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We study the effect of a magnetic field on the pairing dynamics in two-flavor color superconducting

dense quark matter. The study is performed in the weakly coupled regime of QCD at asymptotically high

density, using the framework of the Schwinger-Dyson equation in the improved rainbow approximation.

We show that the superconducting gap function develops a directional dependence in momentum space.

Quasiparticles with momenta perpendicular to the direction of the magnetic field have the largest gaps,

while quasiparticles with momenta parallel to the field have the smallest gaps. We argue that the

directional dependence is a consequence of a long-range interaction in QCD. The quantitative measure

of the ellipticity of the gap function is determined by a dimensionless ratio, proportional to the square of

the magnetic field and inversely proportional to the fourth power of the quark chemical potential. For

magnetic fields in stars, B & 1018 G, the corresponding ratio is estimated to be less than about 10�2,

justifying the use of the weak magnetic field limit in all stellar applications.
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I. INTRODUCTION

Quantum chromodynamics (QCD), the fundamental the-
ory of strong interactions, predicts that quark matter at
sufficiently high densities and sufficiently low tempera-
tures is a color superconductor [1–5]. (For reviews, see, for
example, Refs. [6,7].) The property of asymptotic freedom
in QCD ensures that such matter is weakly interacting
at asymptotically large densities and, therefore, allows a
rigorous treatment of the corresponding nonperturbative
dynamics of Cooper pairing [8–15]. The simplest color
superconducting phases correspond to spin-zero pairing.
Depending on the number of quark flavors participating
in pairing, one can have a two-flavor color superconducting
(2SC) phase [4,5] or a color-flavor-locked (CFL) phase
[16]. Many additional complications arise when
�-equilibrium and neutrality of quark matter is enforced
[17–20].

Recently, the study of color superconductivity in the
presence of magnetic fields attracted a lot of attention
[21–25]. This interest is primarily driven by potential
astrophysical applications, where magnetic fields play an
important role. In the case of neutron stars, for example,
the surface magnetic fields can reach up to about B ’
1012 G [26]. For magnetars, the corresponding fields can
be still a few orders of magnitude larger, i.e., B ’
1014–1015 G, and perhaps even as high as 1016 G [27].
Furthermore, it is possible that the magnetic fields in the
stellar interiors are much higher and reach up to about
B� 1018 G [26,28].

In order to understand the properties of two- and three-
flavor color superconducting phases with spin-zero pairing
in a magnetic field, it is important to first recall their
electromagnetic properties. Despite being color supercon-
ductors, these phases can be penetrated by long-range
‘‘rotated’’ magnetic fields, which are not subject to the
Meissner effect [29,30]. The rotated gauge fields are linear
combinations of the vacuum photon and one of the gluons.
While all Cooper pairs are neutral with respect to the
corresponding rotated electromagnetism, the individual
quark quasiparticles carry well-defined charges. It is not
surprising, therefore, that the diquark pairing dynamics is
affected by the presence of a magnetic field. The recent
studies revealed many interesting qualitative features of the
magnetic 2SC and CFL phases [21–23]. However, all such
studies share a common shortcoming: they are performed
in the framework of Nambu-Jona-Lasinio (NJL) models
with contact interactions.
In this paper, we extend the analysis of two-flavor color

superconductivity in a magnetic field by taking into ac-
count the long-range interaction in quark matter. In par-
ticular, we perform the study in the framework of the
Schwinger-Dyson equation for the gap function in the
weakly coupled regime of QCD at large densities.
The long-range interaction is provided by the one-gluon
exchange, in which the dominant screening and Landau
damping effects are included. Our study reveals a qualita-
tively new feature of the magnetic 2SC phase, a directional
dependence of the gap function, which is a consequence of
the nonlocal interaction in quark matter.
In the weak magnetic field limit, we find that the effect

of a nonzero field can be mimicked by an effective increase
of the strong coupling constant that governs the Cooper
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pairing dynamics, g2 ! g2ð1þ �sin2�BkÞ, where �Bk is the
angle between the quasiparticle momentum and the direc-
tion of the magnetic field, and the dimensionless quantity �
is a measure of ellipticity of the gap function. The latter is
given by the dimensionless ratio � ¼ 27�ðeBÞ2=ð2g2 ��4Þ,
where B is the magnetic field and �� is the quark chemical
potential. As one can easily check, this ratio is much less
than 1 even for the strongest possible fields in stars and,
therefore, the use of the weak magnetic field limit is
justified for all stellar applications. For completeness, we
extend our analysis to the case of superstrong magnetic
fields and find that the value of the gap increases with the
field also in this regime. As expected on general grounds,
the effects of nonlocality of the interaction become negli-
gible in superstrong fields and the directional dependence
of the gap disappears. It should be remarked, however, that
our analysis in the case of strong fields is performed with
less rigor because the gluon screening effects in this case
are not well known.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model and review how a constant rotated
magnetic field enters the Lagrangian density and how the
rotated electric charges of quasiparticles are defined.
Explicit expressions for quasiparticle propagators in sec-
tors with different rotated charges are presented in Sec. III.
Then, in Sec. IV, we derive the gap equation and solve it
approximately in the limit of a weak magnetic field. In the
same section, we also obtain an estimate for the gap in the
strong field limit. In Sec. V, we discuss the results and give
a brief outlook. Several appendixes at the end of the paper
contain many technical details and derivations used in the
main text.

II. MODEL

As stated in the introduction, the analysis in this study is
done in the framework of weakly interacting two-flavor
QCD at large densities. The quadratic part of the corre-
sponding Lagrangian density of quarks in an external
rotated magnetic field is given by

L em
quarks ¼ �c ði��@� �mþ �̂�0 þ ~e�� ~A�

~QÞc ; (2.1)

where ~A� is the rotated massless ~Uð1Þem gauge field.

This field is a linear combination of the vacuum photon

A� and the eighth gluon G8
�: ~A� ¼ cos~�A� � sin~�G8

�,

where cos~� ¼ g=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ e2=3

p
[29,30]. (Here we use the

standard convention for SUð3Þc color generators in the
adjoint representation [30]). The quarks carry flavor and
color indices c ia, where i 2 ðu; dÞ ¼ ð1; 2Þ is the flavor
index and a 2 ðr; g; bÞ ¼ ð1; 2; 3Þ is the color index. The
multicomponent quark spinor field c is assumed to have
the following explicit form:

c ¼

c ur

c ug

c ub

c dr

c dg

c db

0
BBBBBBBB@

1
CCCCCCCCA
: (2.2)

Here we assume that up and down quarks have the same
masses (mu ¼ md ¼ m). In the 2SC phase, the matrix of
chemical potentials �̂ can have a nontrivial color-flavor
structure. When �-equilibrium and neutrality of quark
matter is imposed [18], the matrix elements of �̂ read

�ij;ab ¼ ½��ij ��eðQfÞij��ab þ 2ffiffiffi
3

p �8�ijðT8Þab; (2.3)

where only one out of three parameters (�, �e, and �8) is
truly independent, while the other two must be adjusted to
achieve color and electric neutrality. For subtleties regard-
ing the color neutrality; see Ref. [31].
The explicit form of the quasiparticle charge operator

~Q, that corresponds to ~Uð1Þem gauge group, is given by
~Q ¼ Qf � Ic � If � ðT8ffiffi

3
p Þc, where Qf ¼ diagð23 ;� 1

3Þ is the
usual matrix of electromagnetic charges of quarks in flavor
space, and T8 is the eighth generator of the SUð3Þc gauge
group in the adjoint representation. In units of ~e ¼
eg=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ e2=3

p
, the ~Q charges of quarks are given in

Table I.
In order to simplify the explicit form of the quark

propagators in the magnetic 2SC phase, it is convenient
to introduce the following set of projectors onto the sub-
spaces of quasiparticles with different values of rotated
charges [23]:

�ðþ1=2Þ ¼ diagð1; 1; 0; 0; 0; 0Þ; (2.4)

�ðþ1Þ ¼ diagð0; 0; 1; 0; 0; 0Þ; (2.5)

�ð�1=2Þ ¼ diagð0; 0; 0; 1; 1; 0Þ; (2.6)

�ð0Þ ¼ diagð0; 0; 0; 0; 0; 1Þ: (2.7)

This is a complete set of projectors, satisfying the follow-
ing relations:

�~Q�~Q0 ¼ � ~Q ~Q0�~Q;
~Q; ~Q0 ¼ �1=2;þ1; 0; (2.8)

�ðþ1=2Þ þ�ðþ1Þ þ�ð�1=2Þ þ�ð0Þ ¼ 1: (2.9)

