
Higher spatial derivative field theories

Pedro R. S. Gomes* and M. Gomes†

Instituto de Fı́sica, Universidade de São Paulo, Caixa Postal 66318, 05315-970, São Paulo, SP, Brazil
(Received 4 August 2011; revised manuscript received 2 March 2012; published 17 April 2012; corrected 19 April 2012)

In this work, we employ renormalization group methods to study the general behavior of field theories

possessing anisotropic scaling in the spacetime variables. The Lorentz symmetry breaking that accom-

panies these models are either soft, if no higher spatial derivative is present, or it may have a more

complex structure if higher spatial derivatives are also included. Both situations are discussed in models

with only scalar fields and also in models with fermions as a Yukawa-like model.
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I. INTRODUCTION

Quantum field theories with anisotropic spacetime scal-
ing have been recently considered in the literature in the
search for viable frameworks for quantum gravity [1] and
also for the completion of nonrenormalizable effective
field theories [2]. The fundamental assumption of theses
approaches is that time and space behave differently under
a general scaling: xi ! bxi whereas t ! bzt. With the
‘‘critical exponent’’ z conveniently chosen, renormalizabil-
ity can be achieved without the undesirable introduction of
ghost degrees of freedom which would be present if higher
time derivatives were also included [3]. Various investiga-
tions on the properties and applications of these ap-
proaches may be found in the literature [4]. However, the
anisotropic scaling inevitably encompasses a breaking of
Lorentz invariance so that a basic question here is if and in
what circumstances this symmetry is restored. Although an
intuitive argument says that the restoration may take place
at low momenta, a general study of the renormalization
group flows for scalar models indicates that in reality it
requires a careful analysis [5] (see also Ref. [6]).

Concerning the Lorentz symmetry breaking, different
situations may arise from modifications on the kinetic part
of a given Lagrangian which keep the dependence on the
time derivative unchanged:

(1) The coefficient of the spatial derivative is modified,
but higher derivatives are not present. In models for
a single field, this is physically innocuous since it
may be adjusted to any finite value by a mere change
of dimensional units; no breaking of Lorentz sym-
metry really occurs. However, in models with more
than one field, the modification may have physical
implications with radiative corrections which propa-
gate with different velocities such that the breaking
of Lorentz symmetry may increase with the energy.
In Ref. [5], this possibility was shown to occur in a
model of fermions and bosons interacting via a tri-
linear coupling in four dimensions. As we shall see,

the same happens in a model of two scalar fields
coupled through trilinear interaction terms in six
dimensions. For completeness, we also discuss the
case of a Yukawa-like model. Whenever the Lorentz
symmetry may be restored, we say that the breaking
is soft.

(2) Higher spatial derivatives are introduced, i.e., we
have a truly anisotropic model. In this case, the
coefficient of some of the higher derivatives gener-
ally changes by effect of the radiative corrections in
such way that the breaking of Lorentz symmetry is
either soft in the infrared or becomes stronger by
decreasing the energy. It must be stressed here that
‘‘soft’’ in this anisotropic situation only means that
the effective coefficient of a higher spatial derivative
term decreases; in general, it cannot vanish as the
model may become nonrenormalizable. In this situ-
ation, we shall consider the possibility of the
Lorentz symmetry restoration in an approximated
sense.

In this work, we will pursue these studies focusing some
aspects of the renormalization of anisotropic field theories.
With the ultraviolet improved free propagators, usual
Lorentz symmetric models which are renormalizable in a
certain dimension will become renormalizable in a higher
dimension. Thus, with z ¼ 2, the ’3 and ’4 models which
are renormalizable in 6 and 4 spacetime dimensions will
become renormalizable in 10 and 6 spatial dimensions,
respectively. It should be noticed that although closed
forms for the Feynman amplitudes are in general unfeasi-
ble, it is possible to calculate the renormalization constants
and to determine the flows of relevant coupling constants.
This may be done by an application of the Bogoliubov-
Parasiuk-Hepp-Zimmermann (BPHZ) renormalization
theorem to dimensionally regularized integrals, as it will
be described shortly. As an application, we consider the ’3

model in ten dimensions and with z ¼ 2 which is asymp-
totically free. Because of this property, it is not possible to
obtain reliable results in the small momenta region.
Nevertheless, this model furnishes a simpler setting to
expose our methods and discuss some properties of aniso-
tropic field theories as unitarity. Afterward, we analyze the
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’4 model in six space dimensions which presents an
increased degree of complexity as the calculations of the
renormalization constants involve a two-loop diagram. In
spite of that, for a special configuration of the initial values
of the effective parameters, we found an explicit solution
for the renormalization group equations.

We also consider a model of fermionic and bosonic
fields interacting via a Yukawa-like Lagrangian in six
space dimensions with z ¼ 2. As we shall see, differently
from the ’3 model in 10 spatial dimensions, this model is
infrared-stable at the origin, and so it seems to be a good
candidate for testing the recuperation of Lorentz symmetry
at low momenta. Indeed, for the four-dimensional model
and without the higher-derivative term, we will demon-
strate that Lorentz symmetry is restored for small momenta
if initially it was broken by assuming different light veloc-
ities for the boson and fermionic components. When higher
spatial derivatives are introduced, we performed a numeri-
cal analysis, which is required by the complexity of the
renormalization group equations which prevents the exis-
tence of closed analytical solutions. In this last situation,
we found that the Lorentz-symmetry-breaking parameters
also decrease in the infrared region.

Our work is organized as follows. In Sec. II, we consider
a six-dimensional model of two scalar fields interacting
through trilinear couplings as a tool to study the soft break-
ing of Lorentz symmetry; in this preliminary study, no
higher derivatives are present. In this context, we also
analyze the soft breaking of the Lorentz symmetry in a
Yukawa-like model. In Sec. III, we present some general
remarks and the formalism we shall use in this work. A
subsection is devoted to the unitarity problem in higher-
spatial-derivative models. Sections IV and V are dedicated
to the analysis of renormalizable versions of the ’4 and
Yukawa models which are infrared-stable. A summary and
additional remarks are presented in the conclusions. Two
appendices to study integrals needed in our studies and
which provide additional details on the computation of the
renormalization group parameters are included.

