical, spacetime constant, and totally symmet-
ric in its � indices. The superscript (d) labels the mass
dimension of the corresponding photon operator, so that
the unit of the actual coefficient is ½GeV�4�d.

The next step is to add a mass-type term 	Lm for the
photon to the above Lagrangian (1). In the conventional
case, such a contribution is restricted by Lorentz symmetry.
In the present situation, this restriction is absent, and more
freedom in the choice of 	Lm exists. This additional free-
dom partly depends on the type of physics to be described.
For instance, one may wish to model general Lorentz
violation for hypothetical massive photons. Alternatively,
the aim may be to regularize infrared divergences that
often arise in quantum-field calculations involving mass-
less photons governed by Lagrangian (1). In these two
examples, the former may allow more additional freedom
for 	Lm than the latter: consider a situation in which the
coefficients in Lagrangian (1) are such that a subgroup of
the Lorentz group remains intact. A regulator breaking this
residual symmetry may be problematic, so that violations
of the remaining invariant subgroup may have to be ex-
cluded from 	Lm.

In the present work, the primary purpose for the intro-
duction of a photon-mass term is to regularize potential
infrared divergences in quantum-field contexts. In princi-
ple, the structure of 	Lm can then be chosen as simple
as possible. For example, the conventional Lorentz-
symmetric Stueckelberg expression would likely suffice.
However, we introduce an additional set of Lorentz-

breaking coefficients for reasons outside the present Uð1Þ
context: certain aspects of the Stueckelberg model, such as
the dispersion relation and propagator, will turn out to be
equally valid for the Lorentz-violating Z0 and W� bosons.

These particles contain not only the equivalent of the k̂F
and k̂AF coefficients, but also, e.g., a ðk

Þ�� mass-type

term. For wider applicability in this electroweak context,
we therefore also include a ðk

Þ��-type contribution into

our Stueckelberg mass term. With these considerations in
mind, we implement the Stueckelberg method [21] by
introducing a scalar field 
 in the following way:

	Lm ¼ 1
2ð@�
�mA�Þ�̂��ð@�
�mA�Þ; (3)

where m denotes the photon mass and

�̂ �� ¼ ��� þ Ĝ��: (4)

Here, the Ĝ�� represents the full-SME generalization of
the minimal-SME’s ðk

Þ�� coefficient and is given by:

Ĝ �� ¼ X1
n¼2

ðGð2nÞÞ���1...�2n�4@�1
. . . @�2n�4

; (5)

where each ðGð2nÞÞ���1...�2n�4 is contracted with an even
number of derivatives [23], is spacetime constant, symmet-
ric in � and �, and totally symmetric in �1 . . .�2n�4. This
definition still contains some Lorentz-symmetric pieces at
each mass dimension, which can be eliminated if neces-
sary. For example, the Lorentz-covariant contribution

���� contained in ðGð4ÞÞ�� can be removed by taking
this coefficient as traceless.

The inclusion of Ĝ�� does not invalidate the

Stueckelberg method. At this point, we leave Ĝ�� unde-
termined. We only require it to be small, so that in the limit
of vanishing Lorentz violation, �̂�� approaches ��� with-
out a change in signature and rank [24]. In the presentUð1Þ
context, where 	Lm is intended to serve as a regulator,

specific regions in ðkðdÞF ; kðdÞAFÞ parameter space may only be

compatible with certain definite choices for Ĝ��, such as

Ĝ�� ¼ 0, as discussed above. For applications in the

heavy-boson context, Ĝ�� represents an arbitrary physical
parameter that can only be fixed by observation.
As in the ordinary case, the resulting Lagrangian Lm �

L� þ 	Lm changes under a local gauge transformation

	A� ¼ @��ðxÞ; 	
 ¼ m�ðxÞ (6)

by total-derivative terms. However, in the absence of
topological obstructions and with the usual boundary
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conditions, the action and thus the physics remain un-
changed under the transformation (6). The next natural
step then is to select a gauge-fixing condition F ½A;
�.
As usual, a multitude of choices for F ½A;
� are accept-
able. We take

F ½A;
� ¼ @��̂
��A� þ �m
; (7)

a choice that will turn out to be convenient for our pur-
poses. Application of the usual Gaussian smearing proce-
dure leads to the following gauge-fixing term to be
included into the Lagrangian:

L g:f: ¼ � 1

2�
ð@��̂��A� þ �m
Þ2; (8)

where � is an arbitrary gauge parameter, as usual. The

associated Faddeev-Popov determinant detð	F	� Þ in the path

integral results in the ghost term

L F:P: ¼ � �cð@��̂��@� þ �m2Þc; (9)

where c and �c are anticommuting scalars. We mention that
the possibility of introducing additional Lorentz violation
into the ghost Lagrangian has been studied [25]. We dis-
regard this option in what follows.

We are now in the position to present our model
Lagrangian L ¼ L� þ 	Lm þLg:f: þLF:P: explicitly:

L ¼ � 1

4
F2 � A � jþ 1

2
m2A��̂

��A� � 1

2�
ð@��̂��A�Þ2

� 1

2

ð@��̂��@� þ �m2Þ
� �cð@��̂��@� þ �m2Þc

� 1

4
F��ðk̂FÞ����F�� þ 1

2
�����A�ðk̂AFÞ�F��: (10)

It is apparent that the scalar 
 and the ghosts c and �c are
now uncoupled and can be integrated out of the path
integral yielding an unobservable normalization constant.
We will therefore disregard these fields in our subsequent
analysis.

III. STRUCTURE OF THE FIELD EQUATIONS

The equations of motion for our Lagrangian (10) read

½������@� þ ðk̂AFÞ������ þ ðk̂FÞ����@��F��

þ
�
m2�̂�� þ 1

�
�̂���̂��@�@�

�
A� ¼ j�: (11)

Owing to its underlying antisymmetric structure, the term
involving F�� in Eq. (11) has vanishing divergence.

