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We show that for an SU(N) Yang-Mills theory the classical background-quantum splitting is

nontrivially deformed at the quantum level by a canonical transformation with respect to the Batalin-

Vilkovisky bracket associated with the Slavnov-Taylor identity of the theory. This canonical trans-

formation acts on all the fields (including the ghosts) and antifields; it uniquely fixes the dependence on

the background field of all the one-particle irreducible Green’s functions of the theory at hand. The

approach is valid both at the perturbative and nonperturbative level, being based solely on symmetry

requirements. As a practical application, we derive the renormalization group equation in the presence of a

generic background and apply it in the case of an SU(2) instanton. Finally, we explicitly calculate the

one-loop deformation of the background-quantum splitting in lowest order in the instanton background.
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I. INTRODUCTION

Though the background field method (BFM) has a long
history in quantum field theory [1], its potential was fully
appreciated only during the eighties when it was realized
that in gauge theories one can equivalently compute gauge-
invariant physical quantities (like physical S-matrix ele-
ments or the correlators of gauge-invariant operators) by
the ordinary Gell-Mann and Low’s formula at zero back-
ground or by reconstructing physical connected amplitudes
from background-dependent one-particle irreducible (1-PI)
Green’s functions via the Legendre transform with respect
to (w.r.t.) the background field [2].

The big advantage of employing the BFM over conven-
tional gauge-fixing schemes is then manifest, for in the
presence of a background gauge field one can choose a
(background) gauge-fixing condition that preserves the
background gauge invariance at the quantum level. One
thus obtains an additional backgroundWard identity for the
vertex functional, yielding linear relations among 1-PI
amplitudes [unlike the Slavnov-Taylor (ST) identity, which
gives more complicated bilinear relations among the 1-PI
Green’s functions]. In general, the presence of this Ward
identity simplifies enormously the calculations, and has
been successfully exploited in many applications, ranging
from perturbative calculations in Yang-Mills theories [2,3]
and in the standard model [4,5] to gravity and supergravity
calculations [6].1

On the nonperturbative side, the discovery of topologi-
cally nontrivial gauge field configurations [8,9] triggered
the study of Yang-Mills theory around nonvanishing vacua.
For instance, the confinement problem can be explained in
the dual superconductor picture by condensing chromo-
magnetic monopoles, leading to a confinement potential
via the formation of flux tubes for the chromoelectric field
[10]. In the vortex condensation model instead [11], closed
chromomagnetic center vortices condense and give rise to
an area law for the Wilson loop (and eventually a dynami-
cal mass for the gluon field). More recently, the synthesis
of the BFM with the pinch technique [12,13] has provided
a nonperturbative setting in which a new set of Schwinger-
Dyson (SD) equations has been formulated [14] and the
corresponding solutions used [15] to study the properties of
the infrared sector of Yang-Mills theories.
In a very recent paper [16] it has been shown that the ST

identity in the presence of a background field (extended ST
identity in what follows) provides a remarkable set of
constraints on the vertex functional � of Yang-Mills theo-

ries in the presence of a nontrivial background Âa
�. Since

these constraints are a consequence of the ST identity, they
should be fulfilled by any implementation of the BFM, e.g.,
when/if formulated on a lattice.
The main result of [16] is that the classical background-

quantum splitting is deformed at the quantum level in a
nontrivial fashion, with the deformation controlled by a
particular 1-PI correlator, involving the covariant deriva-
tives of the ghost and the antighost fields. More precisely,
let us denote by A�a

� the antifield associated with the gauge

field Aa
� and by�a

� the external ghost source [7,17,18] that

forms the Becchi-Rouet-Stora-Tyutin (BRST) partner of

the background gauge field Âa
�. At the classical level A

�a
� is

coupled to the BRST variation of Aa
�, i.e., the covariant
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1Notice, however, that the background Ward identity is no

substitute to the ST identity: physical unitarity stems from the
validity of the latter identity and does not follow from the former
identity alone [7].
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derivative of the ghost field, while �a
� is coupled to the

covariant derivative of the antighost.
Then, in the full quantum theory the deformed quantum-

background splitting amounts to a background-dependent
field redefinition [16]

Aa
� ! Aa

� � Ga
�ðÂÞ; (1.1)

where the functional Ga
� is obtained from the correlator

��a
�A

�b
�
via the defining equation

�Gb
�ðyÞ

�Âa
�ðxÞ

¼ ��a
�A

�b
�
ðx; yÞ: (1.2)

Once analyticity in the background gauge field Âa
� is

assumed, one can prove that the dependence on the back-

ground field Âa
� of the vertex functional in the zero ghost

sector �jc¼0 is uniquely fixed by applying the transforma-

tion (1.1) to �jc¼0 evaluated at Â� ¼ 0 [16].

The 1-PI amplitudes involving background insertions can
thus be obtained by those at zero background once the
functional Ga

� is known. Notice, in fact, that the two-point

function ��a
�A

�b
�
can in principle be explored by means of

nonperturbative methods, e.g., on the lattice; in particular,
in the Landau gauge it is related to the 1-PI connected part
of a certain correlator which involves the time ordered
product of two Faddeev-Popov determinants [16].

From the physical point of view, besides the perhaps
surprising fact that the background BRST invariance leads
to such nontrivial consequences, these results entail the
possibility of encoding topological information into con-
tinuum nonperturbative methods (e.g., techniques based on
the SD equations) through the systematic calculation of the
correction terms due to the presence of a nontrivial back-
ground. In this way one might be able to describe what
happens when topological effects are properly taken into
accounts, and systematically study their effects on different
correlators.

In this paper we generalize the results of [16] to the
ghost-dependent sector. This can be achieved in a natural
and rather elegant way by means of a canonical trans-
formation w.r.t. the Batalin-Vilkovisky (BV) bracket asso-
ciated with the ST identity. Wewill indeed show that, in the
full quantum theory, the source �a

� can be understood as

the source coupled to the generating functional of the
canonical transformation that controls the (quantum-
deformed) quantum-background splitting. With that will
come the surprising feature that this canonical transforma-
tion also involves the ghost fields, contrary to the classical
case in which the splitting is limited to the gauge sector.