II. SOFT BREAKING OF LORENTZ SYMMETRY

Before considering truly anisotropic models which con-
tain higher derivatives, here, we will analyze the soft
breaking of Lorentz symmetry in two situations, namely,
a six-dimensional model with two scalar fields and a
Yukawa-like model in four dimensions. Let us begin by
considering the purely bosonic model described by the
Lagrangian density:

L ¼ 1

2
@0’@0’� b2’

2
@i’@i’�m2

’

2
’2 þ 1

2
@0�@0�

� b2�
2
@i�@i��m2

�

2
�2 � �1

3!
’3 � �2

3!
�3

� �3

2
’2�� �4

2
�2’: (1)

The free propagators for the ’ and � fields derived from
this Lagrangian,

�’ðpÞ ¼ i

k20 � b2’p
2 �m2

’ þ i�
and

��ðpÞ ¼ i

k20 � b2�p
2 �m2

� þ i�
;

(2)

will be represented by dashed and dotted lines, respec-
tively. With this graphical notation, the one-loop contribu-

tions for the two-point vertex functions �ð2Þ
’ and �ð2Þ

� are

drawn in Fig. 1. Notice that the corresponding analytic
expressions, which are supposed to be regularized by tak-
ing the model to D ¼ 6� � dimensions, are exchanged by
the replacements ð’; �1; �4; �3Þ $ ð�;�2; �3; �4Þ. The re-
normalization group flows of the parameters in Eq. (1) are
fixed by the introduction of dimensionless coupling con-

stants �i ! ��=2�i and the computation of the pole part
(PP) of the relevant diagrams.
Following standard procedures, we found that the de-

pendence on the external momentum of the pole part of the
diagrams in Fig. 1 are

PP ½Fig 1a� ¼ iðp2
0 � b2’p

2Þ�2
1

12ð4�Þ3b5’
2

�
;

PP½Fig 1b� ¼ iðp2
0 � b2’p

2Þ�2
4

12ð4�Þ3b5�
2

�
;

PP½Fig 1c� ¼ i�2
3

ð4�Þ3b5�

�
1

6
p2
0 �

�
b2’
2

� 1

3

b4’

b2�

�
p2

�
1

�
;

PP½Fig 1f� ¼ i�2
4

ð4�Þ3b5’
�
1

6
p2
0 �

�b2�
2

� 1

3

b4�

b2’

�
p2

�
1

�
;

(3)

whereas PP½Fig 1d� and PP½Fig 1e� are obtained from
PP½Fig 1b� and PP½Fig 1a� by replacing �4 by �2 and �1

by �3, respectively. Using these results, we may obtain the
beta functions associated with the parameters b2� and b2’:

�b2’
¼ 1

3ð4�Þ3b5’
ðb2’ � b2�Þ

�
�2
4

2
þ b2’

b2�
�2
3

�
; (4)

FIG. 1. One-loop corrections to the two-point vertex functions
of the ’ (first row) and � (second row) fields.
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�b2
�
¼ � 1

3ð4�Þ3b5�
ðb2’ � b2�Þ

�
�2
3

2
þ b2�

b2’
�2
4

�
: (5)

The basic reason why these expressions do not depend
neither on �1 nor on �2 is that the would-be contributions
are the same as in the case where there is only one field,
either ’ or �. As we mentioned in the introduction, in
those cases, the parameter b’ or b� does not receive

radiative contributions which implies that the correspond-
ing � function vanishes.

Notice that b� ¼ b’ � b is a renormalization group

fixed point where the Lorentz symmetry holds. Now, if
b’ > b�, then, by lowering the energy, b’ decreases and

b� increases, and the fixed point is infrared-stable, the two

parameters approaching the fixed point value. Similarly, if
b� > b’, b� decreases and b’ increases by lowering the

energy, the two parameters again tending to the fixed point
b. We conclude that in any case, the Lorentz symmetry is
restored in the low-energy regime.

We will also determine the pole part of the three point
vertex functions. Observe that in this case, any given
diagram either has all three internal lines of the same
type or has two equal lines but of a type different from
the remaining one. In the last situation, the integrals to be
computed have the general form

I � ð�i�Þ3
Z dDk

ð2�ÞD
i2

½k20 � A2k2 �m2
A�2

� i

k20 � B2k2 �m2
B

; (6)

where �3 symbolically represents the factor associated
with the coupling constants and either ðA; BÞ ¼ ðb’; b�Þ
or ðA; BÞ ¼ ðb�; b’Þ. A straightforward calculation yields

then the following pole part:

PP ðIÞ ¼ � i�3

ð4�Þ3
2ð2Aþ BÞ

3A3BðAþ BÞ2
1

�
: (7)

The above result allows us to calculate the beta functions
associated with the various coupling constants. For ex-
ample, we obtain

��1
¼ 1

ð4�Þ3b5�

�
� 3

4

b5�

b5’
�3
1 � �3

4

� 4

3

b2�ð2b� þ b’Þ
b’ðb� þ b’Þ2

�2
3�4

þ
�
1

4
� 4

3

b4�ð2b’ þ b�Þ
b3’ðb� þ b’Þ2

�
�2
3�1 þ 1

4
�2
4�1

�
: (8)

Let us now turn our attention to a Yukawa like model
specified by

L ¼ 1

2
@0’@0’� b2’

2
@i’@i’�m2

2
’2

þ �c ði�0@0 þ ibc�
i@i �MÞc þ ig �c�5c’� �

4!
’4:

(9)

In this case, we find

�b2’
¼ 1

4�2

ðb’ þ bc Þ
b3c

ðb’ � bc Þg2 (10)

and

�bc
¼ � 1

6�2

1

b’ðb’ þ bc Þ2
ðb’ � bc Þg2; (11)

which, analogously to the purely bosonic model, shows
that b’ ¼ bc is also an infrared renormalization fixed

point where Lorentz symmetry holds.

III. ANISOTROPIC SCALING:
GENERAL CONSIDERATIONS

The anisotropic field theories with bosonic and fermi-
onic components which we will consider have the generic
form

L ¼ L0 þLint; (12)

where the free part, L0, is given by

L0 ¼ 1

2
@0’@0’þ 1

2

Xz
s¼1

�s@i1 . . .@is’@i1 . . .@is’�m2

2
’2;

(13)

for bosonic fields and

L 0 ¼ �c i�0@0c þ Xz
s¼1

�s
�c ði �c i �c iÞsc �M �c c (14)

for fermionic fields. In these expressions, each Latin index
runs from 1 to d; the spatial dimension of the model and the
effective signs of the �’s and �’s have to be chosen so that
the energy associated with L0 is positive. Lint describes
the interaction between these fields. Notice that z desig-
nates the highest degree of the spatial derivatives, and we
have included terms with less derivatives as they may be
necessary in the renormalization process. As each power of
x0 scales as z powers of xi, the effective dimension of the
Lagrangian is zþ d. Then, by taking �z and �z to be
dimensionless, we find that effective dimensions of ’
and c are, respectively,

Dim ½’� ¼ d� z

2
and Dim½c � ¼ d

2
: (15)
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Wewill be dealing with Feynman amplitudes of the form

Z YL
i¼1

dkiIGðk; p;mÞ; (16)

where L is the number of loops and k ¼ ðk1; . . . ; kLÞ and
p ¼ ðp1; . . . ; pNÞ are, respectively, the loop momenta and
external momenta associated to a generic proper (i.e.
one-particle-irreducible) Feynman diagram G. The unsub-
tracted amplitude IG is a product of anisotropic propaga-
tors and monomials in the momenta of the lines joining at
the vertices of G,