Contraction of the field equations with @� therefore re-
moves the F�� term and places the constraint

ð�̂��@�@� þ �m2Þð@��̂��A�Þ ¼ 0 (12)

on the A� term, where we have used our earlier assumption

of a conserved source j�. As per definition, �̂�� is of rank
four, so ð@��̂��A�Þ projects out one of the degrees of

freedom contained in A�. The �-dependent Eq. (12) shows

that the source j� does not excite ð@��̂��A�Þ. This degree
of freedom therefore is an auxiliary mode.
Continuing with this decomposition, it is natural to

define a component

Aph
� � A� þ 1

�m2
@�ð@��̂��A�Þ: (13)

Employing Eq. (12), it is apparent that @��̂
��Aph

� ¼ 0 on

shell. With Eq. (13) at hand, we can now substitute the

decomposition of the vector potential A� ¼ A
ph
� �

@�ð@��̂��A�Þ=ð�m2Þ into the field Eqs. (11). Being a

gradient, the auxiliary excitation does not contribute to
F��. By virtue of its equation of motion (12), this compo-

nent also disappears from the A� term in Eq. (11). The zero

divergence of A
ph
� , on the other hand, implies that it van-

ishes when contracted with the � term in Eq. (11). Our
decomposition then gives

½������@� þ ðk̂AFÞ������ þ ðk̂FÞ����@��F��

þ ½m2�̂���Aph
� ¼ j� (14)

for the field equations. Note that the auxiliary component

has disappeared entirely (F�� only involves Aph
� ) and that

the source j� excites the physical degrees of freedom in a
�-independent way.

IV. FEATURES OF THE GENERAL SOLUTION

In this section, we study general properties of the solu-
tions of the equation of motion (11). This equation holds
exactly for our Lorentz-violating Stueckelberg photons at
the classical level. But the model also exhibits numerous
similarities to heavy gauge bosons with Lorentz violation.
For example, the Z0 and W� sectors of the SME also

contain operators of the type k̂F, k̂AF, and Ĝ; examples of
these are kW , k2, and k

, respectively. Although the linear

Eq. (11) cannot hold exactly for non-Abelian gauge bo-
sons, the types of operators quadratic in the fields do agree
with those for the photon. One can therefore anticipate that
Eq. (11) does govern most aspects of the tree-level free
behavior of Z0 and W� within the SME. In particular, the
dispersion relation and propagator derived below are ex-
pected to hold not only for our modified Stueckelberg
photons, but also for the heavy SME gauge bosons at tree
level.
We begin with the plane-wave dispersion relation. To

this end, we Fourier transform Eq. (11), which yields�
p2����p�p��m2�̂��þ1

�
�̂���̂��p�p�

þ2ðk̂FÞ����p�p��2iðk̂AFÞ������p�

�
�A�¼��|� (15)

for the equations of motion in p�-momentum space. Here,
a bar denotes the Fourier transform, and it is understood
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that the replacement @ ! �ip has been implemented in

the Lorentz-violating quantities k̂F, k̂AF, and Ĝ. Let us
briefly pause at this point to introduce a more concise
notation that will enable us present many of our subsequent
results in a more compact form. We define

K̂ ���ðk̂FÞ����p�p�; Ê���ðk̂AFÞ������p�; (16)

because in the dispersion relation and the propagator, k̂F
and k̂AF will always appear in this form. Moreover, when
convenient we abbreviate the contraction of a symmetric
tensor with a 4-vector by placing the vector as a super-

or subscript on the tensor, e.g., Ĝ�
p � Ĝ��p� or ðĜ2Þpp �

Ĝ�
�Ĝ

�
�p�p

�, etc. We now rewrite the equations of motion

(15) simply as SðpÞ��
�A�ðpÞ ¼ ��|�ðpÞ, where

S�� � ðp2 �m2Þ��� �
�
1� 1

�

�
p�p� � 2iÊ�� þ 2K̂��

�m2Ĝ�� þ 1

�
ðĜ�

pp� þ Ĝ�
pp

� þ Ĝ�
p Ĝ

�
pÞ (17)

is the expression of the modified Stueckelberg operator in
our new notation.

The plane-wave dispersion relation governs source-free
motion �|� ¼ 0 and can therefore be stated as the usual
requirement that the determinant of SðpÞ�� vanishes. With
the results derived in Appendix A, this translates into the
equation

½S�4 � 6½S�2½S2� þ 3½S2�2 þ 8½S�½S3� � 6½S4� ¼ 0: (18)

Here, Sn is the nth matrix power of SðpÞ��, and the square
brackets denote the matrix trace.

The various trace expressions in Eq. (18) can be cast into
a factorized form:

� detðSÞ ¼ ð1þ 1
4½Ĝ�Þð�̂��p�p� � �m2ÞQðpÞ ¼ 0: (19)

The first factor represents a normalization, which does
not contain physical modes [26]. The (�̂��p�p� � �m2)

piece is associated with the auxiliary mode described by
Eq. (12). The � independent factor QðpÞ governs the three
physical degrees of freedom. All factors in the dispersion
relation (19) can also contain unphysical Ostrogradski-
type degrees of freedom [27], which are introduced be-
cause our Lagrangian contains higher derivatives [6]. In the
presumed underlying theory, for which the effective field
theory (10) represents the low-energy limit, these modes
must be absent. Consequently, they should also be elimi-
nated from our low-energy model (10).

An explicit calculation shows that

Q¼ðp2�m2Þ3þr2ðp2�m2Þ2þr1ðp2�m2Þþr0; (20)

where the coefficients rj ¼ rjðpÞ are momentum-

dependent coordinate scalars determined by traces of
combinations of the various Lorentz-violating tensor
expressions appearing in Eq. (15). They vanish in the limit

k̂F, k̂AF, Ĝ ! 0. The explicit expressions for the rj, which

can be found in Appendix B, are not particularly transpar-
ent. Note that in general the physical dispersion relation
(20) does not represent a true cubic equation in the variable
(p2 �m2) because the rjðpÞ are momentum dependent.

