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A Hamiltonian formulation of Yang-Mills-Chern-Simons theories with 0 � N � 4 supersymmetry in

terms of gauge-invariant variables is presented, generalizing earlier work on nonsupersymmetric gauge

theories. Special attention is paid to the volume measure of integration (over the gauge orbit space of

the fields) which occurs in the inner product for the wave functions and arguments relating it to the

renormalization of the Chern-Simons level number and to mass gaps in the spectrum of the Hamiltonians

are presented. The expression for the integration measure is consistent with the absence of mass gap for

theories with extended supersymmetry (in the absence of additional matter hypermultiplets and/or Chern-

Simons couplings), while for the minimally supersymmetric case, there is a mass gap, the scale of which is

set by a renormalized level number, in agreement with indications from existing literature. The realization

of the supersymmetry algebra and the Hamiltonian in terms of the gauge-invariant variables is also

presented.
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I. INTRODUCTION AND SUMMARY

In this paper we present a reformulation of N ¼ 1, 2
and 4 supersymmetric Yang-Mills theories (with and with-
out Chern-Simons couplings) in three spacetime dimen-
sions in terms of gauge-invariant variables, following the
Hamiltonian approach in [1]. As part of this reformulation,
we compute the volume measure on the physical gauge-
invariant configuration space C of the theories under con-
sideration and study the interplay between dynamical mass
generation and supersymmetry in D ¼ 2þ 1.

Studies of gauge theories in three dimensions, especially
their nonperturbative aspects, are motivated by several
current issues of both practical as well as conceptual
importance. For example, it is well known that various
equilibrium properties of the quark gluon plasma are ex-
pected to be captured by an Euclidean three-dimensional
Yang-Mills theory coupled to scalar adjoint matter fields.
The nonperturbative mass gap of the three-dimensional
gauge theory, in this context, sets the screening length for
chromomagnetic fields in the plasma. Thus the quark gluon
plasma provides a very physically relevant context for
gauge dynamics in three dimensions; a detailed description
relating nonperturbaitve effects of the three-dimensional
theory to physical observables of the plasma can be found
in the rather large literature on the subject; see, for example
[2]. On the more conceptual side, supersymmetric Yang-
Mills and Chern-Simons theories appear at the forefront of
several exciting recent developments pertaining to the
gauge-gravity dualities involving M2 and D2 brane theo-
ries [3,4]. For instance, understanding both the flow of the
D2 brane theory to a conformal field theory in the IR and

its connection to a holographic description of high Tc

superconductivity [5] require tools for probing the non-
perturbative behavior of N ¼ 8 SYM.
Keeping these broad motivations in mind it is interesting

to note that, in the case of the purely gluonic theory, it has
been possible to do ab initio strong coupling computations1

of certain physical quantities using the gauge-invariant
Hamiltonian formalism [1]. For example, systematic com-
putations of the string tension [6], screening effects [7]
and the inclusion of the effects of nontrivial spatial geome-
tries [8] have been studied within this framework. The
Hamiltonian approach, with some variations, has also
been employed to estimate the glueball spectrum in [9].
Further, the formalism has been extended [10] to the Yang-
Mills-Chern-Simons theory [11]. Most importantly, at least
as far as the focus of the present paper is concerned, the
origin of the mass gap in the purely gluonic theory can be
understood in a geometric fashion as the effect of the
volume measure on C, a fact made transparent in terms
of manifestly gauge-invariant variables [1,12].
On the other hand, a very different set of tools allows one

to make considerable headway into the study of gauge
theories in D ¼ 2þ 1, as long as one has supersymmetry.
For the case of Yang-Mills and Chern-Simons theories with
extended supersymmetries many powerful statements can
be made about their partition functions [13], S matrices
[14,15], physical spectra [16,17] and Wilson-loop expec-
tation values [18]. Obviously, in the case of maximal
(N ¼ 8) or near-maximal (N ¼ 6) supersymmetry one
also has a web of gauge-gravity dualities which can be used
to make precise statements about the strong coupling
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1The wording ‘‘strong coupling computations’’ is meant to
indicate a specific expansion scheme, as explained in detail in
the second paper in [6].
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behavior of N ¼ 8 Yang-Mills and N ¼ 6 Chern-
Simons theories [4,16]. The potent methods that enable
these computations often use manifest supersymmetry in
one way or another and are not readily generalizable to
nonsupersymmetric theories. A natural question to ask is if
these two approaches, namely, the gauge-invariant
Hamiltonian point of view due to Karabali, Kim and Nair
[1], which does not rely on supersymmetry in any way, and
the powerful computational tools that have been so suc-
cessful in the recent studies of supersymmetric gauge
theories in three dimensions, can be fruitfully combined.
In this paper we take a step towards answering this ques-
tion. A summary of our main results and the outline of the
organization of the paper are as follows.

Our particular focus in this paper will be on Yang-Mills-
Chern-Simons theories with 0 � N � 4 supersymmetry
with particular emphasis on the issue of dynamical mass
generation in the presence of supersymmetry. We reexpress
these theories in a gauge-invariant form in a Hamiltonian
framework by extending the Karabali, Kim and Nair for-
malism to incorporate supersymmetry. In the process, we
also compute the integration measure for the inner product
of the wave functions for these theories. As discussed in the
next section, in many ways, this is the quantity of central
interest as far as the existence of a mass gap is concerned.
For the pure glue theory, this measure is given in terms of a
Wess-Zumino-Witten (WZW) functional (24) with a level
number equal to 2cA, where cA is the quadratic Casimir
value for the adjoint representation of the gauge group
(which we shall take as SUðNÞ) [19,20]. Ultimately, this
level number determines the mass gap in the spectrum of
the theory [1], the basic argument for which is also outlined
in this section. We also discuss the effect of the Chern-
Simons coupling (when it is present), and its renormaliza-
tion, on the measure and the mass gap. Much of the
discussion in this section is based on previous work
[1,10,20]; it is intended to serve as a coherent summary
of the interrelations among the three key quantities: the
integration measure for the inner product of wave functions
(a quantity defined within a Hamiltonian approach), the
mass gap, and the renormalization of the Chern-Simons
level number (which is carried out in a covariant functional
integral approach).

As is well known, in the absence of supersymmetry, the
level number for the Chern-Simons theory, k, with or
without the presence of a Yang-Mills term in the
Lagrangian, does, indeed, undergo a renormalization
k ! kþ cA [21]. (This can be seen from a Hamiltonian
point of view as well, see [20,22].) For the Yang-Mills-
Chern-Simons system, this contribution can also be
computed via Feynman diagrams in one-loop covariant
perturbation theory [21]; the supersymmetric extension,
for 1 � N � 4 Yang-Mills-Chern-Simons theories, has
been done in [23] Our arguments show how the coefficient
of this shift, cA, is, in fact, directly related to the level

number of the WZW functional (23) occurring in the inner
product for the wave functions. This nonperturbative origin
of this shift also clarifies why the same shift is obtained for
both the Yang-Mills-Chern-Simons system [10,21] as well
as the pure Chern-Simons theory [20,22].
In preparation for the study of supersymmetric theories,

Sec. III is devoted to a more direct computation of the
contribution of Majorana fermions to the measure, when
the fields are recast in gauge-invariant forms. An important
point is that there are different ways to define gauge-
invariant variables for the fermions, with correspondingly
different Jacobians and integration measures. The calcula-
tion of the Jacobian is related to a chiral anomaly calcu-
lation. The choice of the gauge-invariant version of the
fermions is related to the realization of the supersymmetry
algebra; this is explored in the later sections.
The gauge-invariant reformulation of the supersymmet-

ric theories is taken up from the next section onwards, with
N ¼ 1 in Sec. IV,N � 2 in Sec. V, linearization in terms
of the gauge-invariant variables in Sec. VI, and some
useful formulae collected in the Appendix. We construct
the supercharges and their algebra, which then determine
the choice of gauge-invariant variables and the fermionic
contribution to the measure. The effect of the fermions is to
eliminate the WZW functional for extended supersymme-
try (N � 2), while canceling the gluonic contribution by
a factor of half in the minimal supersymmetric case
(N ¼ 1); i.e., k ! kþ cA � 1

2 cA ¼ kþ 1
2 cA.

The expression for the measure indicates that one cannot
have spontaneous mass generation in supersymmetric
Yang-Mills theories in three spacetime dimensions in the
presence ofN � 2 supersymmetry, at least in the absence
of additional matter hypermultiplets and as long as super-
symmetry remains unbroken. This statement pertains to
theories that do not have Chern-Simons couplings, the
presence of which make corresponding gauge theories
massive by construction. The absence of spontaneous
mass generation in the k ! 0 limit corresponds in our set
up to a nonrenormalization of the Chern-Simons level
number for nonzero values of k. In the case of minimal
supersymmetry, one cannot consistently define a Yang-
Mills theory without the Chern-Simons terms due to the
parity anomaly [24,25]. In this case, our results are tanta-
mount to the calculation of the shift of the Chern-Simons
level number—which sets the scale for the massive exci-
tations of the gauge theory—as part of the computation of
the integration measure exactly.
The implications of these results are also consistent with

several other indications obtained in the previous literature.
In particular, the massless nature of the physical spectrum
of Yang-Mills theories with N ¼ 2 and 4 supersymmetry
is also expected based on D-brane constructions [26], small
volume arguments [27] and (specifically for the case of
N � 4) arguments based on the moduli space of the
Coulomb branch [28].
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Not surprisingly, the expressions for the supercharges
and the Hamiltonian are nonlocal in terms of the gauge-
invariant variables. Nevertheless, we can verify the re-
quired commutator algebra; the details are presented for
the N ¼ 1 theory. There are also some regularization
issues involving expressions like Green’s functions at co-
incident points; some details of how this can be done in a
way compatible with the measure calculation are also
given in the relevant sections. Several useful formulae,
including regularized expressions for the Green’s func-
tions, can be found in the Appendix at the end of the paper.

