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We recalculate the color-Coulomb potential to one-loop order, under the assumption that the effect of

the Gribov horizon is to make (i) the transverse gluon propagator less singular and (ii) the color-Coulomb

potential more singular than their perturbative behavior in the low-momentum limit. As a first guess, the

effect of the Gribov horizon is mimicked by introducing a transverse momentum-dependent gluon mass

term, leading to a propagator of the Gribov form, with the prescription that the mass parameter should be

adjusted to the unique value where the infrared behavior of the Coulomb potential is enhanced. We find

that this procedure leads to a Coulomb potential rising asymptotically as a linear term modified by a

logarithm.
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I. INTRODUCTION

One of the early ideas regarding the confinement prob-
lem was that the confining force might come from
one-gluon exchange [1–3]. The suggestion was that a
dressed-gluon propagator, possibly combined with dressed
quark-gluon vertices and arranged in ladder diagrams,
would lead to a linear potential. Of course, the notion
that the confining force can be entirely explained by ladder
diagrams built from one-gluon exchange must nowadays
be considered a little naive. There are many (related)
problems with such a proposal, in particular (i) the exis-
tence of a long-range color dipole field around static
sources; (ii) long-range van der Waals forces which would
then have to exist among hadrons; (iii) group representa-
tion dependence (Casimir scaling) rather than N-ality de-
pendence of the asymptotic string tension; and (iv) the
absence of color-electric flux tubes, not to mention the
absence of stringlike properties of such flux tubes, which
have been convincingly seen in numerical simulations
(cf. Ref. [4] and references therein). Nevertheless, if it
were possible to reliably calculate the long-range behavior
of, say, the color-Coulomb potential, then this information
might be useful as an input into more sophisticated pic-
tures, such as the gluon-chain model [5], where the prob-
lems just mentioned can be alleviated. Furthermore, the

simple fact is that the instantaneous color-Coulomb
potential is linearly confining. There is ample numerical
evidence of this behavior [6–8].1

This article is an attempt to derive the long-range color-
Coulomb potential analytically in Coulomb gauge. There
have been a great many efforts in this direction over
the years; Refs. [9–17] is a partial list; see also
Refs. [18–21] for similar efforts in covariant gauges.
Here we will focus on a simple one-loop perturbative
calculation, modified minimally by certain features asso-
ciated with the Gribov horizon.

II. GLUON PROPAGATORS AND THE
GRIBOV HORIZON

The potential energy of two static quarks in color rep-
resentation r is given in terms of the logarithm of a Wilson
loop around a rectangular R� T contour,

VrðRÞ ¼ � lim
T!1

1

T
logWrðR; TÞ; (1)

where WrðR; TÞ is the vacuum expectation value of the
Wilson loop. Let the side of length T be oriented in the
time direction. For the purposes of the present article,
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1It can be proven that the instantaneous color-Coulomb po-
tential is actually an upper bound to the static quark potential [9],
so even without numerical simulations we would know that the
color-Coulomb potential must be confining, albeit not neces-
sarily linear.
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the color-Coulomb potential is defined by counting only
the one-gluon exchange contribution to logW, and this is

VCðRÞ ¼ Cr

N

Z d3k

ð2�Þ3 g
2ND44ðk; k4 ¼ 0Þð1� eik�RÞ; (2)

where Dab
44 ðkÞ ¼ �abD44ðkÞ is the 44-component of the

gluon propagator in Coulomb gauge, Cr is the quadratic
Casimir in representation r, and N is the number of colors.
The R-independent part of this expression is the self-
energy contribution, which we will return to. It was shown
by Zwanziger [22] that g2D44ðkÞ is a renormalization-
group invariant, and therefore does not depend, e.g. in
the context of dimensional regularization, on the arbitrary
scale�. VCðRÞ is the static quark potential which would be
obtained if we approximated the logarithm of a timelike
Wilson loop expectation value by the one dressed-gluon
exchange term; cf. [23–25]. Other treatments focus exclu-
sively on the instantaneous part of D44, obtained in the
k4 ! 1 limit, but in this article we will include also non-
instantaneous contributions to the potential, and this leads
to setting k4 ¼ 0.

Let us define the renormalization-group invariant

VðkÞ � �g2ND44ðk; k4 ¼ 0Þ: (3)

This quantity was computed to one loop long ago [26,27],
and the answer (at large jkj) is

VðkÞ ¼ � 1

k2
g2ð�ÞN

1þ g2ð�ÞN 11
48�2 log

k2

�2

: (4)

Applying the one-loop result

g2ð�ÞN ¼ 1

11
48�2 log

�2

�2
QCD

(5)

we obtain

VðkÞ ¼ � 1

k2
1

11
48�2 log

k2

�2
QCD

; (6)

which is indeed independent, to this one-loop order, of the
scale � introduced in dimensional regularization.

However, the perturbative expansion is based on an
implicit assumption that, apart from the gauge-fixing con-
dition, the integration over gauge fields is unrestricted;
there is no cutoff, for example, in the amplitude of gauge
field configurations contributing to the functional integral.
But we have known for many years that this assumption is
wrong. In the lattice formulation, in particular, it is known
that if all gauge copies are included, then the sum over the
Faddeev-Popov determinants of each copy will vanish.
This means that the expectation value of any gauge-
invariant observable would take on the nonsensical value
0=0, as was first pointed out by Neuberger [28]. In the
continuum it is also believed, since the seminal work of

Gribov [29], that the functional integral should be re-
stricted to a single gauge copy per gauge orbit, as in the
proposed restriction to the fundamental modular region
advocated by Zwanziger [22]. It seems difficult to imple-
ment such a restriction in practice. At a minimum we can
ask that the functional integral be limited to the Gribov
region, in which the lowest eigenvalue of the Faddeev-
Popov operator is positive semidefinite, and in fact, this is
achieved automatically by the gauge-fixing algorithms
employed in lattice Monte Carlo simulations, which find
local minima of

�X
x

X3
k¼1

Tr½UkðxÞ�: (7)

It is the fact that the gauge-fixed configurations are local
minima, rather than just stationary points, which ensures
that all eigenvalues of the Faddeev-Popov operator are
positive. One can even go a little further. Since the lattice
Monte Carlo procedure will never generate more than one
configuration per gauge orbit in the course of a finite
simulation, an additional restriction to one configuration
per orbit is, in some sense, superfluous.2

The limitation to the Gribov region has two expected
consequences. The first, which is true in both Landau and
Coulomb gauge, is that the Gribov horizon will impose a
cutoff on the magnitude of quantum fluctuations of the
transverse gluon field. This is easy to check in special
cases. For example, one can construct a (lattice-
regularized) plane wave of some fixed amplitude and
compute the low-lying eigenvalues of the lattice
Faddeev-Popov operator. As the amplitude is increased,
the lowest nontrivial eigenvalue �0 decreases, and even-
tually becomes negative. Configurations with amplitudes
such that �0 < 0 are to be excluded from the functional
integration.
Gribov [29] suggested that the restriction to the Gribov

region would result (in Landau gauge) in a gluon propa-
gator of the form

Dab
��ðkÞ ¼ �ab

�
��� �

k�k�

k2

�
1

k2 þ m4

k2

; (8)

and this propagator clearly vanishes at k2 ! 0. Zwanziger
[31] derived this form by adding to the action a term which
was intended to implement the restriction to the Gribov
region. Gracey [18] has calculated the resulting static
quark potential to one loop, in Landau gauge, which results
from the Zwanziger action. This potential turns out to be
nonconfining.
Lattice simulations, however, have rather decisively

shown [32–34] that the Landau gauge gluon propagator

2Of course, if one is interested in a particular selection of
gauge copies, such as the fundamental modular region, or the
‘‘B-gauge’’ [30], then it is necessary to transform away from the
gauge copies generated by the standard algorithms.
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has a finite nonzero limit at k2 ! 0, as is the case for a
massive propagator, i.e.