The dispersion relation (19) restricts the set of all pos-
sible Fourier momenta p� � ð!; ~pÞ to those associated
with plane-wave solutions of the free model. Since in

general k̂F, k̂AF, and Ĝ contain high powers of p�, there
can be a corresponding multitude of plane-wave frequen-
cies!ð ~pÞ for any given wave 3-vector ~p, a fact reflected in
the momentum dependence of the rjðpÞ. We remind the

reader that most of these are artifacts of our effective-
Lagrangian approach and must be eliminated. Only those
wave momenta that represent perturbations of the usual
Lorentz-symmetric solutions should be interpreted as
physical. In any case, a determination of the exact roots
of the general dispersion relation (19) appears to be
unfeasible. However, an exact discrete symmetry of
the plane-wave solutions is discussed in Appendix C, the
massless limit is studied in Appendix D, and some leading-
order results are presented in Sec. V.
In the more general case of nonvanishing sources, the

construction of solutions can be achieved with propagator
functions. Paralleling the ordinary Lorentz-symmetric
case, we implicitly define the p�-momentum-space propa-
gator PðpÞ�� via PðpÞ��SðpÞ�� � �i�

�
� , where we have

employed the usual quantum-field convention by including
a factor of ð�iÞ. It is thus evident that the propagator is
given by PðpÞ�� ¼ �iS�1ðpÞ��. With Eq. (A8), we obtain
an exact, explicit expression for the modified Stueckelberg
propagator in momentum space:

P ¼ �i

detðSÞ ð
1
3½S3�1þ 1

6½S�31� 1
2½S2�½S�1� 1

2½S�2S

þ 1
2½S2�Sþ ½S�S2 � S3Þ: (21)

As before, Sn denotes the nth matrix power of SðpÞ��, and
the matrix trace is abbreviated by square brackets. We
mention that restricting each of the infinite sums in

Eq. (2) to their first term and setting both m and Ĝ to
zero yields the limit in which previous propagator expres-
sions have been considered [28].
When the exact tree-level propagator (21) is Fourier-

transformed to position space, an integration contour must
be selected. As in the conventional case, this choice de-
pends on the boundary conditions (e.g., retarded, ad-
vanced, Feynman, etc.). In the present case, a further
issue arises. As per our earlier assumption in
Sec. II, the Lorentz-violating terms are to be treated as
perturbations of the usual Lorentz-invariant solutions, and
we already commented on the need to eliminate
spurious modes. In the present context concerning the
propagator, this may, for example, be achieved with a
careful choice of (counter)clockwise integration contours
that encircle only the desired poles for each of the two
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orientations. We remark that these issues are absent when
the model is restricted to terms of mass dimension three
and four.

V. LEADING-ORDER RESULTS

The absence of compelling observational evidence for
departures from Lorentz and CPT symmetry in nature

implies that if the coefficients k̂F and k̂AF are nonzero,
they must be extremely small. The same reasoning holds

true for Ĝ, at least in the context of the Z0 and W� bosons
[29]. For the majority of phenomenological studies as well
as for many theoretical investigations it is therefore justi-
fied to disregard higher orders in the Lorentz-violating

coefficients k̂F, k̂AF, and Ĝ. This section contains a brief
discussion of a few leading-order results.

We begin by considering the physical piece Q of the
dispersion relation given by Eq. (20). We remind the reader
that Q ¼ 0 cannot be considered a true cubic equation in
the variable (p2 �m2) due to the p dependence of the
coefficients r0, r1, and r2. We can nevertheless employ
the expressions Rj, j 2 f1; 2; 3g, for the roots of a cubic to
transform the single equation Q ¼ 0 into an equivalent set
of three equations:

p2 �m2 ¼ Rjð!a;�
~p ; ~p; k̂AF; k̂F; ĜÞ: (22)

Just as for the original expression Q ¼ 0, it seems unfea-
sible to determine the exact dispersion-relation roots from

the above three equations: the plane-wave frequency !a;�
~p

contained in the 4-momentum p� ¼ ð!a;�
~p ; ~pÞ still appears

on both sides of Eq. (22). In particular, this set of Eqs. (22)
will in general possess more than six solutions, which is
consistent with the fact that Q ¼ 0 fails to be a true cubic
and can still contain a multitude of spurious Ostrogradski
modes.

Before continuing, one may ask whether the six physical
solutions can exhibit undesirable features. A detailed
analysis of this question would be interesting but lies out-
side our present scope. However, continuity implies that
small Lorentz violation leads to small deviations from the
conventional dispersion-relation branches, so that the so-
lutions must in general be well behaved within the validity
range of our effective field theory. Exceptions from this
expectation require nongeneric circumstances, such as par-
ticular parameter combinations. For example, in the mini-

mal SME only a single coefficient—the timelike kð3ÞAF—is

known to be problematic under some circumstances [4]. At
the level of the dispersion relation, this is reflected in the
presence of complex-valued solutions. For example, if

m ¼ 0 and kð3ÞAF is the only nonzero Lorentz-violating co-

efficient, we have

R2 ¼ �2ðkð3ÞAFÞ2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkð3ÞAFÞ4 þ ðp � kð3ÞAFÞ2

q
: (23)

When kð3ÞAF is timelike, the j ¼ 2 contribution in Eqs. (22)

cannot have real solutions !~p for small enough ~p: suppose

there were real solutions !~p 2 R, then the square

root would be real, and R2 would be real and negative.

For the special value ~p ¼ ~0, this would give !~0
2 ¼

R2ð ~p ¼ ~0Þ< 0, which contradicts our assumption
!~p 2 R. In what follows, we disregard such isolated re-

gions in SME parameter space.
The physical solutions have to represent small perturba-

tions to the Lorentz-symmetric dispersion relation
p2 �m2 ¼ 0. Equation (22) establishes that the departures
from the conventional case are controlled by the three Rj.

In a concordant frame [5], this means that (as opposed to
the spurious Ostrogradski modes) the physical roots are
characterized by small Rj that approach zero in the limit of

vanishing Lorentz breaking. This observation suggests
solving Eq. (22) perturbatively by introducing a parameter
� multiplying the Rj, and writing a Taylor expansion for

the plane-wave frequencies:

!j;�
~p ¼ !j;�

~p;0 þ �!j;�
~p;1 þ �2!j;�

~p;2 þ � � � ; (24)

where we have identified the label j of the root expression
with the label a of the plane-wave frequency. Substituting
(24) on both sides of Eq. (22) and expanding in powers of
� yields an expression from which the coefficients of
the Taylor series (24) can be determined by matching
the appropriate terms. Solutions to Eq. (22) are then ob-
tained by taking � ¼ 1, and the Lorentz-invariant roots

!j;�
~p ¼ !j;�

~p;0 are recovered for � ¼ 0. Thus, this procedure

continuously connects six exact dispersion-relation solu-
tions—two for each j in Eq. (22)—to the Lorentz-
symmetric mass shell. This behavior is consistent with
that of the physical roots, so that the procedure simulta-
neously serves as a filter for rejecting the spurious modes,
which cannot remain finite in the � ! 0 limit.
A useful practical way to solve for the coefficients in