Before proceeding to the detailed analyses, let us remark
that there are no natural obstructions to extending these
present methods to theories with higher supersymmetry
and to theories with fundamental matter fields. We intend
to explore the application of the formalism presented in
this paper to D2 and M2 worldvolume theories and their
deformations involving fundamental matter fields
elsewhere.

II. THE MEASURE OF INTEGRATION ON A=G�
The geometry of the configuration space and the volume

of integration for the wave functions have a crucial bearing
on the question of a mass gap in the theory. It is useful to
start with a general discussion of this issue for YMð2þ 1Þ,
the N ¼ 0 theory, and then generalize from there.

A. Yang-Mills theory in 2þ 1 dimensions

We will start with some notational preliminaries. We
will take the group in which the gauge transformations take
values, often called the gauge group, to be SUðNÞ. We will
denote by ftag, a ¼ 1; 2; � � � ; N2 � 1, a set of linearly
independent traceless Hermitian N � N matrices which
form a basis for the Lie algebra of SUðNÞ in its fundamen-
tal representation. These matrices will be normalized by
the condition TrðtatbÞ ¼ 1

2�
ab and obey the commutation

rules ½ta; tb� ¼ ifabctc. The structure constants fabc also
define the adjoint representation of SUðNÞ via ðTaÞbc ¼
�ifabc.

The gauge potential which is a vector field in 2þ 1
dimensions is given by the matrix A� ¼ Aa

�ð�itaÞ, with
the gauge transformation given by

A� ! Ag
� ¼ g�1A�gþ g�1@�g: (1)

The Yang-Mills action, apart from terms involving super-
partners (to be discussed later), is given by

S ¼ 1

2

Z
d3xTrðF��F

��Þ ¼ � 1

4

Z
d3xFa

��F
a��; (2)

where the field strength tensor is given by F�� ¼
ð�itaÞFa

�� ¼ @�A� � @�A� þ ½A�; A�� ¼ ð�itaÞð@�Aa
��

@�A
a
� þ fabcAb

�A
c
�Þ.

In a Hamiltonian analysis, we can partially fix the free-
dom of gauge transformations by setting A0 ¼ 0. With this

choice, the fields are A1, A2, the spatial components of the
gauge potential. The wave functions are then functionals of
Ai. The Hamiltonian is given by

H ¼
Z

d2x

�
e2Ea

i E
a
i

2
þ BaBa

2e2

�
; (3)

where Ea
i and B

a are the electric and magnetic components
of the field strength, respectively, given by

Ea
i ¼ @0A

a
i ¼ �i

�

�Aa
i

;

Ba ¼ 1

2
�ijð@iAa

j � @jA
a
i þ fabcAb

i A
c
jÞ:

(4)

The wave functions are functionals of the fields Ai. The
choice of A0 ¼ 0 still allows for gauge transformations by
g which are independent of time. This implies a constraint
on the wave functions, which is also the Gauss law or
equation of motion for the A0 component,

ðri�
ab þ fabcAb

i ÞEa
i� ¼ 0: (5)

Since Ea
i is the functional derivative with respect to A

a
i , this

is equivalent to requiring the invariance of the wave func-
tions under gauge transformations g which go to the iden-
tity at spatial infinity. These are the true gauge
transformations of the theory. In fact, it is useful to define

G� ¼ fset of all gð ~xÞ: R2 ! SUðNÞ such that gð ~xÞ ! 1

as j ~xj ! 1g: (6)

This has an action on the space of gauge potentials A as
given in (1), where

A¼fset of all Lie-algebra-valued
vector functionsAionR

2g: (7)

The space of physical (or gauge-invariant) configurations
is then given by C ¼ A=G�. The statement that the wave
functions are gauge-invariant, or equivalently, Eq. (5), can
now be restated as saying that the wave functions are
complex-valued functions (or more generally, sections of
a line bundle) on C.
As a first step in relating the volume measure on C to the

mass gap, notice that, using (3) and (4), the expectation
value of the Hamiltonian for a state characterized by the
wave function � is

hH i ¼
Z

d�ðCÞ
�
e2

2

���

�Aa
i ðxÞ

��

�Aa
i ðxÞ

þ 1

2e2
BaðxÞBaðxÞ���

�
; (8)

where d�ðCÞ denotes the volume element on C. Notice that
the first term in hH i, arising from the kinetic energy term
in (3) can be viewed as the gradient energy for� taken as a
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function on C. This suggests that if the gauge-invariant
distance between configurations cannot be made arbitrarily
large, then the gradient energy cannot become arbitrarily
small. Such a geometric property of C can thus lead to a gap
in the spectrum ofH . An argument for the mass gap along
these lines, but at a very qualitative level, was advanced by
Feynman in 1981 [29]. He suggested that while there are
configurations (points) whose separation in A is arbi-
trarily large, it is finite in C, after the equivalence under
gauge transformations is taken into account. This reason-
ing is indeed on the right track, but the desired property, as
stated, does not hold [30]. We first show this and then see
how the essence of the reasoning can be salvaged once the
volume measure for C is taken into account.

The action for the theory can be written as

S ¼ 1

2

Z
dt
Z

d2x
@Aa

i

@t

@Aa
i

@t
-potential terms (9)

Comparing this with the action for a point particle,

S ¼ 1

2

Z
dtgij

dxi

dt

dxj

dt
-potential terms; (10)

we see that (9) can be interpreted as the action for a point
particle moving on an infinite dimensional space, viz., the
space of fields, with metric

ds2A ¼
Z

d2x�Aa
i �A

a
i : (11)

The integrated version of this gives the distance sðA; A0Þ
between two gauge potentials A and A0 as the Euclidean
distance,

s2ðA; A0Þ ¼
Z

d2xðA� A0ÞaðA� A0Þa (12)

This metric is still on the space of the gauge potentials. It
may be possible to find a shorter distance between con-
figurations by choosing a different but gauge-equivalent
potential for A or A0. Thus, as the metric on the physical
configuration space, we take [30,31]

s2CðA; A0Þ ¼ Infg
Z

d2xðA� A0gÞaðA� A0gÞa: (13)

B. The spikes

With the definition (13) of the distance on C, we can now
show that there are indeed configurations for which the
separation can be arbitrarily large. It is enough to give
example configurations to prove this point. For this pur-
pose, we may take one of the configurations as the vacuum,
say, A0 ¼ 0. Then

s2CðA; 0Þ ¼ Infg
Z

d2xðAi � g�1@igÞaðAi � g�1@igÞa:
(14)

We will also use SUð2Þ-gauge theory, taking, as our ex-
ample, the configuration

A ¼ ð�it3Þinðz�zÞn�1 ðzd�z� �zdzÞ
½1þ ðz�zÞn� ; (15)

where z ¼ x1 � ix2, �z ¼ x1 þ ix2. The minimum distance
of the configuration (15) from A ¼ 0 can then be worked
out as follows. We parametrize the group element g as

g ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f �f

q 1 f
� �f 1

� �
e�i’=2 0

0 ei’=2

 !
: (16)

This leads to

s2CðA; 0Þ ¼ Infg
Z

d2x

��
A� iðfd �f� �fdfÞ

1þ f �f
þ d’

�
2

þ 4
@i �f@if

ð1þ f �fÞ2
�
: (17)

Extremization with respect to ’ is achieved if we choose
A� iðfd �f� �fdfÞ=ð1þ f �fÞ to be transverse. The first part
of this expression, namely A, is already transverse and we
can choose f such that the second part is also transverse.
The function ’ which extremizes the first term in (17) is
then ’ ¼ 0. Next we note that the expression for s2 in (17)
consists of two positive integrals. The minimum for the
second term on the right-hand side is given by 8�Q½f�,
where Q½f�, which is an integer, is the topological charge
of f, given by

Q½f� ¼ i

2�

Z
d2x�ij

@i �f@jf

ð1þ f �fÞ2 : (18)

The first term on the right-hand side of (17) is minimized,
with a minimum value equal to zero, if we choose f ¼ zn.
In this case s2CðA; 0Þ is 8�n. Any other choice of f will lead

to a larger value, because of the logarithmic divergence of
the first term. Thus we have shown that the distance of the
configuration (15) from the configuration A0 ¼ 0, mini-
mized with respect to g, is given by

s2CðA; 0Þ ¼ 8�n: (19)

This tells us that, for any value of L2, we can find configu-
rations for which their separation from A ¼ 0 exceeds L.
The configuration (15) is an example of these when
n � ðL2=8�Þ. The field strength corresponding to (15) is

F ¼ ð�it3Þð�4n2Þ ðz�zÞn�1

½1þ ðz�zÞn�2 dx1 ^ dx2: (20)

Notice that F is well-behaved, there is nothing pathological
about it.
This concludes our argument that there are configura-

tions, e.g., A ¼ 0 and A given by (15) with n � ðL2=8�Þ,
for which the minimal distance between them, calculated
in a gauge-invariant way, or equivalently on C, can
be arbitrarily large. These are the so-called ‘‘spikes’’ on
C. Since the set of all physical configurations C is a con-
nected space, there is obviously a line of configurations

ABHISHEK AGARWAL AND V. P. NAIR PHYSICAL REVIEW D 85, 085011 (2012)

085011-4



connecting, say, A ¼ 0 to the A’s in (15); more generally, a
narrow spike running off from any configuration to infinity.

