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We study the initial properties and positron annihilation within a small electron-positron plasma drop

formed by intense laser pulse energy. Such QED cascade generated plasma is, in general, far below the

chemical (particle yield) equilibrium. We find that the available electrons and positrons equilibrate

kinetically, yet despite relatively high particle density, the electron-positron annihilation is very slow,

suggesting a rather long life span of the plasma drop.
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I. INTRODUCTION

Conversion of the high intensity laser pulse energy into
a dense gas of eþ, e� electron-positron pairs is a topic
of current theoretical and, soon, experimental interest. A
QED cascade mechanism producing a rapid conversion of
laser pulse energy into pairs was demonstrated in [1] for
pulse intensity on the order of 1024 W=cm2. Considering
the known reaction cross sections [2], subsequent to the
electromagnetic cascade process discussed in Ref. [1],
photons escape the small plasma drop, while as we show
here, the electromagnetic scattering thermalizes the
momentum distribution of this relatively dense electron-
positron phase. We thus find a drop of ‘‘thermal’’ momen-
tum equilibrated, but ‘‘chemical’’ yield nonequilibrated
electron-positron plasma with a size as small as a few
�m and an energy content up to a kJ. Such plasma will
expand and lose energy by positron annihilation. We obtain
here the rates of energy and particle loss by annihilation.

The corresponding initial local energy density is pro-
vided by the laser field. We assume the formation of the
plasma drop at rest in the lab frame e.g. invoking symmet-
ric laser pulse collisions triggering QED cascades. The
experimental pulse intensity parameter, defining plasma
drop properties, is [3]

a0 ¼ eE0�

m
; (1)

where e is the electron charge, E0 is the laser field strength
in the focus, � is the wavelength, and m is the electron
(positron) mass. The discussion of physical properties that
we present corresponds to a0 ’ 4000. This value will be
within the range of the next generation ultra intense pulsed
lasers. For a plasma drop radius R ¼ 3 �m, 2R ¼ 3�, the
corresponding total plasma drop energy is Oð0:3Þ kJ.

In the present context of plasma cooling we extended the
results of Ref. [2] to the lower density and lower tempera-
ture domain. The important theoretical refinement dis-
cussed here for the first time, in the context of laser
generated low density e�eþ plasma, is the consideration
of the plasmon screening depending on plasma tempera-
ture and density. We also extend our earlier considerations

to the nonrelativistic regime T � m as required in the study
of the plasma expansion and freeze-out process.
Under the experimental conditions we consider here, all

photons produced will escape from the small drop of low
density plasma of electrons and positrons without much, if
any, scattering. However, even far from the chemical equi-
librium density of the particle pair yield, it is possible for
the produced electrons and positrons to equilibrate ther-
mally by means of Møller and Bhabha scattering,

e� þ e� $ e� þ e�; (2)

e� þ e� $ e� þ e�; (3)

forming an electron-positron plasma drop: When the drop
size R exceeds the scattering length Lee,

R> Lee; (4)

multiple scattering processes can occur, allowing kinetic
‘‘thermal’’ equilibration. We therefore study positron an-
nihilation loss processes assuming the Fermi-Boltzmann
energy distribution of available particles. We solve kinetic
population equations and evaluate the fraction of particles
in plasma which can annihilate during the plasma life span.
There are two paths to positron annihilation, the direct

in-flight pair annihilation,

e� þ e� ! �þ �; (5)

and in-flight bound state positronium ps formation,

e�þe�!�þPn Pn!n�; n¼2;3; (6)

which is followed ultimately by annihilation. The annihi-
lation life span of positronium for spin 0 is �P2 ¼ 0:12 ns,
while for spin 1 it is �P3 ¼ 140 ns. However, the positro-
nium formation cross section only competes with the in-
flight annihilation cross section for temperatures below
T � 60 eV [4], and at that point, the expansion dilution
will, in general, slow these processes down considerably.
In Sec. II we present cross sections for Møller and

Bhabha scattering, including in the plasmon screening
effects. We compare the resulting pair annihilation cross
section with positronium formation. In Sec. III we present
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numerical results for the Møller and Bhabha scattering
mean free path and also annihilation relaxation time. We
discuss conditions for the plasma drop to be thermally
equilibrated. In Sec. IV we evaluate our results and present
conclusions.