IGðk; p;mÞ ¼ Y
a

Paðk; pÞ
Y
abc

�FðlabcÞ; (17)

with

�FðlÞ ¼ PðlÞ
l20 þ

Pz
i¼1 bil�m2 þ i�2i

; (18)

where l ¼ ðl0; lÞ is the momentum flowing through a line
of G, the bi are simple functions of the �’s, �’s, and M
(bi ¼ �i for a bosonic propagator and m ¼ M for a fermi-
onic one), and PðlÞ ¼ i for a bosonic propagator and a
polynomial of first degree in l0 and of z degree in l, for a
fermionic propagator. The degree of superficial divergence
ofG is fixed by power counting in which each power of the
timelike component of a vector counts as the z power of its
spatial like component. This gives

dðGÞ ¼ ðdþ zÞL� 2znB � znF þX
a

Da; (19)

where nB and nF are the number of bosonic and fermionic
internal lines of G; Da is the degree of the monomial
Paðk; pÞ assigned to the vertex Va. Now, if G has V
vertices, L ¼ nB þ nF � V þ 1, and, therefore,

dðGÞ ¼ dþ z� ðz� dÞnB þ dnF þX
a

ðDa � d� zÞ:

(20)

We also have the topological identities

2nB þ NB ¼ X
a

	B
a and 2nF þ NF ¼ X

a

	F
a ; (21)

where NB and NF are the number of external bosonic and
fermionic lines and 	B

a and 	F
a are the number of bosonic

and fermionic lines joining at the vertex Va. Using these
relations, we obtain

dðGÞ ¼ dþ z� Dim½’�NB � Dim½c �NF

�X
a

ðdþ z� Dim½Va�Þ; (22)

where Dim½Va� ¼ Da þ Dim½’�	B
a þ Dim½c �	F

a is the
‘‘canonical’’ operator dimension of the term in Lint asso-
ciated with Va. As usual, we classify a given vertex Va

as being nonrenormalizable, renormalizable, or super-
renormalizable according to whether it has dimension

greater, equal, or less than zþ d. Thus, a purely fermionic
theory with a quartic nonderivative self-interaction is re-
normalizable if z ¼ d and super-renormalizable if z > d. A
renormalized amplitude associated with the graph G may
be obtained by applying subtraction operators arranged
according Zimmermann’s forest formula [7]. For the
special case in which G is primitively divergent (i.e.,
without divergent subgraphs), the integral in Eq. (16) can
be made finite by replacing IðGÞ by

RðGÞ ¼ ð1� tdðGÞÞIG

¼ IG � X½dðGÞ=z�

s¼0

ps
0

s!

@s

@ps
0

XdðGÞ�sz

n¼0

pi1 . . .pin

n!

� @

@pi1

. . .
@

@pin

IG; (23)

where [x] is the greatest integer less than or equal to x, ps
0

symbolically stands for the product of s timelike compo-
nents of an independent set of external momenta, pi de-
notes the ith spacelike momentum (with the index of the
component implicit), and all derivatives are computed at
zero external momenta. Actually, in our one-loop calcula-
tions performed in the next sections, we will use the above
result just to unveil most easily the pole part of dimension-
ally regularized amplitudes; afterward, we apply our
renormalization prescription which consists of removing
these pole parts, what is usually called the ‘‘minimal sub-
traction scheme.’’ Besides, throughout this work, we will
take the critical exponent z to be two.
As in the usual isotropic situation, massless theories

require a special consideration. In these cases, it is better
to use modified Taylor operators so that the last subtraction
is performed replacingm by an auxiliary mass parameter�
which plays the role of a renormalization point.
Using this scheme, the BPHZ normal product algorithm

can be extended to the present situation. Thus, if O is a
formal product of the basic fields and their derivatives, a
normal product of degree 
, N
½O�, is defined in the usual
way [8]. Notice that 
 ¼ Dim½O� þ c, where c is a non-
negative integer and the dimension of O, Dim½O�, is
computed counting z for each ‘‘time’’ derivative, 1 for
each spatial derivative and the dimensions of the basics
fields as fixed before. As in the isotropic situation, these
normal products satisfy a number of convenient properties
which allows a systematic way for deriving Ward identities
and computing their anomalies. In particular, it should be
noticed that, inside a Green function,

@iN
½O� ¼ N
þ1½@iO�; @0N
½O� ¼ N
þz½@0O�:
(24)

A simple example

As a simple example of the methods exposed in the
previous section, we will examine a renormalizable
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anisotropic ’3 model which was first considered in
Ref. [5]. Renormalizability requires Dim½’3� ¼ dþ z,
which for z ¼ 2, fixes d ¼ 10. In this situation, the degree
of superficial divergence of a proper graph G is given by

dðGÞ ¼ 12� 4N; (25)

where N is the number of external lines of G. Taking this
into consideration, the Lagrangian including counterterms
to cancel the pure pole part is

L ¼ 1

2
@0’@0’� b2

2
@i’@i’�m2

2
’2 � a2

2
’�2’

þ 1

2
ðZ’ � 1Þð@0’@0’�m2’2Þ

� b2

2
ðZb � 1Þ@i’@i’� 
m2Z’

2
’2

� a2

2
ðZa � 1Þ’�2’� �Z�

3!
’3 þ c’

¼ L0 þLint; (26)

where � is the spatial Laplacian and

L 0 ¼ 1

2
@0’@0’� b2

2
@i’@i’� a2

2
’�2’�m2

2
’2;

(27)

with the constant c adjusted to eliminate all tadpoles. Thus,
at one-loop order, divergent graphs have two or three
external lines and are quartically or logarithmically diver-
gent, respectively.

Let us analyze each case separately:

(I) One-loop correction to the two point function—The
regularized amplitude is given by

�ðpÞ ¼ �2

2

Z dk0
2�

ddk

ð2�Þd
1

k2 � a2ðk2Þ2 �m2 þ i�

� 1

ðkþ pÞ2 � a2½ðkþ pÞ2�2 �m2 þ i�
;

(28)

where k2 � k20 � b2k2 and d ¼ 10� �. As men-

tioned before, because of the higher power of the
spatial momentum in the denominators, � does not
possess a closed analytic expression. However, to
compute its pole part, it is enough to calculate the
action of the Taylor operator t4 on the above inte-
grand. This leads to integrals which, after using the
spatial rotational symmetry, have the general form

Jðx; y; zÞ �
Z dk0

2�

ddk

ð2�Þd

� kx0jkjy
½k20 � b2k2 � a2ðk2Þ2 þm2�z ;

(29)

where for d ¼ 10, the parameters x, y, and z are such
that 2xþ y� 4zþ 12 is either equal to 0, 2, or 4. In
these cases, neglecting finite parts, Jðx; y; zÞ is given
by Eq. (A6) in Appendix A. With the help of that
result, we have:

(a) Omitting some finite contributions, the term with
four spatial derivatives yields

pipjpkpl

4!