Dab
��ðkÞ ¼ �ab

�
��� �

k�k�

k2

�
1

k2 þm2
: (9)

Of course this form cannot be exactly right either; the
gluon propagator cannot have a physical pole and must
violate positivity somewhere. Various more complicated
forms for the gluon propagator, which agree with (9) at low
momenta, have been put forward, e.g. [35,36].3

The corresponding situation in Coulomb gauge is not so
clear, at present. For the transverse gluon propagator at
equal times, the Gribov-Zwanziger proposal is that

Dab
ij ðkÞ ¼ �ab

�
�ij �

kikj

k2

�
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ m4

k2

q ; (10)

and numerical calculations by the Tübingen group [38]
seem to support this proposal. However, other recent cal-
culations by Nakagawa et al. [39] on time-asymmetric
lattices, while supporting a vanishing gluon propagator at
k2 ! 0, suggest a slower approach to zero than the Gribov-
Zwanziger form. Nakagawa et al. conclude that larger
lattices will be needed to settle the precise power falloff
as k ! 0. In the absence of decisive lattice data on this
point, here we will investigate the consequences of the
Gribov-Zwanziger form (10) and also, for the purpose of
contrast, a simple massive transverse propagator

Dab
ij ðkÞ ¼ �ab

�
�ij �

kikj

k2

�
1

k2 þm2
: (11)

Either form is obtained by the naive replacement, in the
integration over transverse gauge fields,

Z
G
DAa;tr

i )
Z
DAtr

i exp

�
�
Z d4k

ð2�Þ4
1

2
M2ðkÞAa;tr

i ðkÞAa;tr
i ð�kÞ

�
;

(12)

where

M2ðkÞ ¼
�
m4=k2 Gribov propagator

m2 massive propagator
(13)

and where the subscript G on the left functional integral
refers to the restriction to the Gribov region, with Aa;tr

i the
renormalized transverse gauge field. The replacement is
closely related to Zwanziger’s suggestion [31], formulated
in Landau gauge, that the restriction to the Gribov region
could be implemented by adding an additional term to the
action, and this addition includes a mass term with
M2ðkÞ ¼ m4=k2.

The second expected effect of the restriction to the
Gribov region is special to Coulomb gauge. Coulomb
gauge is a physical gauge, and it has a Hamiltonian con-
taining a nonlocal operator

1

�r �D ð�r2Þ 1

�r �D ; (14)

involving two factors of the inverse Faddeev-Popov opera-
tor, which is responsible for the Coulomb potential.
Evaluated for a configuration directly on the Gribov hori-
zon, where the lowest F-P eigenvalue is zero, this quantity
is singular. As Zwanziger has pointed out [22], we may
expect that most configurations in the Gribov region are
quite close to the horizon, for essentially the same reason
that most of the volume of a sphere, in a large number of
dimensions, is concentrated in the near vicinity of the
surface. But configurations close to the Gribov horizon
ought to have an enhanced density of near-zero eigenval-
ues, as compared to the spectral density of �r2, and a
numerical study of configurations generated by lattice
Monte Carlo simulations bears this out [40].4 Thus, another
effect of restricting configurations to the Gribov region
should be an enhancement of the color-Coulomb potential
in the infrared, assuming (as in the free theory) that the
infrared behavior is associated with the low-lying eigen-
modes of the F-P operator.
Thus we are led to explore the consequences of the

following two assumptions: first, that the restriction to
the Gribov region can be approximately implemented, as
in (12), by the simple addition of a momentum-dependent
mass term, and, second, that the value of the mass parame-
ter must be such that the infrared behavior of the Coulomb
potential is enhanced beyond the usual 1=k2 behavior.5 The
way in which this could happen is illustrated by the follow-
ing over-simplified scenario: The mass term will regularize
the infrared behavior of loop integrals, and one might hope
(ignoring integrations over Feynman parameters and so on)
that the main effect is something like the replacement of
logðk2=�2Þ by logððk2 þm2Þ=�2Þ in Eq. (6). Then, just by
tuning m ¼ �, the color-Coulomb potential at low mo-
mentum becomes

VðkÞ � � 1

k2 logðk2þ�2

�2 Þ � � �2

jkj4 ; (15)

much as in the old Richardson proposal [1]. We will now
see how close we can come to realizing this scenario.

3Recently, Zwanziger has suggested a reason why the original
proposal in Ref. [31] might have failed; cf. Ref. [37]. Dudal et al.
[36] have proposed a modification of the original Zwanziger
action, to bring the result more in line with the lattice results.

4It is interesting that the removal of center vortices removes
this enhancement and pushes a typical configuration away from
horizon.

5The prescription here is similar to that in Ref. [41], where a
dimensionful parameter in the gluon propagator was adjusted to
the precise point where negative Faddeev-Popov eigenvalues
disappear.
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III. ONE-LOOP INTEGRALS IN
FIRST-ORDER FORMALISM

The Coulomb potential is directly related to the 44-
component of the gluon propagator. If we denote by
�ab��� the one-particle irreducible contribution to the

Coulomb-gauge gluon propagator, and noting that
�4i ¼ 0 for i � 4, then the 44-component can be ex-
panded, as usual, in a geometric series

D44ðkÞ ¼ 1

k2

�
1þ�44ðkÞ 1

k2
þ ð�44ðkÞ 1

k2

�
2 þ . . .

�

¼ 1

k2
1

1� g2N�ðkÞ ; (16)

where g2N�ðkÞ � �44ðkÞ=k2. We would then like to cal-
culate �ðk; k4 ¼ 0Þ to one loop, with the restriction to the
Gribov region approximated by adding a mass term to the
gauge-fixed action. Even at the one-loop level, the loop
integrals are complicated and noncovariant, and some are
difficult to evaluate by standard formulas. It turns out to be
much simpler to carry out the calculation in the first-order
formulation, which is often used when dealing with Yang-
Mills theory quantized in Coulomb gauge (see, in particu-
lar, [22,42–44]).

The starting point for the first-order formalism is the
Euclidean partition function for Yang-Mills theory fixed to
Coulomb gauge,

ZðJÞ ¼
Z
G
DA��½r � A� det½M�

� exp

�
�
Z

d4x

�
1

4
F2
�� þ igJ�A�

��
; (17)

where M ¼ �r �D is the Faddeev-Popov operator, and
the color indices on the gauge field and field strength tensor
are not written out explicitly, but are left implicit. One then
introduces an Ei field via the identity

exp

�
� 1

2

Z
d4xF2

0i

�

¼ N
Z

DEi exp

�Z �
iEiF0i � 1

2
E2
i

��
: (18)

The E field is split into a transverse and a longitudinal
piece Ei ¼ Etr

i � @i�, and then one integrates out the A4

field, which generates a delta function enforcing the Gauss
law constraint. This is followed by integration over the �
field, which eliminates both the Faddeev-Popov determi-
nant and the Gauss law delta function. The details of how
this goes can be found, e.g., in Ref. [43], and the result is

Z½J�¼
Z
G
DAtr

i

Z
DEtr

i exp

�Z
d4x

�
iEtr

i
_Atr
i �

1

2
ðEtr2

i þB2
i Þ�igJiA

tr
i

�
�1

2

Z
dtd3xd3yð�CþgJ4Þx;tK½x;y;t;Atr�ð�CþgJ4Þy;t

�
;

(19)

where

�a
CðxÞ ¼ �gfabcAb;tr

i ðxÞEc;tr
i ðxÞ (20)

and Ba
i ¼ 1

2 �ijkFjk is constructed from the transverse A field. The nonlocal kernel, providing the Coulombic part of the
Coulomb-gauge Hamiltonian, is

K½x; y; t; Atr� ¼ ½M�1ð�r2ÞM�1�abx;y: (21)

Then

�abD44ðx� yÞ ¼�
�

1

g2Z

�2

�Ja4 ðxÞ�Jb4 ðyÞ
Z

�
J¼0

¼ hKabðx;y;Atrðx4ÞÞi�ðx4� y4Þ�
�Z

d3z1K
acðx;z1;Atrðx4ÞÞ�cðz1; x4Þ

Z
d3z2K

bdðy;z2;Atrðy4ÞÞ�dðz2; y4Þ
�
:

(22)

The contribution to one loop is obtained by expanding Kabðx; y; Atrðx4ÞÞ up to second order in the coupling. Since the
product �� inside the integrals over z1, z2 is already second order, we can set K to its zeroth-order value in the integrand.
The result is
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�abD44ðx�yÞ¼�ab

��
1

�r2

�
x;y

þ3g2facdfdfb
Z
d3z1d

3z2

�
1

�r2

�
x;z1

hAc
i ðz1ÞAf

j ðz2Þi0ð@iÞz1
�

1

�r2

�
z1;z2

�ð@jÞz2
�

1

�r2

�
z2;y

�
�ðx4�y4Þ�g2facdfbef

Z
d3z1d

3z2

�
1

�r2

�
x;z1

�fhAc
i ðz1;x4ÞAe

jðz2;y4Þi0hEd
i ðz1;x4ÞEf

j ðz2;y4Þi0þhAc
i ðz1;x4ÞEf

j ðz2;y4Þi0hAe
jðz2;y4ÞEd

i ðz1;x4Þi0g
�

1

�r2

�
z2;y

:

(23)

In ordinary perturbation theory, the zeroth-order propa-
gators are determined by simply removing the restriction to
the Gribov region in the integral over Atr

i . Introducing
polarization vectors

Aa;tr
i ðkÞ ¼ X2

�¼1

��i ðkÞAaðk; �Þ (24)

with the usual properties

ki�
�
i ðkÞ ¼ 0; ���i ðkÞ��0

i ðkÞ ¼ ���0
; (25)

and

Tij �
X
�

���i ðkÞ��j ðkÞ ¼ �ij �
kikj

k2
; (26)

so that

Z
DAa;tr

i ðkÞ ¼
Z

DAaðk; �Þ; (27)

one can easily derive the zeroth-order momentum-space
propagators in first-order formalism,

hAa
i ðkÞAb

j ðk0Þi0 ¼ �abTijðkÞ 1
k2

�4ðkþ k0Þ;

hEa
i ðkÞEb

j ðk0Þi0 ¼ �abTijðkÞ k
2

k2
�4ðkþ k0Þ;

hEa
i ðkÞAb

j ðk0Þi0 ¼ �abTijðkÞ k4
k2

�4ðkþ k0Þ:

(28)

Taking Eq. (23) to momentum space and inserting the
propagators above, one finds for �ðkÞ

�ðkÞ ¼ 1

k2

�
3kikj

Z d4p

ð2�Þ4
TijðpÞ

p2ðp� kÞ2 �
Z d4p

ð2�Þ4
TijðpÞ
p2

� Tijðp� kÞ
ðp� kÞ2 ½p2 � p4ðp4 � k4Þ�

	
; (29)

as originally obtained in Ref. [43]; see also [44]. The in-
tegrals can be evaluated under dimensional regularization,

and the standard result for the one-loop momentum-space
Coulomb potential is obtained.
Now suppose that instead of simply removing the re-

striction to the Gribov horizon in the integration over Atr,
we try to mimic its effect by insertion of a mass term, as in
Eq. (12). The effect on the zeroth-order propagators is
readily obtained:

hAa
i ðkÞAb

j ðk0Þi0 ¼ �abTijðkÞ 1

k2 þM2ðkÞ�
4ðkþ k0Þ;

hEa
i ðkÞEb

j ðk0Þi0 ¼ �abTijðkÞ k
2 þM2ðkÞ

k2 þM2ðkÞ �
4ðkþ k0Þ;

hEa
i ðkÞAb

j ðk0Þi0 ¼ �abTijðkÞ k4
k2 þM2ðkÞ�

4ðkþ k0Þ:

(30)

The (unregulated) expression for �ðkÞ, in the k4 ¼ 0 case
we consider here, then becomes

�ðkÞ ¼ J1 � J2; (31)

where

J1 ¼ 3
kikj

k2

Z d4p

ð2�Þ4
TijðpÞ

ðp2 þM2ðkÞÞðp� kÞ2

¼ 3

2

kikj

k2

Z d3p

ð2�Þ3
TijðpÞ

ðp2 þM2ðkÞÞ1=2ðp� kÞ2 (32)

and

J2 ¼ 1

k2

Z d4p

ð2�Þ4
TijðpÞ

p2 þM2ðkÞ
Tijðp� kÞ

ðp� kÞ2 þM2ðkÞ
� ½p2 þM2ðpÞ � p2

4�

¼ 1

2k2

Z d3p

ð2�Þ3
!p �!p�k

!p þ!p�k

TijðpÞTijðp� kÞ
!p�k

; (33)

with

!p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2ðpÞ

q
: (34)

Our task is to evaluate suitably regularized versions of J1;2
for the two choices of M2ðkÞ shown in Eq. (13).
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IV. DIMENSIONAL REGULARIZATION,
MASSIVE PROPAGATOR

As a first step, we will compute the Coulomb potential to
one loop using the massive transverse gluon propagator
shown in Eq. (11). We do not believe this propagator is
correct in Coulomb gauge even at low momenta. In con-
trast to Landau gauge, existing lattice simulations indicate
an equal-times propagator which falls to zero at k2 ¼ 0, as
already mentioned. The massive propagator is mainly use-
ful as an illustration of how the potential can be enhanced
by appropriately tuning the mass parameter, and also
serves as a contrast to the results obtained in the next

section. Technically, the massive propagator is simpler
than the Gribov propagator case, in that standard dimen-
sional regularization can be applied without any difficulty
to the relevant loop integrals.
We now apply dimensional regularization, taking into

account the fact that �ii ¼ 3� 2�. Then

�ðkÞ ¼ 3

2
ðI1 � I2Þ � 2� 2�

k2
ðI3a þ I3b � I4Þ þ 1

k2
I5;

(35)

where

I1 ¼ �2�
Z d2!

0
p

ð2�Þ2!0
1

ðp2 þm2Þ1=2ðp� kÞ2 ; I2 ¼
kikj

k2
�2�

Z d2!
0
p

ð2�Þ2!0
pipj

p2ðp2 þm2Þ1=2ðp� kÞ2 ;

I3a ¼ �2�
Z d2!p

ð2�Þ2!
m2

ðp2 þm2Þððp� kÞ2 þm2Þ ; I3b ¼ �2�
Z d2!p

ð2�Þ2!
p2

ðp2 þm2Þððp� kÞ2 þm2Þ ;

I4 ¼ �2�
Z d2!p

ð2�Þ2!
p2
4

ðp2 þm2Þððp� kÞ2 þm2Þ ; I5 ¼ �2�
Z d2!p

ð2�Þ2!
p2 þm2 � p2

4

ðp2 þm2Þððp� kÞ2 þm2Þ
p2k2 � ðp � kÞ2
p2ðp� kÞ2 ;

(36)

and!0 ¼ 3
2 � �,! ¼ 2� �. Integrals I1 through I4 are divergent, and I5 turns out to be finite. Before carrying out the usual

MS subtractions, it is important to note that one is only allowed to make the subtractions which are made at m2 ¼ 0. In
particular, one cannot subtract terms proportional to m2, because there is no counterterm which would generate such a
subtraction.