TABLE I. ~Q charges of quarks measured in units of ~e ¼
eg=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ e2=3

p
.

ur ug ub dr dg db

þ 1
2 þ 1

2 1 � 1
2 � 1

2 0
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By making use of these projectors, we can decompose the
multicomponent quark spinor field into separate pieces,
describing groups of quasiparticles with different rotated
charges,

c ¼ c ðþ1=2Þ þ c ðþ1Þ þ c ð�1=2Þ þ c ð0Þ; (2.10)

where, by definition,

c ðþ1=2Þ ¼ �ðþ1=2Þc ; c ðþ1Þ ¼ �ðþ1Þc ;

c ð�1=2Þ ¼ �ð�1=2Þc ; c ð0Þ ¼ �ð0Þc :
(2.11)

In the new notation, the quadratic part of the quark
Lagrangian density can be rewritten as follows:

L em
quarks ¼

X
~Q¼�1=2;þ1;0

�c ð ~QÞði��@� �mþ� ~Q�
0

þ ~e ~Q�� ~A�Þc ð ~QÞ: (2.12)

As follows from Eq. (2.3), the chemical potentials � ~Q for

quasiparticles with different ~Q-charges, when projected
onto the relevant color-flavor subspaces, are given by

�ðþ1=2Þ ¼ �ur ¼ �ug ¼ �� 2
3�e þ 1

3�8; (2.13)

�ð�1=2Þ ¼ �dr ¼ �dg ¼ �þ 1
3�e þ 1

3�8; (2.14)

�ðþ1Þ ¼ �ub ¼ �� 2
3�e � 2

3�8; (2.15)

�ð0Þ ¼ �db ¼ �þ 1
3�e � 2

3�8: (2.16)

In this study, in order to simplify the analysis of the gap
equation we will eventually neglect the effects due to
nonzero �e and �8. This is certainly justified in the study
of QCD at asymptotically large densities. On the other
hand, if the analysis is to be extrapolated to moderately
large densities, relevant for compact stars, nonvanishing
�e and �8 may become important [17–20]. One should
keep in mind, however, that the study of such a moderate
density quark matter from first principles will be still
quantitatively unreliable within the framework of the
Schwinger-Dyson equation because of the strong coupling
regime. As for the main purpose of this study, it aims only
at a better understanding of the qualitative role of long-
range forces.

III. QUASIPARTICLE PROPAGATORS

In the 2SC phase, only the quasiparticles with the

charges ~Q ¼ � 1
2 participate in Cooper pairing, while the

remaining two quasiparticles (with charges ~Q ¼ 0; 1) play
the role of passive spectators. Therefore, in the rest of the
analysis, we will concentrate exclusively on the two pairs
of quasiparticles participating in Cooper pairing and ignore
the others.

As usual in studies of color superconducting phases, it is
convenient to introduce the Nambu-Gorkov spinors,

�� ð ~QÞ ¼ ð �c ð ~QÞ; �c C
ð� ~QÞÞ; �ð ~QÞ ¼

c ð ~QÞ
c C

ð� ~QÞ

 !
; (3.1)

for quasiparticles with the charges ~Q ¼ � 1
2 . Here c C

ð ~QÞ ¼
C �c T

ð ~QÞ and
�c C
ð ~QÞ ¼ c T

ð ~QÞC are the charge-conjugate spin-

ors, and C ¼ i�2�0 is the charge-conjugation matrix sat-
isfying the relations: C�1��C ¼ �ð��ÞT and C ¼ �CT .
In terms of the Nambu-Gorkov spinors, Lagrangian density
(2.12) takes the form

L em
quarks ¼

1

2

X
~Q¼�1=2

��ð ~QÞS�1
ð ~QÞ;0�ð ~QÞ

þ X
~Q¼þ1;0

�c ð ~QÞ½Gþ
ð ~QÞ;0��1c ð ~QÞ; (3.2)

where the inverse free propagator S�1
ð ~QÞ;0 for each sector

with a fixed value of ~Q-charge has a block-diagonal form,

S�1
ð ~QÞ;0 ¼ diagð½Gþ

ð ~QÞ;0��1; ½G�
ð ~QÞ;0��1Þ; (3.3)

and the explicit form of the diagonal elements reads

½G�
ð ~QÞ;0��1 ¼ ��ði@� þ ~Q ~e ~A�Þ ��ð ~QÞ�0 �m: (3.4)

For quasiparticles participating in Cooper pairing, the
full propagators also have nonzero off-diagonal Nambu-
Gorkov components, determined by the color supercon-
ducting gap function, i.e.,

S�1
ð ~QÞ ¼

½Gþ
ð ~QÞ;0��1 ��

ð ~QÞ
�þ

ð ~QÞ ½G�
ð ~QÞ;0��1

0
@

1
A: (3.5)

The color-flavor structures of ��
ð ~QÞ and �þ

ð ~QÞ are given by

��
ðþ1=2Þ ¼ ���

ð�1=2Þ ¼ 0 �i�5�
i�5� 0

� �
; (3.6)

�þ
ðþ1=2Þ ¼ ��þ

ð�1=2Þ ¼ 0 i�5��
�i�5�� 0

� �
: (3.7)

Note that the explicit forms of the two relevant Nambu-
Gorkov spinors (3.1) read

�ðþ1=2Þ ¼

c ur

c ug

c C
dr

c C
dg

0
BBBBB@

1
CCCCCA; �ð�1=2Þ ¼

c dr

c dg

c C
ur

c C
ug

0
BBBBB@

1
CCCCCA: (3.8)

It appears that one can partially diagonalize the inverse full
propagators S�1

ð ~QÞ by simply reordering the components of

the spinors as follows:

�new
ðþ1=2Þ ¼

c ur

c C
dg

c ug

c C
dr

0
BBBBB@

1
CCCCCA; �new

ð�1=2Þ ¼

c dr

c C
ug

c dg

c C
ur

0
BBBBB@

1
CCCCCA: (3.9)
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From a physics viewpoint, the possibility of such a partial
diagonalization reflects the fact that there are two different
types of Cooper pairs: one made of red up and green down
quarks and the other made of green up and red down
quarks.

In the new basis, the inverse full propagator S�1
ð ~QÞ has the

following block-diagonal form:

S�1
ð ~QÞ ¼ diagð½SXð ~QÞ��1; ½SYð ~QÞ��1Þ; (3.10)

where

½SXðþ1=2Þ��1 ¼
��

�
i@� þ 1

2
~e ~A�

�
þ�ur�

0 �m �i�5�

�i�5�� ��

�
i@� þ 1

2
~e ~A�

�
��dg�

0 �m

0
BB@

1
CCA; (3.11)

½SYðþ1=2Þ��1 ¼
��

�
i@� þ 1

2
~e ~A�

�
þ�ug�

0 �m i�5�

i�5�� ��

�
i@� þ 1

2
~e ~A�

�
��dr�

0 �m

0
BB@

1
CCA; (3.12)

and

½SXð�1=2Þ��1 ¼
��

�
i@� � 1

2
~e ~A�

�
þ�dr�

0 �m i�5�

i�5�� ��

�
i@� � 1

2
~e ~A�

�
��ug�

0 �m

0
BB@

1
CCA; (3.13)

½SYð�1=2Þ��1 ¼
��

�
i@� � 1

2
~e ~A�

�
þ�dg�

0 �m �i�5�

�i�5�� ��

�
i@� � 1

2
~e ~A�

�
��ur�

0 �m

0
BB@

1
CCA: (3.14)

Using the representation for the inverse quasiparticle
propagator in Eq. (3.10), we find the propagator itself,

Sð ~QÞ ¼ diagðSXð ~QÞ; S
Y
ð ~QÞÞ: (3.15)

The calculation of the corresponding diagonal blocks SX;Yð ~QÞ
is tedious, but straightforward. The details of derivation are
presented in Appendix A.

IV. GAP EQUATION

In the coordinate space, the gap equation (i.e., the off-
diagonal component of the Schwinger-Dyson equation for
the full propagator) reads

½SXð ~QÞ��1
21 ðu; u0Þ ¼ ig2��ð�TAÞT½SXð ~QÞ�21ðu; u0Þ

� ��TBDAB
��ðu; u0Þ; (4.1)

where D��ðu; u0Þ is the gluon propagator, and u �
ðt; z; r?Þ is a four-vector of space-time position. We will
assume that the gluon propagator is diagonal in adjoint
color indices. Note that the off-diagonal component of the
propagator SYð ~QÞ satisfies a similar equation. While Eq. (4.1)

describes Cooper pairing of red up and green down quarks,
the equation for SYð ~QÞ describes Cooper pairing of green up

and red down quarks.