@4�ðpÞ
@pi . . . @pl

��������p¼0

¼ �ðp2Þ2
24

Z dk0
2�

ddk

ð2�Þd
�
32a4ðk2Þ2
½den�4 þ 8a2

½den�3

þ 768a6ðk2Þ4
d½den�5 þ 3ð2Þ7a4ðk2Þ2

d½den�4

þ 3ð2Þ11a8ðk2Þ6
dðdþ 2Þ½den�6 þ

9ð2Þ9a6ðk2Þ4
dðdþ 2Þ½den�5

þ 3ð2Þ7a4ðk2Þ2
dðdþ 2Þ½den�4

�
; (30)

where den � k2 �m2 � a2ðk2Þ2 þ i�. Performing
the integrals, we find that their pole part yields the
result

� i
11

15ð2Þ18�5

�2

a3
ðp2Þ2
d� 10

: (31)

(b) The term with two derivatives with respect to the
components of p may be calculated analogously—
One finds

pipj

2

@2�ðpÞ
@pi@pj

��������p¼0

¼ �2p2

2

Z dk0
2�

ddk

ð2�Þd
�
16b2a2ðk2Þ2
d½den�4 þ 16a4ðk2Þ3

d½den�4

þ b2

½den�3þ
2a2k2

½den�3þ
4a2k2

d½den�3
�
; (32)

such that the pole part is

� i
5

3ð2Þ17�5

b2�2

a5
1

d� 10
p2: (33)

(c) The term with two derivatives with respect to p0

gives

p2
0

2

@2�ðpÞ
@p0@p0

��������p¼0

¼ p2
0

2

Z dk0
2�

ddk

ð2�Þd
�

3

½den�3 þ
4a2ðk2Þ2
½den�4

�
;

(34)

providing the pole part
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� i
1

3ð2Þ17�5

�2

a5
1

d� 10
p2
0: (35)

(d) Similarly, the term without derivatives computed at
zero external momentum furnishes the pole part

i
1

ð2Þ18�5

�2

a7
1

d� 10
ð�5b4 þ 4a2m2Þ: (36)

Collecting the above results we can write

�ðpÞ ¼ i
1

ð2Þ18�5

�2

d� 10

�
4a2m2 � 5b4

a7
� 2

3

p2
0

a5

� 10b2

3

p2

a5
� 11

15

ðp2Þ2
a3

�
þ finite terms:

(37)

(II) Completing the computation of counter terms—To
complete our computation of the counterterms, we
need to consider the three-point function. At the
one-loop level, a direct calculation gives that

�ð3Þ ¼ �i�þ i
1

216�5

�3

a5
1

d� 10
þ finite terms:

(38)

We are now in a position to determine the renormaliza-
tion group flows of the parameters of the model. In fact,
the Npoint vertex functions of the model satisfy a ’t Hooft-
Weinberg renormalization group equation,

�
�

@

@�
þ 


@

@m2
þ �b2

@

@b2
þ �a2

@

@a2

þ ��

@

@�
� N�

�
�ðNÞðp;m2; b2; a2; �;�Þ ¼ 0; (39)

where the renormalization scale � was introduced by

replacing � ! ��=2�, where � ¼ 10� d, so that the new
coupling constant � is dimensionless. After removing the
pure pole part, the renormalization group parameters may
be then obtained by replacing into Eq. (39) the renormal-
ized vertex functions

�ð2Þ ¼ i½p2
0 � b2p2 � a2ðp2Þ2 �m2

� �2ðFinite1 � ln�Residue1Þ� (40)

and

�ð3Þ ¼ �i�þ i�3ðFinite2 � ln�Residue2Þ; (41)

where Finite1;2 are the finite parts and Residue1;2 are the

residues at the poles of the corresponding vertex functions.
We find

�b2 ¼
b2

216�5

�2

a5
; �a2 ¼

7

5ð2Þ18�5

�2

a3
;

�� ¼ � 3

218�5

�3

a5
;


 ¼ ð5b4 � 10
3 m

2a2Þ
218�5

�2

a7
; and � ¼ 1

3ð2Þ18�5

�2

a5
;

(42)

which agree with Ref. [5] and show that the model is
asymptotically free. Furthermore, the effective mass in-
creases or decreases with�, and, accordingly, b4 is greater
or less than 2=3m2a2. By introducing a logarithmic scale,
t ¼ lnð�=�0Þ, where �0 is a reference scale where the
parameters in the Lagrangian have been defined, we may
evaluate the flows of the effective parameters as follows:

@ �a2

@t
¼ 7

5ð2Þ18�5

��2

�a3
; with �að0Þ ¼ a; (43)

and

@ ��

@t
¼ � 3

218�5

��3

�a5
; with ��ð0Þ ¼ �: (44)

These equations imply that

��
@2 ��

@t2
¼ 25

6

�
@ ��

@t

�
2
; (45)

whose general solution is

��ðtÞ ¼ c2

ð19tþ 6c1Þð6=19Þ
; (46)

where c1 and c2 are constants determined by the initial
conditions. Using this result, we integrate the equation for
�a, giving

�a 5ðtÞ ¼ c22
219�5

ð19tþ 6c1Þð7=19Þ (47)

and also

c1 ¼ 218�5

3

a5

�2
and c2 ¼ 64�ð30=19ÞðaÞð30=19Þ�ð7=19Þ:

(48)

Notice that �a decreases with t vanishing at the critical

value tIR ¼ � 219

19
a5

�2 . The same happens with the effective

parameter �b which is given by

�b 2ðtÞ ¼ b2

ð6c1Þð8=19Þ
ð19tþ 6c1Þð8=19Þ: (49)

However, at the same time, the effective coupling constant
increases, tending to infinity as t approaches tIR. Our
perturbative methods are not applicable insofar as �� is
not small and no conclusion can be made concerning the
restoration of Lorentz symmetry at small momenta.
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1. Unitarity in the anisotropic situation

Differently from what happens in Lorentz-invariant
theories but with higher space and time derivatives, models
where only higher spatial derivatives are introduced pre-
serve unitarity (in this respect, see also Ref. [9]). Let us
exemplify this by analyzing the Cutkosky rules [10] for the
one-loop contribution to the two-point function of the
model (26). Those rules demand that the diagrammatic
relation of Fig. 2 be obeyed. The analytic expression for
the graph on the left-hand side is

iT ¼ �2

2

Z dk0
2�

ddk

ð2�Þd
1

k20 �!2
k þ i�

� 1

ðp0 � k0Þ2 �!2
p�k þ i�

; (50)

where the only restriction on !k is that it depends only on
the spatial part of the momentum. For the model (26),
!2

k ¼ b2k2 þ a2ðk2Þ2 þm2. By integrating over k0 and

using the identity

1

A� i�
¼ P

�
1

A

�
� i�
ðAÞ; (51)

where P denotes the Cauchy principal value, we get

2 ImT ¼ ��2
Z ddk

ð2�Þd

ðp0 �!k �!p�kÞ

2!k2!p�k

: (52)

On the other hand, the expression for the cut diagram on
the right of Fig. 2 is obtained by the following replacement
of the free propagator

�ðkÞ ¼ i

k20 �!2
k þ i�

! �þðkÞ ¼ 2��ðk0Þ
ðk20 �!2
kÞ
(53)

and by noticing that the vertex factor on the left of the cut is
the complex conjugate of the one on the right of it.
Therefore, the graph on the right of Fig. 2 gives

XjTj2¼�2

2

Z dk0
2�

ddk

ð2�Þd2��ðk0Þ
ðk
2
0�!2

kÞ2��ðp0�k0Þ

�
ððp0�k0Þ2�!2
p�kÞ; (54)

which, after integrating over k0, gives the same result as in
Eq. (52).