Expansion (24) is iteration: substitute as a first iteration

!j;�
~p ¼ !j;�

~p;0 on the right-hand side of Eq. (22), which

determines the improved value !j;�
~p;1 for the plane-wave

frequency on the left-hand side of this equation. Repeating
this process yields

!j;�
~p;nþ1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2 þ Rjð!j;�

~p;n ; ~p; k̂AF; k̂F; ĜÞ
q

; (25)

where we have denoted the iterative step by the subscript n

on!j;�
~p;n . One can check that the nth iterative step possesses

the correct value for (at least) the first n coefficients in
Eq. (24). In this process, there is actually no need to
introduce explicitly the parameter �, as we can take it
equal to unity immediately.
Note that particular care may be required for special

regions in momentum space. One example concerns very
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small m and ~p. The exact branches associated to the
conventional positive- and negative-valued mass shell
could then lie closely together, so that convergence to the
correct branch must be ensured. Moreover, the exact solu-
tion for a positive branch may briefly dip into the negative
spectrum and vice versa leading to an unequal number of
positive and negative roots in this small momentum-space
region. The signs of the square root in the recursive
Eq. (25) may then have to be adjusted correspondingly.
Other issues, such as isolated momentum-space points at
which the � expansion of s1 in the Eq. (B7) starts at Oð�Þ,
may be resolved by employing a different perturbation
scheme.

Since j 2 f1; 2; 3g and since for large enough ~p there is a
positive and a negative square root for each j, there are six
equations corresponding to six seemingly independent
physical plane-wave frequencies for a given ~p. However,
the behavior of the modified Stueckelberg operator SðpÞ
under the replacement p ! �p leads to a correspondence
between the positive- and negative-root solutions. This
implies that there are in fact only three independent

polarization modes, as expected for a massive spin-1 field.
More details regarding this line of reasoning can be found
in Appendix C.
Next, we consider the momentum-space propagator

given by Eq. (21). This propagator describes two physical
features. First, the poles of the denominator select the
plane-wave momenta. In a Feynman-diagram context, for
instance, Lorentz-violating corrections to the usual poles
can cause the propagator to go on-shell, possibly allowing
processes that are forbidden in the Lorentz-symmetric
case. Second, the numerator governs features associated
with the polarization states. For example, Lorentz-
violating numerator corrections could yield suppressed
processes that would be forbidden by angular-momentum
conservation in the corresponding Lorentz-invariant
situation.
If corrections to both of these features are to be retained,

the denominator and the numerator in Eq. (21) should be
expanded separately to leading order. With such an ap-
proximation, the dominant contribution to the propagator
can be separated into the two pieces:

P�� ¼ �iðp2 �m2Þ ðp
2 �m2 þ 2½K̂� þ Ĝp

p �m2½Ĝ�Þ��� � 2K̂�� þ 2iÊ�� þm2Ĝ�� � p�Ĝ�
p � p�Ĝ

�
p

ð1þ 1
4½Ĝ�Þ

Q3
j¼1½p2 �m2 � Rjð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
; ~p; k̂AF; k̂F; ĜÞ�

þ i
ð1� �Þðp2 �m2Þðp2 �m2 þ 2½K̂� �m2½Ĝ�Þ

ð1þ 1
4½Ĝ�Þð�̂��p�p� � �m2ÞQ3

j¼1½p2 �m2 � Rjð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
; ~p; k̂AF; k̂F; ĜÞ�

p�p� þ higher order: (26)

In the denominators, we have used the leading-order ex-
pressions for the Rj implementing our previous results for
the dispersion relation.

We note that the first piece of the propagator expres-
sion is independent of � and only exhibits poles
corresponding to the three physical modes [26]. The
second piece is � dependent and contains the additional
pole associated to the auxiliary mode. As expected,
the second piece is without physical effects: contraction
with a source �|� yields an overall factor p � �|, which
vanishes for conserved currents. In any case, all contri-
butions from the second piece would necessarily
have to be proportional to ðp � �|Þp�, which is pure
gauge. Moreover, the second term vanishes identically
in Feynman-’t Hooft gauge � ¼ 1. We further remark
that the expression (26) does not propagate the addi-
tional multitude of unphysical higher-derivative modes
discussed in the previous section. This is required
for a smooth behavior in the limit of vanishing
Lorentz breakdown. Some remarks regarding the mass-
less limit of the propagator (26) are contained in
Appendix D.

In many situations, Lorentz-violating corrections to the
pole structure of the propagator can be disregarded. Then,
the expression for the propagator can be simplified even

further with an approximation that essentially corresponds
to treating the Lorentz-violating pieces in the Lagrangian
as interaction terms. This alternative approximation is
determined next.
We begin by considering the Lorentz-invariant part S0 of

the Stueckelberg operator

S0ðpÞ�� ¼ ðp2 �m2Þ��� �
�
1� 1

�

�
p�p�: (27)

The expression for the corresponding momentum-space
propagator is given by [30]:

P0ðpÞ�� ¼ �i
��� � p�p�=m2

p2 �m2
� i

p�p�=m2

p2 � �m2
: (28)

Starting from these zeroth-order expressions, we may now
decompose the full Stueckelberg operator as

SðpÞ�� ¼ S0ðpÞ�� � 	SðpÞ��; (29)

with

	SðpÞ�� ¼ 2iÊ�� � 2K̂�� þm2Ĝ��

� 1

�
ðĜ�

pp� þ Ĝ�
pp

� þ Ĝ
�
p Ĝ

�
pÞ: (30)
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Suppressing Lorentz indices and the dependence on p for
brevity, we can now expand the full propagator P about its
Lorentz-symmetric value P0 as follows:

P ¼ �iðS0 � 	SÞ�1

¼ �i½ð1� 	SS�1
0 ÞS0��1

¼ �iS�1
0 ð1� 	SS�1

0 Þ�1

¼ P0

�
1þ X1

n¼1

ði	SP0Þn
�

¼ P0 þ P0 i	S P0 þ P0 i	S P0 i	S P0 þ � � � ; (31)

where we used P0 ¼ �iS�1
0 . The infinite geometric series

should be convergent for small enough Lorentz violation
	S. In the context of quantum-field perturbation theory, the
expansion (31) can be represented diagrammatically with a
propagator insertion i	S into internal photon lines, as
shown in Fig. 1. This result appears to be consistent with
Matthews’ theorem [31]. Like the previous expression
(26), the expansion (31) of the propagator around its
Lorentz-symmetric value automatically accomplishes the
elimination of the unphysical poles.