In this study of Cooper pairing in a magnetized color
superconducting phase, it is convenient to start from the
coordinate-space representation of the gap equation [see
Eq. (4.1)] and then switch to the Landau-level representa-
tion. This is in contrast to the usual momentum space
representation, often utilized in the case of vanishing ex-
ternal fields.
In this connection, a short remark is in order regarding

the general structure of a quasiparticle propagator. Because
of the interaction of charged quasiparticles with the mag-
netic field, their momenta in the two spatial directions
perpendicular to the field are not well-defined quantum
numbers. This is reflected in the structure of the propagator
(as well as its inverse), which is not a translationally
invariant function in coordinate space. Instead, the quasi-
particle propagator has the form of a product of the uni-
versal Schwinger phase (which spoils the translational
invariance) and a translationally invariant part [32] (for
details, see Appendix A).
After factoring out the same Schwinger phase on both

sides of the gap equation and projecting the resulting
equation onto subspaces of different Landau levels, one
obtains an infinite set of coupled equations; see Eq. (B6) in

Appendix B. For both charges ~Q ¼ �1=2, the gap equa-
tions are similar. Here we show only the final set of

equations for ~Q ¼ þ1=2,
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�mP� þ�mþ1Pþ ¼�i
2g2

3

X1
n¼0

Z d!0dk03

ð2�Þ2
Z d2q?

ð2�Þ2�
��n

�
Lð0Þ

n;m
En

Cn
P� þLð0Þ

n�1;m

En

Cn
Pþ

�
��D��ð!�!0; k3 � k03;q?Þ;

(4.2)

where m, n ¼ 0; 1; 2; . . . are Landau-level indices, and
functions Cn and En are defined in Appendix A; see
Eq. (A19) and (A23), respectively. These functions depend
on the parameters of the model (e.g., masses and chemical
potentials of quarks) as well as on the color superconduct-
ing gap parameters �n. Note that the gaps associated with
different Landau levels are not necessarily equal. This fact
is emphasized by the Landau-level subscript n in the
notation. Here and below, we assume that all gaps �n are
real functions.

A. Gluon propagator

In dense quark matter, unlike in vacuum, the gluon
exchange interaction is partially screened. Therefore,
when analyzing the Cooper pairing dynamics between
quarks, it is very important to take the relevant screening
effects due to nonzero density into consideration [8]. In the
problem at hand, in addition, one should account for
the external magnetic field, which can further modify the
screening of the one-gluon interaction through quark loops.
The latter can be quite important in strong magnetic fields
[33]. To simplify the analysis in this study, we will assume
that the magnetic field is weak (jeBj 	 �2). At the end,
we shall see that this happens to be a very good approxi-
mation for most stellar applications.

In the case of a weak external field, the screening of the
one-gluon interaction in dense medium can be described
well by the usual hard-dense loop approximation [34–36].
In the Coulomb gauge, the Lorentz structure of the gluon
propagator is given by [37,38]

D��ðQÞ ¼ �Q2

q2
��0��0

Q2 � F
� PT

��

Q2 �G
; (4.3)

where functions F and G define the spectra of the longitu-
dinal and transverse gluons, respectively. Both functions
depend on the energy q0 and the absolute value of the
three-momentum j ~qj. By definition, Q ¼ ðq0; ~qÞ is a mo-
mentum four-vector. The transverse Lorentz projector PT

��

is defined as follows:

PT
00 ¼ PT

0i ¼ 0; PT
ij ¼ �ij � q̂iq̂j: (4.4)

In the most important regime for Cooper pairing dynamics,
q0 	 j ~qj 	 mD, the approximate expressions for these
screening functions read [34–36]

F ’ m2
D; G ’ �

4
m2

D

q0

j ~qj ; (4.5)

where m2
D ¼ ðg�=�Þ2 is the Debye screening mass in

two-flavor quark matter. At large densities, the exchange
interaction by electric gluon modes is strongly suppressed
due to Debye screening and, to leading order, plays no role.
Magnetic gluon modes, on the other hand, are subject only
to a mild dynamical screening (Landau damping) at non-
zero frequencies and play the dominant role in Cooper
pairing [8].

B. Gap equation: Weak magnetic field limit

In order to obtain the gap equation in the weak magnetic
field limit, we expand the translationally invariant part of
the full fermion propagator in powers of the magnetic field

and keep the leading terms up to second order, ð~e ~Q ~BÞ2 (for
details, see Appendixes C and D). Omitting the technical
details, here we present the final form of the gap equation,

�ð!Þ ¼ Tð0Þð!Þ þ Tð1Þð!Þ þ Tð2Þð!Þ; (4.6)

where

TðiÞð!Þ ¼ �i
2g2

3

Z d!0

2�

Z d3k0

ð2�Þ3 �ð!
0Þ��KðiÞð!0; k0Þ��D��ð!�!0; k� k0Þ (4.7)

is the contribution of the ith order in powers of the mag-
netic field. The explicit form of the kernels KðiÞð!; kÞ for
the three leading-order terms in the gap equation are
presented in Eqs. (C22)–(C24), in Appendix C.

At zero magnetic field, Eq. (4.6) reduces to the well-

known gap equation in the 2SC phase without a magnetic

field [8–14]. After switching to the Euclidean space and

performing the traces on both sides of the gap equation, we

rederive the following zeroth-order (i.e., vanishing mag-

netic field) equation:

�ð0Þð!EÞ ¼ g2

3

Z d!0
E

ð2�Þ
Z d3k0

ð2�Þ3

� �ð0Þð!0
EÞ

ð!0
EÞ2 þ ðk0 � ��Þ2 þ ½�ð0Þð!0

EÞ�2

�
�

1

ð!E �!0
EÞ2 þ jk� k0j2 þm2

D

þ 2jk� k0j
jk� k0j3 þ!3

l

�
; (4.8)
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where k ¼ jkj, k0 ¼ jk0j, !E ¼ i!, !0
E ¼ i!0, and !3

l ¼ð�=4Þm2
Dj!0

E �!Ej. For simplicity, here we assumed that
m ¼ 0 and that the chemical potentials of all quarks are
identical and equal ��.

After performing the integration over k0 and keeping
only the leading-order contributions from the dynamically
screened magnetic gluon exchange, we arrive at

�ð0Þð!EÞ¼ g2

36�2

Z 1

�1
d!0

E

�ð0Þð!0
EÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð!0
EÞ2þð�ð0ÞÞ2

q ln
�

j!0
E�!Ej ;

(4.9)

where � ¼ 4ð2�Þ3=ð�m2
DÞ. The approximate solution to

this equation reads [8–14]

�ð0Þ ’ �exp

�
� 3�2ffiffiffi

2
p

g
þ 1

�
: (4.10)

Using this result as a benchmark, let us proceed to the case
of a weak but nonzero magnetic field.
It is easy to check (and might have been expected from

the symmetry arguments) that the first-order term, i.e.,

Tð1Þð!Þ in Eq. (4.7), which is linear in a magnetic field,
vanishes after the Dirac traces are performed. Thus, the
leading correction to the gap equation in a weak magnetic

field comes from the second-order term, i.e., Tð2Þð!Þ in
Eq. (4.7).
To the same leading order in coupling, which includes

only the exchange interaction due to dynamically screened
magnetic gluons, we derive the following explicit form
of the gap equation (for the details of derivation, see
Appendix D):

�ðBÞð!EÞ ¼ g2

36�2

Z 1

�1
d!0

E�
ðBÞð!0

EÞ
2
4 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð!0
EÞ2 þ ð�ðBÞÞ2

q ln
�

j!0
E �!Ej þ

9!15
l ð~e ~Q ~BÞ2sin2�Bk

4 ��2ð!6
l þ ½ð!0

EÞ2 þ ð�ðBÞÞ2�3Þ3 ln
!l

j!0
E �!Ej

3
5:

(4.11)

The detailed analysis of this equation may not be very easy.
However, several of its qualitative properties are obvious
right away. First of all, the positive sign of the subleading-
order correction, proportional to ð~e ~Q ~BÞ2, indicates that the
gap increases with the magnetic field. This is in qualitative
agreement with the intuitive expectation that the external
magnetic field should enhance the binding energy of
Cooper pairs made of quasiparticles with opposite charges
[21–23]. From the fact that this correction to the gap
equation is also proportional to sin2�Bk, where �Bk is the
angle between the quasiparticle momentum and the mag-
netic field, we conclude that the gap function acquires a
directional dependence. Moreover, we see that the largest
value of the gap will be for quasiparticles with the mo-
menta perpendicular to the magnetic field. On the other
hand, for quasiparticles with the momenta parallel to the
field, there is no enhancement of the gap at all.