IV. THE ’4 MODEL

The ’4 model with z ¼ 2, specified by the Lagrangian
density

L¼ 1

2
@0’@0’�b2

2
@i’@i’�a2

2
’�2’�m2

2
’2� �

4!
’4;

(55)

turns out to be renormalizable in 6 spatial dimensions, the
degree of superficial divergence being given by

dðGÞ ¼ 8� 2N: (56)

If a BPHZ-like scheme is adopted, we find that the
Green functions satisfy the equation of motion,

h0jTN8½’ð@20 � b2�þ a2�2 þm2Þ’�ðxÞXj0i

¼ � �

3!
h0jTN8½’4�ðxÞXj0i � i

XN
i¼1


ðx� xiÞh0jTXj0i;

(57)

where X ¼ Q
i’ðxiÞ. This expression may be derived by

noting that in momentum space, the operator applied on ’,
in the left-hand side of the above equation, is equal to �i
times the inverse of the free field propagator,

�FðkÞ ¼ i

k20 � b2k2 � a2ðk2Þ2 �m2 þ i�
: (58)

To fix the renormalization group parameters, we compute
the radiative corrections to the parameters of the model as
follows.
The lowest-order correction to the two-point function

comes from the tadpole graph in Fig. 3 whose analytic
expression is

�

2

Z dk0
2�

ddk

ð2�Þd
1

k20 � b2k2 � a2ðk2Þ2 �m2 þ i�
: (59)

Since the above integral does not depend on the external
momentum, with the help of Eq. (A6), its divergent part is
easily obtained, i.e.,

� i
ð�3b2 þ 4a2m2Þ

2048�3

�

a5
1

d� 6
: (60)

The one-loop contribution to the coupling constant re-
normalization is also straightforwardly calculated. In fact,
we just need to calculate the pole part of

FIG. 2. Cutkosky rule at one-loop order. FIG. 3. Two-point function of order �.
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3�2

2

Z dk0
2�

ddk

ð2�Þd
1

½k20 � b2k2 � a2ðk2Þ2 �m2 þ i��2 ;
(61)

which, again with the help of Eq. (A6), is found to be

� i
3

512�3

�2

a3
1

d� 6
: (62)

To find the lowest-order corrections to the a and b parame-
ters is a much more difficult task since it involves the
calculation of a two-loop graph. Actually, only for b ¼ 0
and m ¼ 0, closed analytic expressions exists [11]. In that
case, one needs to calculate

i�2

3!

Z dk0
2�

ddk

ð2�Þd
dq0
2�

ddq

ð2�Þd
1

k20 � a2ðk2Þ2
1

q20 � a2ðq2Þ2

� 1

ðp0 � k0 � q0Þ2 � a2ððp� k� qÞ2Þ2 ; (63)

whose pole part turns out to be

� i�2

288

�2

a4

�
1

a2

�
1þ 3 ln

3

4

�
p2
0 þ

7

72
ðp2Þ2

�
1

d� 6
; (64)

yielding the following beta function:

�a2 ¼
�2

144

�
79

72
þ 3 ln

3

4

�
�2

a4
: (65)

Similarly, the computation of the pole part of the four-point
vertex function furnishes

�ð2Þ
� ¼ 3

512�3

�2

a3
; (66)

so that the model is infrared-stable. This result will be used
in the next section as the renormalization for the Yukawa
model demands the inclusion of the ’4 self-interaction.

Concerning the solution of these equations, there is a
particular configuration of the initial values of the parame-
ters a and �, such that the system of differential equations
above exhibits a simple analytical solution. In fact, denot-

ing the constants appearing in above equations by A �
�2

144 ð7972 þ 3 ln34Þ and B � 3
512�3 , we can get from Eqs. (65)

and (66) the following equation for the effective coupling
constant:

3A

2B2

�
@ ��

@t

�
3 � 2 ��

�
@ ��

@t

�
2 þ ��2

�
@2 ��

@t2

�
¼ 0; (67)

which admits the solution

��ðtÞ ¼ ��ð0Þeð3A=2B2Þt: (68)

From (65), we obtain

�aðtÞ ¼
�
9A2

4B2
��2ð0Þðeð3A=B2Þt � 1Þ þ �a6ð0Þ

�ð1=6Þ
: (69)

But this will be a solution of the system only under the

condition �a6ð0Þ ¼ 9A2

4B2
��2ð0Þ, yielding

�aðtÞ ¼
�
9A2

4B2
��2ð0Þ

�ð1=6Þ
eðA=2B2Þt: (70)

This result shows us that the Lorentz-symmetry-breaking
parameter �a goes to zero as t ! �1, i.e., in the infrared
region. On dimensional grounds, we see that these solu-
tions would not suffer modifications even in the presence
of the parameters b and m, such as in the Lagrangian (55).
So, we conclude that in this case, the Lorentz symmetry
can be approximately recovered in a sufficient low scale of
the energy.

V. A RENORMALIZABLE YUKAWA MODEL
WITH z¼ 2

The analysis of the previous sections indicates that
anisotropic models which are infrared-stable are the best
candidates to show Lorentz symmetry restoration at small
energies. To further investigate this possibility, we consider
now a model of boson and fermion fields interacting
through the Lagrangian density,

L ¼ 1

2
@0’@0’� b2’

2
@i’@i’�m2

2
’2 � a2’

2
’�2’

þ �c ði�0@0 þ ibc�
i@i þ ac��MÞc

þ ig �c�5c’� �

4!
’4; (71)

where �5 is the chiral matrix. In momentum space, the free
propagators derived from the above expression are

�FðkÞ ¼ i

k20 � b2’k
2 � a2’ðk2Þ2 �m2

; (72)

for the bosonic field ’ and

SFðkÞ ¼ i

�0k0 � bc� � k� ack
2 �M

; (73)

for the fermion field. The interaction between the basic
fields is given by the nonquadratic part of Eq. (71) so that
the corresponding Feynman rules are as depicted in Fig. 4.
With the anisotropic scaling exponent z ¼ 2, the model is
renormalizable in d ¼ 6 spatial dimensions and one time
dimension. Indeed, in this situation, the degree of super-
ficial divergence for a generic graph G is

dðGÞ ¼ 8� 2NB � 3NF; (74)

where NB and NF are the number of external boson and
fermion lines of G. As the spacetime dimension is odd, we
will work with gamma matrices adequate for eight dimen-
sions as to be able to define the chiral matrix as (notice that
this assumption is in accord with the fact that the effective
dimension of the underlying spacetime is eight)
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�5 � i
Y7
�¼0

��: (75)

The above choice for the interaction term prevents the
induction of counterterms proportional to ’3, ’, and
�c c’ and so is simpler than the other possible renormaliz-
able interaction �c c’.