II. eþ, e� PLASMA REACTION RATES

A. Scattering rates

1. Particle density

We consider the case of a small nonopaque expanding
electron-positron plasma drop. The drop stays thermally
equilibrated by scattering processes. The electron (posi-
tron) multiplicity Ni (i ¼ eþ, e�) is thus in thermal
(momentum distribution) but not in chemical (yield distri-
bution) equilibrium.

It has been shown [5] that in order to maximize
the entropy at fixed particle number, the appropriate maxi-
mum entropy distribution is the usual Fermi-Dirac fe; �e
distribution accompanied by a phase space occupancy
parameter �,

fe; �e ¼ 1

��1eðu�p��Þ=T þ 1
: (7)

�ðtÞ describes the pair density and is, in general, a function
of time, and it is the same for both particles and antipar-
ticles. This is in distinction from the behavior of the
chemical potential � which changes sign, � �e ¼ ��e, com-
paring particles and antiparticles. The chemical potential �
regulates the abundance difference between particles and
antiparticles and thus, in general, is only weakly dependent
on time. A system with � ¼ 1 for all particles is in
chemical equilibrium, and we refer to particle density
with � ¼ 1 as a chemical equilibrium density.

Note that the Lorentz-invariant exponents involve the
scalar product of the particle four-momentum p

�
i with

the local four-vector of velocity u�, where u� describes
the local collective flow of matter, as expected for an
unconfined plasma drop. The thermal properties �, T, �
are defined in the local rest frame. In the absence of local
matter flow the local rest frame is the laboratory frame,

u� ¼ ð1; ~0Þ; p� ¼ ðE; ~pÞ: (8)

We thus have

fe; �e ¼ 1

��1
e; �ee

E=T þ 1
; �e; �e ¼ �e��=T: (9)

The yields of particles are

Ne; �e ¼ ne; �eV ¼ ge; �eV
Z d3p

ð2�Þ3 fe; �e; (10)

where V ¼ 4�R3=3 is the volume and ge; �e ¼ 2 is the spin

degeneracy. When the e, �e-pair yield is far below chemical

equilibrium, that is, � � 1, the effects of quantum statis-
tics are, in general, less significant, and the Boltzmann
limit is often equally precise,

fe; �e ! �e; �ee
�E=T: (11)

2. Plasmon mass and screening length

To avoid Coulomb singularity in reaction matrix ele-
ments we introduce the plasmon mass, induced by the
plasma screening effect, following the example of gluon
dynamics in quark-gluon plasma [6]. The plasmon mass
is [7]

m2
�¼!2

pl¼8��
Z feþ þfe�

Ee

�
1� p2

3E2
e

�
dp3

ð2�Þ3 : (12)

� ¼ e2=4� ¼ 1=137:036 is the fine-structure constant.
For nonrelativistic temperatures T � me, m� goes to the

classical plasma frequency, and a simple limit also emerges
for relativistic temperatures with � ¼ 1,

m� �
�
4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ne=me

p
; T < me;ffiffiffiffiffiffiffiffiffiffi

4��
p

T=3; T > me;� ¼ 1:
(13)

The corresponding screening length, the Debye radius, is

rD ¼ vT

!pl

; (14)

and the mean thermal particle velocity vT is

vT ¼
R p

E fd
3pR

fd3p
(15)

since feþ ¼ fe� ¼ f. We show in Fig. 1 the electron
(positron) screening length and the mass of the plasmon
as a function of T. The plasmon mass is increasing towards
the small temperatures and is asymptotically constant,
similar to the behavior of the plasma density. The screen-
ing length is otherwise decreasing towards the small tem-

peratures (inverse proportional to m� and vT / ffiffiffiffi
T

p
) in our

range of temperature.