In order to understand the qualitative effect of the
subleading term quadratic in magnetic field, we can per-
form the following semirigorous analysis of Eq. (4.11). To
this end, let us cut the infrared region of integration off at

!0
E¼�ðBÞ and substitute �ðBÞ ¼ 0 in the denominators of

both terms on the right-hand side of the equation. We then
arrive at

�ðBÞ ’ g2

18�2

�
1þ 54�ð~e ~Q ~BÞ2

g2 ��4
sin2�Bk

�

�
Z �

�ðBÞ
d!0

E

�ðBÞ

!0
E

ln
�

!0
E

: (4.12)

While this approximation cannot be used to get a reliable
estimate for the gap, it is very helpful to understand the
qualitative effect of the magnetic field on the pairing
dynamics in color superconducting dense quark matter. It
shows that the effective coupling constant in the presence
of a magnetic field becomes larger, i.e.,

g2 ! g2eff ¼ g2
�
1þ 27�ð~e ~BÞ2

2g2 ��4
sin2�Bk

�
; (4.13)

where we substituted ~Q ¼ � 1
2 . The validity of the weak

field approximation requires that the subleading correction
is small compared to the leading result. This translates into
the requirement j~e ~B j2 & g2 ��4. As we shall see below, this
condition is always satisfied in stellar applications.
Without rigorously solving the gap equation (4.11), now

we can claim that the solution for the gap function in the
magnetic 2SC phase is approximately given by the same
expression as in the absence of the field, but with the
coupling constant g replaced by geff , i.e.,

�ðBÞ ’ �exp

�
� 3�2ffiffiffi

2
p

geff
þ 1

�
’ �ð0Þe�Bk ; (4.14)

where the explicit expression for �Bk follows from
Eq. (4.13),

�Bk ¼ 81�3ð~e ~BÞ2
4

ffiffiffi
2

p
g3 ��4

sin2�Bk: (4.15)
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This is a nonnegative function, which depends on the angle
between the quasiparticle momentum k and the magnetic

field ~B. Its maximum value �ðmaxÞ
Bk is obtained at �Bk ¼ 90
.

The final result in Eq. (4.14) is interesting for several
reasons. Most importantly, it shows that the gap is non-
isotropic, taking its largest values when the quasiparticle
momenta are perpendicular to the direction of the magnetic
field, and taking its smallest value when the quasiparticle
momenta are along/against the field. We also find that,
compared to the case without the magnetic field, the gap
is subject to an increase in all directions of quasiparticle
momenta, except for the directions exactly along or against
the magnetic field.

C. Gap equation: Strong magnetic field limit

To get a qualitative insight about the pairing dynamics in
the case of a strong magnetic field, ~e ~B * �2, it seems
sufficient to consider the gap equation in the lowest
Landau-level approximation. The choice of a simple ap-
proximation for the gluon exchange interaction is much
harder to justify. Here we will use the gluon propagator
with the screening effects at zero magnetic field.
Obviously, such an approximation is not very reliable. A
naive justification for such an approximation is the

observation that gluons couple not only to the charged

quasiparticles (with ~Q ¼ �1=2 and ~Q ¼ 1), which are
strongly affected by the magnetic field, but also to neutral

quasiparticles (with ~Q ¼ 0), which are not affected by the
magnetic field at all. If zero density (� ¼ 0) and strong
magnetic field limit in gauge theories is used as a guide for
intuition, one may suggest that those gluons, which are
coupled only to charged quasiparticles, will be subject to
an additional Debye screening with an effective mass

meff
D / g

ffiffiffiffiffiffiffiffiffiffiffi
j~e ~B j

p
[33]. The other gluons will be still provid-

ing the same dominant interaction with dynamical screen-
ing as in absence of the external field. Then, the usual
hard-dense loop approximation may be still qualitatively
reasonable. Besides, to the best of our knowledge, the
explicit result for the polarization tensor (screening) in
dense QCD matter (� � 0) in a magnetic field (B � 0)
is not available in the literature. Thus, the main purpose of
our exercise in this subsection, which is based on the
simplest possible approximation, will be to roughly esti-
mate the color superconducting gap due to long-range
interaction in the regime of a strong external magnetic
field.
By making use of Eq. (4.2), we easily derive the gap

equation in the lowest Landau-level approximation,

�ðBÞð!EÞ¼g2

3

Z d!0
Edk

03

ð2�Þ2
Z d2q?
ð2�Þ2 exp

�
�q2?l

2

2

�
�ðBÞð!0

EÞ
ð!0

EÞ2þðk03��Þ2þð�ðBÞÞ2
q2?

ðk03�k3Þ2þq2?

½ðk03�k3Þ2þq2?�1=2
½ðk03�k3Þ2þq2?�3=2þ!3

l

:

(4.16)

Because of the exponential suppression in the integration
over the transverse momentum q?, the dominant contribu-
tion comes from the region of small momenta, q?l & 1.
Therefore, an approximate result can be obtained by sim-
ply making a sharp ultraviolet cutoff at q? ¼ ffiffiffi

2
p

=l and
dropping altogether the exponential factor expð�q2?l

2=2Þ
in the integrand. After performing the integration also over
the longitudinal momentum k03, we will arrive at the fol-
lowing approximate gap equation:

�ðBÞð!EÞ � g2

72�2

Z þ1

�1
d!0

E

�ðBÞð!0
EÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð!0
EÞ2 þ ð�ðBÞÞ2

q
� ln

�B

j!0
E �!Ej ; (4.17)

where�B ¼ 8
ffiffi
2

p
�m2

Dl
3 ¼ 8�

ffiffi
2

p j~e ~Q ~B j3=2
g2 ��2 . As we see, this equation

has the same structure as Eq. (4.9), but with a smaller
effective coupling and a different expression for �B.
Making use of this fact, we can get an approximate solution
for the gap in the limit of strong magnetic field by properly
modifying the result in Eq. (4.10), i.e.,

�ðBÞ ¼ 4�j~e ~B j3=2
g2 ��2

exp

�
� 3�2

g
þ 1

�
: (4.18)

Here we substituted ~Q ¼ � 1
2 . This result shows that the

strong magnetic field strengthens the diquark pair forma-
tion. This is in qualitative agreement with the findings in
models with local interaction [21–23].
In contrast to the result in the weak magnetic field limit,

there is no directional dependence in the gap function when
the field is strong. This suggests that the corresponding
pairing dynamics is essentially local. While the result may
appear surprising at first sight, this finding in fact agrees
with the intuitive picture that the motion of charged parti-
cles is restricted over distances of the order of the magnetic

length, l ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~e ~Q ~B j

q
, in the plane perpendicular to the

magnetic field. When Cooper pairs form, the additional
spatial restriction on particles’ motion (partial localization)
can strongly enhance the binding energy and substantially
reduce the size of bound states.

V. CONCLUSION

In this paper, we studied the effect of a rotated magnetic
field on the Cooper pairing dynamics in the two-flavor
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color superconducting phase of dense quark matter with
long-range interaction provided by the one-gluon exchange
with dynamical screening. Using the Landau-level repre-
sentation, we derived a set of gap equations valid for an
arbitrary magnetic field. These equations show that, in
general, the gaps are functions of the Landau-level index
n. Therefore, solving the corresponding set of equations
may be rather involved and require the use of sophisticated
numerical methods. Instead, here we used analytical meth-
ods to investigate the limiting cases of weak and strong
magnetic fields.

In the weak magnetic field limit, the energy separation
between the Landau levels is vanishingly small and there is
no reason to expect a strong dependence of the gaps on the
corresponding discrete index n. This justifies the use of an
approximation in which the gaps are the same in all Landau
levels near the Fermi surface. Additionally, in this case the
quasiparticle propagator allows a simple expansion in
powers of the magnetic field that greatly simplifies the
structure of the resulting gap equation; see Eq. (4.6).
We find that the leading-order term, affecting the gap, is
quadratic in the magnetic field. The corresponding
correction to the vanishing magnetic field result for the

gap is determined by the value of parameter �ðmaxÞ
Bk ¼

81�3ð~e ~BÞ2=ð4 ffiffiffi
2

p
g3 ��4Þ, where ~B is the magnetic field

and �� is the quark chemical potential; see Eq. (4.14).
The numerical value of this parameter appears to be quite
small even for strongest possible magnetic fields in com-
pact stars, ~B & 1018 G. Indeed, the corresponding numeri-
cal estimate reads

�ðmaxÞ
Bk � 1:3� 10�2

�
400 MeV

��

�
4
� ~B

1018 G

�
2
: (5.1)

(Here, for the strong coupling constant, we used g ¼ ffiffiffiffiffiffiffi
4�

p
,

which corresponds to 	s ¼ 1.)
The most interesting feature of the pairing dynamics in

the presence of a magnetic field is a directional dependence
of the gap function in momentum space. The magnetic
field correction to the gap is proportional to sin2�Bk, where
�Bk is the angle between the quasiparticle momentum k

and the magnetic field ~B. From the physics viewpoint, this
means that quasiparticles with momenta pointing perpen-
dicular to the direction of the magnetic field have the
largest gaps, while quasiparticles with momenta along/
against the field have the smallest gaps. Clearly, such a
directional dependence is a qualitative outcome of a long-
range interaction in the model used. This contrasts with the
studies based on models with pointlike interactions in
Refs. [21–23], where the gaps are always isotropic.