Through the extension of the tools originally devised for
the direct imposition of the ST identity by algebraic meth-
ods [19], we will then devise the algebraic tools required
for obtaining an explicit, recursive representation of the
background-dependent sector of the vertex functional �,
based on homotopy techniques. This may prove useful in

future practical computations, as it controls the corrections
to the quantum n-point functions due to the presence of
nontrivial backgrounds. Indeed, the canonical transforma-
tion gives rise to a field and antifield redefinition governed
by certain kernels involving the insertion of the�a

� source,

which can be computed nonperturbatively as solution of
the corresponding SD equations.
We then create two examples of the possible use of the

formalism. To begin with, since the homotopy formula
gives the explicit dependence of the vertex functional on

Âa
�, we use it in order to derive the renormalization group

(RG) equation in the presence of a nontrivial background.
We then exploit this RG equation to obtain the value of the
SU(2) Yang-Mills vertex functional on the instanton back-
ground at higher orders in the loop expansion, discussing,
in particular, how the anomalous dimensions enter in the
RG equation.
Finally, we compute the one-loop deformation of the

quantum-background splitting in the case of an SU(2)
instanton, in lowest order in the instanton background.
The paper is organized as follows. In Sec. II we set up

our conventions and write the extended ST identity by
exploiting the BV bracket. Next, we show that the extended
ST identity can be cast in the form of an inhomogeneous
equation for a suitable BRST differential acting on the

background field Âa
� and its external ghost counterpart

�a
�; in addition, we establish the associated homotopy

operator. Then, we construct the finite canonical transfor-
mation which solves the extended ST identity, fixing
uniquely the dependence on the background field in the
�a

� ¼ 0 sector. In Sec. III we analyze the canonical trans-

formation in terms of a field and antifield redefinition,
controlled by certain kernels involving the source �a

�.

The SD equations for these kernels are also given. In
Sec. IV we use the formalism to write down the RG
equation in the presence of a generic background, discus-
sing, in particular, the role of the anomalous dimensions of
the gauge and the background fields. We show how the
formalism can be applied for an explicit background
choice, corresponding to the celebrated Belavin-Polyakov-
Shvarts-Tyupkin instanton [8], in Sec. V. Specifically, we
first evaluate the vertex functional on the instanton back-
ground by exploiting the RG equation previously derived;
next, we evaluate the one-loop corrections to the classical
instanton profile. Our conclusions are presented in Sec. VI.
The paper ends with an appendix where we collect the
tree-level vertex functional and the relevant functional
identities of the theory.

II. CANONICAL TRANSFORMATION FOR THE
QUANTUM-BACKGROUND SPLITTING

A. BV formulation of the ST identity

We will adopt for the BV bracket the same conventions
as in [20]; then, using only left derivatives, one can write
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ðX; YÞ ¼
Z

d4x
X
�

�
ð�1Þ��ð�Xþ1Þ �X

��

�Y

���

� ð�1Þ��� ð�Xþ1Þ �X
���

�Y

��

�
; (2.1)

where the sum runs over the fields � ¼ fAa
�; c

ag and

the antifields�� ¼ fA�a
� ; c�ag, and ��, ��� and �X represent

the statistics of the field �, the antifield �� and the func-
tional X, respectively. For convenience, a list of the ghost
charge, statistics and mass dimension of the SU(N) Yang-
Mills conventional fields and antifields together with the
background fields and sources is given in Table I. The tree-
level SU(N) vertex functional for an arbitrary background
R� gauge is also given in the Appendix.

Since the dependence on the Nakanishi-Lautrup field ba

is confined at the classical level by the b equation (A3),

one can use the reduced (b-independent) functional ~�
defined as

~� ¼ ��
Z

d4xba½D̂ðA� ÂÞ�a þ �

2

Z
d4xðbaÞ2: (2.2)

At the same time, the fields ba and �ca form a BRST doublet
[21,22], i.e., a set of variables u, v transforming under the
BRST differential s according to su ¼ v, sv ¼ 0. This

allows one to eliminate �ca through the redefinition ~A�a
� ¼

A�a
� þ ðD̂� �cÞa. Finally, since, due to the antighost equation

(A4), the vertex functional depends on �ca only via the

combination ~A�a
� , we will simply denote the latter combi-

nation by A�a
� in what follows. In the present paper we will

always use the reduced functional and hence we will just

write � for ~�. For an alternative but equivalent formulation
in which the fields ba and �ca are retained together with the
corresponding antifields, see [23].

The extended ST identity in the presence of a back-
ground field [7,16] can then be written as

Z
d4x�a

�ðxÞ ��

�Âa
�ðxÞ

¼ � 1

2
ð�;�Þ: (2.3)

Notice that, in order to match the sign conventions of
Eq. (2.1), we have redefined c�a ! �c�a as compared
with the choice of [16]. By taking a derivative w.r.t. �a

�

and then setting �a
� ¼ 0 we find

��

�Âa
�ðxÞ

���������¼0
¼ �

�
��

��a
�ðxÞ ;�

����������¼0
: (2.4)

This is a very interesting equation. It can be interpreted
by saying that the derivative of the vertex functional w.r.t.
the background field equals the effect of an infinitesimal
canonical transformation (w.r.t. the BV bracket) on the
vertex functional itself. Notice that the BV bracket does

not depend either on Âa
� or on�a

�. Thus, if we were able to

write the finite canonical transformation generated by ��
��a

�
,

we would control the full dependence of � on the back-
ground fields (also in the ghost-dependent sector). We
remark that Eq. (2.4) is valid not only for the counterterms
of � but for the full 1-PI Green’s functions, and thus
controls even the nonlocal dependence on the background.