3. Boltzmann limit

We are interested in the experimental conditions under
which the number of pairs produced is large compared
to the residual electron density originating in matter.
Furthermore, we will deal with conditions (�e < 1 or/and
T � m MeV) which allow us to use the Boltzmann ap-
proximation. Then, we have

ne � n �e

ne þ n �e
! sinhð�=TÞ � 1: (16)

In what follows, we will set � ¼ 0, and consider elsewhere
the case for very low density degenerate plasma, where the
chemical potential may become important. We thus have
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�e; �e ¼ �. In the relativistic Boltzmann (classical) limit the

plasma density and energy density are

ne ¼ �egeT
3

2�2
x2K2ðxÞ; (17)

� ¼ �e

3geT
4

2�2

�
x2K2ðxÞ þ 1

3
x3K1ðxÞ

�
; (18)

where KiðxÞ is a Bessel function, x ¼ m=T.

4. Electron (positron) scattering rates

In the evaluation of the matrix element we use
Mandelstam variables: s, u, and t. In the case of Møller
scattering

s ¼ ðp1 þ p2Þ2; u ¼ ðp3 � p2Þ2;
t ¼ ðp3 � p1Þ2;

(19)

and sþ uþ t ¼ m2
1 þm2

2 þm2
3 þm2

4.

The Møller scattering matrix element is [2,8,9]

jMe�e�j2 ¼ 26�2�2

�
s2 þ u2 þ 8m2ðt�m2Þ

2ðt�m2
�Þ2

þ s2 þ t2 þ 8m2ðu�m2Þ
2ðu�m2

�Þ2

þ ðs� 2m2Þðs� 6m2Þ
ðt�m2

�Þðu�m2
�Þ

�
: (20)

In the case of Bhabha scattering we have

s ¼ ðp3 � p2Þ2; u ¼ ðp1 þ p2Þ2;
t ¼ ðp3 � p1Þ2;

(21)

see diagrams in [2]. The matrix element does not change in
terms of variables p1, p2, p3; when written in terms of
variables s, u, t we need to cross u and s in the Møller
scattering matrix element [see Eq. (20)],

jMe�e�ðs; t; uÞj2 ¼ jMe�e�ðu; t; sÞj2; (22)

thus we find

jMe�e�j2 ¼ 26�2�2

�
s2 þ u2 þ 8m2ðt�m2Þ

2ðt�m2
�Þ2

þ u2 þ t2 þ 8m2ðs�m2Þ
2ðs�m2

�Þ2

þ ðu� 2m2Þðu� 6m2Þ
ðt�m2

�Þðs�m2
�Þ

�
: (23)

For Møller and Bhabha scattering the cross section
	eeðsÞ can be obtained by averaging the matrix element
over the t variable:

	eeðsÞ ¼ 1

16�ðs� 4m2Þ2
Z tmax

tmin

dtjMeej2; (24)

where tmin ¼ �ðs� 4m2Þ, tmax ¼ 0 in both cases [2].
Similar evaluations were done for heavy quark
production [10].
For Møller and Bhabha cross sections we obtain in

plasma, keeping m�,
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FIG. 1 (color online). Upper panel: electron (positron) screen-
ing length as a function of plasma temperature. Lower panel:
mass of the plasmon as a function of T.
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	e�e�$e�e�ðsÞ¼ 1

16�ðs�4m2Þ2
Z 0

�ðs�4m2Þ
dtjMe�e�j2

¼ 4��2

ðs�4m2Þ
�
s2þ8m2ðm2

��m2Þþðsþm2
��4m2Þ2

ðsþm2
��4m2Þm2

�

þ1

�
þ 8��2

ðs�4m2Þ2
�ðs�2m2Þðs�6m2Þ

ðs�4m2þ2m2
�Þ

þsþm2
�

�

� ln
m2

�

s�4m2þm2
�

; (25)

	e�e�$e�e�ðsÞ ¼ 1

16�ðs� 4m2Þ2
Z 0

�ðs�4m2Þ
dtjMe�e�j2

¼ 2��2

ðs� 4m2Þ
�
s2 þ 8m2ðm2

� �m2Þ þ ðsþm2
� � 4m2Þ2

ðsþm2
� � 4m2Þm2

�

þ 1þ 8ððs� 4m2Þ2 þm2ðs�m2ÞÞ
3ðs�m2

�Þ2

þ 3sþ 2m2
� þ 4m2

ðs�m2
�Þ

þ 2
ðm2

� þ sÞ2 � 4m4 þ ðs2 �m4
�Þ

ðs�m2
�Þ

ln
m2

�

s� 4m2 þm2
�

�
: (26)

B. eþ �e annihilation

1. Master equation and annihilation time constant

The master population equation reads

1

V

dNe; �e

dt
¼ ��e��eWann: (27)

We have made explicit the dependence of the evolution of
the particle (pair) multiplicity in thin plasma on the pre-
vailing density showing the factor �e��e.