The spikes vitiate the simple argument for the gap by
bounding the gradient energy in (8). For, a wave function
which is like a standing wave along this line would have
arbitrarily long wavelengths suggesting that the kinetic
energy can be made infinitesimally small. However, this
is not an adequate counter-argument for the gap, since we
are in a multidimensional space and the measure of trans-
verse directions is very important. A classic example of the
importance of the transverse measure is given by the two-
dimensional Schrödinger problem

H ¼ � r2

2M
þ �ðx2 þ x2y2Þ: (21)

Notice that there is one direction, the y axis (x ¼ 0), along
which the potential energy is zero. So one might expect
long wavelength excitations along this direction, leading to
a spectrum with no gap, connecting continuously to zero.
But this is evidently too naive. Such long wavelength
excitations also have transverse oscillations, along the x
direction for which the potential is �ð1þ y2Þx2, corre-
sponding to a frequency ! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð1þ y2Þp
. The zero-point

energy (or ground state energy) for this oscillation is
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ y2Þp

. This additional energy, increasing with jyj,
cuts off the wave functions along the y axis, vitiating the
previous argument for the absence of a gap in the spectrum.
(Of course, in the full solution of the problem, it is not
meaningful to separate the dynamics along x and y direc-
tions, as we do here. Nevertheless, our argument captures
the essential physics).

C. The volume measure on C

The question of whether the reasoning given for the
Schrödinger problem (21) can hold for the Yang-Mills
theory in (2þ 1) dimensions hinges clearly on the measure
for the transverse directions. This has been calculated
before and is given as follows. The gauge potentials Az ¼
ð12 ðA1 þ iA2Þ, A�z ¼ ð12 ðA1 � iA2Þ can be parametrized as

Az ¼ �@zMM�1; A�z ¼ My�1@�zM
y; (22)

where M 2 SLðN;CÞ is a complex matrix. The Hermitian
matrix H ¼ MyM is gauge-invariant; it parametrizes
SLðN;CÞ=SUðNÞ. The volume element for C is given by

d�ðCÞ ¼ d�ðHÞ exp½2cASwzwðHÞ�; (23)

where Swzw is the Wess-Zumino-Witten action given by

SwzwðHÞ ¼ 1

2�

Z
Trð@H �@H�1Þ

þ i

12�

Z
����TrðH�1@�HH�1@�HH�1@�HÞ:

(24)

In Eq. (23), d�ðHÞ is the Haar measure for H and cA is the
value of the quadratic Casimir operator for the adjoint
representation; it is equal to N for SUðNÞ. The inner
product for wave functions is given by h1j2i ¼R
d�ðCÞ��

1�2. The total volume of C given by
R
d�ðCÞ

is the partition function for the WZW model on
SLðN;CÞ=SUðNÞ. It can be taken to be finite, with a
suitable regularization. The contrast to be made here is
between the Abelian theory and the non-Abelian one. For
the former, since cA ¼ 0, the exponent in (23) is zero and
the integral

R
d�ðCÞ diverges for each mode. For the non-

Abelian case, the integral is finite for each mode, although
one does need a cutoff on the number of modes for the final
result to be finite. The ‘‘finiteness’’ of d�ðCÞ suggests that
the zero-point energy for the transverse dimensions should
work to generate a mass gap for the theory along the lines
of the argument for (21).
The fact that the measure is the key to the mass gap can

be further elucidated in a couple of different ways. At a
qualitative level, we can write, using the uncertainty
principle,

hH i ¼ 1

2

�
e2�E2 þ�B2

e2

�
¼ 1

2

�
e2p2

�B2
þ �B2

e2

�
; (25)

where we consider modes of E, B fields corresponding to a
momentum value p. Ordinarily, to find the low lying
modes, we would minimize hH i with respect to �B2

(obtaining �B2 � e2p) to find hH i � p. (This would
correspond to the photon in the Abelian theory.)
However, in our case, the measure (23) controls the dis-
persion in B because, for low values of p, it becomes a very
narrow Gaussian, since

Swzw 	
�
� cA
2�

Z
B

1

p2
Bþ . . .

�
: (26)

The resulting value of �B2 ¼ �p=cA leads to hH i ¼
ðe2cA=2�Þ þOðp2Þ. We see the emergence of a mass
gap from the properties of the measure.
At a more quantitative level, we can write the

Hamiltonian in terms of the current J ¼ ðcA=�Þ@HH�1

as H ¼ T þ V, with

H ¼ m

�Z
u
Jað ~uÞ �

�Jað ~uÞ þ
Z

�abð ~u; ~vÞ �

�Jað ~uÞ
�

�Jbð ~vÞ
�

þ �

mcA

Z
�@Jað ~xÞ �@Jað ~xÞ; (27)

where

�abð ~u; ~vÞ ¼ cA
�2

�ab

ðu� vÞ2 � i
fabcJ

cð ~vÞ
�ðu� vÞ : (28)

The first term in (27) assigns an energy ofm for each power
of J. This is the essence of the mass gap. The existence of
this term is closely related to the measure of integration.
This term is needed to make H self-adjoint for square
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integrable functions with the measure (23). To bring this
out even more explicitly, we note that we can absorb the
factor of expð2cASwzwðHÞÞ from the measure into the wave
function by writing � ¼ expð�cASwzwðHÞÞ�, the latter
having the inner product

h1j2i ¼
Z

d�ðHÞ��
1�2: (29)

The Hamiltonian acting on the �’s is obtained by

H !H�¼ expðcASwzwðHÞÞH expð�cASwzwðHÞÞ: (30)

If we use an expansion for H as H ¼ expð’Þ 	 1þ
’þ � � � , J ¼ ðcA=�Þ@’þ � � � , then we can easily verify
that

h1j2i 	
Z
½d’���

1ðHÞ�2ðHÞH�

’ 1

2

Z
x

�
� �2

��2
að ~xÞ

þ�að ~xÞðm2 �r2Þ�að ~xÞ
�
þ � � � ;

(31)

where �að ~kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cAk �k=ð2�mÞ

q
’að ~kÞ. This clearly shows

the emergence of the mass term.

D. An alternate method for the measure of integration

The arguments given above show the central role of the
measure of integration in the inner product for the question
of the mass gap. We will now give an alternate way of
obtaining this measure, which is more easily generalizable
to the supersymmetric case. It will rely on relating the
measure to the Chern-Simons theory and the Yang-Mills-
Chern-Simons theory. The basic argument involves a num-
ber of different steps.

Step 1: Consider the calculation of the expectation val-
ues of Wilson lines (which are the observables) in a Chern-
Simons theory of level number k. We shall look at this
calculation both in a Hamiltonian formulation and from the
point of view of a functional integral approach. Consider
first the Hamiltonian formulation on �� R where, for the
ensuing discussion, it is adequate to take the spatial mani-
fold � as R2 or the Riemann sphere R2 [1. In the A0 ¼ 0
gauge, the wave functions must obey the Gauss law con-
dition

���ðAÞ ¼
Z

�a
�
k

2�
�@AþX

r

ð�itaÞðrÞ�ð2Þðx� xrÞ
�
�;

(32)

where ��� denotes the change in� under the infinitesimal
gauge transformation A ! A�D� and taðrÞ denotes the

charge matrix for the r-th Wilson line. We are using the
holomorphic polarization for the wave functions.2 In the

absence of any Wilson lines, this equation tells us that the
ground state wave function is given by

�0 ¼ 	0 expðkSwzwðMÞÞ: (33)

The constant 	0 is determined by the normalization inte-
gral

j	0j2
Z

d�ðHÞ exp½ðkþ 2cAÞSwzwðHÞ� ¼ 1: (34)

In the exponent of the integrand, the term kSwzwðHÞ arises
from the wave function, and the remainder 2cASwzwðHÞ is
the Jacobian for the conversion from the A’s to H.
Step 2: If we consider two charges, conjugate to each

other, at positions ~x1 and ~x2, the solution to the Gauss law
(32) is

� ¼ 	ðz1; z2ÞMð1ÞM�1ð2Þ�0; (35)

where 	, which can depend on the coordinates of the
charges, is to be determined by the requirement that �
should obey the Schrödinger equation. The Hamiltonian
has the form

H ¼ �i
X
r

�
_�zr

�

�AðxrÞ þ _zrAðxrÞ
�
: (36)

The action of H on � produces singular terms via terms
like �Mð1Þ=�Aðx1Þ. A regularization of this singularity
shows two results:
(1) There is a shift of k ! 
 ¼ kþ cA in the expression

(36) for H .
(2) The Schrödinger equation becomes the Knizhnik-

Zamolodchikov equation for the chiral blocks with
parameter 
. In other words, 	 is a chiral block for
the level k SUðNÞ WZW theory.

Step 3: We also know that � in (35) should have a
normalization integral independent of z1, z2. The relevant
integral is of the form

I ¼ j	j2
Z

d�ðHÞ exp½ �kSwzwðHÞ�Hð1ÞHð2Þ�1; (37)

where we take the integration measure to be of the form
d�ðHÞ exp½ �kSwzwðHÞ�. We will leave �k for this argument,
even though explicit computation will show that it is
kþ 2cA, as in (34). Other than j	j2, I is the correlator
hHð1ÞHð2Þ�1i of a Hermitian WZW theory (an
SLðN;CÞ=SUðNÞ theory) of level number �k. This correla-
tor must exactly cancel the zi dependence of j	j2 to make
the normalization of the state (35) equal to a constant. This,
in turn, implies that hHð1ÞHð2Þ�1i should obey the
Knizhnik-Zamolodchikov (KZ) equation as in the SUðNÞ
WZW theory, but with 
 ! �
. On the other hand, we
also know directly from the path-integral for the Hermitian
WZW model, that the correlators of the level �k Hermitian
model are the same as those of the SUðNÞ WZW model of
level� �k. The consistency of these statements then requires
that

2There is a slight change of notation compared to [20]. The
present z, �z are the �z and z of that paper.