B. Auxiliary BRST differential
and homotopy operator

Although simple and natural from a geometrical point of
view, the task of solving Eq. (2.4) is technically rather
involved and requires the extension of several algebraic
tools borrowed from cohomological methods in gauge
theories [21].
For that purpose, it is convenient to introduce an auxil-

iary (nilpotent) BRST differential ! defined as

! ¼
Z

d4x�a
�ðxÞ �

�Âa
�ðxÞ

; !2 ¼ 0: (2.5)

This differential maps Âa
� into its BRST partner �a

�, leav-

ing all other fields and external sources unaltered. The
extended ST identity (2.3) can be then cast in the following
form,

!� ¼ �1
2ð�;�Þ; (2.6)

as a consequence of the nilpotency of !, one also finds the
consistency condition for the BV bracket of �:

!ð�;�Þ ¼ 0: (2.7)

The advantage of this reformulation of the problem is
that one can use the homotopy operator �, associated with
!, in order to solve Eq. (2.6). This operator is defined as
[24,25]

� ¼
Z 1

0
dt

Z
d4xÂa

�ðxÞ�t

�

��a
�ðxÞ ; (2.8)

and fulfills the fundamental property

f!;�g ¼ Ij�a
�;Â

a
�
; (2.9)

where the right-hand side (r.h.s.) represents the identity in
the functional space spanned by monomials with at least

one�a
� or Âa

�. Finally, the operator �t acts on a functional

X½Âa
�;�

a
�; 	� (where 	 are fields and external sources

other than Âa
� or �a

�) as

TABLE I. Ghost charge, statistics (B for Bose, F for Fermi)
and mass dimension of both the SU(N) Yang-Mills conventional
fields and antifields as well as background fields and sources.

Aa
� ca �ca ba A�a

� c�a Âa
� �a

�

Ghost charge 0 1 �1 0 �1 �2 0 1

Statistics B F F B F B B F

Dimension 1 0 2 2 3 4 1 1
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�tX½Âa
�;�

a
�; 	� ¼ X½tÂa

�; t�
a
�; 	�; (2.10)

i.e., it rescales by a factor t the background field Âa
� and

its BRST partner �a
�, leaving all other variables

unchanged.
One can easily write down a particular solution to

Eq. (2.6), and, namely,

� ¼ �0 � 1
2�ð�;�Þ; (2.11)

where �0 coincides with the vertex functional evaluated at
zero background field and therefore can be viewed as of
setting the boundary condition for Eq. (2.6). Indeed, it is
easy to show that (2.11) fulfills (2.6), since, using Eqs. (2.7)
and (2.9), one has

!�¼�1
2!�ð�;�Þ¼�1

2f!;�gð�;�Þþ1
2�!ð�;�Þ¼�1

2ð�;�Þ:
(2.12)

As usual, the most general solution of Eq. (2.6) is
obtained by adding to the particular solution (2.11) the
most general solution of the homogeneous equation

!X ¼ 0: (2.13)

Since ðÂa
�;�

a
�Þ form a BRST doublet, a general theorem in

cohomology [21,22] guarantees that the most general
solution to (2.13) is !-exact; i.e., it must be generated by
the ! variation of some functional �:

X ¼ !�: (2.14)

Then, one can write the most general solution to
Eq. (2.6) in the following form:

� ¼ �0 þ!�� 1
2�ð�;�Þ: (2.15)

The ambiguities in the solution are controlled by the
!-exact term !�; on the other hand, this term vani-
shes at �a

� ¼ 0. This is a very important point: the

background-dependent amplitudes that cannot be fixed
uniquely by the ST identity (2.6) do not affect the
physically relevant sector at �a

� ¼ 0. Hence in the latter

sector we obtain the following representation for the
vertex functional:

�j�¼0 ¼ �0j�¼0 � 1
2�ð�;�Þj�¼0: (2.16)

Since in what follows we will consider only the sector
�a

� ¼ 0, we will refrain from writing explicitly that �

should be calculated at �a
� ¼ 0 whenever no confusion

can arise.
Equation (2.16) is the basic homotopy formula allowing

the control of the dependence of the vertex functional on
the background field. Since it yields an explicit solution to
the extended ST identity (2.3), it is valid in any computa-
tional framework in which the latter identity is fulfilled.
For instance, it can be applied in the SD equations of

nonperturbative QCD. Moreover it provides a strategy for
the consistent implementation of the background field
method in lattice QCD, in the presence of a topologically
nontrivial background.
It should be emphasized that the homotopy formula

separates the integration over the quantum fluctuations of
the gauge fields around the background (accounted for by
�0) from the background dependence of the vertex func-
tional, which can be recovered by purely algebraic means
through Eq. (2.16).

C. Finite canonical transformation

Using Eq. (2.16), we can derive a more explicit repre-
sentation of the vertex functional �. Substituting the
explicit form (2.8) of the operator �, we get

� ¼ �0 �
Z 1

0
dt

Z
d4xÂa

�ðxÞ�t

�
��

��a
�ðxÞ ;�

�
: (2.17)

Next, let us assume that � can be expanded in a power

series in the background field Âa
� as

� ¼ X
j

�j; (2.18)

with �j the jth coefficient in the grading induced by the

counting operator for Âa
�, or

N �j ¼ j�j; N ¼
Z

d4xÂa
�ðxÞ �

�Âa
�ðxÞ

: (2.19)

One can then derive the first few coefficients of Eq. (2.17)

in powers of Âa
� as follows.

(i) At zeroth order the r.h.s. of Eq. (2.17) reduces simply
to �0.