A simplified form of the master equation (up to dilution
by volume expansion, to be considered elsewhere) is easily
obtained,

1

�e

d�e

dt
¼ � 1

�eann

��e

�in
�e

; (28)

introducing the annihilation relaxation time �eann [2],

�eann ¼ dne=d�e

�in
e Wann

; (29)

and similarly for � �e
ann. In our case �e ’ ��e and we see that

�in
�e

��e

¼
Z t

0

dt0

� �e
ann

ðt0Þ: (30)

We can write a similar master equation for the plasma
drop energy loss,

1

V

dEtot

dt
¼ ��e��eW

E
ann; (31)

where Etot is the total energy of the plasma drop. The
relaxation time of energy loss is

�Eann ¼ d�=d�e

�in
e W

E
ann

; (32)

where � is the plasma energy density and �in
e is the initial

electron (positron) phase space occupancy.

2. Annihilation rate in flight

When electrons collide with positrons, they can annihi-
late. We consider here the dominant in-flight annihilation
process into two photons. The invariant rate of annihilation
per unit of volume and time eþ �e ! �þ � is (3þ 4 !
1þ 2)

Wann ¼ g2e
2ð2�Þ8

Z d3p�
1

2E�
1

Z d3p�
2

2E�
2

Z d3pe
3

2Ee
3

Z d3p �e
4

2E �e
4


4ðp�
1 þ p�

2 � pe
3 � p �e

4Þ

�X
spin

jhp�
1p

�
2 jM��$e �ejpe

3p
�e
4ij2eu�ðpe

1
þpe

2
Þ=Tfeðpe

3Þ��1
e f �eðp �e

4Þ��1
�e : (33)

Here hp�
1p

�
2 jM��$e �ejpe

3p
�e
4i is the annihilation quantum

matrix element which we will consider to lowest order in
�, where ge is the electron-positron degeneracy, and the
factor 1=2 is due to the indistinguishability of the final state
photons. We used this method to describe the electron-
positron pair annihilation in [2], adapting it from work on
strangeness production in quark-gluon plasma [11–14]. In
the last line of Eq. (33) we introduce ��1

e ��1
�e to compen-

sate for the factor �e��e seen in Eq. (27).

The invariant rate Eq. (33) relates to the electron-
positron pair annihilation cross section [15]; in the
Boltzmann limit we have

Wann ¼ g2T

32�4

Z 1

4m2
ds

ffiffiffi
s

p ðs� 4m2Þ	ee!��ðsÞK1ð
ffiffiffi
s

p
=TÞ:

(34)

Here the annihilation cross section is [2]
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	ee!��ðsÞ ¼ 2��2ðs2 þ 4m2s� 8m4Þ
s2ðs� 4m2Þ

�
�
ln

ffiffiffi
s

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 4m2

p
ffiffiffi
s

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 4m2

p

� ðsþ 4m2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4m2s

p

ðs2 þ 4m2s� 8m4Þ
�
: (35)

3. Energy loss

Once in-flight eþ �e annihilation occurs, the produced
photons escape the small plasma volume. An analogous
expression to Eq. (33) describes the energy loss rate due to
pair annihilation,

WE
ann ¼

g2�

2ð2�Þ8
Z d3p�

1

2E�
1

Z d3p�
2

2E�
2

Z d3pe
3

2Ee
3

�
Z d3pe

4

2Ee
4


4ðp�
1 þ p�

2 � pe
3 � pe

4Þ

�X
spin

jhp�
1p

�
2 jMee!��jpe

3p
e
4ij2

� ðEe
3 þ E �e

4Þfeðpe
3Þf �eðpe

4Þ��2
e eu�ðp

�
1
þp�

2
Þ=T: (36)