ABHISHEK AGARWAL AND V. P. NAIR PHYSICAL REVIEW D 85, 085011 (2012)

085011-6



� �kþ cA ¼ �ðkþ cAÞ (38)

identifying �k ¼ kþ 2cA. Thus indirectly we identify the
measure of integration as d�ðHÞ exp½ðkþ 2cAÞSwzwðHÞ�.
At this stage, we may take k ! 0 to get the measure for
gauge fields (with no contribution from the Chern-Simons
[CS] action).

Step 4: The shift k ! 
 ¼ kþ cA in the Hamiltonian
(and hence in the KZ equation which is the Schrödinger
equation for the CS theory) can also be seen, in fact, more
easily seen, in the path-integral approach. We can, in
principle, calculate observables (Wilson lines) by using a
quantum effective action �. Thus starting from the level k
Chern-Simons action, we first determine the corresponding
�. It is well know that � has the same form as the Chern-
Simons action, but with k ! kþ cA. All observables, from
this method of calculation, involves a single parameter 
 ¼
kþ cA. Since the same observables can also be calculated
via the Hamiltonian approach, this tells us that the regu-
larization of the Hamiltonian must produce the same shift
k ! kþ cA. Taking this ingredient from the covariant
path-integral approach, we can bypass the regularization
procedure and identify the needed shift of k in the
Hamiltonian, and then combining this with the requirement
of I being independent of the zi’s, we have a method of
identifying the measure of integration.

The line of reasoning outlined above may be summa-
rized as follows:

(i) Identify the shift of k in the effective action of the CS
theory via a covariant path-integral or Feynman
diagram calculation.

(ii) The shifted k from the effective action determines
the shifted parameter 
 in the Hamiltonian and
hence in the KZ equation for the SUðNÞ WZW
theory.

(iii) The KZ equation (the Schrödinger equation) deter-
mines the zi dependence of 	 in the wave functions.

(iv) For the normalization to be independent of the zi’s,
the H correlators (calculated in the SLðN;CÞ=
SUðNÞ WZW theory of level number �k) must
obey the KZ equation of the SUðNÞ WZW theory
with parameter �
.

(v) The chiral blocks of the SLðN;CÞ=SUðNÞ WZW
theory of level number �k are the same as those for
the SUðNÞ theory with level � �k

(vi) Putting these together, we find

KZ parameters of SUðNÞWZW theorywith level - �k

¼�KZ parameters of SUðZÞWZW

theorywith level k: (39)

This last equation thus identifies the measure of integra-
tion. We can take k ! 0 at this stage to obtain the result for
the gauge fields alone.

One may now wonder where the Yang-Mills action
enters this line of reasoning. Of course, we are concerned
with the measure for the gauge fields, so the action, per se,
does not play an important role. However, the covariant
calculations in the CS theory which initiate this sequence
of steps generally require a regulator. The Yang-Mills
action may be taken as a higher derivative regulator for
the theory, so that all calculations may be thought of as
being carried out in the Yang-Mills–Chern-Simons
(YMCS) theory. The direct calculation of the integration
measure in the YMCS also yields �k ¼ kþ 2cA [10]. The
pure CS limit is obtained by taking the limit of large e2; the
shift of k is known to be independent of e2. The pure Yang-
Mills limit is obtained by taking k ! 0.
Once the measure is known, the analogue of the mass

parameter can be identified via the reasoning given in
Sec. II C. For the YMCS theory, this would give
ðkþ 2cAÞðe2=4�Þ. This value agrees also with the direct
calculation obtained by expressing the Hamiltonian of the
YMCS theory in terms of the gauge-invariant variables H
[10].

E. Expectations for supersymmetric theories

The line of reasoning in the last subsection can now be
applied to the supersymmetric theory. The calculation of
the shift of the level in the N -extended supersymmetric
Yang-Mills-Chern-Simons theory has been done in [23]. (If
the addition of the Yang-Mills term is viewed purely as a
higher derivative regulator term, notice that we do need a
supersymmetric Yang-Mills action to obtain a regulator
which preserves supersymmetry.) The result is

k !
8><
>:
kþ cA N ¼ 0

kþ cA=2 N ¼ 1

k N � 2

: (40)

Following Eq. (39), we then find that the inner product of
wave functions for the supersymmetric YMCS theory
should be

h1j2i ¼
Z

d�ðHÞ exp½ �kSwzwðHÞ�d½fermions���
1�2; (41)

where

�k ¼
8><
>:
kþ 2cA N ¼ 0

kþ cA N ¼ 1

k N � 2

(42)

with the corresponding mass gap �kðe2=4�Þ. For the non-
supersymmetric YMCS theory, i.e., forN ¼ 0, this means
we expect a mass gap as we have seen before, which
survives to the pure YM limit, when k is taken to zero.
For N ¼ 1, we cannot take k ¼ 0 because of the parity
anomaly; k ¼ 1 is the smallest value possible. (In addition
to general anomaly-based arguments, there is also evidence
from lattice simulations for the need for the Chern-Simons
term [25].) In this case, we will have a nonzero value for �k
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and hence a mass gap for the theory, although of a magni-
tude different from the pure YM case. For N � 2, the
result (42) is consistent with the absence of a mass gap.

As mentioned in the introduction, these expectations
also agree with other analyses in the literature. First of
all, for N ¼ 8, there is the relation to the Aharony,
Bergman, Jafferis and Maldacena theories, namely, that
the maximally supersymmetric theory is expected to flow
to a conformal theory [4] in the infrared. A necessary
condition for the flow to conformality is the massless
nature of the physical spectrum of Yang-Mills theory.
Again, for the N ¼ 4 theories, the constraints of unbro-
ken supersymmetry prevent a mass term [28], while partial
gauge symmetry breaking can occur giving rise to a
Coulomb branch. Also for N ¼ 2 theories, the expecta-
tion is that there is no mass gap, but with no stable super-
symmetric vacuum [28,32]. The absence of mass gap for
N ¼ 2 has also been analyzed by different methods in
[26,27].

The issue of the ground state, or the lack thereof, for the
N ¼ 2 theory is a very interesting one, but is beyond what
the measure by itself can address. Nevertheless, recall that
SwzwðHÞ in the exponent of the measure is crucial for the
convergence of volume integrations. This is true if we start
with �0 ¼ 1 as the eigenstate of the kinetic energy opera-
tor and improve on it, as done in [1], or in evaluating
expectation values using the chiral boson version as done
in [6]. The absence of such a factor forN � 2 also points
in the direction of an unstable vacuum.

We have imposed supersymmetry in obtaining these
answers. Supersymmetry breaking for N ¼ 1 is another
important question, but, again, the measure calculation by
itself is not adequate for analyzing this. However, further
development along the lines outlined here, with a calcu-
lation of the ground state wave function, could possibly
shed light on this matter.

We will now turn to the more explicit calculation of the
measure of integration and the Hamiltonian in the super-
symmetric theories.

III. MEASURE FROM A CHIRAL ANOMALY
COMPUTATION

We start by considering Majorana fermions in the ad-
joint representation of the group SUðNÞ in 2þ 1 dimen-
sions. The conventions for the gamma matrices is

�� ¼ fi�3; �1; �2g: C��C�1 ¼ �ð��ÞT; (43)

where C is the charge conjugation matrix which may be
taken as C ¼ �2 ¼ �2. The Majorana fermions � satisfy-

ing �� ¼ �TC can be brought to the form

� ¼ c
c y

� �
(44)

signaling that there is a single field degree of freedom.

Because of the Majorana condition, the gauge-invariant
parametrizations for c and c y must be related. There are
two choices possible for the gauge-invariant fermionic
variables 	 and 	y compatible with the Majorana condi-
tion on �. These are given by

choice I
	a

	ay

 !
¼ ðM�1Þabc b

ðMyÞabc by

 !

choice II
	a

	ay

 !
¼ ðMyÞabc b

ðM�1Þabc by

 !
:

(45)

Here Mab ¼ 2TrðtaMtbM�1Þ is the adjoint representative
ofM. DenotingM ¼ et

a
a , for small 
a, these two choices
become

	a

	ay
� �

¼ ½1
 iImð
ÞaTa 
 Reð
ÞaTa�5 þ � � ���: (46)

In this expression, �5 is nothing but �3. We call it �5

because it is the chirality matrix in the two-dimensional
sense, for the spatial gamma matrices used above. The dots
represent higher order terms in 
. The upper and lower
signs correspond to the choices I and II, respectively. For
the transformation of the measure of integration for the
fermion fields, we find,

dc dc y¼Det½1
 iImð
ÞaTa
Reð
ÞaTa�5þ����d	d	y:

(47)

The evaluation of the determinant will require regulariza-
tion. One possibility if to use the well known techniques of
chiral anomaly computations in (Euclidean) two-
dimensional spacetime. For example, we can regulate the

determinant using e�ð��DÞ2=M2
, where M is the cutoff and

� �D is the Hermitian Dirac operator in two dimensions
given by

� �D ¼ X
i¼1;2

i�i@i þ �iTaAa
i : (48)

The computation of the regularized determinant is then
standard and gives, upon taking M ! 1,

Det ½1
 iImð
ÞaTa 
 Reð
ÞaTa�5 þ � � ��
¼ 
 cA

2�

Z
Fa
12Reð
Þa: (49)

The above equation is valid to linear order in 
. We can find
the determinant for finite 
a by first noting the variation of
the WZW action (24) gives

�SwzwðHÞ ¼ � 1

2�

Z
Fa
12Reð
Þa: (50)