Our analysis in the case of a strong magnetic field is
admittedly less rigorous. We use the lowest Landau-level
approximation and utilize the simplest approximation for
the gluon exchange interaction without modifying the

screening effects due to a nonzero magnetic field. The
resulting estimate for the gap is given in Eq. (4.18). Our
result shows that strong magnetic fields enhance the di-
quark Cooper pairing and lead to larger color supercon-
ducting gaps. This is in qualitative agreement with the
findings in Refs. [21–23], where the models with short-
range interactions were used. We also find that, because of
the partial localization of quasiparticles in a strong mag-
netic field, the corresponding dynamics is essentially local
and there is no directional dependence of the gap.
To go beyond the two limiting cases, analyzed in this

paper, one will need to properly truncate an infinite set of
gap equations and use numerical methods to solve it. In
such an approach, it may be also possible to include the
effects of different quark masses and chemical potentials.
The corresponding study, when extrapolated to the regime
of realistic densities, may further extend our understanding
of dense quark matter by clarifying (i) possible directional
dependences of the gap function, (ii) the evolution of such
a dependence between the two limiting cases studied here,
and (iii) the effect of �-equilibrium and neutrality of quark
matter on the gap function in magnetic fields. All of these
topics are left for future investigations.
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APPENDIX A: QUARK PROPAGATOR

In this appendix we calculate the explicit forms of the

full propagators for quasiparticles with ~Q ¼ þ 1
2 charge.

(The result can be also easily generalized to quasiparticles

with ~Q ¼ � 1
2 charge). We present the details of the analy-

sis for 11- and 21-components of the propagator SXðþ1=2Þ.
The starting point of the derivation is the definition of

the inverse propagator in Eq. (3.11). Introducing a short-
hand notation for the diagonal and off-diagonal elements of
that propagator, we write

SXðþ1=2Þ ¼
½Gþ

0 ��1 ��
�þ ½G�

0 ��1

� ��1

¼ Gþ ��
�þ G�

� �
; (A1)

where

G� ¼ ½ðG�
0 Þ�1 � ��G�

0 �
���1; (A2)

�� ¼ �G�
0 �

�G�: (A3)

The explicit forms of the 11- and 21-components of the
propagator read
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SXðþ1=2Þ11 ¼ ð���ðþ1=2Þ
� ��dg�

0 þmÞ½ð���ðþ1=2Þ
� þ�ur�

0 �mÞð���ðþ1=2Þ
� ��dg�

0 þmÞ ��2��1; (A4)

SXðþ1=2Þ21 ¼ �i�5��½ð���ðþ1=2Þ
� þ�ur�

0 �mÞð���ðþ1=2Þ
� ��dg�

0 þmÞ � �2��1; (A5)

where, by definition, �ð ~QÞ
� � i@� þ ~e ~Q ~A� and the gauge

field is ~A� ¼ ð0; 0; x ~B; 0Þ with the strength of the external
(rotated) magnetic field denoted by ~B.

The inverse of the operator in the square brackets of
Eqs. (A4) and (A5), which is the same for all components
of the propagator, can be calculated by employing the usual
trick of ‘‘quadrating’’ the operator. In this case, however,
we end up ‘‘biquadrating’’ it because the corresponding
operator is already quadratic in energy. For this purpose, let
us introduce the following shorthand notation:

X̂� ¼ ½ði@t � ��Þ2 � �2
? � i~e ~Q ~B�1�2 � ð�3Þ2

�m2 � ��2 ��2� � 2�0 ��ð�?  �? þ �3�3 �mÞ;
(A6)

where �� ¼ �dg��ur

2 , �� ¼ �urþ�dg

2 , �? ¼ ð�1; �2Þ, and
�? ¼ ð�1; �2Þ. Note that X̂� is the same operator that
appears in the square brackets of Eqs. (A4) and (A5). For

simplicity of notation, we dropped index ~Q here.
Let us first concentrate on the 11-component of the

propagator. It can be rewritten as follows:

SXðþ1=2Þ11 ¼ ð���ðþ1=2Þ
� ��dg�

0 þmÞX̂þðX̂�X̂þÞ�1

� ðÂ� �?  �?B̂ÞĈ�1: (A7)

The three new operator functions introduced here are
defined by

Â ¼ ½ði@tÞ�0 � �3�3 ��dg�
0 þm�½ði@t � ��Þ2 � ��2 � 2 ��ð�3�3 þmÞ�0 � ð�3Þ2 �m2 ��2�

� ½ði@tÞ�0 � �3�3 þ�ur�
0 þm�ð�2

? þ i~e ~Q ~B�1�2Þ;
(A8)

B̂ ¼ ði@t ��dgÞ2 � �2
? � i~e ~Q ~B�1�2 � ð�3Þ2 �m2 � �2; (A9)

Ĉ ¼ ½ði@t � ��Þ2 � �2
? � i~e ~Q ~B�1�2 � ð�3Þ2 �m2 þ ��2 ��2�2 � 4 ��2½ði@t � ��Þ2 � �2�: (A10)

In the coordinate space, the corresponding propagator is
formally given by

SXðþ1=2Þ11ðu; u0Þ ¼ hujðÂ� �?  �?B̂ÞĈ�1ju0i; (A11)

where u ¼ ðt; z; r?Þ and r? ¼ ðx; yÞ. It is easy to perform a
Fourier transform in time and z-coordinate,

SXðþ1=2Þ11ð!; k3; r?; r 0
?Þ ¼

Z
dtdzei!t�ik3zS1ðþ1=2Þ11ðu; u0Þ:

(A12)

In essence, this transform results in a simple replacement
of i@t ! ! and �3 ! k3 in all of the earlier expressions.

To proceed further, we should find a basis of suitable
eigenstates, in which the propagator has the simplest pos-

sible form. To this end, we note that the functions Â, B̂, and

Ĉ depend on the operator �2
? þ i~e ~Q ~B�1�2. Its eigenval-

ues are well known: 2nj~e ~Q ~B j, where n ¼ 0; 1; 2; . . . is the
Landau-level index. Note that the integer quantum number
n has both the orbital and spin contributions, i.e., n ¼ kþ
ð1þ sÞ=2, where k ¼ 0; 1; 2; . . . labels a specific orbital
state, while s ¼ �1 corresponds to a given (up or down)
spin state. The explicit form of the corresponding eigen-
states hr?jkpysi is also well known (e.g., see Ref. [39],

where similar method and notations are used).

Following closely the approach of Ref. [39], we use the
complete set of eigenstates to simplify the expression for
the propagator (A12). The final result will have the form

SXðþ1=2Þ21ð!;k3;r?;r 0?Þ¼ei�ðr?;r 0?Þ �SXðþ1=2Þ21ð!;k3;r?�r 0?Þ;
(A13)

where �ðr?; r 0
?Þ is the Schwinger phase. In the Landau

gauge used, the explicit form of the phase is

�ðr?; r0?Þ ¼ � ðxþ x0Þðy� y0Þ
2l2

sgnð~e ~Q ~BÞ; (A14)

where l ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~e ~Q ~B j

q
is the magnetic length. (Note that

this phase is responsible for breaking the translational
invariance of the propagator.) The translationally invariant
part of the propagator is given by

�SXðþ1=2Þ11ð!; k3; r?Þ

¼ e�
=2

2�l2
X1
n¼0

�
An

Cn
½Lnð
ÞP� þ Ln�1ð
ÞPþ�

� i
�?  r?

l2
Bn

Cn
L1
n�1ð
Þ

�
; (A15)
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where 
 � r2?=ð2l2Þ, L	
n ð
Þ are the generalized Laguerre

polynomials (by definition, Ln � L0
n and L	�1 ¼ 0), and

P � ¼ 1

2
ð1� i�1�2 sgnð~e ~Q ~BÞÞ (A16)

are the spin projection operators.