We now obtain a relation analogous to Eq. (34).
Consider the integral [15] leading to Eq. (34),

Z
d4pe��p�u
0ðp2 � sÞ ¼ 2�

�

ffiffiffi
s

p
K1ð�

ffiffiffi
s

p Þ; (37)

where u ¼ ð1; ~0Þ in the laboratory frame. Instead, we now
need to use

Z
d4pp � ue��p�u
0ðp2 � sÞ ¼ � @

@�

2�

�

ffiffiffi
s

p
K1ð�

ffiffiffi
s

p Þ:
(38)

We use d½K1ðxÞ=x	=dx ¼ �K2ðxÞ=x to obtain

WE
ann¼ g2T

32�4

Z 1

sth

dssðs�4m2Þ	ee!��ðsÞK2ð
ffiffiffi
s

p
=TÞ: (39)

4. Positronium formation

The cross section for radiative positronium ðe �eÞ forma-
tion, e� þ eþ $ �þ ðe �eÞ [16], is

	pos ¼ 212�2!

3pm2
�

�
�2

1þ �2

�
3 e�4�arccot�

1� e�2��

�
1þ!2ð1� �2Þ

5p2

�
;

(40)

where � ¼ �m=2p and the photon energy ! is defined by
the conservation law

!þ !2

4m
¼ p2=mþ �2m=4: (41)

p is the electron (positron) momentum in the center of

mass reference frame, p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 4m2

p
=2. Equation (40) is

valid while � � 1. This condition is satisfied up to tem-
peratures on the order of 10 eV.
We did not consider in detail the influence of plasma

screening on positronium formation, a topic which invites
further work in view of currently available results. It was
found in [17] that the plasma screening and collective
effects significantly reduce the radiative recombination
cross section in nonideal plasma. The screening effect for
positronium formation should be similar to the results for
free electron radiative recombination with ions in nonideal
classical plasmas. However, in positron-hydrogen plasma
the Debye screening can result in a large increase of the
positronium formation cross section at incident positron
energy 20–100 eV [18].

III. RESULTS FOR LASER FORMED PLASMA

A. Parameters for thermal plasma drop

We assume here that the total energy E of (colliding)
laser pulses converts in the initial volume V to the
eþe�-plasma drop energy. The initial energy density � ¼
E=V is obtained from Eq. (1) and is characterized by a0
and �,

� ¼ 1

4�
E2
0 ¼

1

4�

�
a0m

e�

�
2
: (42)

The phase space occupancy of the plasma drop is

�e ¼ 1

4��0ðTÞ
�
a0m

e�

�
2
; (43)

where we introduced the chemical equilibrium energy
density �0 ¼ �j�e¼1, Eq. (18). Then the total energy of

plasma, E, is defined by the plasma drop radius R for a
given parameter a0 and wavelength �. The initial plasma
size is expected to be close to the wavelength. We take the
wavelength R ¼ 3�=2 for all cases considered below.
In Fig. 2 we show the phase space occupancy �e from

Eq. (43) (upper panel) and the corresponding plasma den-
sity npl (lower panel). The solid (blue) line shows the actual

chemical nonequilibrium value. For comparison, the
chemical equilibrium results are shown by the dashed
(green) line. We note that for T 
 0:06 MeV the fully
equilibrated yield is much greater than what we can
make using a near future high intensity laser. However,
the density of particles in plasma which we achieve is very
high.
At T � m, when plasma becomes nonrelativistic the

energy=particle ! mc2 is a constant and does not depend
much on the plasma temperature. Hence, the plasma par-
ticle density goes, for T ! 0, to a constant for a given
energy and plasma drop size,

npl ¼ ne þ n �e ¼ �

mc2
; (44)

and the temperature cannot be determined considering the
given available energy constraint.
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In a system where particle (pairs) can be produced but
energy is fixed, the entropy density reaches a maximum at
� ¼ 1. We show the entropy density of electron-positron
plasma,