As usual, we define renormalized quantities through the
replacements

’ ! Z1=2
’ ’; (76)

c ! Z1=2
c c ; (77)

g ! Zg

ZcZ
1=2
’

g; (78)

� ! Z�

Z2
’

�; (79)

and also the Lorentz breaking parameters,

fb2’; bc ; a
2
’; ac g ! fðZb’=Z’Þb2’; ðZbc

=Zc Þbc ;

� ðZa’=Z’Þa2’; ðZac
=Zc Þac g: (80)

For the computation of the renormalization constants, we
shall use the dimensional reduction scheme [12] in which
all algebraic simplifications are done with the Dirac matri-
ces as introduced above and, afterward, the integrals are
promoted to d ¼ 6� � spatial dimensions. The ambigu-
ities that may be present in such a procedure [13] only
manifest themselves in higher orders and do not affect our
one-loop computations. Up to one-loop order, the relevant
graphs are shown in Figs. 5–8. We begin by considering the
order g2 radiative correction to the self-energy of the field
’, Fig. 5(a), whose unsubtracted analytic form is

�’ðpÞ ¼ g2
Z dk0

2�

ddk

ð2�Þd Tr

�
�5 1

�0k0 � bc� � k� ack
2 �M

�5 1

�0ðk0 þ p0Þ � bc� � ðkþ pÞ � ac ðkþ pÞ2 �M

�
;

(81)

where, as we are considering the eight-dimensional repre-
sentation, the gamma matrices are 24-dimensional and
obey Tr�� ¼ 0 and Tr���	 ¼ 24g�	.

As before, for generic momenta, the computation of
�’ðpÞ is cumbersome and probably unfeasible. However,

to extract its pole part, we may proceed as in Sec. III.
After discarding some finite contributions, the term of the
fourth-order derivative with respect to the spatial mo-
menta gives

g224
pipjpkpl

4!

Z dk0
2�

ddk

ð2�Þd
��k20
½den�

@4

@ki@kj@kk@kl

1

½den�

þ a2ck
2

½den�
@4

@ki@kj@kk@kl

k2

½den�
�
; (82)

where, for simplicity, we have defined den � k20 �
b2ck

2 � ðack
2 þMÞ2. Thus, we have to compute inte-

grals of the form

Jðx; y; zÞ �
Z dk0

2�

ddk

ð2�Þd
kx0jkjy

½k20 � b2ck
2 � ðack

2 þMÞ2�z ;

(83)

which, up to some finite terms, can be read from
Appendix A, by sequentially making the replacements
m2 ! M2, b2 ! b2c þ 2Mac , and a2 ! a2c . The pole

part at d ¼ 6 then

� i

ð2Þ7�3

g2

ac

1

d� 6
ðp2Þ2: (84)

The other terms in the Taylor expansion may be calcu-
lated similarly. We find that the pole part of the self-
energy of the ’ field is

FIG. 4. Interacting vertices for the Yukawa model.
FIG. 5. Lowest-order contributions to the self-energy of the
scalar field.
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� i

�ð3b4c þ 12acb
2
cMþ 8a2cM

2Þ
64�3

1

a4c
þ 1

32�3

1

a2c
p2
0 þ

M

16�3

1

ac

p2 þ 1

3ð2Þ7�3
ðp2Þ2

�
g2

ac

1

d� 6
: (85)

The tadpole graph has already been considered in our study of the’4 model, and we simply quote that the result is given by
Eq. (60).

Let us now consider the one-loop contribution to the self-energy of the fermion field which corresponds to the graph in
Fig. 6. The analytic expression is

�c ðpÞ ¼ �g2
Z dk0

2�

ddk

ð2�Þd �
5 1

�0k0 � bc� � k� ack
2 �M

�5 1

ðp0 � k0Þ2 � b2’ðp� kÞ2 � a2’½ðp� kÞ2�2 �m2

¼ �g2
Z dk0

2�

ddk

ð2�Þd
��0k0 þ bc� � kþ ack

2 þM

k20 � b2ck
2 � ðack

2 þMÞ2
1

ðp0 � k0Þ2 � b2’ðp� kÞ2 � a2’½ðp� kÞ2�2 �m2
: (86)

From this, we get the pole terms:
(a) Term with two derivatives with respect to the spatial

part of the external momentum:

�i

3ð2Þ7�3

ac ð3a’ þ ac Þ
a’ða’ þ ac Þ3

g2p2

d� 6
: (87)

(b) Term with one derivative with respect to p0:

�i

ð2Þ7�3

g2

a’ðac þ a’Þ2
1

d� 6
p0�

0: (88)

(c) Term with one derivative with respect to the spatial
part of the external momentum:

i
1

3ð2Þ7�3

ð2a’ þ ac Þbc

a’ac ða’ þ ac Þ2
g2

d� 6
p � �: (89)

(d) Term without derivatives:

� 1

28�3

g2

a3’a
2
c

½a2c ð2a’ þ ac Þb2’ þ a2’ða’ þ 2ac Þb2c þ 2a2’a
2
cM�

ðac þ a’Þ2
1

d� 6
: (90)

The one-loop contribution to the three-point vertex func-
tion, Fig. 7, furnishes

� 1

27�3

1

a’ac ða’ þ ac Þ g
3�5 1

d� 6
; (91)

whereas for the four-point vertex function of the bosonic
field shown in Fig. 8, we obtain

i

16�3

�
6

a3c
g4 � 1

25a’
�2

�
1

d� 6
: (92)

The vertex functions of this model satisfy the renormaliza-
tion group equation

�
�

@

@�
þD’ þDc þ �g

@

@g
þ ��

@

@�

� NB�’ � NF�c

�
�ðNÞðp;m2; b; a; �;�Þ ¼ 0; (93)

where we have defined the differential operators

D’ � 
m2

@

@m2
þ �b2’

@

@b2’
þ �a2’

@

@a2’
(94)

and

FIG. 6. Two-point fermionic function. FIG. 7. Three- point vertex function.
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Dc � 
M

@

@M
þ �bc

@

@bc

þ �ac

@

@ac

: (95)

The parameter � was introduced through the following

replacements of the coupling constants g ! g��=2 and
� ! ���.

By substituting the one-loop expansions of the renor-
malized vertex functions, we then get the various beta
functions (see Appendix B for details), with the arguments
indicating the order of the coupling constant in which they
have been calculated:

�b2’
ðg2Þ ¼ 1

32�3

ðb2’ þ 2acMÞ
a3c

g2; (96)

�a2’
ðg2Þ ¼ 1

128�3

ð4a2’ þ a2c Þ
a3c

g2; (97)

�bc
ðg2Þ ¼ bc

192�3

ða’ þ 2ac Þ
a’ac ða’ þ ac Þ2

g2; (98)

�ac
ðg2Þ ¼ 1

192�3

ac ð3a’ þ 2ac Þ
a’ða’ þ ac Þ3

g2; (99)

�gðg3Þ ¼ 1

256�3

�2a3’ þ 4a2’ac þ 3a’a
2
c þ 2a3c

a3ca’ða’ þ ac Þ2
�
g3

(100)

and

�� ¼ 3

512�3

�2

a3’
� 3

8�3

g4

a3c
þ 1

16�3

�g2

a3c
: (101)

As Eq. (96) involves the mass of the fermion field, we need
also the corresponding renormalization group function:


Mðg2Þ ¼
½2a’a2cb2’ þ a3cb

2
’ þ a3’b

2
c þ 2a2’ac ðb2c þ 2acMÞ�

256�3a3’ac ða’ þ ac Þ2
g2: (102)

The equations that govern the evolution of the effective
Lorentz-symmetry-breaking parameters may be separated
in two sets. In the first one are the equations for �a’, �ac , and
�g, which do not depend on the remaining parameters. In the
second set are the equations for the other parameters �b’
and �bc ; those need the input of the former set to be
evaluated. Unfortunately, these equations do not seem to
have simple analytic solutions so that we use numerical
methods to investigate their properties. Before proceeding,
we need to stress what we mean by restoration of the
Lorentz symmetry in this model. Obviously, we can never
take the symmetry-breaking parameters a’ and ac equal to

zero, since we would end up with a nonrenormalizable
theory. In this sense, we cannot expect an exact Lorentz
symmetry, which would correspond a’ ¼ ac ¼ 0 and
b’ ¼ bc ; these are not even special points (for example,
fixed points) of the above renormalization group equations.
However, we can consider the possibility of an approxi-
mate Lorentz symmetry arising in some specific low-
energy limit, depending on a fine-tuning of the parameters
involved. More precisely, we may find a region where the
parameters �a’ and �ac are sufficiently small, and, further-
more, the parameters �b’ and �bc are such that �b’ � �bc . Of
course, this is not the ideal situation, but it could furnish a

FIG. 9. The ultraviolet behaviors of the parameters a’ and ac .

FIG. 8. Four-point scalar functions.
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positive view concerning the Lorentz symmetry restoration
in anisotropic field theories. To get a better insight on this
possibility, we performed a numerical study, as described
bellow.

Our results, obtained through the use of the numerical
package of MATHEMATICA (and also checked with the
Runge-Kutta 4th-order method), show that the fermionic
parameters change much more slowly than the bosonic
ones. Actually, the changes of the tangents to the curves
of some parameters are so small producing the impres-
sion that they are straight lines. At higher momenta,
the coupling constant �g, �a’, and �b’ increase steeply

for t	 109, indicating the existence of a singularity
similar to the Landau pole found in many not-asymptoti-
cally-free field theories, see Figs. 9–11. By contrast, �ac

and �bc increases slowly as shown in Fig. 9 and 10. For

negative t, corresponding to the small momenta region,
the general pattern is that all parameters decrease; as
remarked before, the parameters associated to the c field
do that at a slower rate than those associated to the ’
field (see Figs. 12 and 13). The graphical figures were
drawn by taking the initial value �gð0Þ ¼ 10�3 for the
coupling constant and the initial values of the other
parameters all equal to one. Variations of these initial
values do not qualitatively change the behavior of the
effective parameters. It should be noted that below the
lower ends of the curves, the data are not reliable as the
modulus of t is very large, whereas, at the same time,
the effective parameters become very small, possibly
generating large numerical errors.
Thus, given a low-energy region, in order to have an

approximate Lorentz symmetric situation, one should

FIG. 10. The ultraviolet behaviors of the parameters b’ and bc .

FIG. 11. The general behavior of the coupling constant g. The singularity in the UV region is similar to the Landau pole.

FIG. 12. The infrared behaviors of the parameters a’ and ac .
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modify the initial configuration of the parameters a’ and

ac so that they will attain the desired range of values in the

specified region. For example, as the �a’s monotonically
decrease when t is negative, this can be easily done by
choosing the initial values of a’ and ac to be equal to the

maximum values they should have in the region of interest.
Moreover, we need to adjust the initial configuration values
of the b’ and bc parameters, so that �b’ � �bc in the same

region. Notice that these two requirements can be satisfied
due to the decoupling of the equations for �a’s and �b’s, as
mentioned before.

VI. CONCLUSIONS

In this work, we have examined some aspects of aniso-
tropic field theories as renormalization properties and
Lorentz-symmetry restoration. In particular, we performed
a renormalization group analysis of various models aiming
to understand the infrared behavior of their effective pa-
rameters. Initially, we considered models without higher
derivatives but with fields with different light velocities;
then, in two specific instances, we verified that the break-
ing of Lorentz invariance is soft, i.e., the Lorentz symmetry
is recovered at low energies.

In the general situation where higher spatial derivatives
are present, unless for super-renormalizable models, the
idea that Lorentz symmetry is restored at low energies
requires the interactions to be infrared-stable and some
process of dimensional reduction, to cope with eventual
divergences appearing whenever the higher-derivative
terms are eliminated. It should be pointed out that, as
may be straightforwardly derived from Eq. (22), the spatial
dimensions in which the anisotropic, d, and Lorentz
symmetric, dL, versions of a given model without deriva-
tive couplings are renormalizable are related by d ¼ zdL
where z is the critical exponent which characterizes the
anisotropy.

In the case of the ’3 model, although the breaking
parameters decrease with the energy, because of the
asymptotic freedom of the model, the effective coupling
increases, and no conclusion can be achieved on the res-
toration of Lorentz symmetry within this perturbative
approach.

Concerning the behavior of the parameters under the
renormalization group, a more favorable situation occurs
for the ’4 and Yukawa models which are infrared-stable.
For the ’4 model, we found a special analytical solution in
which the effective parameters increase monotonically
from zero in the infrared to very large values at high
momenta. For the Yukawa model, the system of equations
that govern the changes of the effective parameters are
intricate enough, and no closed analytical expression
seems to be feasible. Our numerical solution revealed
that for high momenta, a singularity, like the Landau
pole, is present, but for small momenta, all Lorentz-
breaking parameters decrease. As discussed in the text,
our results indicate that we can find specific low values
of the energy scale where the approximate Lorentz
symmetry may be achieved (in the sense of small �a’s and
�b’ � �bc ), which nevertheless requires a fine-tuning of the

initial values of the parameters.
In this study, we have restricted ourselves to models with

z ¼ 2. As we have seen, the investigation of the Lorentz
symmetry restoration involves the determination of the
infrared behavior of the Lorentz-breaking parameters,
and, thus, for models with higher values of z, which have
more parameters, the situation becomes more complex.
Another lateral remark concerns models with gauge sym-
metry; in this case, to keep the symmetry, covariant deriva-
tives have to be used so that in the perturbative approach,
new interaction terms must to taken into account. For a
discussion of the symmetries using the BPHZ approach on
anisotropic models, see the sequel [14] of this work.
We hope that the ideas and methods we presented may

be useful also in condensed matter physics, in the contexts
of quantum phase transitions and Lifshitz models, i.e., in
situations where the kind of anisotropy considered here
may be a natural concept [15,16].
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FIG. 13. The infrared behaviors of the parameters b’ and bc .
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APPENDIX A: INTEGRALS

In this appendix, we will compute the pole part of some integrals that are relevant in our calculations. We begin by
considering the following integral:

Jðx; y; zÞ �
Z dk0

2�

ddk

ð2�Þd
kx0jkjy

½k20 � b2k2 � a2ðk2Þ2 �m2 þ i��z ; (A1)

where x, y, and z are such that the integral is at most quartically divergent when the dimensional regularization is removed.
We use the representation