The integrals can all be evaluated by the standard methods, and the results for the divergent integrals are

I1 ¼ 1

4�2

�
1

�
� 	þ log4�

�
� 1

8�2

Z
dxx�1=2 log

�
k2xð1� xÞ þm2x

�2

�
;

I2 ¼ 1

12�2

�
1

�
� 	þ log4�

�
� 1

16�2

Z 1

0
dx1dx2
ð1� x1 � x2Þx�1=2

1 log

�
k2x2ð1� x2Þ þm2x1

�2

�

þ k2

8�2

Z
dx1dx2
ð1� x1 � x2Þ x�1=2

1 x22
k2x2ð1� x2Þ þm2x1

;

I3a ¼ m2

ð4�Þ2
��
1

�
� 	þ log4�

�
�

Z
dx log

�
�

�2

�	
;

I3b ¼ 1

48�2
k2
�
1

�
� 	þ log4�

�
� k2

ð4�Þ2
Z

dxx2 log

�
�

�2

�
� 3

2

1

ð4�Þ2
�
1

�
� 	þ log4�þ 1

3

��
k2

6
þm2

�

þ 3

2

1

ð4�Þ2
Z

dx� log

�
�

�2

�
;

I4 ¼ � 1

2

1

ð4�Þ2
�
1

�
� 	þ 1þ log4�

��
k2

6
þm2

�
þ 1

2

1

ð4�Þ2
Z

dx� log

�
�

�2

�
: (37)

In these expressions we have defined

� � k2xð1� xÞ þm2: (38)

All x integrations run from 0 to 1, and 
ðxÞ is the Heaviside
theta function.

At this point we should take note of a source of possible
trouble. In the first place, some of the integrals have
produced m2=� terms, which cannot be subtracted away.
Even finite terms proportional to m2 would be catastrophic
to our program, because these would tend to make the
color-Coulomb potential less, rather than more, divergent
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in the infrared. Somewhat remarkably, when the above integrals are inserted into (35), we find that there is a complete
cancellation of the dangerous terms proportional tom2, while the remaining terms proportional to 1=�� 	þ log4� can be
subtracted in the usual way. The end result is that

�ðk; �Þ ¼ � 3

16�2

Z
dxx�1=2 log

�
k2xð1� xÞ þm2x

�2

�
þ 3

32�2

Z
dx1dx2
ð1� x1 � x2Þx�1=2

1 log

�
k2x2ð1� x2Þ þm2x1

�2

�

� 3

16�2
k2

Z
dx1dx2
ð1� x1 � x2Þ x�1=2

1 x22
k2x2ð1� x2Þ þm2x1

� 1

8�2

Z
dxxð1� 2xÞ log

�
�

�2

�
þ 1

48�2
þ 1

k2
I5;

(39)

and therefore

VðkÞ ¼ �g2ð�ÞND44 ¼ � 1

k2
1

1
g2ð�ÞN ��ðk; �Þ : (40)

Inserting the one-loop expression for g2ð�Þ, one finds that
the dimensional regularization scale � cancels out exactly,
leaving the result

VðkÞ ¼ 1

k2�ðk;�MSÞ
: (41)

Now we consider the infrared limit, k2=m2 � 1, starting
with the integral I5. Although this integral looks super-
ficially divergent, it is clear, after an integration over p4

which gives

I5 ¼ 1

2

Z d3p

ð2�Þ3
p2k2 � ðp � kÞ2
p2ðp� kÞ2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� kÞ2 þm2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� kÞ2 þm2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� kÞ2 þm2
p ; (42)

that in fact the integral is finite. Although it is still com-
plicated, it is not hard to show that the low-momentum
limit, up to Oðk2=m2Þ, is rather simple:

1

k2
I5 ¼ 1

360�2

k2

m2
: (43)

It is also simple to evaluate the low-momentum limit of the
single integrations over x:

Z
dxx�1=2 log

�
k2xð1� xÞ þm2x

�2
MS

�

! 4

3

k2

m2
þ 2 log

m2

�2
MS

� 4;

Z
dxxð1� 2xÞ log

�
k2xð1� xÞ þm2

�2
MS

�

! � 1

60

k2

m2
� 1

6
log

m2

�2
MS

:

(44)

If these were all the relevant low-momentum terms, then it
would be possible to choose m / �MS so as to cancel the

constant terms, leaving only a term proportional to k2=m2.

This would lead to an overall 1=k4 dependence for the
color-Coulomb potential, and therefore to a linear poten-
tial. However, the integral I2 leads to the two expressions
involving integration over two Feynman parameters, and
these turn out to spoil the desired result. The double
integrals can be evaluated analytically at low k2, with the
help of the Mellin-Barnes transform and converse mapping
theorem [45,46]. The details are reserved for Appendix A.
The result, up to Oðk2=m2Þ, is
Z

dx1dx2
ð1� x1 � x2Þx�1=2
1 log

�
k2x2ð1� x2Þ þm2x1

�2
MS

�

¼ 4

3
log

m2

�2
MS

� 32

9
þ �2

4

�
k2

m2

�
1=2 � 8

15

k2

m2
(45)

and

k 2
Z

dx1dx2
ð1� x1 � x2Þ x�1=2
1 x22

k2x2ð1� x2Þ þm2x1

¼ 3�2

8

�
k2

m2

�
1=2 � 32

15

k2

m2
: (46)

Note the appearance of terms proportional to jkj.
Therefore, at low momenta,

VðkÞ ¼ � 1

k2
�2

11
48 log

m2

�2

MS

� 7
16 þ 3�2

64 ðk2
m2Þ1=2 � 151

1440
k2

m2

: (47)

We have suggested thatm should be set to the unique value
which would enhance the infrared behavior of the
Coulomb potential. This value is

m ¼ e21=22�MS; (48)

leading to the final result at low momentum:

VðkÞ ¼ � 64

3
e21=22

�MS

jkj3 : (49)

Since the term proportional to jkj3 is dominant at low
momenta, this results in an asymptotic potential rising
logarithmically with quark separation.
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V. CUTOFF REGULATOR, GRIBOV PROPAGATOR

The result found in the previous section would be a little
disappointing, if the transverse gluon propagator actually
had the massive form with M2ðkÞ ¼ m2. Tuning the mass
parameter to the unique value which enhances the
Coulomb potential does take us to a potential which rises
faster than 1=r, but the rise is still only logarithmic at large
color charge separation. We will now investigate what
happens in the (possibly) more realistic case where the
transverse gluon propagator takes on the Gribov form.

We again have �ðkÞ ¼ J1ðkÞ � J2ðkÞ, where J1;2 are

given in Eqs. (32)–(34), but this time with the choice
M2ðpÞ ¼ m4=p2. It is awkward to evaluate J2, in particu-
lar, by dimensional regularization; one would end up with a
complicated multiple integral over very many Feynman
parameters. Since we are only interested in the small-k2

behavior of these integrals, we have found it convenient to
follow a different strategy, based on a simple momentum
cutoff at jpj ¼ �.

We are aware that a momentum-cutoff regulator is dan-
gerous in gauge theories, and is likely to violate Ward
identities and introduce spurious divergences, but these
problems will not arise in our present one-loop calculation.
This does not mean that the momentum-cutoff procedure is
necessarily consistent at higher loops, but that property is
not crucial to us. What we are really after is to use the
momentum-cutoff result to figure out what the one-loop

result for VðkÞ would be in the MS scheme, without ac-
tually evaluating the integrals via dimensional regulariza-
tion. This strategy requires that the momentum-cutoff and
dimensional regularization results can be matched exactly
at one loop, by an appropriate choice of coupling g2 in the
cutoff regularization. That matching will be postponed to
the next section.

From this point on, since we will mainly be carrying out
integration in three dimensions, we will denote

k ¼ jkj; p ¼ jpj: (50)

Of course the first equality is true even if k denotes the
modulus of the four-momentum, since we only consider
the case where k4 ¼ 0.