s ¼
Z d3p

2�3
ððfe � 1Þ lnð1� feÞ � fe lnðfeÞÞ; (45)

at E ¼ 0:3 kJ and R ¼ 3 �m as a function of temperature
in Fig. 3. As expected, the maximum of the entropy density

is at the temperature T ¼ 0:06 MeV, where the phase
space occupancy of the electron and positron �e ¼ 1.
However, the maximum is very flat. Note that there is
much less entropy density when the system is formed at
relatively high temperature. This is because there are fewer
particle pairs and, for a relativistic gas, the entropy per
particle is near S=N ’ 4. For far off equilibrium low den-
sity systems the expansion of the volume is thus accom-
panied by reactions that tend to chemically equilibrate the
system and move it towards chemical equilibrium.

B. Electron and positron scattering

The formation of electron-positron plasma is further
subject to the opacity condition Eq. (4). To check if this
condition is satisfied we extend our earlier considerations
[2], now introducing plasmon mass, Eq. (12), in a domain
of mild relativistic and nonrelativistic temperatures.
The electron (positron) mean free path follows from

Lee ¼ ne
Wee

; (46)

where for the scattering rateWee we use an equation similar
to Eq. (34) (since the final state does not have two identical
bosons, the normalization factor is different):

Wee ¼ g2T

32�4

Z 1

4m2
ds

ffiffiffi
s

p ðs� 4m2Þ	eeðsÞK1ð
ffiffiffi
s

p
=TÞ (47)

and

	ee ¼ 	eþeþ$e�e� þ 	e�eþ$eþe� : (48)
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FIG. 2 (color online). Upper panel: electron (positron) phase
space occupancy �e as a function of T for a0 ¼ 4000 and R ¼
3 �m (solid blue line). Lower panel: plasma density correspond-
ing to the phase space occupancy on the upper panel (solid blue
line) and equilibrium density � ¼ 1 (dashed green line) as a
function of T.
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FIG. 3 (color online). The entropy density of electron-positron
plasma with a0 ¼ 4000 and R ¼ 3 �m as a function of tem-
perature.
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In Fig. 4 we show the electron (positron) scattering
length Lee, Eq. (46), at a given plasma radius R ¼ 3 �m
and energy 0.3 kJ (a0 ¼ 4000) as a function of plasma
temperature T. � varies for every value of T, as we see in
Fig. 2. Since�e � 1 the scattering length can be evaluated
in the Boltzmann limit in practically the entire temperature
range of interest, including T > m. We also show (dashed
green line), for comparison, the case�e ¼ 1, which means
that we allow the density to go up significantly and the
small difference we see in Fig. 4 for high T is due to
quantum gas properties.

At relativistic temperatures T ’ 1 MeV our present re-
sult is in agreement with scattering rates evaluated with
plasmon mass taken in the limit of ultrarelativistic tem-
peratures in [2] with an accuracy of few percent.

For constant plasma drop energy the scattering length
Lee has a maximum at T � m. In the whole temperature
range the plasmon mass is small and the first term in
Eqs. (25) and (26) is dominant, resulting in the cross
section for electron or positron scattering,

	ee / m�2
� / n�1

e : (49)

In the range where condition (49) is valid, the electron
(positron) mean free path does not depend on density or
�e. When the mean free path is increasing with decreasing
density, this is compensated by a larger cross section
because of a smaller plasma screening effect or smaller
m�. For the entire T range, the scattering length scale is a

tiny fraction of the plasma size.
In the temperature range T <m the contribution of

4p2 ¼ s� 4m2 is much smaller than m2 and much larger

thanm2
�, and the approximate cross sections for Møller and

Bhabha scatterings, Eqs. (25) and (26), are

	e�e�$e�e�ðsÞ¼2	e�e�$e�e�ðsÞ¼ 64��2

ðs�4m2Þ2
m4

m2
�

: (50)

One can also consider a Rutherford-type differential
cross section for Møller scattering [9],

d	

d cos

¼ ��2m2

4p4
cosec4
=2: (51)

We checked by integrating Eq. (51) numerically that
Eq. (50) corresponds to the total cross section from the
integrated Eq. (51) with a cutoff angle 
min ¼ m�=m.