Functions An, Bn, and Cn in Eq. (A15) replace the

corresponding operators Â, B̂, and Ĉ, when projected
onto the nth Landau-level state. Their explicit forms are

obtained from Â, B̂, and Ĉ by replacing �2
? þ

i~e ~Q ~B�1�2 ! 2nj~e ~Q ~B j, i.e.,

An ¼ ½!�0 � k3�3 ��dg�
0 þm�½ð!� ��Þ2 � ��2 � 2 ��ð�3k3 þmÞ�0 � ðk3Þ2 �m2 ��2

n�
� 2nj~e ~Q ~B j½!�0 � k3�3 þ�ur�

0 þm�; (A17)

Bn ¼ ð!��dgÞ2 � 2nj~e ~Q ~B j � ðk3Þ2 �m2 ��2
n; (A18)

Cn ¼ ½ð!� ��Þ2 � 2nj~e ~Q ~B j � ðk3Þ2 �m2 þ ��2 � �2
n�2 � 4 ��2½ð!� ��Þ2 ��2

n�: (A19)

Here we consider a general case when the dynamically
generated gap function �n depends not only on the energy
! and k3, but also on the Landau-level index n. (In operator
form, it means that � depends on �2

? þ i~e ~Q ~B�1�2.)
Therefore, we replaced the operator�with the correspond-
ing value �n that it takes in the nth Landau-level state.

At this point, it may be appropriate to note that the zeros
of Cn determine the spectrum of quasiparticles in color
superconducting quark matter in a magnetic field, i.e.,

En;�;� ¼ ���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nj~e ~Q ~B j þ ðk3Þ2 þm2
q

� ��

�
2 þ�2

n

s
:

(A20)

Note that all four different sign combinations are possible.
The choice of the sign in front of the chemical potential ��
corresponds to the choice of either particle states (allowing
small energies of order �n) or antiparticle states (generally

having large energies of order ��). The sign in front of the
overall square root corresponds to particle/hole type qua-
siparticles (i.e., positive/negative energy states). One
should note, however, that an additional complication in
this classification appears in the case of gapless super-
conducting phases when ��>�n [18,19].
Following the same approach, we can derive explicit

expressions for all components of the propagator SXðþ1=2Þ.
For example, the final expression for the off-diagonal
21-component, which is used in the gap equation in the
main text, reads

SXðþ1=2Þ21ð!; k3; r?; r 0
?Þ

¼ ei�ðr?;r 0
?Þ �SXðþ1=2Þ21ð!; k3; r? � r 0

?Þ;
(A21)

with the translationally invariant part given by

�S X
ðþ1=2Þ21ð!; k3; r?Þ ¼ �i�5 e

�
=2

2�l2
X1
n¼0

��
n

�
En

Cn
½Lnð
ÞP� þ Ln�1ð
ÞPþ� � i

�?  r?
l2

2 ���0

Cn
L1
n�1ð
Þ

�
: (A22)

Here we introduced yet another function,

En ¼ ð!� ��Þ2 � 2nj~e ~Q ~B j � ðk3Þ2 �m2 � ��2 � �2
n

� 2 ��ðk3�3 þmÞ�0: (A23)

Before concluding this appendix, let us add that similar
representations can be also derived for the components of
the inverse propagator. As an example, let us present the
corresponding result for ½SXðþ1=2Þ��1

21 ðu; u0Þ, which is used in
the gap equation. It has the same general structure as the
above expressions for the components of SXðþ1=2Þ, i.e.,

½SXðþ1=2Þ��1
21 ð!;k3;r?;r 0?Þ

¼ei�ðr?;r 0?Þ½SXðþ1=2Þ��1
21 ð!;k3;r?�r 0?Þ: (A24)

It is important that the inverse propagator has exactly
the same phase as the propagator itself; see Eqs. (A13) and
(A14). The explicit form of its translationally invariant part
reads

½SX ðþ1=2Þ��1
21 ð!; k3; r?Þ

¼ �i�5 e
�
=2

2�l2
X1
n¼0

��
n½Lnð
ÞP� þ Ln�1ð
ÞPþ�: (A25)

APPENDIX B: GAP EQUATION

The gap equation (i.e., the off-diagonal component of
the Schwinger-Dyson equation for the full propagator) in
the coordinate space reads
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½SXð ~QÞ��1
21 ðu; u0Þ ¼ �ig2��ðTAÞT½SXð ~QÞ�21ðu; u0Þ

� ��TBDAB
��ðu� u0Þ; (B1)

where DAB
��ðu; u0Þ is the gluon propagator, which is

assumed to be diagonal in adjoint color indices
(A; B ¼ 1; 2; . . . ; 8), i.e., DAB

��ðu� u0Þ ¼ �ABD��ðu� u0Þ.
By making use of the identity

X8
A¼1

TA
a0aT

A
b0b ¼ 1

2
�a0b�ab0 � 1

6
�aa0�bb0 ; (B2)

we derive the following form of the gap equation:

½SXð ~QÞ��1
21 ðu; u0Þ ¼ i23g

2��½SXð ~QÞ�21ðu; u0Þ��D��ðu� u0Þ:
(B3)

Taking into account that all components of the quasipar-
ticle propagator as well as its inverse have the same non-
zero Schwinger phase, we can derive the equation for the
translationally invariant parts simply by dropping the com-
mon phase factor on both sides of the gap equation,

½SX ðþ1=2Þ��1
21 ð!; k3; r?Þ ¼ i

2g2

3

Z d!0dk03

ð2�Þ2 �� �SXðþ1=2Þ21ð!; k3; r?Þ��
Z d2q?

ð2�Þ2 e
iq?r?D��ð!�!0; k3 � k03; q?Þ; (B4)

where we additionally performed a Fourier transform in time and z-coordinate on both sides of the equation, and used a
momentum representation for the gluon propagator.

By making use of the explicit form of the relevant translationally invariant parts of the propagators in Eqs. (A22) and
(A25), we rewrite the last form of the gap equation as follows:

e�
=2

2�l2

X1
n¼0

�n½Lnð
ÞP� þ Ln�1ð
ÞPþ� ¼ �i
2g2

3

e�
=2

2�l2
X1
n¼0

Z d!0dk03

ð2�Þ2 �� �n

Cn

�
En½Lnð
ÞP� þ Ln�1ð
ÞPþ�

� 2 ��i
�?  r?

l2
�0L1

n�1ð
Þ
�
��

Z d2q?
ð2�Þ2 e

iq?r?D��ð!�!0; k3 � k03; q?Þ:
(B5)

The last equation can now be easily projected onto differ-
ent orbital eigenstates. This is formally done by multi-
plying both sides of the equation by e�
=2Lmð
Þ (where
m ¼ 0; 1; 2; . . . ) and integrating over the perpendicular
spatial coordinates r?. After performing such projections,
we arrive at the following (infinite) set of gap equations in
the Landau-level representation:

�mP� þ �mþ1Pþ

¼ �i
2g2

3

X1
n¼0

Z d!0dk03

ð2�Þ2
Z d2q?

ð2�Þ2 �
� �nEn

Cn

�
�
Lð0Þ

n;m

�
q2?l

2

2

�
P� þLð0Þ

n�1;m

�
q2?l

2

2

�
Pþ

�
� ��D��ð!�!0; k3 � k03; q?Þ; (B6)

where, by definition,

L ð0Þ
n;mðxÞ ¼ ð�1Þnþme�xLm�n

n ðxÞLn�m
m ðxÞ: (B7)

In the derivation, we used the following table integrals (see
formulas 7.414 3 and 7.422 2 in Ref. [40]):

Z 1

0
dxe�xx	L	

mðxÞL	
n ðxÞ ¼ �ðnþ 	þ 1Þ

n!
�n
m; (B8)

and

Z 1

0
dxx2�þ1e�	x2L�

mð	x2ÞL�
n ð	x2ÞJ0ðxyÞ

¼ ð�1Þmþn

2	�þ1

ðmþ �Þ!
m!

e�y2=4	Ln�m
mþ�

�
y2

4	

�
Lm�n
n

�
y2

4	

�
:

(B9)

APPENDIX C: PROPAGATOR IN WEAK
MAGNETIC FIELD LIMIT

In this appendix, we consider the quasiparticle propa-
gator and the gap equation in the limit of weak magnetic
field.
We begin by performing a Fourier transform of the

translation invariant part of the propagator,

�SXðþ1=2Þ21ð!; k3; k?Þ

¼
Z

d2r?e�ik?r? �SXðþ1=2Þ21ð!; k3; r?Þ

¼ �2i�5e�k2?l
2 X1
n¼0

ð�1Þn �n

Cn
fEn½Lnð2k2?l2ÞP�

� Ln�1ð2k2?l2ÞPþ� þ 4 ��ð�?  k?Þ�0L1
n�1ð2k2?l2Þg:

(C1)

In the weak field limit, the difference between the
neighboring levels is vanishingly small in energy and the
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properties of the corresponding states become almost in-
distinguishable. In application to the gap function �n, this
means that it will become almost independent of the
Landau-level index in a wide range of n near the (would
be) Fermi surface. (Strictly speaking, the true Fermi sur-
face is not well defined in a superconductor, but if the gap
is small, � 	 ��, one could map the corresponding phase
space onto the phase space in the free quark matter).