VI. SUMMARY

In this work, we have employed the Stueckelberg
method to introduce a mass term into the full SME’s
photon sector in an R�-type gauge, such that the usual

smooth behavior of the model in the m ! 0 limit is main-
tained. We have discussed the resulting equations of mo-
tion in the presence of external conserved sources, and
studied their solutions. Our results include the exact dis-
persion relation and propagator for free massive photons
incorporating all possible Lorentz-violating, translation-
and gauge-invariant Lagrangian contributions at arbitrary
mass dimension. From these exact results, we have ex-
tracted leading-order expressions for the dispersion-
relation roots and the propagator. The method for obtaining
the roots is recursive; it also yields higher-order correc-
tions, and it naturally separates the physical solutions from
spurious modes arising from higher-derivative terms in the
Lagrangian. Finally, we have verified that the number of
physical modes is three, as expected for a massive vector
particle.

Our results are intended primarily to provide a flexible
tool for regularizing infrared divergences in quantum elec-
trodynamics in the presence of general Lorentz violation.

A follow-up work in this context is already in preparation
[32]. In addition, our expressions for the dispersion relation
and propagator also hold for the quadratic part of the
SME’s heavy-boson sector, and are therefore expected to
find applications in theoretical and phenomenological
studies of electroweak physics with Lorentz breaking. In
the m ! 0 limit, our results yield the previously unknown
massless photon propagator in the full SME, a quantity
indispensable for many Lorentz-symmetry investigations
in electrodynamics.
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APPENDIX A: MATRIX RELATIONS

This appendix provides a collection of various textbook
linear-algebra results necessary for the line of reasoning in
the main text. For completeness, we have sketched the
derivation of these results.
Consider an arbitrary 4� 4matrix� and denote its four

(not necessarily distinct) eigenvalues by �j, where j ¼
1; . . . ; 4. The characteristic polynomial Cð�Þ of � can
then be expressed as

Cð�Þ ¼ ð�� �1Þð�� �2Þð�� �3Þð�� �4Þ: (A1)

By the Cayley-Hamilton theorem, the matrix � must sat-
isfy Cð�Þ ¼ 0. Expanding the right-hand side of Eq. (A1)
and replacing � ! � then yields

�4 þ c3�
3 þ c2�

2 þ c1�þ c01 ¼ 0; (A2)

where the coefficients cj are given by

c0 ¼ �1�2�3�4;

c1 ¼ ��1�2�3 � �1�4�3 � �2�4�3 � �1�2�4;

c2 ¼ �1�2 þ �3�2 þ �4�2 þ �1�3 þ �1�4 þ �3�4;

c3 ¼ ��1 � �2 � �3 � �4: (A3)

The next task is to express the cj in terms of manifestly

component-independent expressions involving �. To this
end, we transform � to its Jordan normal form �0 ¼
M�1�M, where M is an appropriate 4� 4 matrix. Since
such a similarity transformation leaves unchanged the
eigenvalues, it is straightforward to verify that

detð�0Þ ¼ �1�2�3�4;

Trð�0nÞ ¼ �n
1 þ �n

2 þ �n
3 þ �n

4 ;
(A4)

where n 2 N. Inspection now establishes that

FIG. 1. Lorentz-violating propagator insertion. The wavy lines
represent the usual Lorentz-symmetric Stueckelberg propagator
given by Eq. (28). The square box denotes the Lorentz-breaking
insertion determined by Eq. (30).
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c0 ¼ detð�0Þ;
c1 ¼ 1

2 Trð�02ÞTrð�0Þ � 1
3 Trð�03Þ � 1

6 Trð�0Þ3;
c2 ¼ 1

2½Trð�0Þ2 � Trð�02Þ�;
c3 ¼ �Trð�0Þ:

(A5)

Since both the determinant as well as the trace of a square
matrix remain unchanged under similarity transformations,
the relations in Eqs. (A4) and (A5) hold, in fact, also for
our original 4� 4 matrix �. Employing these results in
Eq. (A2) gives

�4 � ½���3 þ 1
2ð½��2 � ½�2�Þ�2

þ ð12½�2�½�� � 1
3½�3� � 1

6½��3Þ�þ detð�Þ1 ¼ 0: (A6)

Here, we have abbreviated the matrix trace by square
brackets. This result establishes that the set of matrices
f1;�;�2;�3;�4g is linearly dependent.

Equation (A6) can be employed to determine further
relations involving the 4� 4 matrix �. For example, tak-
ing the trace of Eq. (A6) yields the expression

detð�Þ ¼ 1
24½��4 � 1

4½�4� þ 1
8½�2�2 þ 1

3½��½�3�
� 1

4½��2½�2� (A7)

for the determinant of �. Another relation can be obtained
by multiplying Eq. (A6) with the inverse matrix ��1. The
resulting equation can then be solved for ��1:

��1 ¼ 1

detð�Þ ð
1
3½�3�1þ 1

6½��31� 1
2½�2�½��1

� 1
2½��2�þ 1

2½�2��þ ½���2 ��3Þ: (A8)

In Eqs. (A7) and (A8) we have again abbreviated the
matrix trace by square brackets.

APPENDIX B: DISPERSION RELATION

To present r0, r1, and r2 appearing in the physical
dispersion relation (20), we introduce the following more

efficient notation. We suppress the AF subscript on k̂AF and
drop the caret:

ðk̂AFÞ� � k�: (B1)

It is also convenient to extract the traceless part Ĝ�� from

the full Ĝ��:

Ĝ �� � ðĜ� 1
4½Ĝ����Þð1þ 1

4½Ĝ�Þ�1: (B2)

Here, we have again denoted the matrix trace by square

brackets ½Ĝ� � Ĝ�
�. Inspection of our model Lagrangian

(10) reveals that for the photon the decomposition (B2) can
be implemented by the replacements

Ĝ�� ! Ĝ��

m2 ! m̂2 � m2ð1þ 1
4½Ĝ�Þ

��1 ! �̂�1 � ��1ð1þ 1
4½Ĝ�Þ2;

(B3)

where it is understood that �̂�1=2 and m̂2 have to be placed
at the appropriate positions in their respective Lagrangian
terms. We also remind the reader that we denote the con-
traction of a 4-vector with a symmetric 2-tensor by writing
the vector as a superscript or a subscript on the tensor: for

example ðĜ2Þkp � Ĝ�
�Ĝ

�
�p�ðk̂AFÞ�, etc.