Comparing this with (49), we see that we can integrate the
latter to obtain

Det ½1
 iImð
ÞaTa 
 Reð
ÞaTa�5 þ � � ��
¼ exp½�cASwzwðHÞ�: (51)
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A few remarks are in order at this stage. The first is
concerned with the regularization. It is not a priori clear
that we should regulate the determinant in the same way as
is done for the chiral anomaly in two dimensions. If we
have an intrinsically two-dimensional theory, then there is
an independent way to corroborate this result. We can
consider the change in the action, which is related to the
conservation of the axial current and, fromworking out this
conservation law using Feynman diagrams, it is easy
enough to reproduce the same result as obtained by the
regularization of the Jacobian as outlined above. But for
the (2þ 1)-dimensional case, the argument is more in-
volved. The fermionic action is of the first-order in the
time derivatives. Its quantization can be done in terms of
fermionic coherent states. The normalization of the states
then involves the Kähler potential associated to the sym-
plectic one-form. In the present case, it is of the form c yc .
In constructing the functional integral via dividing up the

interval � in h0je��H j0i, the inner product hc njc nþ1i �
expðc y

nc nþ1Þ 	 expðc y
nc n þ c y

n
_c n�Þ combines with

the term involving the Kähler potential in the measure

expð�c y
nc nÞ and expð��H Þ to form the three-

dimensional action. (Similar arguments hold for the bo-
sonic coherent states as well.) In other words, the factor
involving the Kähler potential in the measure is exactly
what we would expect from writing out the action as a sum
over discrete time-intervals �. Now, if the three-
dimensional theory generates a Chern-Simons term, then
the corresponding Kähler potential being SwzwðHÞ, we
would expect such a term to be generated in the measure
of integration for the inner product of states. We know from
[21,23] that there is a level shift of the CS term induced in
three dimensions. So if we choose a regularization that
agrees with the three-dimensional calculation, and hence
with supersymmetry, then we should get the result (51).
The result is dependent on whether supersymmetry is
preserved, just as it is in the three-dimensional covariant
calculation.

The second observation is about which of the choices in
(45) is the right one. Again, it is a matter of which sym-
metry is to be preserved. We shall see that supersymmetry
requires the second choice of the variables.

These considerations suggest a different strategy for the
quantization of the theory. We can set up the supercharges
and then obtain the Hamiltonian from the anticommutator
of the supercharges, guaranteeing a supersymmetry-
preserving regularization of the terms in the Hamiltonian.
We now turn to this task.

IV. MASS GAP AND MEASURE FOR
N ¼ 1 YMCS THEORY

In this section we shall focus on the Hamiltonian for-
mulation of the minimally supersymmetric gauge theory in
D ¼ 2þ 1. The measure of integration for the inner prod-
uct will emerge as one of the results of this analysis. Our

analysis will be general enough to incorporate Chern-
Simons couplings and the results pertaining to the integra-
tion measure will turn out to be consistent with the dis-
cussion in the previous section. For the sake of
completeness, we start with a brief overview of the canoni-
cal quantization of the N ¼ 1 Yang-Mills-Chern-Simons
system.

A. Canonical quantization of the N ¼ 1 theory

When the Chern-Simons level number is set to zero, the
action for the N ¼ 1 supersymmetric Yang-Mills theory
is given by

S ¼ � 1

4e2

Z
Fa
��F

a�� � i

2e2

Z
��að��D��Þa: (52)

This action is invariant under the supersymmetry trans-
formation

��A
a
� ¼ �i �����

a; ���
a ¼ 1

2F
a
���

���: (53)

In a Hamiltonian setting, the supercharges which generate
this transformation are

Qy ¼
Z �

i�y�i �

�Ai þ
1

e2
c yB

�
;

Q ¼
Z �

i�i�
�

�Ai þ
1

e2
cB

�
:

(54)

As with any other fermionic observable in the theory,
the supercharge, is a two-component spinor, Q1 ¼ q,
Q2 ¼ qy. Using the canonical anticommutation relation

f�y
�;��g ¼ e2���; (55)

it is readily verified that fQy
�;Q�g ¼ 2H���, where the

A0 ¼ 0 gauge choice is implied.
The classically massless theory described leads to an

anomalous, and hence inconsistent, quantum theory. The
parity anomaly of the fermionic action forces the partition
function of this theory to be trivial [25,28]. To obtain a
consistent theory with minimal supersymmetry in three
spacetime dimensions, one must necessarily add a super-
symmetric Chern-Simons term to the action,

SSCS ¼ � k

4�

Z
d3xTr

��
A�@�A� � 2

3
A�A�A�

�
����

þ ie2 ���

�
: (56)

Sþ SSCS is also invariant under (53). In what is to follow,
we shall consider the theory with the Chern-Simons term
added for the sake of generality [11]. The electric field
operators, and the commutation relations between them are
given by
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E ¼ �i
�

� �A
þ ik

4�
A;

�E ¼ �i
�

�A
� ik

4�
�A

½E; �E� ¼ � k

2�
:

(57)

The Gauss law for the theory, which is a constraint on the
physical states, is

ðD ��Þa þ ð �D�Þa þ ik

4�
ð@ �Aa � �@AaÞ � i

2
fabc�yb�c ¼ 0:

(58)

Wave functions, 	, satisfying the Gauss law are of the
form

	 ¼ exp

�
k

2
½SwzwðMyÞ � SwzwðMÞ�

�

0ðH;	; 	yÞ

¼ ei!
: (59)

Since ei! is a pure phase, it does not change the norm of the
wave functionals, however it can affect the matrix elements
of dynamical quantities. This can be seen explicitly by
writing the observables as operators on 
 rather than on
	. For example, the effective supercharge acting on 
 is
given by ~q ¼ e�i!qei!. The precise form of the trans-
formed supercharge is

~q ¼
Z �

iðc aÞy
�

�

�Aa þ
k

4�
ð �A� �aÞa

�
þ 1

e2
c aBa

�
; (60)

where a and �a are auxiliary fields satisfying the ‘‘eikonal’’
equations

�Da ¼ @ �A; D �a ¼ �@A: (61)

We may solve for a, �a explicitly in terms of the matrix
parametrization (22) as

�a ¼ � �@MM�1; a ¼ My�1@My: (62)

It is instructive to note the form of the Hamiltonian as well.
A direct evaluation of the anticommutator of supercharges
gives

~H ¼ 1

2
f~q; ~qyg

¼ � e2

2

Z �2

�Aa� �Aa

þmk

2

Z �
ðA� aÞa �

�Aa � ð �A� �aÞa �

� �Aa

�

þ 1

2e2

Z
½m2

kðA� aÞað �A� �aÞa þ BaBa�

þ i
Z

��ð�iDi �mkÞ� (63)

mk ¼ ðe2k=4�Þ is the topological mass. (There can also be
a dynamical generated addition to this mass which requires

a more careful analysis.) Further, we have supersymmetry,

i.e., ½~q; ~H � ¼ 0. This is easily checked using the commu-
tation rules�

�

�AaðxÞ ; �a
bðyÞ

�
¼ Fabðx; yÞ

� �MacðxÞ 1

�ð �x� �yÞ2 M
bcðyÞ;

�
�

�AaðxÞ ; a
bðyÞ

�
¼ 0;

(64)

and the symmetry relation Fabðx; yÞ ¼ Fbaðy; xÞ.

B. Choice of gauge-invariant variables and N ¼ 1
supersymmetry

We now turn to the choice of gauge-invariant variables.
As noted previously, there are two different ways of con-
structing gauge-invariant variables from the adjoint
Majorana fields. However a unique choice is picked out
by analyzing the supercharge. To see this, we first recall
that the change of variables from A ! M implies that
operator corresponding to the antiholomorphic component
of the electric field and the magnetic field are given by [1]

� i
�

�Aa ¼ �iMabðxÞ
Z
y
Gðx; yÞpbðyÞ; Ba

¼ � 2�

cA
ðMy�1Þab �@Jb; (65)

where the gauge-invariant generator pb acts as a SUðNÞ
rotation generator on M [see Eq. (A1)] and G is a regular-
ized expression for the Greens’ function for the holomor-
phic derivative @; the explicit expression for G can be
found in the Appendix. Using these relations we see that
the formula for the supercharge (60) becomes

~q ¼
Z �

iðc aÞy
�

�

�Aa þ
k

4�
ð �A� �aÞa

�
þ 1

e2
c aBa

�

¼ i
Z
x
c ayðxÞMabðxÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

	yb

�Z
y
Gðx; yÞpbðyÞ þ k

4cA
�JbðxÞ

�

� 1

e2
2�

cA

Z
c aðMy�1Þab|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

	b

�@ Jb: (66)

In the above equation we have used the following defini-
tions for the currents:

J ¼ cA
�

@HH�1 �J ¼ cA
�

H�1 �@H: (67)

The second line in (66) tells us that the natural fermionic
variable is 	yðxÞ ¼ M�1c y (and its Hermitian conjugate),
which was precisely our choice II which reduced the

volume of configuration space by a factor of e�cASwzwðHÞ.
From the point of view of the renormalization of the level
number, the fermionic contribution removes half of the
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contribution to the renormalized level number that one had
in the pure glue theory, which is consistent with previous
perturbative and nonperturbative computations, as we have
already discussed. Thus if the only change of variables we
make is A ! M and let the choice of the gauge-invariant
fermionic variable be dictated by the form of the super-
charge, then choice II is the unique answer for N ¼ 1
supersymmetry (SUSY). We will see later that similar
reasoning can be used to show that the fermionic contri-
bution to the measure exactly cancels the measure factor
obtained the case of the pure glue theory, for N ¼ 2 and
N ¼ 4 supersymmetry.