In order to derive a weak field expression for the propa-
gator, one needs to first perform the sum over the Landau-
level index n. A straightforward way of achieving this is to
employ the usual proper-time representation, i.e.,

1

ðaþ 2njbjÞ2 þ c2
¼
Z 1

0

ds

c
sinðscÞe�sðaþ2njbjÞ; (C2)

aþ 2njbj
ðaþ 2njbjÞ2 þ c2

¼
Z 1

0
ds cosðscÞe�sðaþ2njbjÞ; (C3)

for the two types of structures appearing in the Euclidian
propagator, and then use the well known summation for-
mula for Laguerre polynomials,

X1
n¼0

L	
n ðxÞzn ¼ ð1� zÞ�ð	þ1Þ exp

�
xz

z� 1

�
: (C4)

Before using these identities, it is convenient to rewrite
propagator (C1) in the following form:

�SXðþ1=2Þ21ði!E; k
3; k?Þ

¼ i�5�½I1 þ 2 ��ðk3�3 þmþ ���0Þ�0I2

þ 2 ��ð�?  k?Þ�0I3�; (C5)

where, by definition, the sums Ii (i ¼ 1; 2; 3) are

I1 ¼ 2e�ðk2?=jbjÞ
X1
n¼0

ð�1ÞnLn

�
2k2?
jbj

��
aþ 2njbj

ðaþ 2njbjÞ2 þ c2
P�

þ aþ 2ðnþ 1Þjbj
½aþ 2ðnþ 1Þjbj�2 þ c2

Pþ
�
; (C6)

I2 ¼ 2e�ðk2?=jbjÞ
X1
n¼0

ð�1ÞnLn

�
2k2?
jbj

��
1

ðaþ 2njbjÞ2 þ c2
P�

þ 1

½aþ 2ðnþ 1Þjbj�2 þ c2
Pþ

�
; (C7)

I3 ¼ 4e�ðk2?=jbjÞ
X1
n¼0

ð�1ÞnL1
n

�
2k2?
jbj

�
1

½aþ 2ðnþ 1Þjbj�2 þ c2
:

(C8)

Here we used the following notation:

a ¼ ð!E þ i��Þ2 þ ðk3Þ2 þm2 þ�2 � ��2; (C9)

b ¼ ~e ~Q ~B; (C10)

c ¼ 2 ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!E þ i��Þ2 þ�2

q
: (C11)

It is appropriate to mention that the use of the proper-time
representations, as given by Eqs. (C2) and (C3), may not be
completely justified in the presence of a nonzero density.
Indeed, when the chemical potential is sufficiently large,
the above expression for the parameter a may become
negative. When this occurs, the proper-time integrals be-
come divergent and the validity of the derivation seemingly
fails. The way around this problem is to assume that the
chemical potential is sufficiently small at all intermediate
stages of derivation. In the end, after magnetic field ex-
pansion is done and all proper-time integrations are per-
formed, one can extend the validity of the propagators to
large values of the chemical potential.
With the above remark kept in mind, we use the proper-

time representations to rewrite the expressions for the sums
Ii as follows:

I1 ¼ 2e�k2?=jbj
X1
n¼0

ð�1ÞnLn

�
2k2?
jbj

�

�
Z 1

0
ds cosðscÞe�sðaþ2njbjÞðP� þ e�2jbjsPþÞ;

(C12)

I2¼2e�k2?=jbj
X1
n¼0

ð�1ÞnLn

�
2k2?
jbj

�

�
Z 1

0

ds

c
sinðscÞe�sðaþ2njbjÞðP�þe�2jbjsPþÞ; (C13)

I3 ¼ 4e�k2?=jbj
X1
n¼0

ð�1ÞnL1
n

�
2k2?
jbj

�

�
Z 1

0

ds

c
sinðscÞe�sðaþ2njbjþ2jbjÞ: (C14)

Then, after using the summation formula (C4), we derive

I1 ¼
Z 1

0
ds cosðscÞe�sa�ðk2?=bÞ tanhðsbÞ½1� i�1�2 tanhðsbÞ�;

(C15)

I2 ¼
Z 1

0

ds

c
sinðscÞe�sa�ðk2?=bÞ tanhðsbÞ½1� i�1�2 tanhðsbÞ�;

(C16)
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I3 ¼
Z 1

0

ds

c
sinðscÞe�sa�ðk2?=bÞ tanhðsbÞ 1

cosh2ðsbÞ : (C17)

Finally, expanding the integrands in powers of the mag-
netic field b and integrating over the proper time, we obtain

I1 ’
Z 1

0
ds cosðscÞe�sðaþk2?Þ

�
�
1� i�1�2sbþ s3

3
k2?b

2 þOðb3Þ
�

¼ aþ k2?
ðaþ k2?Þ2 þ c2

� i�1�2
ðaþ k2?Þ2 � c2

½ðaþ k2?Þ2 þ c2�2 b

þ 2½ðaþ k2?Þ4 � 6ðaþ k2?Þ2c2 þ c4�k2?
½ðaþ k2?Þ2 þ c2�4 b2 þOðb3Þ;

(C18)

I2 ’
Z 1

0

ds

c
sinðscÞe�sðaþk2?Þ

�
�
1� i�1�2sbþ s3

3
k2?b

2 þOðb3Þ
�

¼ 1

ðaþ k2?Þ2 þ c2
� i�1�2

2ðaþ k2?Þ
½ðaþ k2?Þ2 þ c2�2 b

þ 8ðaþ k2?Þ½ðaþ k2?Þ2 � c2�k2?
½ðaþ k2?Þ2 þ c2�4 b2 þOðb3Þ; (C19)

I3 ’
Z 1

0

ds

c
sinðscÞe�sðaþk2?Þ

�
�
1� s2b2 þ s3

3
k2?b

2 þOðb3Þ
�

¼ 1

ðaþ k2?Þ2 þ c2
� 2½3ðaþ k2?Þ2 � c2�

½ðaþ k2?Þ2 þ c2�3 b2

þ 8ðaþ k2?Þ½ðaþ k2?Þ2 � c2�k2?
½ðaþ k2?Þ2 þ c2�4 b2 þOðb3Þ: (C20)

Now, combining the same order terms in powers of the
magnetic field, we rewrite propagator (C5) as follows:

�S X
ðþ1=2Þ21ði!E; k

3; k?Þ ¼ i�5�½Kð0Þ þ Kð1Þ þ Kð2Þ�;
(C21)

where

Kð0Þ ¼ aþk þ a�k þ 4 ��ð�  kþmÞ�0

2aþk a
�
k

; (C22)

Kð1Þ ¼ �i�1�2 ðaþk Þ2 þ ða�k Þ2 � 4 ��2ðaþk þ a�k Þ þ 8 ��akðk3�3 þmÞ�0

2ðaþk a�k Þ2
b; (C23)

Kð2Þ ¼ aþk ðaþk � 4 ��2Þ3 þ a�k ða�k � 4 ��2Þ3 þ 4 ��2aþk a
�
k ½16 ��2 � 3ðaþk þ a�k Þ�

ðaþk a�k Þ4
k2?b

2 � 4 ��ð�?  k?Þ�0 4a
2
k � aþk a

�
k

ðaþk a�k Þ3
b2

þ 16 ��akð�  kþmÞ�0 2a
2
k � aþk a

�
k

ðaþk a�k Þ4
k2?b

2: (C24)

Note the shorthand notation used,

�  k � �?  k? þ k3�3; (C25)

a�k � ð!E þ i��Þ2 þ ðEk � ��Þ2 þ �2; (C26)

ak � aþ k2? ¼ ð!E þ i��Þ2 þ k2 þm2 þ �2 � ��2;

(C27)

as well as Ek �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and k2 � k2? þ ðk3Þ2.