With this notation, the r coefficients in the physical
dispersion relation (20) take the following form:

r0 ¼ 4
3½K̂�3 þ 8

3½K̂3� � 4½K̂�½K̂2� þ 8m̂2K̂k
k þ 2½K̂�2Ĝp

p � 2½K̂2�Ĝp
p � 4ðk � pÞ2Ĝp

p � 4m̂2½ĜK̂2� þ 4m̂2½K̂�½Ĝ K̂�
� 2m̂2ðĜ K̂ ĜÞpp þ 2m̂2½K̂�ðĜ2Þpp þ 2m̂2½Ĝ K̂�Ĝp

p þ 8m̂2ðk � pÞĜk
p þ 2m̂4½Ĝ2K̂� � m̂4½K̂�½Ĝ2� � 4m̂4Ĝk

k

þ m̂4ðĜ3Þpp � 1
2m̂

4½Ĝ2�Ĝp
p � 1

3m̂
6½Ĝ3� � 8½ĜK̂3� þ 8½K̂�½ĜK̂2� � 4½K̂�2½Ĝ K̂� þ 4½K̂2�½Ĝ K̂� þ 8K̂k

kĜ
p
p

þ 4m̂2½Ĝ2K̂2� � 2m̂2½Ĝ K̂�2 þ 2m̂2½ðĜ K̂Þ2� þ m̂2½K̂�2½Ĝ2� � m̂2½K̂2�½Ĝ2� � 4m̂2½K̂�½Ĝ2K̂� þ 4m̂2ðĜk
pÞ2

� 4m̂2Ĝk
kĜ

p
p � 2m̂4½Ĝ3K̂� þ m̂4½Ĝ K̂�½Ĝ2� þ 2

3m̂
4½K̂�½Ĝ3� � 1

8m̂
6½Ĝ2�2 þ 1

4m̂
6½Ĝ4�;

r1 ¼ 2½K̂�2 � 2½K̂2� � 4ðk � pÞ2 þ 4m̂2k2 þ 2½K̂�Ĝp
p þ 2m̂2½Ĝ K̂� þ m̂2ðĜ2Þpp � 1

2m̂
4½Ĝ2� þ 8K̂k

k þ 4k2Ĝp
p � 4m̂2Ĝk

k;

r2 ¼ 2½K̂� þ Ĝp
p þ 4k2: (B4)

The above dispersion relation can be shown to reduce in the appropriate limit to the mass-dimension three results quoted in
Ref. [18].
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To determine the quantities Rj appearing in Eq. (22), we apply the usual Tschirnhaus-type transformation for cubic

equations to Expression (20). This yields the equivalent depressed form of the physical dispersion relation Q ¼ 0:

ðp2 � m̂2 þ 2
3½K̂� þ 1

3Ĝ
p
p þ 4

3k
2Þ3 þ s1ðp2 � m̂2 þ 2

3½K̂� þ 1
3Ĝ

p
p þ 4

3k
2Þ þ s0 ¼ 0; (B5)

where coefficients s0 and s1 are given by

s0 ¼ 16

27
½K̂�3 þ 8

3
½K̂3� � 8

3
½K̂�½K̂2� þ 8

3
ðk � pÞ2½K̂� þ 8m̂2K̂k

k �
8

3
m̂2k2½K̂� þ 8

9
½K̂�2Ĝp

p � 4

3
½K̂2�Ĝp

p � 2

9
½K̂�ðĜp

pÞ2

� 8

3
ðk � pÞ2Ĝp

p þ 2

27
ðĜp

pÞ3 � 4m̂2½ĜK̂2� þ 8

3
m̂2½K̂�½Ĝ K̂� � 2m̂2ðĜ K̂ ĜÞpp þ 4

3
m̂2½K̂�ðĜ2Þpp þ 4

3
m̂2½Ĝ K̂�Ĝp

p

� 1

3
m̂2Ĝp

pðĜ2Þpp � 4

3
m̂2k2Ĝp

p þ 8m̂2ðk � pÞĜk
p þ 2m̂4½Ĝ2K̂� � 2

3
m̂4½K̂�½Ĝ2� � 4m̂4Ĝk

k �
1

3
m̂4½Ĝ2�Ĝp

p

þ m̂4ðĜ3Þpp � 1

3
m̂6½Ĝ3� þ 8

9
k2½K̂�2 þ 8

3
k2½K̂2� � 16

3
½K̂�K̂k

k þ
16

3
k2ðk � pÞ2 � 4

9
k2ðĜp

pÞ2 þ 8½K̂�½ĜK̂2�

� 8½ĜK̂3� � 4½K̂�2½Ĝ K̂� þ 4½K̂2�½Ĝ K̂� þ 16

3
K̂k

kĜ
p
p � 16

9
k2½K̂�Ĝp

p � 4m̂2½K̂�½Ĝ2K̂� þ 2m̂2½ðĜ K̂Þ2�

þ 4m̂2½Ĝ2K̂2� � 2m̂2½Ĝ K̂�2 þ m̂2½K̂�2½Ĝ2� � m̂2½K̂2�½Ĝ2� � 8

3
m̂2k2½Ĝ K̂� þ 4m̂2ðĜk

pÞ2 � 8

3
m̂2Ĝk

kĜ
p
p � 16

3
m̂2k4

þ 8

3
m̂2½K̂�Ĝk

k �
4

3
m̂2k2ðĜ2Þpp � 2m̂4½Ĝ3K̂� þ m̂4½Ĝ K̂�½Ĝ2� þ 2

3
m̂4½K̂�½Ĝ3� þ 2

3
m̂4k2½Ĝ2� � 1

8
m̂6½Ĝ2�2 þ 1

4
m̂6½Ĝ4�

þ 64

9
k4½K̂� � 32

3
k2K̂k

k �
16

9
k4Ĝp

p þ 16

3
m̂2k2Ĝk

k þ
128

27
k6;

s1 ¼ 2

3
½K̂�2 � 2½K̂2� � 4ðk � pÞ2 þ 4m̂2k2 þ 2

3
½K̂�Ĝp

p � 1

3
ðĜp

pÞ2 þ 2m̂2½Ĝ K̂� þ m̂2ðĜ2Þpp � 1

2
m̂4½Ĝ2� þ 8K̂k

k�
16

3
k2½K̂� þ 4

3
k2Ĝp

p � 4m̂2Ĝk
k �

16

3
k4: (B6)

With s0 and s1 at hand, the usual formulas for the
roots of a cubic determine explicit expressions for the Rj

quantities. These expressions can then be used for the
iteration Eq. (25): Suppose we want to calculate the
first-order frequencies from the zeroth-order solution