Starting from (66), our strategy for deriving the
Hamiltonian is to compute the adjoint of the supercharge
and then anticommutator between the two. As in the case
of the N ¼ 0 theory [10], it is convenient to define the
wave functions � such that


0 ¼ exp

�
k

2
SwzwðHÞ

�
�: (68)

The integration measure for the inner product for the �’s
now has the form

d� ¼ d�ðHÞ exp½ðkþ ð2� nÞcAÞSwzwðHÞ�: (69)

The factor of 2cA in the exponent is the contribution
relevant to the pure glue theory. Based on the arguments
given in Sec. II, we expect n ¼ 0 forN ¼ 0 and n ¼ 1 for
N ¼ 1. However, we shall keep n as arbitrary for now.
After absorbing the factor expðk2SwzwðHÞÞ into the wave

functions as in (68), we find, for the supercharge, as an
operator on the �’s,

q0 ¼ i
Z

	yaðGpÞa � 1

e2
2�

cA

Z
	a �@Ja: (70)

The adjoint supercharge has to be computed with respect to
the measure (69), and is found to be

q0y ¼ �i
Z

	aðð �G �pÞa � i
k

2�
ð@HH�1Þa

þ i
ncA
2�

ð@HH�1ÞaÞ � 1

e2
2�

cA

Z
ð	a �@JaÞy: (71)

�p acts as the SUðNÞ generator onMy via the left action [1].
The term proportional to k on the right-hand side comes

from p acting on ekSwzwðHÞ in the computation of the adjoint.
The term proportional to cA is what remains of the action of
p on 	y (which induces a contribution from Gð0Þ) and the

action on eð2�nÞcASwzwðHÞ).3 A naive evaluation of the anti-
commutator of the supercharges gives the Hamiltonian as

H ¼ 1

2
fq0; q0yg

¼ e2

2

Z
u;v

�rsðu; vÞ �prðuÞpsðvÞ

þ 2�2

e2c2A

Z
ð �@Ja �@JaÞ þ e2ðk� ncAÞ

4�

Z
Ja

�

�Ja

� 1

e2

Z
ð	y �D �J	

y � 	DJ	Þ

þ 1

e2

�
ke2

4�
� ncAe

2

4�

�Z
	yaðH�1Þab	b: (72)

The formula above can be understood as follows. The first
line is the pure Yang-Mills Hamiltonian, where on states
formed out of the bosonic J fields alone, the kinetic energy
operator is

TYM ¼ e2

2

Z
u;v

�rsðu; vÞ �prðuÞpsðvÞ

� e2cA
2�

�Z
Ja

�

�Ja

þ
Z

�abðxyÞ �

�JaðxÞ
�

�JbðyÞ
�
�abðx; yÞ

¼ cA
�2

�ab

ðx� yÞ2 � ifabc
JcðyÞ

�ðx� yÞ : (73)

Notice that�abðx; yÞ is the two-point function appearing in
the operator product expansion of JaðxÞJbðyÞ in the WZW
model. The second line of (72) is the contribution to the
mass gap from the factors of exp½ðk� ncAÞSwzwðHÞ� in the
measure. This contribution vanishes when k ¼ n ¼ 0 in
the pure Yang-Mills case, as it should. The last line in the

Hamiltonian is the fermionic contribution whereD and �D
are the holomorphic and antiholomorphic covariant deriva-
tives, respectively, with J and �J playing the roles of the
connections. In deriving these results we have also used the
fact that, on functionals of J,

ðGpÞa ¼ i
cA
�

H�1 �

�J
: (74)

The expression (72) does not seem to be the correct
expression for the Hamiltonian as the bosonic and fermi-
onic masses inH do not appear to be equal. Looking at the
terms that will become mass terms when the Hamiltonian
is truncated to the quadratic level, the mass for the bosons
is given by the term

H bos�mass ¼ e2

4�
ðkþ ½2� n�cAÞ

Z
Ja

�

�Ja
: (75)

corresponding to the value mb ¼ ðkþ ½2� n�cAÞðe2=4�Þ.
On the other hand the fermionic mass is mf ¼
ðk� nÞcAðe2=4�Þ. Without the equality of the masses the
Hamiltonian is obviously not supersymmetric. The resolu-
tion actually lies in the use of the Gauss law. Let us

3For details about the regularization scheme leading to a finite
answer for the coincident limit of G, see [1], and for a discussion
about the compatibility of the regulated expression with the
measure on C, see [12].
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eliminate E from (71) using the Gauss law, which in the
original variables was given by

I a ¼
�
�D
�

� �A
þD

�

�A

�
a þ 1

e2
fabcc byc c ¼ 0; (76)

or equivalently, on physical states,

�p a ¼ ðHpÞa þ 1

e2
falmðH	yÞl	m: (77)

The fact that the Gauss law gives a relation between �pa and
pa when they act on gauge-invariant functionals was al-
ready noted in [1]. Since we have functionals of J, rather
than �J, it is preferable to eliminate �pa. This elimination of
�pa (or E) in the expression for the adjoint of the super-
charge involves

� c a �

� �Aa

¼ 1

e2

Z
y
c aðxÞð �D�1Þabðx; yÞfbmnc myðyÞc nðyÞ þ � � � :

(78)

The ellipsis represent other terms that we shall come back
to shortly. Now, the normal ordering of this expression
results in the term

� c a �

� �Aa
¼ ð �D�1Þmbðx; xÞfbmnc nðxÞ þ � � �
¼ �iðMy�1ÞnlJlc n þ � � � ; (79)

where we have used the regularized result [1],

ð �D�1Þabðx; xÞ ¼ i

cA
fabcðMy�1ÞclJl: (80)

Obviously, the term (79) in q0y, when anticommuted with
the term

R
	ayðGpÞa in q0 produces both a bosonic and a

fermionic mass term. This will restore the equality of the
masses as required by supersymmetry. The complete nor-
mal ordered expression that results from the elimination of
E in the adjoint supercharge is given by

�c a �

� �Aa
¼ ð �D�1Þabðx; xÞfbanc nðxÞ

� 1

e2

Z
y
ð �D�1Þabðx; yÞfbmnc myðyÞc aðxÞc nðxÞ

þ c aðxÞ
Z
y
ð �D�1Þabðx; yÞ

�
D

�

�A

�
b
: (81)

Or, in terms of the gauge-invariant variables, this is equiva-
lent to

� i
Z

	aðxÞð �G �pÞaðxÞ

¼ �i
Z

	aðxÞð �GHpÞaðxÞ

�
Z

	aðxÞJaðxÞ

þ i

e2

Z
�Gabðx; yÞfblmðH	yÞlðyÞ	aðxÞ	mðyÞ: (82)

Computing the Hamiltonian via the anticommutator of the
supercharges we now get

H ¼ 1

2
fq0; q0yg

¼ e2cA
2�

�Z
Ja

�

�Ja
þ
Z

�abðxyÞ �

�JaðxÞ
�

�JbðyÞ
�

þ 2�2

e2c2A

Z
ð �@Ja �@JaÞ þ e2ðk� ncAÞ

4�

Z
Ja

�

�Ja

� icA
2�

Z
fngz �Gðx; yÞHzsðyÞ	syðyÞ	gðyÞ �

�JnðxÞ
� 1

e2

Z
ð	y �D �J	

y � 	DJ	Þ

þ 1

e2

�
cAe

2

2�
þ ke2

4�
� ncAe

2

4�

�Z
	yaðH�1Þab	b (83)

The equality between the bosonic and fermionic masses at
the quadratic level is now manifest. The expression above
is the correct gauge-invariant form of the Hamiltonian
corresponding to the N ¼ 1 Yang-Mills-Chern-Simons
theory.

C. Checking SUSY invariance of the N ¼ 1
Hamiltonian

Since the form of the gauge-invariant N ¼ 1
Hamiltonian (83) is rather different from the original
Hamiltonian that one started with, containing several non-
local terms, for instance, as a further check on the calcu-
lations, we shall now verify its supersymmetry invariance
from first principles. To see the invariance of (83) under
(70) we first note that the ‘‘mass terms’’ are supersymmet-
ric on their own.

�
q0;

Z �
Ja

�

�Ja
þ 	yaðH�1Þab	b

��
¼ 0: (84)

Before proceeding further, it is useful to rewrite various
terms in the nonlocal parts of the Hamiltonian such that
their commutators with q0 involve as few operator commu-
tators as possible. Denoting these two terms by T1, T2, we
write
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T1 � e2cA
2�

�Z
�abðxyÞ �

�JaðxÞ
�

�JbðyÞ
�

¼ e2

2
ðð �DÞ�1acðxzÞðDMGpÞcðzÞðMGpÞaðxÞÞ

T2 � � icA
2�

Z
fngz �Gðx; yÞHzsðyÞ	syðyÞ	gðyÞ �

�JnðxÞ
¼ 1

2

Z
ð �DÞ�1acðx; zÞfcmnðM	yÞmðzÞðMy�1	ÞnðcÞ

� ðMGpÞaðxÞ; (85)

where the covariant derivative D ¼ @� @MM�1 and we
have also used,

�D�1abðx; yÞ ¼ My�1acðxÞ �Gðx; yÞMycbðyÞ

! My�1acðxÞ 1

�ðx� yÞM
ycbðyÞ: (86)

The expression on the right-hand side corresponds to the
Green’s function with the regulator removed.