Jðx; y; zÞ ¼ 1

iz�ðzÞ
Z dk0

2�

ddk

ð2�Þd k
x
0jkjy

Z 1

0
d��z�1ei�½k20�b2k2�a2ðk2Þ2�m2þi��

¼ 1

iz�ðzÞ
Z 1

0
d��z�1e�i�ðm2�i�Þ Z dk0

2�
kx0e

i�k2
0

Z ddk

ð2�Þd jkj
yei�½�b2k2�a2ðk2Þ2�: (A2)

Now,

Z dk0
2�

kx0e
i�k20 ¼ 1

4�
ð1þ ð�1ÞxÞð�i�Þ�ð1þxÞ=2�

�
xþ 1

2

�
; (A3)

and, denoting by �d ¼ 2�d=2=�ðd=2Þ the volume of the d-dimensional unit sphere,

Z ddk

ð2�Þd jkj
yei�½�b2k2�a2ðk2Þ2� ¼ �d

ð2�Þd
ðia2�Þ�ðdþyÞ=4

4

�
�

�
dþ y

4

�
1
F1

�
dþ y

4
;
1

2
;
i�b4

4a2

�

� ði�Þ1=2
jaj b2�

�
2þ dþ yÞ

4

�
1
F1

�
2þ dþ yÞ

4
;
3

2
;
i�b4

4a2

��
; (A4)

where 1F1 is the confluent hypergeometric function. The divergence that appears in Eq. (A2) when the dimensional
regularization is removed is due to the behavior of integrand for small �. Thus, to obtain its pole part, we may use the
approximations

1F1

�
dþ y

4
;
1

2
;
i�b4

4a2

�
¼ 1þ i

b4ðdþ yÞ
8a2

�þOð�2Þ; 1F1

�
2þ dþ yÞ

4
;
3

2
;
i�b4

4a2

�
¼ 1þOð�Þ: (A5)

Notice that in the last expansion, we need to consider just the zeroth-order term because of the �1=2 additional factor in
Eq. (A4). All powers of � greater than those that we have considered produce finite results. It is now straightforward to
perform the remaining integrals, and we obtain

Jðx; y; zÞ ¼ 1

iz�ðzÞ
ð1þ ð�1ÞxÞ

2
�

�
xþ 1

2

�
a�ðdþyþ4Þ

ð4�Þðd=2Þþ1�ðd2Þ
�

�
a4�

�
dþ y

4

�
ð�1Þ1=8ð2�d�yÞeði�x=4Þðim2Þ1=4ð2þdþ2xþy�4zÞ�

��2� d� 2x� yþ 4z

4

�

þ i�ðdþ y

4
Þ b

4

8
ðdþ yÞð�1Þ1=8ð2�d�yÞeði�x=4Þðim2Þ1=4ð�2þdþ2xþy�4zÞ�ð2� d� 2x� yþ 4z

4
Þ

� ia2b4�ðdþ yþ 2

4
Þð�1Þ1=8ð�d�14x�yÞei2�xðim2Þ1=4ðdþ2xþy�4zÞ�

��d� 2x� yþ 4z

4

��
: (A6)

Another typical integral that occurs in our calculation involves the product of propagators with different parameters as in

Z dk0
2�

ddk

ð2�Þd
1

ðk20 � b21k
2 � a21ðk2Þ2 �m2

1Þz1
1

ðk20 � b22k
2 � a22ðk2Þ2 �m2

2Þz2
: (A7)
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In this case, we first join the two denominators by using
Feynman trick,

1

Az1Bz2
¼ �ðz1 þ z2Þ

�ðz1Þ�ðz2Þ
Z 1

0
dx

xz1�1ð1� xÞz2�1

½Axþ Bð1� xÞ�z1þz2
; (A8)

and then apply the formula (A6).

APPENDIX B. RENORMALIZATION-GROUP
PARAMETERS

Here, we will present some details of the derivation of
renormalization-group parameters listed in the text. First,
notice that the boson and fermion two-point vertex func-
tions are given by

�ð2Þ
’ ðpÞ ¼ i½p2

0 � b’p
2 � a2’ðp2Þ2 �m2 � g2ðFinite1

� ln�Residue1Þ � i�ðFinite2 � ln�Residue2Þ�;
(B1)

�ð2Þ
c ðpÞ ¼ i½�0p0 � bc� � p� acp

2 �M

þ g2ðFinite3 � ln�Residue3Þ�; (B2)

where the residues have the form

Residue1 ¼ A1 þ A2p
2
0 þ A3p

2 þ A4ðp2Þ2 and

Residue2 ¼ ~A1; (B3)

Residue3 ¼ B1 þ B2�
0p0 þ B3� � pþ B4p

2; (B4)

and the A’s and B’s can be read directly from Eqs. (85) and
(87)–(90). Similarly, the three-point fermion-boson
vertex function and four-point of the boson field have the
expressions

�ð3Þ ¼ �g�5 � g3ðFinite4 � ln�Residue4Þ; (B5)

�ð4Þ ¼ �i�þ g4ðFinite5 � ln�Residue5Þ
� �2ðFinite6 � ln�Residue6Þ; (B6)

where Residuei, i ¼ 4, 5, 6, are given by

Residue4 ¼ C1 ¼ 1

128�3

1

a’a
2
c þ a2’ac

�5;

Residue5 ¼ D1 ¼ 3i

8�3

1

a3c
;

(B7)

Residue 6 ¼ ~D1 ¼ i
3

512�3

1

a3’
: (B8)

By replacing these expressions into Eq. (93) and equating
to zero the coefficient of each power of the coupling
constant, we get

��ðg4Þ ¼ iD1g
4; ��ð�2Þ ¼ �i ~D1�

2 (B9)

and

��ð�g2Þ ¼ 4��’ðg2Þ; (B10)

so that

�� ¼ 3

512�3

�2

a3’
� 3

8�3

g4

a3c
þ 1

16�3

�g2

a3c
: (B11)

We have also

�b2’
ðg2Þ ¼ �ðb2’A2 þ A3Þg2 ¼ 1

32�3

ðb2’ þ 2acMÞ
a3c

g2;

(B12)

�a2’
ðg2Þ ¼ �ða2’A2 þ A4Þg2 ¼ 1

128�3

ð4a2’ þ a2c Þ
a3c

g2;

(B13)

�bc
ðg2Þ ¼ �ðbcB2 þ B3Þg2

¼ bc

192�3

ða’ þ 2ac Þ
a’ac ða’ þ ac Þ2

g2; (B14)

�ac
ðg2Þ ¼ �ðacB2 þ B4Þg2

¼ 1

192�3

ac ð3a’ þ 2ac Þ
a’ða’ þ ac Þ3

g2; (B15)

and

�gðg3Þ ¼
�
�A2

2
� B2 þ C1

�
g3

¼ 1

256�3

�2a3’ þ 4a2’ac þ 3a’a
2
c þ 2a3c

a3ca’ða’ þ ac Þ2
�
g3:

(B16)
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