Begin with J1, which, with a momentum cutoff, can be
written as

J1ðkÞ ¼ 3

2

1

4�2

Z �

0
dpp2

Z 1

�1
du

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4 þm4

p

� 1� u2

p2 þ k2 � 2pku
; (51)

and make the split

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4 þm4

p ¼ 1

m2
þm2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p4 þm4
p

m2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4 þm4

p ; (52)

so that

J1ðkÞ ¼ 3
2ðJ1A þ J1BÞ (53)

where

J1A ¼ 1

4�2

Z �

0
dpp3

Z 1

�1
du

1� u2

m2ðp2 þ k2 � 2pkuÞ ;

J1B ¼ 1

4�2

Z �

0
dpp3

Z 1

�1
du

m2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4 þm4

p
m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4 þm4

p

� 1� u2

p2 þ k2 � 2pku
:

(54)

Integral J1A can be evaluated analytically, with the result
up to Oðk2=m2Þ [and discarding terms of Oð1=�2Þ],

J1A ¼ �2

6�2m2
þ k2

m2

ð15 logðk2
�2Þ � 46Þ

450�2
: (55)

To evaluate the integral J1B we first expand in powers of
k2 the term

1� u2

p2 þ k2 � 2pku
¼ 1� u2

p2
� 2kðu3 � uÞ

p3

þ k2ð�4u4 þ 5u2 � 1Þ
p4

þOðk3Þ;
(56)

and find, again up to Oðk2=m2Þ and discarding terms of
Oð1=�2Þ,

J1B ¼ 1

60�2m2

�
2k2 log

�2

2m2
� 10�2 þ 10m2 log

2�2

m2

�
:

(57)

Adding together J1A and J1B, we then have

J1 ¼ 1

300�2

�
15

k2

m2

�
log

k2

m2
� log2

�

� 46
k2

m2
þ 75

�
log

�2

m2
þ log2

�	
: (58)

Both J1A and J1B are quadratically divergent, but this is
only an artifact of splitting J1 into two pieces. These
quadratic divergences cancel exactly in the sum, as they
must, since the J1 integral is only logarithmically divergent
in the cutoff �.
We employ a similar strategy to evaluate J2ðkÞ at

low momenta. Defining Rp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4 þm4

p
, the integrand in

(33) is

F1ðp; k; uÞ ¼ jp� kj
Rp�k

jp� kjRp � pRp�k

jp� kjRp þ pRp�k

�
�
1

k2
� 1

2

1� u2

p2 þ k2 � 2pku

�
: (59)

Let F0ðp; k; uÞ be the same expression with Rp, Rp�k both

replaced by m2,
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F0ðp; k; uÞ ¼ jp� kj
m2

jp� kj � p

jp� kj þ p

�
�
1

k2
� 1

2

1� u2

p2 þ k2 � 2pku

�
: (60)

Then we write J2 ¼ J2A þ J2B where

J2AðkÞ ¼ 1

4�2

Z �

0
dpp2

Z 1

�1
duF0ðp; k; uÞ;

J2BðkÞ ¼ 1

4�2

Z �

0
dpp2

Z 1

�1
duðF1ðp; k; uÞ � F0ðp; k; uÞÞ:

(61)

The first integral can be done analytically, and again keep-
ing terms to Oðk2=m2Þ and dropping Oð1=�2Þ,

J2AðkÞ ¼ �2

16�2m2
þ k2ð105 logk

� � 345 log2þ 83Þ
7200�2m2

:

(62)

To evaluate J2B, we expand the integrand in a power
series in k. Then the integration over p and u can be carried
out, with the result

J2B ¼ 7

960�2

k2

m2
log

�2

2m2
þ 127

7200�2

k2

m2
� 1

16�2

�2

m2

þ 1

48�2
log

2�2

m2
� 5

72�2
: (63)

Combining J2A and J2B,

J2 ¼ k2

m2

�
7

960�2
log

k2

m2
þ 7

240�2
� 53 log2

960�2

�

þ 1

48�2
log

2�2

m2
� 5

72�2
: (64)

As with J1, the quadratically divergent terms in J2A and J2B
necessarily cancel in the sum, since the J2 integral is only
logarithmically divergent in �.

Substituting the results for J1 and J2 into (31), we now
have, up to Oðk2Þ,

�ðkÞ ¼ k2

m2

�
41

960�2
log

k2

m2
� 73

400�2
þ log2

192�2

�

þ 11

48�2
log

2�2

m2
þ 5

72�2
; (65)

and therefore

VðkÞ¼� 1

k2

�
1

g2N
� k2

m2

�
41

960�2
log

k2

m2
� 73

400�2
þ log2

192�2

�

� 11

48�2
log

2�2

m2
� 5

72�2

��1
: (66)

VI. CONNECTING THE REGULATORS

Now that we have computed VðkÞ to one loop with a
momentum cutoff, the task is to figure out what the result

would have to be in the MS scheme, because we would
like to express our result in terms of a physical scale such
as �MS. The key is to show that it is possible to choose

g2 ¼ g2ð�Þ in the cutoff expression, such that an exact

matching to MS is possible.
Denote

�ðkÞ ¼
Z
½dp�Rðp; k;mÞ; (67)

where ½dp� is the multiple integration measure, and of
course the integral is logarithmically divergent. What we
would like to calculate is

½�k2VðkÞ��1 ¼ 1

g2
MS

ð�ÞN �
Z
MS

½dp�Rðp; k;mÞ; (68)

where the integral is dimensionally regulated, and the usual

MS subtractions are carried out. What we actually com-
pute, however, is

1

g2ð�ÞN �
Z
�
½dp�Rðp; k;mÞ; (69)

where the integral is regulated with a momentum cutoff,
and the dependence of the coupling on the cutoff is not yet
specified. This expression can be rewritten slightly as

1

g2ð�ÞN �
Z
�
½dp�Rðp; k; 0Þ

�
Z
½dp�fRðp; k;mÞ � Rðp; k; 0Þg; (70)

where the second integration is finite and needs no regu-
lator. Now suppose it is possible to choose g2ð�ÞN such
that, as � ! 1,

1

g2ð�ÞN �
Z
�
½dp�Rðp; k; 0Þ

¼ 1

g2
MS

ð�ÞN �
Z
MS

½dp�Rðp; k; 0Þ: (71)

Then
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1

g2ð�ÞN �
Z
�
½dp�Rðp; k;mÞ

¼ 1

g2ð�ÞN �
Z
�
½dp�Rðp; k; 0Þ

�
Z
½dp�fRðp; k;mÞ � Rðp; k; 0Þg

¼ 1

g2
MS

ð�ÞN �
Z
MS

½dp�Rðp; k; 0Þ

�
Z
½dp�fRðp; k;mÞ � Rðp; k; 0Þg

¼ 1

g2
MS

ð�ÞN �
Z
MS

½dp�Rðp; k;mÞ: (72)

The conclusion is that if we can find a g2ð�ÞN which
satisfies the matching condition (71) at m2 ¼ 0, then the
cutoff-regulated calculation will give us the desired result

in the MS scheme for any m2.
As before,

VðkÞ ¼ � 1

k2
1

1
g2N

� ðJ1 � J2Þ
: (73)

Starting with dimensional regularization and taking
m2 ¼ 0, we have for J1,

J1 ¼ 1

48�2

�
12

�
1

�
�	þ log4�� log

k2

�2

�
þ 28� 24log2

�
;

(74)

while for J2, defining n ¼ 3� 2�,

J2 ¼ �ðn� 1Þ�
2�

k2

Z dnp

ð2�Þnþ1

!p �!p�k

!p�kð!p þ!p�kÞ

�
�
1� 1

n� 1

p2k2 � ðp � kÞ2
p2ðp� kÞ2

�
: (75)

The second term in the squared brackets containing the

combination p2k2�ðp�kÞ
p2ðp�kÞ2 leads to a convergent integral

which can be done directly at n ¼ 3 with the result

1

48�2
ð16� 24 log2Þ: (76)

For the first term containing unity, it is better to go
back to D ¼ 4� 2� dimensions using the identity

Z 1

�1
dp4

p2 � p2
4

ðp2
4 þ!2

pÞðp2
4 þ!2

p�kÞ
¼ �

!p �!p�k

!p�kð!p þ!p�kÞ : (77)

One then obtains

1

48�2

��
1

�
� 	þ log4�

�
� log

k2

�2
þ 5

3

�
: (78)

Adding the two contributions, we find

J2 ¼ 1

48�2

��
1

�
� 	þ log4�� log

k2

�2

�
þ 53

3
� 24 log2

�
;

(79)

and, altogether,

J1 � J2 ¼ 1

48�2

�
11

�
1

�
� 	þ log4�� log

k2

�2

�
þ 31

3

�
:

(80)

When we compute the potential VðkÞ with a renormal-

ized coupling g2
MS

ð�Þ in the MS scheme, then the terms

proportional to 1
� � 	þ log4� can be dropped.