(ii) At first order we find

�1 ¼ �
Z 1

0
dt

Z
d4xÂa

�ðxÞ�t

�
��0

��a
�ðxÞ ;�0

�

¼ �
Z

d4xÂa
�ðxÞ

�
��0

��a
�ðxÞ ;�0

�
: (2.20)

(iii) At second order, two terms arise:

�2 ¼ �
Z 1

0
dt

Z
d4xÂa

�ðxÞ�t

�
��1

��a
�ðxÞ ;�0

�

�
Z 1

0
dt

Z
d4xÂa

�ðxÞ�t

�
��0

��a
�ðxÞ ;�1

�

¼ � 1

2

Z
d4xÂa

�ðxÞ
�

��1

��a
�ðxÞ ;�0

�

� 1

2

Z
d4xÂa

�ðxÞ
�

��0

��a
�ðxÞ ;�1

�
: (2.21)
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Inserting Eq. (2.20) in the second term of (2.21), we get

�2¼�1

2

Z
d4xÂa

�ðxÞ
�

��1

��a
�ðxÞ ;�0

�

þ1

2

Z
d4x

Z
d4yÂa

�ðxÞÂb
�ðyÞ

�
��0

��a
�ðxÞ ;

�
��0

��b
�ðyÞ

;�0

��
:

(2.22)

Clearly, in Eq. (2.22) the second term fits to the (naively
expected) pattern of an exponential, while the first one does
not. To understand where the obstruction to the exponen-
tiation comes from, and, in passing, show the advantages of
the homotopy technique, it is useful to rederive Eq. (2.22)
directly from the identity (2.6). For that purpose we differ-
entiate Eq. (2.6) w.r.t. �a

� to get

��

�Âa
�ðxÞ

¼ �
�

��

��a
�ðxÞ ;�

�
þ

Z
d4y�b

�ðyÞ �2�

��a
�ðxÞ�Âb

�ðyÞ
:

(2.23)

Next, we expand � at �a
� ¼ 0 as a power series around

Âa
� ¼ 0 (� is understood at �a

� ¼ 0):

�½Â� ¼ �½0� þ
Z

d4x
��

�Âa
�ðxÞ

��������Â¼0
Âa
�ðxÞ

þ 1

2

Z
d4x

Z
d4y

�2�

�Âa
�ðxÞ�Âb

�ðyÞ
��������Â¼0

Âa
�ðxÞÂb

�ðyÞ

þ � � � : (2.24)

The second term in the first line of the above equation can

be identified by setting Âa
� ¼ �a

� ¼ 0 in Eq. (2.23):

��

�Âa
�ðxÞ

��������Â¼0
¼ �

�
��0

��a
�ðxÞ ;�0

�
: (2.25)

This result is in agreement with Eq. (2.20).

Then, let us differentiate Eq. (2.23) w.r.t. Âb
�ðyÞ and set

Âa
� ¼ �a

� ¼ 0 afterwards. Since this derivative can act

inside the bracket on both ��
��a

�
and �, we obtain

�2�

�Âb
�ðyÞ�Âa

�ðxÞ
��������Â¼�¼0

¼ �
�

�2�

�Âb
�ðyÞ�a

�ðxÞ
;�

���������Â¼�¼0

�
�

��

��a
�ðxÞ ;

��

�Âb
�ðyÞ

���������Â¼�¼0
:

(2.26)

Upon substitution of (2.25), one obtains from the second
term in the r.h.s. the second term of Eq. (2.22), i.e., the
exponentiating one. The first term is the nonexponentiating
one; as can be clearly seen, it arises from the dependence of
the generating functional of the canonical transformation
��
��a

�
on the background field Âa

�. Thus it is this dependence

that forbids obtaining a simple exponential as the solution

to the finite canonical transformation (we will return to this
point in Sec. VI).
Fortunately, however, the homotopy technique allows us

to write in a compact way all terms of the finite canonical
transformation associated with Eq. (2.4). This can be
achieved by equating the nth coefficient (with n > 0) in
the background field of both sides of Eq. (2.17); one
obtains then

�n ¼ � 1

n

Z
d4xÂa

�ðxÞ
Xn�1

k¼0

�
��k

��a
�ðxÞ ;�n�1�k

�
: (2.27)

This equation can be used iteratively in order to get the
terms �n in the expansion of the vertex functional.

III. FIELD AND ANTIFIELD REDEFINITION AND
THE SD EQUATIONS

In the previous sections we have focused on finding a
solution to the extended ST identity (2.6) recursively in the
number of background fields. Here we will rather concen-
trate on seeing whether the solution can be generated by a
suitable field and antifield redefinition which generalizes
the classical background-quantum splitting. This has been
already proven to be the case in the zero ghost sector [16].
To this end, let us take a derivative w.r.t.�a

� of Eq. (2.6)

and set �a
� ¼ 0 afterwards; we get

��

�Âa
�

¼ �
Z

d4x

�
�2�

��a
��A

�b
�

���������¼0

��

�Ab
�

� ��

�A�b
�

�2�

��a
��A

b
�

���������¼0
� �2�

��a
��c

�b

���������¼0

��

�cb

� ��

�c�b
�2�

��a
��c

b

���������¼0

�
: (3.1)

Suppose now that one can find a set of field and antifield
redefinitions

Aa
� ! Aa

� �Ga
�; A�a

� ! A�a
� �G�a

� ;

ca ! ca þ Ca; c�a ! c�a þ Ca�;
(3.2)

such that

�Gb
�

�Âa
�

¼ �2�

��a
��A

�b
�

���������¼0
;

�G�b
�

�Âa
�

¼ �2�

��a
��A

b
�

���������¼0
;

�Cb

�Âa
�

¼ �2�

��a
��c

�b

���������¼0
;

�C�b

�Âa
�

¼ �2�

��a
��c

b

���������¼0
:

(3.3)

Then, the solution to Eq. (3.1) is obtained by carrying out
the field and antifield redefinition in Eq. (3.2) on the vertex
functional at zero background �½Aa

�; c
a; A�a

� ; c�a; 0�
according to
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�½Aa
�; c

a; A�a
� ; c�a; Âa

�� ¼ �½Aa
� � Ga

�; c
a þ Ca; A�a

�

� G�a
� ; c�a þ C�a; 0�: (3.4)

Taking a derivative of the left-hand side w.r.t. Âa
�, and next

using the chain rule on the r.h.s. while being careful about
signs for fermionic variables, one can convince him/herself
that the result would be precisely Eq. (3.1) when the differ-
ent resulting terms are identified according to Eq. (3.3).