We found from the results presented in Fig. 4 that
condition Eq. (4) is satisfied for all temperature ranges
considered. We conclude that the electron-positron plasma
drop can stay thermally equilibrated at relatively low den-
sities when � � 1 and/or the temperature T � m: the
electron-positron mean free path decreases when the tem-
perature decreases below the electron mass because of the
factor s� 4m2 ¼ 4p2 in the denominator of the cross
section, Eq. (50). At a temperature higher than m the other
terms begin to contribute to cross sections, Eqs. (25) and
(26). The electron-positron mean free path decreases again.
The cross section, Eq. (50), is valid in the temperature

range

Tcr ¼ 2��ne
m2

< T <m: (52)

The reader should keep in mind that the present consid-
erations do not automatically apply to the case of a degen-
erate electron-positron gas (high density or/and low
temperature), where we should extend the investigation
of collective plasmon dynamics in order to obtain a valid
estimate of the electron-positron scattering cross section.

C. Annihilation

1. Plasmons

While screening and plasma oscillations impact the
scattering processes, this is not the case for our domain
in regard to the annihilation process. There are several
processes to consider:
(1) The electron (positron) thermal mass correction,

which is on the order of magnitude of m�.

However, m� � me and this correction is small.

(2) Plasmon $ eþe�, when the reaction threshold is
exceeded, m� > 2me [6]. This can only happen at

ultrarelativistic temperatures. In the case considered
here with constant plasma energy, m2

� / T�1 (see

Fig. 1), the threshold condition cannot be satisfied.
(3) The hard photons from annihilation (k � m) rescat-

tering on plasmons. The condition where screening
has a noticeable effect on the photon propagation
is [19]
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FIG. 4 (color online). Electron (positron) scattering length at a
given plasma radius and energy as a function of T.
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krD � 1; (53)

where k is the photon wave number and rD is the
Debye radius, Eq. (14). This condition is equivalent
to the condition T < Tcr, Eq. (52). We do not con-
sider here such low temperature plasma.

2. Annihilation life span

We determine, using the perturbative QED reaction rate,
the annihilation rate of plasma under the conditions con-
sidered in the previous subsections. We assume that the
plasma drop formation life span is on the order of magni-
tude of the laser pulse duration, 10 fs, and this is the stage
at which the density of pairs and thus annihilation should
have the largest rate; however, this is not the case since, as
T increases, the pair density drops, given the constant
initial total energy, and thus the annihilation relaxation
time increases.

In Fig. 5 we show relaxation times � for particle number
annihilation �ann (thick lines) and energy loss �Eann (thin
lines) for plasma at a0 ¼ 4000, E ¼ 0:3 kJ (solid blue
lines) and a0 ¼ 8000, E ¼ 1:2 kJ (dashed green lines) as
a function of temperature. The values of � are indeed
largest for initial highest temperatures, and there is a
shallow minimum at T � 0:065 MeV. At T <
0:065 MeV the pair density is approximately constant,
but the particle temperature decrease results in an increase
of the annihilation relaxation time. The fastest annihilation
occurs here because we have, at this low temperature, the
highest mobility of particles at high density.

We recognize that the fraction of annihilations is very
small initially; we obtain from Eq. (27)

Nann=N0 � �2
eWann

t

n0
� t

�ann
: (54)

Another way to look at the conditions for annihilation is to
note that the relaxation time is inversely proportional
to �e. Then from Eq. (42) we have

�ann / �2

a20
; (55)

which explains the dependence on a0 (see Fig. 5).
We see in Fig. 5 that the energy loss relaxation time �Eann

becomes very close to �ann for T <m, since the energy of
the plasma drop changes mostly because of the pair mass
disappearance and the resulting decrease in plasma mass.
At T > 2m, the energy loss relaxation time is, as expected,
above the annihilation relaxation time. This happens since
there is a preference for slower particles to annihilate, and
thus on average, in the thermal bath fewer particles at
higher energy are lost, and annihilation leads to a slight
increase of the ambient plasma temperature.
Our result seen in Fig. 5 implies that the annihilation