Next we turn to the cutoff regulator. In this m2 ¼ 0 case

J1 ¼ 3

2

Z d3p

ð2�Þ3
1� u2

pðp2 þ k2 � 2pkuÞ (81)

¼ 1

48�2

�
12 log

�2

k2
þ 8

�
; (82)

where � is the momentum cutoff in this integral. Integral
J2, in cutoff regularization, is given by

J2 ¼ 1

k2

Z d3p

ð2�Þ3
!p �!p�k

!p�kð!p þ!p�kÞ

�
�
1� 1

2

p2k2 � ðp � kÞ2
p2ðp� kÞ2

�

¼ 1

48�2

�
log

�2

k2
þ 14� 22 log2

�
: (83)

Consequently, the final result is

J1 � J2 ¼ 1

48�2

�
11 log

�2

k2
� 6þ 22 log2

�
: (84)

Now we equate the Coulomb potentials computed with
momentum-cutoff and dimensional regularization at
m2 ¼ 0. This means equating the denominators of (73),
which is just the matching condition (71):

1

g2ð�ÞN � 1

48�2

�
11 log

�2

k2
� 6þ 22 log2

�

¼ 1

g2
MS

ð�ÞN � 1

48�2

�
11 log

�2

k2
þ 31

3

�
: (85)

Therefore, g2ð�ÞN defined by

1

g2ð�ÞN
¼ 1

g2
MS

ð�ÞN � 1

48�2

�
11 log

�2

�2
þ 49

3
� 22 log2

�
;

(86)
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in terms of the MS running coupling g2
MS

ð�Þ, is the

coupling to be used to convert the momentum-cutoff

result to MS. Defining �MS by the equation

1

g2
MS

ð�ÞN ¼ 11

48�2
log

�2

�2
MS

; (87)

one finds that

1

g2ð�ÞN ¼ 1

48�2

�
11 log

�2

�2
MS

� 49

3
þ 22 log2

�
(88)

is the choice of g2ð�Þ required to convert our result from

cutoff regularization to the MS scheme.
A useful check of this method for converting cutoff

regularization to the MS scheme is to go back to the
massive propagator case in Sec. IV, recalculate J1 and J2
with the cutoff regulator, and insert those values plus (88)
into (73). When this is done, we find that our result agrees
preciselywith the result already obtained using dimensional

regularization andMS subtraction, shown in Eq. (47).

VII. THE COULOMB POTENTIAL, FINAL RESULT

Inserting (88) into (66), we see that �2 cancels out, and
the potential, in terms of the physical scale �MS, is

VðkÞ ¼ � 1

k2

�
11

48�2

�
log

2m2

�2
MS

� 59

33

�

þ 1

48�2

k2

m2

�
41

20
log

m2

k2
� log2

4
þ 219

25

���1
: (89)

As in the case of the massive transverse propagator, we
now set m2 to the unique value at which power behavior of
the Coulomb potential is enhanced in the infrared. This
leads us to

m ¼ 1ffiffiffi
2

p �MSe
59=66 	 1:73�MS; (90)

and therefore, for k2 � m2,

VðkÞ ¼ � 48�2m2

k4ð4120 logm
2

k2
� log2

4 þ 219
25 Þ

; (91)

wherem is given in (90). We finally end up with a potential
which behaves, in the infrared, as �1=k4 modified by a
logarithm.

One often hears that a �1=k4 potential in momentum
space corresponds, upon Fourier transformation, to a line-
arly increasing potential in position space. Strictly speak-
ing, this is untrue; the Fourier transform of �1=k4 is
actually minus infinity, due to the very singular behavior
of 1=k4 as k ! 0. But this is precisely why it is important to
include the quark-antiquark self-energies, as we have done
in Eq. (2). The Coulomb self-energies of quarks and anti-
quarks are also infinite, and this is not only due to the usual
UV divergence which can be regulated with, e.g., a lattice

cutoff. The Coulomb self-energies of quarks and antiquarks
have, in addition, an infrared divergence, and a short-
distance, high-momentum, or lattice cutoff will not make
this type of self-energy finite. In fact, this is already a
reason why isolated quarks and antiquarks, or a nonsinglet
quark-antiquark pair, are infinitely massive and cannot
appear as asymptotic states. But for a color singlet quark-
antiquark pair, the infrared infinities of the self-energy and
interaction terms precisely cancel, leaving only UV diver-
gent contributions to the self-energies, and a finite interac-
tion term. This cancellation has been noted previously in
Ref. [47], in connection with the instantaneous Coulomb
interaction, where it was shown more generally that the
cancellation of infinities is exact for any global color singlet
combination of static quarks and antiquarks.
The color-Coulomb potential is

VCðRÞ ¼ �Cr

N

Z d3k

ð2�Þ3 VðkÞð1� eik�RÞ (92)

and, using the small-k approximation (91) to VðkÞ,
the Fourier transform to position space gives us, asymptoti-
cally,

VCðRÞ ¼R!1Cr

N

�
120�

41

m2

logð8:12mR=3Þ2
�
R: (93)

This transform is carried out in Appendix B. However, the
small-k approximation is only valid at large distances, i.e.
R 
 1=m, in which case the integral is sensitive mainly to
the small k behavior of VðkÞ. An expression for VðkÞ valid
at all k will agree with (91) at small k, and the usual
perturbative result (6) at large k. We do not have an
analytical expression for VðkÞ valid at all k, but it is not
hard to compute VðkÞ numerically, by evaluating J1 and J2
in Eqs. (32) and (33) numerically. The result for
ð�k2VðkÞÞ�1 in cutoff regularization is shown in Fig. 1,
and it interpolates nicely between our analytical result at
small k and the perturbative result for large k at m2 ¼ 0.
The next step is to Fourier transform our result for VðkÞ

to a potential in position space, i.e. Eq. (92). Using the
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FIG. 1 (color online). Numerical calculation of �ðk2VðkÞÞ�1

(solid line) compared to the infrared limit (upper dashed line)
derived here, and the standard one-loop perturbative result
(lower dot-dash line). The x axis is in units of �MS.
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numerical result for VðkÞ at all momenta, of course the UV
divergence of the self-energy will appear. On the lattice
this UV divergence is regulated by the lattice spacing, and
in the ordinary one-loop perturbative calculation of the
Coulomb potential, the static quark self-energy is dropped
altogether. In our case it is simplest to get rid of the UV
self-energy divergence by making an arbitrary subtraction,
such that the potential vanishes at R ¼ 1 (in units of
inverse �MS); i.e. we compute VðRÞ � Vð1Þ. The result is

shown in Fig. 2.
It is interesting to compare our result with lattice data at

large N. Of course one cannot directly compare string
tensions, because of the logarithmic modification of the
linear term. The best one can do is to compare the slope of
VðRÞ in Fig. 2, multiplied by the large-N Casimir factor
CF=N ¼ 1

2 , with the lattice result for the asymptotic string

tension, extrapolated to large-N. In order to make this
comparison, we need the expression for the lattice asymp-
totic string tension in units of �MS. This has been derived

in Ref. [48] (see also [49]), which finds that �MS=
ffiffiffiffi
�

p ¼
0:503ð2Þð40Þ atN ! 1, where the uncertainties refer to the
statistical error and an estimate of the systematic error
from all sources. Therefore, the string tension at large N,
derived from lattice Monte Carlo simulations, is � ¼
3:95�2

MS
. Since VCðRÞ ¼ 1

2VðRÞ does not really have an

asymptotic string tension, the comparison with � depends
on where we choose to compute the slope of the VCðRÞ. At,
e.g., R ¼ 1:0��1

MS
, where a confining potential seems to

have taken over from 1=R behavior, we find6

�couljR¼1=�
MS

�
�
dVC

dR

�
jR¼1=�

MS

	 2:56�2
MS

(94)

as compared to the asymptotic string tension of
� ¼ 3:95�2

MS
.