APPENDIX D: GAP EQUATION IN WEAK
MAGNETIC FIELD LIMIT

To leading order (i.e., the limit of vanishing magnetic
field), the gap equation reads

�ð0Þð!EÞ ¼ g2

6

Z d!0
E

2�

�
Z d3k0

ð2�Þ3 �
ð0Þð!0

EÞ tr½��Kð0Þð!0; k0Þ���
�D��ð!�!0; k� k0Þ: (D1)

Here we assumed that the gap is an explicit function of the
energy, but not of the momentum. The result for the trace in
the integrand is given by

tr ½��Kð0Þð!0; k0Þ��� ¼ 2g��
aþk0 þ a�k0
aþk0a

�
k0

þ    ; (D2)

where the ellipsis stands for antisymmetric terms, which do
not affect the form of the gap equation. Indeed, when
contracted with the gluon propagator, which is symmetric
in Lorentz indices, all antisymmetric terms will vanish.
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At asymptotic densities, we can also neglect all correc-
tions due to nonzerom and ��. By taking into account that
the main contribution to the momentum integral on the
right-hand side of the gap equation comes from the vicinity

of the Fermi surface (k0 ’ kF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2 �m2

p
), we can make

the following approximation for the trace:

tr ½��Kð0Þð!0; k0Þ��� ’ 2g��

a�k0
: (D3)

Note that, in the vicinity of the Fermi surface, one has

a�k0 ¼ ð!0
EÞ2 þ 
2

k0 þ �2 	 ��2; (D4)

aþk0 ¼ 4 ��2 þ 4 ��
k0 þ a�k0 ’ 4 ��ð ��þ 
k0 Þ; (D5)

where 
k0 � Ek0 �� ’ k0 � kF.
The resulting equation coincides with the known form of

the gap equation in the case of zero magnetic field studied
in Refs. [8–14]. In our notation, the corresponding solution
for the gap function reads

j�ð0Þj ’ �exp

�
� 3�2ffiffiffi

2
p

g
þ 1

�
; (D6)

where � ¼ 4ð2�Þ3=ð�m2
DÞ.

In order to find the correction to the gap function due to
nonzero magnetic field, let us include the approximate
kernel up to second order in the magnetic field. After
taking traces on the both sides of the equation, we obtain

�ðBÞð!EÞ¼g2

6

Z d!0
E

2�

Z d3k0

ð2�Þ3�
ðBÞð!0

EÞ

� tr½��Kð0Þð!0;k0Þ���D��ð!�!0;k�k0Þ

þg2

6

Z d!0
E

2�

Z d3k0

ð2�Þ3�
ðBÞð!0

EÞ

� tr½��Kð2Þð!0;k0Þ���D��ð!�!0;k�k0Þ:
(D7)

In addition to the result in Eq. (D2), this equation also
contains the trace of the second-order correction to the
kernel. The corresponding approximate expression in the
vicinity of the Fermi surface reads

tr ½��Kð2Þð!0; k0Þ��� ’ g��
Nk0 ðk0?Þ2
2 ��4ða�k0 Þ4

ð~e ~Q ~BÞ2 þ    ;
(D8)

where Nk0 ’4 ��
k0 ð2
2
k0 �a�k0 Þ�24
4

k0 þ16a�k0

2
k0 �ða�k0 Þ2

and the ellipsis denotes antisymmetric terms.
Let us point out that the only directional dependence
of this trace comes through the overall factor ðk0?Þ2 �ðk0Þ2ð1� cos2�Bk0 Þ, where �Bk0 denotes the angle between
the direction of the magnetic B and the momentum k0.
(Strictly speaking, in a self-consistent analysis, the gap
function on the right-hand side will also have a directional

dependence and will affect the angular integration. The
corresponding effects are expected to be very small and
will be neglected in the simplified analysis here). The
integrand on the right-hand side of Eq. (D7) has an addi-
tional directional dependence in the gluon propagator [see
Eq. (4.3)], which is a function of the polar angle � � �kk0
(i.e., the polar angular coordinate of vector k0 measured
from the direction of the external vector k). With this
convention for angular coordinates, it is convenient to
use the following relation:

cos�Bk0 ¼ sin� sin�Bk cosð���BkÞ þ cos� cos�Bk;

(D9)

in order to rewrite the expression for ðk0?Þ2 in terms of the

angular integration variables � (polar angle) and � (azi-
muthal angle). Now we can easily perform the angular
integration on the right-hand side of the gap equation.
The results for the two types of angular integrations,
namely, with the electric and magnetic part of the gluon
propagator, read

Ael ¼
Z ð1� cos2�Bk0 Þ sin�d�d�

M2 � 2k0k cos�

¼ �

8ðk0Þ3k3
�
2k0kM2½1þ 3 cosð2�BkÞ�

þ 1

2
ð4ðk0Þ2k2½3þ cosð2�BkÞ�

�M4½1þ 3 cosð2�BkÞ�Þ lnM
2 þ 2k0k

M2 � 2k0k

�
; (D10)

Amag ¼
Z
ð1� cos2�Bk0 Þ sin�d�d�

� 2½ðk0Þ2 þ k2 � 2k0kcos��1=2
½ðk0Þ2 þ k2 � 2k0kcos��3=2 þ!3

l

¼ 2�

3k0k

�
1þ cos2�Bk þ

�ðk0Þ2 þ k2

2k0k

�
2ð1� 3cos2�BkÞ

�

� ln
ðk0 þ kÞ3 þ!3

l

jk0 � kj3 þ!3
l

þ �!2
l

2ðk0kÞ3 ð1� 3cos2�BkÞ

�
�
!2

l

Z xmax

xmin

x6dx

x3 þ 1
� 2½ðk0Þ2 þ k2�

Z xmax

xmin

x4dx

x3 þ 1

�
;

(D11)

where M2 ¼ ð!0
E �!EÞ2 þ ðk0Þ2 þ k2 þm2

D. In order to
simplify the calculation of Amag, it is convenient to change

the integration variable � to the new dimensionless variable

x ¼ ð1=!lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk0Þ2 þ k2 � 2k0k cos�

p
. Note that sin�d� ¼

!2
l xdx=ðk0kÞ and the new range of integration is from

xmin ¼ jk0 � kj=!l to xmax ¼ ðk0 þ kÞ=!l.
In the vicinity of the Fermi surface, the approximate

results for these integrals read
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Ael ’ �sin2�Bk
��2

ln
ð2 ��Þ2

ð!0
E �!EÞ2 þ ðk0 � kÞ2 þm2

D

þ    ; (D12)

Amag ’ 4�sin2�Bk
3 ��2

ln
ð2 ��Þ3

jk0 � kj3 þ!3
l

þ    ; (D13)

where the ellipses denote the subleading terms.
By making use of the above intermediate results, we arrive at the following form of the gap equation:

�ðBÞð!EÞ ¼ 2g2

9

Z 1

�1
d!0

E

ð2�Þ
Z d
k0

ð2�Þ2
�ðBÞð!0

EÞ
a�k0

ln
ð2 ��Þ3

jk0 � kj3 þ!3
l

�
1þ ½�24
4

k0 þ 16a�k0

2
k0 � ða�k0 Þ2�ð~e ~Q ~BÞ2

ð2 ��Þ2ða�k0 Þ3
sin2�Bk

�
:

(D14)

Recall that !3
l ¼ ð�=4Þm2

Dj!0
E �!Ej. Integrating over the momentum, we arrive at

�ðBÞð!EÞ ¼ g2

36�2

Z 1

�1
d!0

E�
ðBÞð!0

EÞ
2
4 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð!0
EÞ2 þ ð�ðBÞÞ2

q ln
�

j!0
E �!Ej þ

9!15
l ð~e ~Q ~BÞ2sin2�Bk

4 ��2ð!6
l þ ½ð!0

EÞ2 þ ð�ðBÞÞ2�3Þ3 ln
!l

j!0
E �!Ej

3
5:

(D15)

To get a rough estimate, let us take an infrared cutoff in the energy integration at !0
IR ’ �ðBÞ and drop the dependence on

�ðBÞ in the denominator of the integrand. Then, we have

�ðBÞ ’ g2

18�2

Z �

�ðBÞ
d!0

E

�ðBÞ

j!0
Ej
�
1þ 54ð~e ~Q ~BÞ2sin2�Bk

� ��2m2
D

�
ln

�

j!0
Ej
: (D16)

This means that the magnetic field correction is equivalent to an effective increase of the coupling constant, i.e.,

g2 ! g2eff ¼ g2
�
1þ 54�ð~e ~Q ~BÞ2

g2 ��4
sin2�Bk

�
; (D17)

where we used the definition of the Debye mass m2
D ¼ ðg ��=�Þ2.
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