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
; ~pÞ, which corresponds to the first iteration

step in Eq. (25). With ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
; ~pÞ and Eqs. (B6), we

can in principle check the sign of the discriminant
4s1

3 þ 27s0
2, at least to leading order. A positive discrimi-

nant is associated with complex-valued Rj, which would

appear to lead to unphysical roots. We therefore take the
discriminant to be nonpositive in what follows. The Rj can

then be expressed trigonometrically:

Rj ¼ 2

ffiffiffiffiffiffiffiffiffiffi
� s1

3

r
cos

�
1

3
cos�1

�
3s0
2s1

ffiffiffiffiffiffiffiffiffiffi
� 3

s1

s �
� 2


3
j

�

� 2

3
½K̂� � 1

3
Ĝp

p � 4

3
k2; j 2 f1; 2; 3g: (B7)

These explicit Rj can now, for example, be employed in the

context of Eq. (25).
We remark that for the special case of a vanishing

discriminant, Eq. (B7) determines a multiple root, so that

at least two physical excitations propagate without
birefringence. We also note that for nonpositive discrimi-
nant the argument of the cosine function in Eq. (B7) is real,
and its magnitude therefore remains bounded by one. The
limit of zero Lorentz violation is then determined by s1,

½K̂�, Ĝp
p, and k2. These coefficients will generically be

momentum dependent. In particular, the zero components
for the unphysical solutions may diverge in this limit, so
that the corresponding behavior of the Rj is unclear

a priori. However, for the physical solutions the plane-
wave frequencies must remain bounded because they are
defined to approach the conventional expressions in the
Lorentz-symmetric limit. For vanishing Lorentz breaking,
the physical Rj are therefore seen to approach zero, as

required by self-consistency.

APPENDIX C: DISCRETE SYMMETRIES

An interesting question concerns the number of inde-
pendent plane-wave solutions. Some insight into this issue
can be gained by investigating discrete symmetries of both
the plane-wave polarization vectors and the dispersion
relation (19).
Since the Lagrangian (10) is real, the momentum-space

Stueckelberg operator must be hermitian
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S��ðpÞ� ¼ S��ðpÞ; (C1)

which can also be established directly by inspection of
Eq. (17). Next, we consider S��ðpÞ under p ! �p. Only

the k̂AF piece reverses its sign because it is odd in p. All
other terms are p even and remain unchanged. We also
need the behavior of S��ðpÞ under complex conjugation.
Since the position-space Stueckelberg operator is purely
real, complex-valued contributions to the momentum-
space S��ðpÞ can only arise from the Fourier replacement
@ ! �ip. We will focus on real-valued plane-wave mo-
menta p since otherwise an interpretation as a propagating

solution is difficult. It then follows that the p-odd k̂AF term
is purely imaginary, while all other terms are even in p
and thus real. Complex conjugation of S��ðpÞ therefore
only changes the sign of its k̂AF piece. It thus becomes
evident that the momentum-space Stueckelberg operator is
left unaffected under the combination of the two
operations:

S��ðþp;þk̂AF; k̂F; ĜÞ ¼ S��ð�p;þk̂AF; k̂F; ĜÞ�
¼ S��ð�p;þk̂AF; k̂F; ĜÞ; (C2)

where the Hermiticity of S�� has been used. Since any
determinant is invariant under transposition, we find

detSðþp; k̂AF; k̂F; ĜÞ ¼ detSð�p; k̂AF; k̂F; ĜÞ; (C3)

i.e., p ! �p represents a discrete symmetry of the disper-
sion relation. This invariance also becomes clear when
Eqs. (19), (20), and (B4) are combined.

Continuing our analysis in a concordant frame [5], we
fix a wave 3-vector ~p and imagine solving the dispersion
relation (19). Following the reasoning presented in Sec. V,
we can eliminate the spurious Ostrogradski modes and
focus on the six physical branches of the dispersion-

relation solution with exact !j;�
~p . In these expressions,

the � label must correspond to the sign of the solution, a
property that follows immediately from the required prox-
imity to the Lorentz-symmetric sheets [33]. Without loss of
generality, we now consider the specific plane-wave

4-momentum with positive energy ðpj
þÞ� � ð!j;þ

� ~p;� ~pÞ.
The p ! �p symmetry of the dispersion relation implies

that ðpj�Þ� � ð�!j;þ
� ~p; ~pÞ also represents a solution, but

one with negative frequency. Moreover, this solution

must be physical: since pj
þ is close to the conventional

positive sheet, pj� must be a perturbation of the negative
sheet. With a suitable selection of the j labels, we may

therefore conclude !j;�
~p ¼ �!j;þ

� ~p . In summary, the set of

physical plane-wave momenta is given by

fðpj
þÞ� ¼ ð!j;þ

~p ; ~pÞ; ðpj�Þ� ¼ ð�!j;þ
� ~p; ~pÞg; (C4)

and is thus determined entirely by the expressions for the

three positive-frequency solutions !j;þ
~p .

In addition to the plane-wave momenta ðpj
�Þ�, the

associated polarization vectors ð"j�Þ�ð ~pÞ are needed to

construct a plane wave. Given the "jþð ~pÞ associated with
the positive-frequency roots, we can construct the remain-
ing negative-frequency "j�ð ~pÞ as follows. Up to normal-
ization, the polarization vectors are by definition in the

kernel of the Stueckelberg operator: Sð!j;�
~p ; ~pÞ"j�ð ~pÞ ¼ 0.

This definition contains Sð!j;þ
� ~p;� ~pÞ"jþð� ~pÞ ¼ 0 as a spe-

cial case. Complex conjugation combined with Eq. (C2)

then yields Sð�!j;þ
� ~p; ~pÞ"jþ�ð� ~pÞ ¼ 0. Together with the

plane-wave momentum property (C4), this equation is
identified as the defining relation for "j�ð ~pÞ. Using suitable
normalizations, we arrive at

ð"j�Þ�ð ~pÞ ¼ ð"jþ�Þ�ð� ~pÞ: (C5)

We remark that this relation continues to hold for
dispersion-relation roots with higher multiplicities when

the bases of KerSð�!j;þ
� ~p; ~pÞ are chosen appropriately.