VIII. CONCLUSIONS

In this article we have explored the idea that, in
Coulomb gauge, restriction to the Gribov region can be
approximated by a momentum-dependent mass term in the
action.Within the Gribov region, the bulk of configurations
should lie near the horizon, and configurations near the
horizon are expected to strengthen the long-range behavior
of the color-Coulomb potential. If the mass term has this
same effect, by suppressing (on average) configurations
outside the Gribov horizon, then the mass parameter
should be adjusted to the unique value at which the
Coulomb potential is enhanced in the infrared.
We have tested this idea at the one-loop level, by a

perturbative calculation of the noninstantaneous color-
Coulomb potential derived from g2D44ðk; k4 ¼ 0Þ. For a
momentum-independent mass term, the finding is that the
infrared behavior is confining, but only marginally; the
potential rises logarithmically with quark-antiquark sepa-
ration. However, for a momentum-dependent mass term
leading to the propagator suggested by Gribov, the result is
quite different: we find a confining potential rising as a
linear term modified by a logarithm, and our potential is
expressed in terms of the usual scale �MS.

This result, like most of its kind, must be interpreted
with caution. In the first place, we have no idea how
accurate our one-loop result may be. The best check would
be to carry out the calculation further, to two loops, but this
is a formidable task in Coulomb gauge. In the second
place, we cannot be sure of the validity of the Gribov
propagator in Coulomb gauge. At present, the lattice
Monte Carlo evidence is suggestive but not decisive on
this point [38,39], and we hope that our work will help to
motivate further lattice investigations of this issue. Finally,
because of the logarithmic modification, the potential
found here is certainly not an upper bound on the static
quark potential. However, the upper bound derived by
Zwanziger [9] only applies to the instantaneous Coulomb
potential, rather than the full one-gluon exchange potential.
It would be interesting to derive the instantaneous potential
at one loop, along the lines we have followed here. Such a
potential would be of particular interest for variational
calculations of bound states and the gluon chain, and for
this purpose the validity of the potential in an intermediate
range of distances may be sufficient. We leave this case for
future investigation.
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APPENDIX A: APPLICATION OF THE
MELLIN-BARNES TRANSFORM

The Mellin-Barnes transform Mðf; sÞ of a function f is
defined by

Mðf; sÞ ¼
Z 1

0
dxxs�1fðxÞ; (A1)

and the corresponding inverse transformation is

fðxÞ ¼ 1

2�i

Z
�
dsx�sMðf; sÞ: (A2)

The first integral is typically well defined in a region (the
‘‘fundamental strip’’) of the complex s plane, with smin <
ReðsÞ< smax, and the contour � is a line parallel to the
imaginary axis inside the fundamental strip. Now let

Mðf; sÞ � X
p;k

rpk

ðsþ pÞk (A3)

be a ‘‘singular expansion’’ (denoted ‘‘�’’) of Mðf; sÞ on
the left-hand side of the fundamental strip. A singular
expansion is obtained by keeping all the singular terms in
the Laurent series around each pole ofMðf; sÞ, in this case
restricted to poles on the left-hand side of the fundamental
strip. Then the converse mapping theorem tells us that
asymptotically, as x ! 0,

fðxÞ �X
p;k

ð�1Þk�1

ðk� 1Þ! rpkx
plogk�1x: (A4)

A proof of the converse mapping theorem is given in [45],
and application to Feynman diagrams is found in [46].

The strategy is to put the integrals in Eqs. (45) and (46)
in the form (A2), make a singular expansion of Mðf; sÞ,
and apply the converse mapping theorem. For this purpose,
we will need the Mellin-Barnes representation [50]

1

ð1þ AÞ� ¼ 1

2�i

Z
�
dsA�s �ðsÞ�ð�� sÞ

�ð�Þ : (A5)

The fundamental strip is in the region 0< ReðsÞ< �.
Beginning with the integral (46), we apply the above

identity with � ¼ 1,

I ¼ k2
Z

dx1dx2

ð1� x1 � x2Þx22

m2x3=21

1

2�i

�
Z
�
ds

�
k2x2ð1� x2Þ

m2x1

��s �

sinð�sÞ : (A6)

Interchanging orders of integration, the integrals over x1,
x2 can be carried out exactly, with the result

I ¼ 1

2�i

k2

m2

Z
�
ds

�
k2

m2

��s
�

�

sinð�sÞ
2

ffiffiffiffi
�

p
�ð3� sÞ

ð2s� 1Þ�ð72 � sÞ
�
:

(A7)

Now making a singular expansion, and applying the con-
verse mapping theorem, we have

I¼ 1

2�i

k2

m2

Z
�
ds

�
k2

m2

��s
�
3�2=8

s� 1
2

� 32

15s
þ 64

105ðsþ1Þþ . . .

�

¼3�2

8

�
k2

m2

�
1=2�32

15

k2

m2
þ . . . : (A8)

The integral in (45) is handled in a similar way. First
write

I0 ¼
Z

dx1dx2
ð1� x1 � x2Þx�ð1=2Þ
1

� log

�
m2x1
�2

MS

�
1þ k2x2ð1� x2Þ

m2x1

��
; (A9)

and use the identity

logð1þ AÞ ¼ 1

2�i

Z
�
dsA�s �=s

sinð�sÞ ; (A10)

where the fundamental strip is in the region �1<
ReðsÞ< 0. Then

I0 ¼
Z 1

0
dx2

Z 1�x2

0
dx1x

�1=2
1

�
log

m2

�2
MS

þ logx1

�

þ
Z 1

0
dx2

Z 1�x2

0

dx1ffiffiffiffiffi
x1

p 1

2�i

Z
�
ds

�
k2x2ð1�x2Þ

m2x1

��s �=s

sin�s
:

(A11)

Again interchanging orders of integration, carrying out
the integrations over x1, x2, and making a singular
expansion, we find

I0 ¼ 4

3
log

m2

�2
MS

� 32

9

þ 1

2�i

Z
�
ds

�
k2

m2

��s �=s

sin�s

ffiffiffiffi
�

p
�ð1� sÞ

ð1þ 2sÞ�ð52 � sÞ

¼ 4

3
log

m2

�2
MS

� 32

9
þ 1

2�i

Z
�
ds

�
k2

m2

��s

�
�
�2=4

sþ 1
2

� 8=15

sþ 1
þ . . .

�

¼ 4

3
log

m2

�2
MS

� 32

9
þ �2

4

�
k2

m2

�
1=2 � 8

15

k2

m2
þ . . . :

(A12)

This completes the low-k2 evaluation of the integrals in
(45) and (46).
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APPENDIX B: TRANSFORM TO POSITION SPACE

In order to determine the asymptotic form of the one-
loop potential as R ! 1, we will need to transform the
momentum-space expression at small k, Eq. (91), to posi-
tion space. Absorbing a constant � 1

4 log2þ 219
25 into the

logarithm, VðkÞ can be written

VðkÞ ¼ 960�2m2

41

1

k4 log k2

ð8:12mÞ2
¼ 960�2m2

41
V ðkÞ: (B1)

This is expected to yield a positive linear potential, modulo
logarithms, plus an infinite constant which is removed by
the self-energy term, as discussed earlier.

Before proceeding, we should stress again that (B1) is
only valid at small k2 � m2. The excuse for taking the
Fourier transform anyway is that the large-R behavior we
are interested in is dominated by small k behavior, so the
error at large k should only affect terms which are sub-
leading in R. Note, in particular, that there is an unphysical
Landau pole in (B1) on the real axis, at a comparatively
high momentum k ¼ 8:12m ¼ 14�MS. This pole is cer-

tainly not present in the result we have obtained numeri-
cally for VðkÞ at all momenta, which is displayed in Fig. 1.
The Fourier transform of (B1) will nonetheless require a
prescription (e.g. principal value) for dealing with the
unphysical pole, but the choice of prescription, as we
will see, only introduces an ambiguity in subleading terms
at large R.