Now we note that the sum T1 þ T2 commutes with the
part of the supercharge involving pa; i.e.,�
i
Z

	yaðGpÞa; T2

�
¼ � ie2

2

Z
ð �DÞ�1acðx; zÞfcmnðM	yÞm

�ðzÞðMGpÞnðzÞðMGpÞaðxÞ:
(87)

The only commutator appearing above is between 	y and
	. We also have

�
i
Z

	yaðGpÞa; T1

�
¼ þ ie2

2

Z
ð �DÞ�1acðx; zÞfcmnðM	yÞm

�ðzÞðMGpÞnðzÞðMGpÞaðxÞ:
(88)

The only nontrivial commutator in this calculation is be-
tween 	yaðGpÞa and�@MM�1 contained inD in T1. From
these two results, we see that

�
i
Z

	yaðGpÞa; T1 þ T2

�
¼ 0: (89)

Moving on to the commutator of these terms with the rest
of the supercharge, we obtain

�
� 2�

e2cA

Z
	a �@Ja; T2

�

¼ þ i

e2

Z
fkmnðMy�1	ÞkðM	yÞmðMy�1	Þm

� �

cA

Z
ð �DÞ�1acðx; zÞfcmnðMy�1 �@JÞmðzÞ

� ðMy�1	ÞnðzÞðMGpÞaðxÞ: (90)

The first term on the right-hand side involved the func-
tional derivative with respect to J in T2 acting on the
supercharge, while the second term is the result of the
fermions anticommuting between the two terms. Turning
to the commutator with T1,

�
� 2�

e2cA

Z
	a �@Ja; T1

�
¼ i

Z
ðMy�1	ÞmðDMGpÞm þ i

Z
ðMy�1	ÞlðxÞð �DðxÞDðxÞ �D�1ðx; yÞÞlaðMGpÞaðyÞ

¼ 2i
Z
ðMy�1	ÞmðDMGpÞm þ i

Z
ðMy�1	ÞlðxÞð½ �D;D�ðxÞ �D�1ðx; yÞÞlaðMGpÞaðyÞ

¼ 2i
Z
ðMy�1	ÞmðDMGpÞm þ �

cA

Z
ð �DÞ�1acðx; zÞfcmnðMy�1 �@JÞmðzÞðMy�1	ÞnðzÞðMGpÞaðxÞ:

(91)

The second terms on the right-hand sides of (90) and (91) cancel. Thus from (89) and the subsequent algebra, we can
conclude that

½q0; T1 þ T2� ¼ þ i

e2

Z
fkmnðMy�1	ÞkðM	yÞmðMy�1	Þm þ 2i

Z
ðMy�1	ÞmðDMGpÞm: (92)

These terms are precisely canceled by

1

e2

�
q0;

Z
	aDJ	

a

�
¼
�
i

e2

Z
	ymðGpÞm;

Z
	aDJ	

a

�

¼ � i

e2

Z
fkmnðMy�1	ÞkðM	yÞmðMy�1	Þm � 2i

Z
ðMy�1	ÞmðDMGpÞm: (93)

Finally, it is straightforward to see that�
q0;

2�2

e2c2A

Z
ð �@Ja �@JaÞ � 1

e2

Z
	ym �D �J	

ym
�
¼ 0: (94)
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Putting all of this together, we have demonstrated that

½q0;H � ¼ 0: (95)

We can thus be assured that (70) and its adjoint computed
with respect to the measure (69), along with (83), do give a
realization of the N ¼ 1 algebra that we started with.
Furthermore, note that in the case of the standard presen-
tation of the algebra using the original variables E, �, A,
etc., the commutator of the supercharge with the
Hamiltonian only vanishes up to the Gauss law generator.
In the present case, since we have already eliminated E
using Gauss law, the relevant commutator is identically
zero.

It is also worth noting that in the minimally supersym-
metric case, the number n is not fixed by the constraints of
supersymmetry alone. However we shall see in the next
section that, for theories with extended supersymmetry, it
is fixed simply by demanding that the gauge-invariant
Hamiltonian commute with the supercharges. However,
for the N ¼ 1 case, we have to rely on the independent
arguments given earlier in the paper for the volume mea-

sure, as well as consistency with the previous perturbative
results [23]; these imply that n ¼ 1 for N ¼ 1.
A nonvanishing coefficient for SwzwðHÞ in the volume

measure implies that the theory will have a mass gap, with
the scale of the massive excitations set by the renormalized
level number ðkþ NÞðe2=4�Þ. This is also clear from the
form of the Hamiltonian (83). In [24,32], it was pointed out
that, for small enough values of the level number, the
theory can have spontaneously broken supersymmetry.
Since the statement about existence of the mass gap in
the present formalism crucially uses manifest supersym-
metry, we cannot comment on the possibility of supersym-
metry breaking based solely on the results obtained so far.
Presumably a computation of the vacuum wave functional
using the present formalism might allow one to study this
interesting dynamical question.

V. SUPERCHARGES AND HAMILTONIANS WITH
EXTENDED SUPERSYMMETRY

We will now consider the extension of the analysis done
so far to N ¼ 2 and 4 supersymmetries. The terms in the
action, for the theories of interest to us, are

SYM ¼ � 1

4e2

Z
Fa
��F

a�� � 1

2e2

Z
D��

a
AD

��a
A þ 1

2e2

Z
Fa
AF

a
A � i

2e2

Z
�c a
I �

�D�c
a
I �

i

2e2

Z
�!a��D�!

a

� i

2e2

Z
�ABC �c a

Ac
b
B�

c
Cf

abc þ i

e2

Z
�c a
A!

b�c
Af

abc � 1

4e2

Z
fabcfamn�b

B�
c
C�

m
B�

n
C

SCS ¼ � k

4�
����

Z
Tr

�
A�@�A� þ 2

3
A�A�A�

�
þ mk

2e2

Z �
�i �c a

I c
a
I þ i �!a!a þ 2Fa

A�
a
A � 1

3
fabc�ABC�

a
A�

b
B�

c
C

�
: (96)

(As indicated earlier, mk ¼ e2k=4�.) The capital Latin indices take on three values, which correspond to the manifest
SOð3Þ R symmetry of the theory. The theory has four adjoint Majorana fermion is fc a

I ; !
ag. Setting !;�1; �2; c 3 to zero

truncates the action to haveN ¼ 2 supersymmetry. If one further sets �3, c 2 to zero then we recover theN ¼ 1 theory
discussed earlier. Fa

A are auxiliary fields, which may be replaced by their saddle point values Fa
A ¼ �m�a

I .
After absorbing the factor of exp½k2SwzwðHÞ� in the measure, as we did in the N ¼ 1 theory, we obtain the following

expression for the N ¼ 4 supercharge,

q0I ¼ i
Z

c ay
I

�

�Aa þ
1

e2

Z
c a

I B
a þ �IJK

Z
c a

J

�
�a

�K
þ i

mk

e2
�a

K

�
þ 2i

e2
�IJK

Z
c ay

J ð �D�KÞa

�
Z

!a

�
�a

�I
� i

mk

e2
�a

I

�
� 2i

e2

Z
!ayð �D�Þa þ i

2e2

Z
fabc�ABI�

b
A�

c
B!

a þ i

e2

Z
fabc�b

K�
c
Ic

a
K: (97)

These give the three SOð3Þ covariant supercharges; there is
a also a fourth supercharge that commutes with the
Hamiltonian. Our purpose is to use these supercharges to
identify the gauge-invariant variables for the fermions,
extending what we did for the minimally supersymmetric
case, and, eventually, the Hamiltonian. For this, the three
charges given above are adequate. Further, it is tis
supercharge which survives upon truncation to lower

supersymmetries. Because of this, we see immediately
that, if we use supersymmetry to pick out the choice of
fermionic variables as we did earlier, the gauge-invariant
counterparts of c I are �I ¼ c IM

y�1 and �y
I ¼ c y

I M, just
as in the N ¼ 1 case. As a result, for the case of N ¼ 2
supersymmetry (where the labels I; J; � � � ¼ 1, 2), the
fermions contribute e�2�cASwzwðHÞ to the volume measure,
canceling completely the contribution from the gauge
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fields. This result implies the masslessness of the N ¼ 2,
k ¼ 0 theory. In the N ¼ 4 case, we have an additional
contribution of e�cASwzwðHÞ from the third fermion field c 3.
Further, there is a contribution from the remaining fermion
field!. Since! does not couple to the gauge fields directly
in the supercharge, its gauge-invariant form has to be
deduced from its coupling to the scalar fields. For this,
we concentrate on two terms in the supercharge given by

q0I ¼ �IJK
Z

c a
J

�
�a

�K
þ i

mk

e2
�a

K

�

�
Z

!a

�
�a

�I
� i

mk

e2
�a

I

�
þ � � � : (98)

Using the already-settled-upon change of variables
c ! 	I, this shows that MyA is the appropriate gauge-
invariant version of A ¼ ð�a

�K
þ iðmk=e

2Þ�a
KÞ. The sec-

ond term on the right-hand side of (98), which involves Ay
then tells us that the gauge-invariant combination for ! is

	! ¼ M�1!: (99)

This corresponds to what we referred to as choice I in
Sec. III. Thus its contribution to the measure is a factor
ecASwzwðHÞ, the exponent having the opposite sign to the
other three fermions. The net result is that, as for the
N ¼ 2 case, the fermion and gauge field contributions
involving SwzwðHÞ cancel out completely in the volume
measure for the N ¼ 4 theory. (If k ¼ 0, this means that
the measure simply has d�ðHÞ and the fermionic fields,
and the theory remains massless quantum mechanically.)
This is completely consistent with all other indications
obtained in the literature using alternate methods, as well
as our analysis in Sec. II. We will see shortly that this
conclusion is reinforced by the supersymmetry algebra,
just as in the minimal case.