An arbitrary, free, real-valued, physical solution A�ðxÞ
can be represented by the following Fourier superposition
of plane waves [34]:

A�ðxÞ ¼
Z d3 ~p

ð2
Þ3
X3
j¼1

½ajþð ~pÞð"jþÞ�ð ~pÞe�ipj
þ�x

þ aj�ð ~pÞð"j�Þ�ð ~pÞe�ipj��x� þ c:c: (C6)

This expression suggests that six Fourier coefficients

fajþð ~pÞ; aj�ð ~pÞg with j ¼ 1, 2, 3 must be specified indepen-
dently to determine a general solution. However, a change
of integration variable ~p ! � ~p in the expression associ-
ated with the negative-frequency solutions together with
Eqs. (C4) and (C5) yields

A�ðxÞ ¼
Z d3 ~p

ð2
Þ3
X3
j¼1

bjð ~pÞð"jþÞ�ð ~pÞe�ipj
þ�x þ c:c:; (C7)

where we have defined bjð ~pÞ � ajþð ~pÞ þ aj��ð� ~pÞ. This
establishes that the six physical dispersion-relation roots
are associated with 3 degrees of freedom.

APPENDIX D: MASSLESS LIMIT

In the context of regularizing infrared divergences in
quantum-field perturbation theory, the massless limit of
our Lorentz-violating Stueckelberg model is of particular
importance. The photon mass was introduced into our
Lagrangian via the Stueckelberg method, which ensures
the proper behavior in this limit. Nevertheless, it is inter-
esting to study explicitly the dispersion relation and the
propagator of our model for vanishing m, for example, to
compare with previous results for massless Lorentz-
violating photons.
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We begin by defining the contraction

Î � ����	�����p�p�p�p�ðk̂FÞ����ðk̂FÞ����ðk̂FÞ�	��

(D1)

of the Lorentz-violating k̂F. One can show that the coor-

dinate scalar Î obeys the following identities:

1
12ÎĜ

p
p ¼ 2½ĜK̂3� � 2½ĜK̂2�½K̂� þ ½Ĝ K̂�ð½K̂�2 � ½K̂2�Þ;

1
4Îp

2 ¼ 3½K̂�½K̂2� � ½K̂�3 � 2½K̂3�: (D2)

With these identities, the full massless dispersion relation
(19) can be cast into the form

� detS ¼ ð�̂��p�p�Þ2ðp4 þ 2½K̂�p2 þ 8K̂k
k � 1

3Î

� 4ðk � pÞ2 þ 4k2p2 þ 2½K̂�2 � 2½K̂2�Þ: (D3)

It thus becomes apparent that in the massless limit the
expression ð�̂��p�p�Þ can be factored out of Q.

The next step is to identify the physical part of the
massless dispersion relation (D3). Clearly, one of the
ð�̂��p�p�Þ factors originates from the auxiliary mode

and remains unphysical. To gain insight into the other
factors, it is instructive to recall the model Lagrangian

(10). In the zero-mass limit, Ĝ enters the equations of
motion for the photon only via the gauge-fixing term
Lg:f: and should therefore not lead to observable effects.

It then follows that the second ð�̂��p�p�Þ factor must also

be unphysical because it contains �̂ ¼ �þ Ĝ. We con-

clude that the last factor in Eq. (D3), which is free of Ĝ,
governs the physical excitations for m ¼ 0. This factor is
in agreement with the general photon dispersion relation
given in Ref. [6], as required by consistency.

The exact massive propagator (21) as well as its leading-
order approximation (26) exhibit six physical poles that
must be encircled by the integration contours. The above
argument identifies those two of these six poles that should
become unphysical in the massless case. The question then
arises as to whether the unphysical character of these two
modes is reflected in the pole structure of the propagator in
them ! 0 limit. This may be established by demonstrating
that the ð�̂��p�p�Þ factor in the denominator of the propa-

gator is cancelled by a corresponding ð�̂��p�p�Þ factor in

the numerator for vanishing mass. An investigation of this
cancellation for the exact expression (21) would be inter-
esting but lies outside the scope of the present work. We
instead focus on the on the leading-order piece (26) of the
propagator, which is appropriate for the majority of prac-
tical applications.
In the discussion of the leading-order propagator (26), it

was already mentioned that the (1� �) contribution in the
second line leaves unaffected observable quantities. We
may therefore focus on the physical contribution contained
in the first line of Eq. (26). In the m ! 0 limit, the nu-
merator �iN�� of this first piece has the form

N�� ¼ p2ð2½K̂���� � 2K̂�� þ 2iÊ�� � p�Ĝ�
p � p�Ĝ

�
p Þ

þ p2ðp2 þ Ĝp
pÞ���: (D4)

The ��� term in the second line of the above Eq. (D4)

contains the factor p2 þ Ĝp
p ¼ �̂��p�p�. All terms in the

first line represent leading-order corrections, which remain
unaffected by the addition of higher-order Lorentz-
violating terms. A judicious choice for such higher-order

contributions is p2 ! p2 þ Ĝp
p ¼ �̂��p�p� in the overall

p2 factor. It thus becomes evident that in the physical piece
of the leading-order propagator, the factor ð�̂��p�p�Þ
appears in both the numerator and the denominator and
therefore cancels. We conclude that the poles that become
unphysical in the massless limit disappear from the propa-
gator, at least to leading order.

Since Ĝ arises in the massless case solely from the
gauge-fixing term, measurable quantities are necessarily

free of Ĝ, even though p�Ĝ�
p and p�Ĝ

�
p terms still appear

in the numerator of the propagator (26) and, equivalently,
in the propagator insertion (30). When the propagator is

contracted with a conserved current �|�, Ĝ independence

can be seen explicitly as follows. For the p�Ĝ�
p term, such

a contraction yields an expression proportional to p�,
which is pure gauge and can therefore not lead to observ-

able effects. For the p�Ĝ
�
p term, the contraction produces

an overall p � �|, which vanishes due to current conserva-

tion. It is thus clear that Ĝ is indeed unobservable in this
context, as expected.
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Mewes, Phys. Rev. D 80, 076007 (2009); V. Barger et al.,
Phys. Rev. D 84, 056014 (2011); J. S. Dı́az and V.A.
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and J. D. Tasson, Phys. Rev. Lett. 102, 010402 (2009);
Q. G. Bailey, Phys. Rev. D 80, 044004 (2009); V. A.
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V. A. Kostelecký and N. Russell, Phys. Lett. B 693, 443
(2010).

[17] R. Jackiw and V.A. Kostelecký, Phys. Rev. Lett. 82, 3572
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