The background-dependent field and antifield redefini-
tion (3.2) generalizes the classical background-quantum
splitting and is the correct mapping when quantum correc-
tions are taken into account. This result directly follows
from the requirement of the validity of the ST identity. We
remark that the redefinition (3.2) also involves the ghosts
and the antifields. This is in sharp contrast with the classi-
cal background-quantum splitting, which is limited to the
gauge field.

To lowest order in the background field, Eqs. (3.2) and
(3.3) give

Aa
�ðxÞ!Aa

�ðxÞ�
Z
d4y��b

�A
�a
�
ðy;xÞÂb

�ðyÞ;

caðxÞ!caðxÞþ
Z
d4y

Z
d4z��b

�c
�acdðy;x;zÞÂb

�ðyÞcdðzÞ;

A�a
� ðxÞ!A�a

� ðxÞ�
Z
d4y

Z
d4z�A�d


 �b
�A

a
�
ðz;y;xÞA�d


 ðzÞÂb
�ðyÞ;

c�aðxÞ!c�aðxÞþ
Z
d4y

Z
d4z��b

�c
ac�dðy;x;zÞÂb

�ðyÞc�dðzÞ;
(3.5)

where the 1-PI functions are to be evaluated at Âa
� ¼ 0. As

can be seen, at this order there are only three independent
functions that determine the splitting at the quantum level,
since ca and c�a are controlled by one and the same

function. In addition, from Table I, we see that the
only superficially divergent term appears in the redefinition
of Aa

�.

For the gauge field notice also that the quantum-

background splitting Aa
� ¼ Qa

� þ Âa
� allows us to re-

interpret the leading term in the field redefinition as a
deformation of the background field, since

Qa
�ðxÞ ¼ Aa

�ðxÞ � Va
�ðxÞ;

Va
�ðxÞ ¼ Âa

�ðxÞ þ
Z

d4y��b
�A

�a
�
ðy; xÞÂb

�ðyÞ;
(3.6)

or, equivalently, in momentum space

Va
�ðpÞ ¼ ½g���

ab þ ��b
�A

�a
�
ðpÞ�Âb

�ðpÞ: (3.7)

The SD equations that describe all the 1-PI functions
appearing in the lowest order expansion (3.5) are shown in
Fig. 1. In particular, it should be noticed that the function
��b

�A
�a
�
is the only one that has been studied in the literature

[26]; in the Landau gauge it is related to the well-known
Kugo-Ojima function [27].
We conclude by observing that the existence of the field

and antifield redefinitions of Eq. (3.2) requires a careful
check of the corresponding integrability conditions. This
has been already done for the case of the gauge field in [16]
through an extensive use of the relations among 1-PI
amplitudes encoded in the ST identity. The analysis of
the general case will be deferred to a later work; here we
remark that these redefinitions are related to the deforma-
tion of the canonical variables controlled by the canonical

transformation generated by ��
��a

�
j�¼0.

FIG. 1. Schematic representation of the SD equations satisfied by the 1-PI functions ��b
�A

�a
�
, ��b

�c
�acd and �A�d


 �b
�A

a
�
. White (black)

blobs correspond to connected (1-PI) Green’s functions.
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IV. THE RENORMALIZATION GROUP EQUATION
IN THE PRESENCE OF NONTRIVIAL

BACKGROUNDS

The formalism developed so far imposes highly non-
trivial constraints on the RG equation satisfied by the
vertex functional � in the presence of a background field

Âa
� � 0.

To see this, let us start by considering a generic

background Âa
� depending on N parameters zi, with

i ¼ 1; . . . ; N. For instance, if Âa
� is an instanton back-

ground, zi are the instanton size, its center and the coor-
dinates of the relative orientation of the instanton solution

when Âa
� is embedded in a gauge group larger than SU(2).

We are interested in discussing the renormalization of
the theory at fixed background (i.e., we do not perform the
path integral over the collective coordinates of the back-
ground, but only on the quantum fluctuations of the gauge
field).

On general grounds, the renormalization procedure
might require renormalizing the zi parameters, which can
be thought of as additional couplings entering into the
Feynman rules of the model. To be sure, if this is the
case and the parameters zi get renormalized, an additional
dependence on the renormalization scale � arises through
the dependence of the zi’s on �. Therefore, the RG equa-

tion for the Yang-Mills theory in a generic background Âa
�

takes the form

�
�

@

@�
þ �

@

@g
þ �i

@

@zi
þ X

�2fA;cg
��

Z
d4x�

�

��

þ �Â

Z
d4xÂa

�

�

�Aa
�

þ �
bkg

Â

Z
d4xÂa

�

�

�Âa
�

�
� ¼ 0:

(4.1)

In the above equation � is the usual � function for the
coupling constant g, �i are the additional � functions for
the parameters zi, while � is a collective notation for the
ghost and gauge fields with the corresponding anomalous
dimensions ��. �Â is the anomalous dimension associated

with the shift Aa
� ¼ Âa

� þQa
�, and finally, �

bkg

Â
denotes the

anomalous dimension for the background field, which in
general is also possible and corresponds to a multiplicative

renormalization of the background, i.e., Âa
� ! ZbkgÂa

�.

On the other hand, we know from our previous analysis

that the whole dependence on Âa
� can be recovered by the

canonical transformation generated by ��
��a

�
. This fact is

intimately related to the way used for introducing the
background field, i.e., via a background gauge-fixing—
allowing us to write the gauge-fixing term as a BRST-exact
functional also in the presence of the background—and
the subsequent classical background-quantum splitting

Aa
� ¼ Âa

� þQa
�.