process, even at the highest initial density, is relatively
slow compared to other dynamical effects controlling the
plasma drop: the plasma drop must live t 
 �ann to have
most positrons in the plasma annihilated. This time is much
longer than the pulse duration, 10 fs; indeed, it is on the
scale of nanoseconds. There is, furthermore, the kinetic
expansion leading to further dilution of the plasma—when
the plasma drop expands with time, the density decreases
and the annihilation relaxation becomes even longer. Most,
if practically not all of the 3� 10�4–10�5 annihilation
events originate in the densest plasma stage during laser
pulse, and a reliable prediction of the total annihilation
yield requires detailed control of the kinetic processes in
the initial state of the plasma as well as a precise under-
standing of the plasma drop expansion dynamics, which
further reduces the annihilation rate, ultimately leading to a
cloud of streaming electrons and positrons.

3. In-flight annihilation compared to
positronium formation

In Fig. 6 we compare the nonrelativistic limit of the
annihilation in-flight cross section (dashed line) to the
cross section for radiative positronium ðe �eÞ formation
(solid blue line) as a function of electron (positron) kinetic
energy in the center of mass frame Ekin ¼ ðs� 4m2Þ=8m.
The cross sections intersect at Ekin � 150 eV. This corre-
sponds to the crossover temperature obtained in [4], Te ’
60 eV. Thus, the direct annihilation dominates down to this
low temperature, and our prior results apply for T > Te.
For T < Te we have significant positronium formation only
if we reach this condition without much expansion, which
is not part of our present study.
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FIG. 5 (color online). Time constant for particle annihilation
(thick lines) and energy loss (thin lines) at a0 ¼ 4000, E ¼
0:3 kJ (solid blue lines) and a0 ¼ 8000, E ¼ 1:2 kJ (dashed
green lines) as a function of plasma drop temperature.
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IV. CONCLUSIONS

The key result of this study is that high intensity QED
cascading leads to an electron-positron drop which does
not annihilate but thermally equilibrates. In this plasma
drop electron-positron pairs are thermalized by Møller
[Eq. (2)] and Bhabha [Eq. (3)] scattering, and they annihi-
late very slowly; see Fig. 5.

We found that in the Boltzmann limit the electron and
positron scattering length nearly does not depend on
plasma density in the considered temperature range due
to collective plasmon effects. The cross section decrease at
lower density is compensated by plasmon charge screening
in the less dense plasma. As a result, electron-positron
plasma can be thermally equilibrated at the density and

temperature range considered, far below the chemical
equilibrium of the pair yield, � ¼ 1. The plasma drop
size allows very many scattering processes; we did not
find any restriction on the minimum plasma drop energy
and/or maximum drop size by considering the opaqueness
condition Eq. (4) for electron (positron) scattering.
We calculated, as an example, the annihilation relaxa-

tion time for an internal plasma drop energy of 0.3–1.2 kJ
and radius 3 �m. Because of the relatively low density the
annihilation relaxation time is much longer than the pulse
duration, which is � 10 fs. We found that in-flight annihi-
lation is fastest at T ¼ 0:065 MeV, yet still relatively slow.
The radiative positronium production process exceeds the
in-flight annihilation at a much lower temperature, 60 eV,
leading perhaps to the formation of positronium in the late
stages of the drop. If such a low temperature is reached
without drastic expansion dilution, very many positro-
niums can be formed, and positronium formation prolongs
the life span of positrons, though the nature of the plasma
drop is now different.
The experimental conditions will determine at what

temperature and, more importantly for the following argu-
ment, rapidity, relative to the laboratory frame of reference,
the electron-positron drop will be formed [20,21].
Multipulse arrangements can be easily obtained, resulting
in the plasma drop being formed at high rapidity. The
greater the rapidity, the greater the effect of the time
dilation that prolongs the life span of the plasma drop, as
seen in the laboratory. We recognized, in this work, the
relative stability against annihilation evaluated in the in-
trinsic rest frame of the drop. Therefore, it appears possible
to create, using high density lasers, a quasistable matter-
antimatter plasma drop capable of traveling macroscopic
distances before dissipating into a low density cloud of
particles.
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