In the following, wewill switch to units ~m ¼ 8:12m ¼ 1,
so that

V ðkÞ ¼ 1

k4 logk2
: (B2)

The inverse log has a cut on the negative axis and a Landau
pole at k2 ¼ 1. The discontinuity across the cut is easily
evaluated, and the 1= logk2 factor can be expressed through
a Cauchy integral

1

logk2
¼

Z 1

0
ds

�ðsÞ
sþ k2

þ 1

k2 � 1
; with

�ðsÞ ¼ 1

log2sþ �2
:

(B3)

In order to perform the Fourier transform, the IR singularity
of the 1=k4 term is regularized by writing

1

k4
! lim

�!0

1

k2ðk2 þ�2Þ ; (B4)

whose Fourier transform leads to an additional constant
(infinite in the � ! 0 limit), which is removed by the
self-energy term. This removal amounts to subtracting
Vð0Þ from VðRÞ.
In the following, we consider the dispersive [first term in

the right-hand side of (B3)] and Landau pole contributions
separately,

~V ðRÞ ¼ V ðRÞ �V ð0Þ
¼ ½VDðRÞ � VDð0Þ� þ ½VPðRÞ � VPð0Þ�; (B5)

where

VDðRÞ � VDð0Þ ¼
Z d3k

ð2�Þ3 ½e
ik�R � 1�VDðkÞ

¼ lim
�!0

Z d3k

ð2�Þ3 ½e
ik�R � 1�

� 1

k2ðk2 þ�2Þ
�

1

logk2
� 1

k2 � 1

�

(B6)

and

VPðRÞ � VPð0Þ ¼
Z d3k

ð2�Þ3 ½e
ik�R � 1�VPðkÞ

¼ lim
�!0

Z d3k

ð2�Þ3 ½e
ik�R � 1�

� 1

k2ðk2 þ�2Þ
1

k2 � 1
: (B7)

For the dispersive part one finds

~V ðRÞ ¼ lim
�!0

Z d3k

ð2�Þ3
Z 1

0
ds�ðsÞ½eik�R � 1� 1

�2

�
1

k2
� 1

k2 þ�2

�
1

k2 þ s

¼ lim
�!0

Z d3k

ð2�Þ3
Z 1

0
ds�ðsÞ½eik�R � 1� 1

�2

�
1

s

1

k2
� 1

s

1

k2 þ s
þ 1

�2 � s

1

k2 þ�2
� 1

�2 � s

1

k2 þ s

�

¼ lim
�!0

Z 1

0
ds�ðsÞ 1

�2

�
1

4�R

�
1

s
½1� e�R

ffiffi
s

p � þ 1

�2 � s
½e�R� � e�R

ffiffi
s

p �
�
� ðR ! 0Þ

	

¼ � R

8�

Z 1

0

ds

s
�ðsÞ

�
1þ 2

1� e�R
ffiffi
s

p

sR2
� 2

R
ffiffiffi
s

p
�
: (B8)

We change variables s ! z ¼ sR2,

GOLTERMAN et al. PHYSICAL REVIEW D 85, 085016 (2012)

085016-14



VDðRÞ � VDð0Þ ¼ � R

8�

Z 1

0

dz

z

1

log2 z
R2 þ �2

�
�
1þ 2

1� e�
ffiffi
z

p

z
� 2ffiffiffi

z
p

�
: (B9)

Next, the term in the brackets is approximated by

1þ 2
1� e�

ffiffi
z

p

z
� 2ffiffiffi

z
p !

ffiffiffi
z

p
ffiffiffi
z

p þ 3
; (B10)

which has the same limit for both z ! 0 and z ! 1.
Therefore, in the integral

Z 1

0

dz

z

1

log2 z
R2 þ �2

��
1þ 2

1� e�
ffiffi
z

p

z
� 2ffiffiffi

z
p

�
�

ffiffiffi
z

p
ffiffiffi
z

p þ 3

�

(B11)

one can take the R ! 1 limit since the resulting in-
tegral is convergent. This gives a contribution of
OðR=log2RÞ, which, as will be shown below, is sub-
leading in the R ! 1 limit, since the leading behavior
is OðR= logRÞ.
In the R ! 1 limit, the leading behavior can therefore

be obtained from

VDðRÞ � VDð0Þ 	 � R

8�

Z 1

0

dz

z

1

log2 z
R2 þ �2

ffiffiffi
z

p
ffiffiffi
z

p þ 3
;

(B12)

which after a few more manipulations can be written as

VDðRÞ � VDð0Þ 	 � R

8�

Z 1

0

dz

z

1

log2 z
R2 þ �2

ffiffiffi
z

p
ffiffiffi
z

p þ 3
¼ � R

8�

Z 1

0

dz

z

1

log2ðzð3RÞ2Þ þ �2

ffiffiffi
z

p
ffiffiffi
z

p þ 1

¼ � R

8�

Z 1

0

dz

z

1

log2ðzð3RÞ2Þ þ �2
þ R

8�

Z 1

0

dz

z

1

log2ðzð3RÞ2Þ þ �2

1ffiffiffi
z

p þ 1

¼ � R

8�
þ R

8�

Z 1

0

dz

z

1

log2ðzð3RÞ2Þ þ �2

1ffiffiffi
z

p þ 1
þ R

8�

Z 1

1

dz

z

1

log2ðzð3RÞ2Þ þ �2

1ffiffiffi
z

p þ 1
: (B13)

The last integral is finite in the limit R ! 1, again leading
to a term of the order of OðR=log2RÞ. The remaining
integral is dominated by z ¼ 0, and 1=ð ffiffiffi

z
p þ 1Þ can be

expanded in powers of
ffiffiffi
z

p
leading to, in the limit R ! 1,

R

8�

Z 1

0

dz

z

1

log2ðzð3RÞ2Þ þ �2

1ffiffiffi
z

p þ 1

¼ R

8� logðR=3Þ2 þO

�
R

log2R

�
: (B14)

We now return to the pole term. For this we need to
evaluate

Z
P

d3k

ð2�Þ3 e
ik�R 1

k2 � 1
: (B15)

This integral is not well defined, because there is a pole at
k ¼ 1 (or, in general units, k ¼ 8:12m) on the positive real
axis. The leading R dependence, however, does not depend
on how the pole is circumvented. This is because, in the
neighborhood of the pole, k is finite, while the leading-R
behavior is determined by the behavior of the integrand in
the k ! 0 limit. To illustrate this point, we consider a pre-
scription ‘‘P’’ for how to skip the pole which excludes from
the integration range the interval 1� b" � k � 1þ a",

Z
P

d3k

ð2�Þ3 e
ik�R 1

k2 � 1
¼ cosðRÞ þ � sinðRÞ

4�R
; (B16)

where � ¼ logða=bÞ parametrizes the ambiguity. For in-
stance, for the principal-value prescription we have that
a ¼ b, and thus � ¼ 0. For arbitrary �, one finds

VPðRÞ � VPð0Þ

¼
Z d3k

ð2�Þ3 ½e
ik�R � 1�VPðkÞ

¼ lim
�!0

Z d3k

ð2�Þ3 ½e
ik�R � 1� 1

k2ðk2 þ�2Þ
1

k2 � 1

¼ R

8�

�
1� 2�

R
� 2

1� ðcosRþ � sinRÞ
R2

�

¼ R

8�
þOð1Þ: (B17)

In the limit of R ! 1, (B17) reduces to R=8� which
cancels the corresponding term in the dispersive part; cf.
(B13). So, finally, the leading behavior in the large-R limit
is given by

~V ðRÞ ¼R!1 R

8� logðR=3Þ2 þO

�
R

log2R

�
; (B18)

or asymptotically, restoring constants and factors of m,

VðRÞ �
�
120�

41

m2

logð8:12mR=3Þ2
�
R: (B19)
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