As already noticed, the generating functional of the

canonical transformation ��
��a

�
contains the single diver-

gent term ��a
�A

�b
�
; therefore all the dependence on the

renormalization group scale � in the background-
dependent sector will occur through this unique function.
Moreover, one should also notice that this function needs
to be evaluated at zero external background, since the
insertion of one or more background legs makes it super-
ficially convergent.
These facts have two very important consequences. To

begin with, the parameters zi characterizing the back-
ground will not be subjected to any renormalization; i.e.,
all the �i will be identically zero. Second, since the diver-
gence of ��a

�A
�b
�
at zero background is controlled by the

single invariant

S0

�Z
d4xAa�

� Âa
�

�
¼

Z
d4x

�
Âa
�

��ð0Þ

�Aa
�

� A�a
� �a

�

�
; (4.2)

with S0 the usual linearized Slavnov-Taylor operator

S0 ¼
Z

d4x

�
��ð0Þ

�A�a
�

�

�Aa
�

þ ��ð0Þ

�Aa
�

�

�A�a
�

� ��ð0Þ

�c�a
�

�ca

� ��ð0Þ

�ca
�

�c�a
þ�a

�

�

�Âa
�

�
; (4.3)

the RG equation will not display a term proportional to the

background legs counting operator Âa
�

�
�Âa

�
.

Thus for the Yang-Mills action in the gauge field sector
one will get the result�

�
@

@�
þ �

@

@g
þ �A

Z
d4xAa

�

�

�Aa
�

þ �Â

Z
d4xÂa

�

�

�Aa
�

�
� ¼ 0: (4.4)

The important consequences of this RG equation will be
analyzed in the following section in the particular case in
which the background is chosen to be an SU(2) Yang-Mills
instanton configuration.

V. AN EXPLICIT EXAMPLE: THE INSTANTON
BACKGROUND

As a practical example of the many possible physical
applications of the formalism developed, we consider the
specific case in which the background is given by a single
SU(2) Yang-Mills instanton.

In order to establish the notation, let us indicate with Âa
�

the classical solution corresponding to the tree-level in-
stanton profile in the singular gauge centered around the
origin, which will be parametrized as (Euclidean space)

Âa
�ðxÞ ¼ �a

��x�f0ðxÞ; f0ðxÞ ¼ 2
2

x2ðx2 þ 
2Þ ; (5.1)

CANONICAL TRANSFORMATIONS AND RENORMALIZATION . . . PHYSICAL REVIEW D 85, 085020 (2012)

085020-7



where the (dimensionful) parameter 
 is the so-called
instanton size. Introducing then the (dimensionless) ratio
� ¼ r=
 with r ¼ ffiffiffiffiffiffiffiffiffiffiffi

x�x�
p

the (tree-level) profile function

can be rewritten as

f0ð�Þ ¼ 2


2

1

�2ð1þ �2Þ : (5.2)

In momentum space, after defining

Âa
�ðpÞ ¼ �a

��p�f0ðpÞ;
f0ðpÞ ¼ �2i

@

@p2

Z
d4xeip�xf0ðxÞ;

(5.3)

we obtain, for the singular gauge instanton classical profile,
the following expression:

f0ðpÞ ¼ ð�8�2i
Þ 1

p3

�
� 2

p

þ K1ðp
Þ � ðp
ÞK0

1ðp
Þ
�

¼ ð�8�2i
Þ 1

p3

�
� 2

p

þ ðp
ÞK2ðp
Þ

�
; (5.4)

with Ki the modified Bessel functions of the second kind.

A. Renormalization group analysis

As is clear from the previous subsection, for a single
instanton background centered around the origin there is
only one dimensionful parameter—that is the instanton
size 
. Thus one can trade the dimensionful parameter �
for the dimensionless parameter 	 ¼ �
, so that the RG
equation (4.4) will read in this case

�
	
@

@	
þ �

@

@g
þ �A

Z
d4xAa

�

�

�Aa
�

þ �Â

Z
d4xÂa

�

�

�Aa
�

�
� ¼ 0: (5.5)

In the one-loop approximation, one obtains

	
@�ð1Þ

@	
þ �1

@�ð0Þ

@g
þ �ð1Þ

A

Z
d4xAa

�

��ð0Þ

�Aa
�

þ �ð1Þ
Â

Z
d4xÂa

�

��ð0Þ

�Aa
�

¼ 0: (5.6)

We would like to use this equation to evaluate the one-
loop vertex functional on the instanton configuration; to

that end, we set Aa
� ¼ Âa

� in Eq. (5.6) while setting to zero

all other fields and sources. Taking then into account that
the instanton is a solution of the classical Yang-Mills
equation of motion, we find the final result

	
@�ð1Þ

@	

��������A¼Â
þ�ð1Þ @�

ð0Þ

@g

��������A¼Â
¼ 0; (5.7)

or, setting � ¼ log	 and using the value of the tree-level
action evaluated on the instanton configuration,

@�ð1Þ

@�

��������A¼Â
¼ ��ð1Þ @

@g

8�2

g2
: (5.8)

The solution is

�ð1Þð�Þ ¼ �ð0Þðgþ gð1ÞÞ þ dð1Þ þOðℏ2Þ; (5.9)

with dð1Þ a �-independent constant that can be reabsorbed
into a finite one-loop renormalization of the coupling

g. gð1Þ is the one-loop coefficient of the renormalized
coupling constant, obeying

@gð1Þ

@�
¼ ��ð1Þ: (5.10)

This result therefore states nothing but the classic result of
’t Hooft [9], i.e., that the one-loop effects of the quantum
corrections around the instanton profile resum in such a
way that the net effect is the appearance of the one-loop �
function.
At the two-loop level one has instead

	
@�ð2Þ

@	

��������A¼Â
þ�ð2Þ @�

ð0Þ

@g

��������A¼Â
þ�ð1Þ @�

ð1Þ

@g

��������A¼Â

þ �ð1Þ
A

Z
d4xÂa

�

��ð1Þ

�Aa
�

��������A¼Â

þ �ð1Þ
Â

Z
d4xÂa

�

��ð1Þ

�Aa
�

��������A¼Â
¼ 0; (5.11)

and we clearly see that the obstruction for a direct general-
ization of the one-loop result resides in the terms in the
second line of the above equation, since the anomalous
dimensions �A, �Â are in general nonvanishing.

The fact that RG invariance of the ratio R ¼ h0j0iI
h0j0i of the

vacuum-to-vacuum amplitude in the presence of an instan-
ton over the vacuum-to-vacuum amplitude at zero back-
ground does not hold at the two-loop level in the single
instanton approximation, as a consequence of the anoma-
lous dimension terms in Eq. (5.11), has been already
noticed long ago [28] through explicit diagrammatic com-
putations. In those papers it was found that the � depen-
dence of R in the single instanton approximation is
canceled out once the path integral over the collective
coordinates is carried out with the appropriate extended
Feynman rules, involving the ghosts associated with the
zero modes of the two-point gauge function in the presence
of the instanton.
The advantage of the analysis presented here is that it

has a simple and direct generalization to all orders; in
addition, it can be combined with the algebraic treatment
of the gauge field zero modes to obtain the appropriate RG
equation when the collective coordinates are promoted to
quantized fields [29].
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B. One-loop deformation of the instanton profile

As a second example, we calculate the one-loop correc-
tions to the instanton profile function. To the best of our
knowledge this is the first time that such deformation is
computed.

The function ��b
�A

�a
�
(Fig. 1 first row) reads [14]

��b
�A

�a
�
ðpÞ ¼ gfbmng�


Z
k
Dmm0 ðkþ pÞ�

0

nn0 ðkÞ
� �

cm
0
An0

0A

�a
�
ð�k;�pÞ;

Z
k
� ��

Z ddk

ð2�Þd ; (5.12)

with � ¼ 4� d and d the space-time dimension, while �
and D represent the all-order gluon and ghost propagators,
respectively. Introducing then the Lorentz and color
decomposition

��b
�A

�a
�
ðpÞ¼�g2CA

16�2
�ab

�
AðpÞg��þBðpÞp�p�

p2

�
; (5.13)

we see that in the instanton case the B form factor does not
contribute.

At the one-loop level we then obtain the deformed
background field

Va
�ðpÞ ¼ �a

��p�½f0ðpÞ þ f1ðpÞ�;

f1ðpÞ ¼ � g2CA

16�2
Að1ÞðpÞf0ðpÞ;

(5.14)

where f0 is given in Eq. (5.4).
In the Landau gauge (which is the appropriate choice in

the instanton case) one has

�ð1Þ
�b

�A
�a
�
ðpÞ ¼ �g2CA�

ab
Z
k

1

k2ðkþ pÞ2 P��ðkÞ; (5.15)

where CA is the Casimir eigenvalue of the adjoint repre-
sentation [CA ¼ N for SU(N)]; a straightforward calcula-
tion gives (Euclidean space)

Að1ÞðpÞ ¼ � 3

2

1

d� 4
þ 3

2
� 3

4
log

�
p2

�2

�
;

Bð1ÞðpÞ ¼ � 1

2
:

(5.16)

Notice that in the one-loop approximation this result is not
affected by the inclusion of fermions in the theory. The first

term appearing in Að1Þ is clearly divergent in the d ! 4
limit; this divergence is controlled by the invariant shown
in Eq. (4.2) and therefore can be safely absorbed in the
corresponding counterterm.

By evaluating the inverse Fourier transform of f1 one
obtains the quantum-corrected instanton profile in position
space:

Va
�ðxÞ ¼ �a

��x�½f0ðxÞ þ f1ðxÞ�;
f1ðxÞ ¼ i

4�2

x�
r2

@

@x�

Z 1

0
dpp3f1ðpÞ 1

pr
J1ðprÞ:

(5.17)

The evaluation of f1ðxÞ can be performed analytically, and
we find2

f1ðxÞ¼�3
g2CA

16�2

�
1


2

1þ log
�

�2ð1þ�2Þ�
x�
r2

@

@x�

Z 1

0
dtFðt;�Þ

�
;

(5.18)

where we have set t ¼ p
 and

Fðt; �Þ ¼ logt

�
� 2

t
þ tK2ðtÞ

�
1

�t
J1ð�tÞ: (5.19)

The integral in t yields

Z 1

0
dtFðt;�Þ

¼ 1

8�2

�
log2ð1þ�2Þ�2�4

�
log

�

4
þ2�E�1

�
�2 log�

þ2�2Li2

�
1

1þ�2

�
þ
�
�2�2 log

�2

1þ�2

þð�2þ4�E�4log2Þ�2�2

�
logð1þ�2Þ

�
; (5.20)

where �E is the Euler-Mascheroni constant (�E ¼
0:57721 . . . ) and Li2 is the standard dilogarithm. Thus
one has

x�
r2

@

@x�

Z 1

0
dtFðt; �Þ ¼ 1


2

�
� �E � log2

�2ð1þ �2Þ �
log�

�2

þ 1þ �4

2�4ð1þ �2Þ logð1þ �2Þ
�
;

(5.21)

which finally gives for f1

f1ð�Þ ¼ �3
g2CA

16�2

1


2

�
1þ log
�

�2ð1þ �2Þ þ
�E � log2

�2ð1þ �2Þ
þ log�

�2
� 1þ �4

2�4ð1þ �2Þ logð1þ �2Þ
�
: (5.22)

There are a number of comments that one can make
regarding this result, and, namely,
(i) Clearly the one-loop corrected instanton is neither

self-dual nor it reduces to pure gauge as r ! 1.
(ii) With the generic parametrization Va

�ðxÞ ¼
�a
��x�fðrÞ the field strength becomes

2This is only true in the singular gauge. In the regular gauge
the integral over p does not converge.
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Fa
��¼ �a

��½r2f2ðrÞ�2fðrÞ��ð �a
�
x�x
� �a

�
x�x
Þ

�
�
f0ðrÞ
r

þf2ðrÞ
�
; (5.23)

which gives for the (Euclidean) Yang-Mills action

SYM ¼ 1

4

Z
d4xðFa

��Þ2

¼ 2�2
Z 1

0
drr3

�
3

2
r4f4ðrÞ � 6r2f3ðrÞ

þ 12f2ðrÞ þ 6rfðrÞf0ðrÞ þ 3

2
r2f0ðrÞ2

�
:

(5.24)

When the r.h.s. of the above equation is expanded
according to the loop order, we see that our correc-
tion resums a particular subset of diagrams which
are bound to contribute up to four loops.

(iii) For small r the Yang-Mills action density in (5.24)
calculated on the corrected profile goes like 1=r4

times logs; once multiplied by the r3 coming from
the measure, this leaves us with a log squared
singularity for r� 0 (that is either when r ! 0 or

 ! 1). This is the usual infrared disease of
instanton calculus that would be effectively cured
by the dynamical generation of a gluon mass [12],
firmly established recently in both lattice simula-
tion [30] as well as SD studies of the gluon propa-
gator � [15]. This would furnish a cutoff for the r
integral of the order ��1ð0Þ.

(iv) Finally, it is interesting to notice that with respect to
the tree-level profile, f1 shows a log enhancement
in both the small (� ! 1) and large (� ! 0) size
limit. Because of these enhancements it is tempting
to conjecture that the contribution to SYM coming
from the quantum-corrected instanton is larger than
its classical counterpart in both the infrared and
ultraviolet regime. But then the factor e�SYM would
be smaller for small as well as large size instantons,
giving rise to a suppression for the instanton density
in these two regimes. Though this is precisely what
is observed on the lattice [31], we remark that the
large size limit lies beyond the validity of our
perturbative result for f1.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have shown that the full dependence of

the vertex functional � on the background field Âa
� can be

recovered by an appropriate field redefinition generated by
a canonical transformation w.r.t. the BV bracket naturally
associated with the ST identity of the theory. The BRST

partner �a
� of the background field Âa

� has been identified

as the source coupled to the fermionic generator of the
infinitesimal canonical transformation; in addition, we

were able to provide a recursive formula for solving the
finite canonical transformation by making use of homotopy
techniques.
As for the failure of the exponentiation of the solution

for the finite canonical transformation (which has been
ultimately traced back to the dependence of the generating

functional ��
��a

�
on the background field Âa

�), we notice that

there is an analogy in classical mechanics. Indeed, suppose
we want to describe the time evolution of some function f,
governed by the equation

df

dt
¼ ff;Hg; (6.1)

where f�; �g is the Poisson bracket. Then, if H is time-
independent, the finite canonical transformation generated
by H can be written as an exponential

fðtÞ ¼ f expðĤtÞj0; (6.2)

where Ĥ is the operator f�; Hg, and the zero denotes that
all terms in the series on the r.h.s. have to be evaluated at
t ¼ 0. If, on the other hand, H is time-dependent, further
terms in general arise and the finite canonical transforma-
tion is more complicated. A general technique for con-
structing the mapping between the new and the old
canonical variables when the generator depends on one
parameter is known [32]; one might then ask if this
approach can be extended to our case and thus used to
obtain an explicit form of the field and antifield redefini-
tions of Eqs. (3.2) and (3.3).
We have also shown how these formal techniques can be

proficiently applied in practical physical situations. In
particular, we have derived the generic form of the RG
equation in the presence of a background field. Once
specializing to the case of an SU(2) Yang-Mills instanton,
the classic one-loop result of ’t Hooft is recovered; at the
two-loop level, our equation allows for the systematic
disentanglement of the contribution due to the field’s
anomalous dimensions which have been discussed in the
literature only on a diagrammatic basis. Our approach
could also be directly extended to all orders and applied
in a situation where one performs the path integral over the
quantized collective modes through the addition of the
appropriate ghost fields [29]. Finally, in the single instan-
ton approximation, we were able to determine analytically
the lowest order correction to the instanton profile both in
momentum as well as in position space. Once inserted in
the Yang-Mills action this amounts to taking into account
the resummation effects of a particular set of diagrams up
to four loops.
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APPENDIX: TREE-LEVELVERTEX FUNCTIONAL

The tree-level vertex functional is written as

�ð0Þ ¼
Z

d4x

�
� 1

4
Fa
��F

a�� � �caðD̂�D�cÞa

� ðD� �cÞa�a
� � �

2
ðbaÞ2 þ ba½D�ðA� ÂÞ��a

þ A�a
� ðD�cÞa þ 1

2
fabcc�acbcc

�
; (A1)

where the covariant derivative D is defined according to

ðD��Þa ¼ Dab
� �b; Dab

� ¼ �ab@� þ facbAc
� (A2)

(D̂ can be obtained from the above substituting Ac
�

with Âc
�).

The b equation at the level of the complete vertex func-
tional � reads

��

�ba
¼ ��ba þ ½D�ðA� ÂÞ��a; (A3)

while the antighost equation is given by

��

� �ca
¼ �D̂ab

�

��

�A�b
�

þ ðD���Þa: (A4)

Finally, the Ward identity that holds in the background
gauge as a consequence of the invariance under back-
ground gauge transformations reads

W að�Þ ¼ �D̂ab
�

��

�Âb
�

�X
�

fabc�b �I�

��c ¼ 0; (A5)

where � runs over the fields Qa
� ¼ Aa

� � Âa
�, c

a, �ca, ba,

the source �a
� and the antifields A�a

� and c�a.
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