Proceeding with this choice of gauge-invariant fermi-
onic variables we can write down the gauge-invariant form
of the SOð3Þ covariant supercharge as

q0I ¼
Z

	ay
I ðGpÞa � 2�

e2cA

Z
	a
I ð �@JÞa þ �IJK

Z
	a
J�

a
�K

þ �IJK
Z

	ay
J ðH�1Þab �@�b

K �
Z

	a
!ðH�1Þab�b

�I

� 2i

e2

Z
	ay
! �@�a

I þ
imk

e2
�IJK

Z
	a
J�

a
K

þ imk

e2

Z
	a
!ðH�1Þab�b

I þ
i

e2

Z
fabc�b

K�
c
I	

a
K

þ i

2e2

Z
fabc�ABI�

b
A�

c
BðH	!Þa: (100)

In this equation,�L ¼ My�L and��L
¼ My��L

are the

gauge-invariant versions of the scalar fields and their mo-
menta, respectively. The Gauss law constraint is given by�
D

�

�A
þ �D

�

� �A

�
a þ 1

e2
famn

�
c my

L c n
L þ!my!n

þ e2�m
L

�

��n
L

�
	 0: (101)

In terms of action on functions of the gauge-invariant
variables we have introduced, this translates into

�pa ¼ ðHpÞa þ 1

e2
famn

�
ðH	y

LÞm	n
L þ 	my

! ðH	!Þn

þ e2�m
L

�

��n
L

�
: (102)

(We may regard the latter form as the requirement of
holomorphic invariance of physical wave functionals.)
Paralleling the discussion of the N ¼ 1 theory, our

strategy is to take the measure of integration to be of the
form (69), with n considered to be arbitrary and then
compute the adjoint of the supercharges and enforce the
supersymmetry algebra to determine n. (We expect n to
vanish from what has already been said, but we do not want
to presume this at this stage.) After the use of Gauss law to
eliminate �p and the subsequent normal ordering—these
manipulations exactly parallel the N ¼ 1 case studied
before—we get

q0yI ¼ �i
Z

	a
I ð �GHpÞa �

Z �
1� n

2
þ k

2cA

�
	a
I J

a � i

e2

Z
famn �Gðx; yÞððH	y

LÞm	n
L þ 	my

! ðH	!Þn þ e2�m
L��

n
LÞðyÞ	a

I ðxÞ

þ
�
� 2�

e2cA

Z
	a
I ð �@JÞa þ �IJK

Z
	a
J�

a
�K

þ �IJK
Z

	ay
J ðH�1Þab �@�b

K �
Z

	a
!ðH�1Þab�b

�I
� 2i

e2

Z
	ay
! �@�a

I

þ imk

e2
�IJK

Z
	a
J�

a
K þ imk

e2

Z
	a
!ðH�1Þab�b

I þ
i

e2

Z
fabc�b

K�
c
I	

a
K þ i

2e2

Z
fabc�ABI�

b
A�

c
BðH	!Þa

�y
: (103)

It is also instructive to rewrite this back in terms of the gauge-covariant original variables. The adjoint supercharge then
takes the form
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q0yI ¼ �i
Z

c a
I ðxÞð �D�1Þabðx; yÞ

�
D

�

�A

�
bðyÞ � icA

�

Z �
1� n

2
þ k

2cA

�
c a

I ðA� aÞa

� i

e2

Z
ð �D�1Þabðx; yÞfbmn

�
c my

L c n
L þ!my!n þ e2�m

L

�

��n
L

�
ðyÞc a

I ðxÞ þ
1

e2

Z
c ay

I Ba þ �IJK
Z

c ay
J �a

�K

� 2i

e2
�IJK

Z
c a

JðD�KÞa �
Z

!ay�a
�I

þ 2i

e2

Z
!aðD�Þa � imk

e2
�IJK

Z
c ay

J �a
K � imk

e2

Z
!ay�a

I

� i

2e2

Z
fabc�ABI�

b
A�

c
B!

ay � i

e2

Z
fabc�b

K�
c
Ic

ay
K : (104)

We can now construct the Hamiltonian from the anticommutator of the supercharges given above. It is a straightforward,
but lengthy, calculation; the result is H ¼ H 0 þH m, where, in terms of the gauge-covariant variables,

H 0 ¼ e2

2

Z
ð �D�1Þabðx; yÞ

�
D

�

�A

�
b

y

�

�AaðxÞ þ
1

2

Z
ð �D�1Þabðx; yÞfbmn

�
c my

L c n
L þ!my!n þ e2�m

L

�

��n
L

�
y

�

�AaðxÞ
þ 1

e2

Z
�ABCf

amn�m
A c

ay
B c n

C þ 1

e2

Z
fabcð�c

Ac
b
A!

ay þ�c
A!

ac by
A Þ þ 1

2e2

Z
BaBa þ 2

e2

Z
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H m ¼ e2ðkþ ð2� nÞcAÞ
4�

Z
ðA� aÞa �

�Aa þ
e2ðkþ ð2� nÞcAÞ

4�e2

Z
c ay

L c a
L � k

4�

Z
!ay!a þ 1

2

�
k

4�

�
2
e2
Z

�a
I�

a
I :

(106)

The second term of H , which is the mass term H m, we
see that the masses of the gauge field and the SOð3Þ
fermions get a shift proportional to ð2� nÞcA while the
scalars and the fourth fermion do not. Obviously this is the
result of the fact that only the SOð3Þ fermions couple to the
electric field in the supercharge, and are hence affected by
the singular contributions proportional to �D�1ðx; xÞ
brought about by the use of the Gauss law and normal
ordering, see the discussion following (75). For the theory
to be supersymmetric, one must necessarily have equal
masses for these degrees of freedom; this is obtained
only when n ¼ 2, which makes the mass term H m vanish

when k ¼ 0. We can also verify more explicitly, with
another lengthy calculation, that

½qI; H� ¼ 0 ) n ¼ 2 for N � 2: (107)

Thus in the case of extended supersymmetry, the require-
ment of supersymmetry invariance forces the measure to
be exactly what we had presented earlier from anomaly
considerations, leading to a gapless spectrum for the gauge
theories in the k ¼ 0 limit.
For completeness, we also give here the formulae for

H 0 and H m in terms of the gauge-invariant variables.

H 0 ¼ e2cA
2�

Z
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H m ¼ e2ðkþ ð2� nÞcAÞ
4�
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VI. LINEARIZATION WITH N ¼ 1, 2,
4—SPECTRUM AND THE ALGEBRA

As in the case of the purely gluonic theory, one can
consistently linearize the Hamiltonian and the super-
charges in the supersymmetric theories. This linearization
will yield a purely algebraic justification for the measure.
Following [1], one can define H ¼ et

a�a
(�� ð
þ �
Þ

defined in (50)) and expand the Hamiltonian as well as
the supercharges to quadratic order in the �a’s. This pro-
duces an Abelian-dualized theory which can be put in the
familiar form involving four scalar fields for the N ¼ 4

case upon reabsorbing the measure factor e½kþð2�nÞcA�SwzwðHÞ
in the wave functionals and defining the scalar field as

�H ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k �k=e2

q
�: (110)

(Here k, �k denote the Fourier transforms of @ and �@,
respectively.) The dualized Hamiltonian for the theory
becomes that of a free theory of four scalars ð�H;�IÞ,
with masses given by

mn ¼ ðkþ ð2� nÞcAÞ e
2

4�
: (111)

The fermionic part of the dualized theory is nothing but the
naive truncation of the corresponding parts of (108) and
(109) to quadratic levels. It is understood, as before, that
n ¼ 1 for N ¼ 1 and n ¼ 2 for N � 2.

At this point it is very instructive to look at the super-
symmetry algebra for the linearized theory. The action
corresponding to the free and linearized theory is

Slin ¼
Z 1

2
�a

Hð@�@� �m2
nÞ�a

H þ 1

2
�a

I ð@�@� �m2
nÞ�a

I

� i

2

Z
��a
I ð@��� �mnÞ�a

I þ �!aðp��� þmnÞ!a

(112)

with the previously mentioned constraints on n. The
SOð3Þcovariant fermions in the linearized theory are de-
noted by �. The supersymmetry transformation laws for
Slin deduced from the linearization of qI are

���
a
H ¼ i

2
��a
I �I

���
a
I ¼

i

2
ð�IJK ��a

J�K þ �!a�IÞ

��a
I ¼

1

2
ð��@� þmnÞð�a

H�I � �IJK�
a
J�KÞ

�!a ¼ 1

2
ð��@� �mnÞ�I�I:

(113)

The closure of the algebra on the scalars gives

½��;����a
H¼ i

2
ð ��I���IÞ@��a

Hþ imn

2
��I�K�IJK�

a
J

½��;����a
I ¼

i

2
ð ��I���IÞ@��a

I þ
imn

2
��K�J�IJK�

a
H

(114)

Thus we see that the algebra, instead of simply closing on
the momentum generators, involves a noncentral extension
generated by three extra Uð1Þ generators that mix the dual
gauge field �H with the three SOð3Þ covariant scalars.
These extra Uð1Þ symmetries are not visible in the
Hamiltonian of the theory, however, they can be interpreted
as symmetries of the on-shell S matrices of the theories
under consideration. In the limit of k ¼ 0 the three
‘‘hidden’’ Uð1Þ generators couple to the manifest SOð3Þ
symmetries to generate an SOð4Þ symmetric S matrix for
theN ¼ 4 theory to all orders in perturbation theory. As a
matter of fact, the SOðN Þ invariance of the S matrices of
the N ¼ 2, 4, 8 theories to all perturbative orders was
explicitly shown in [14].
For the purposes of our present discussion, we see

that the appearance of the mass on the right-hand side
of (114) implies that the renormalized level number
ðkþ ð2� nÞcAÞ plays the role of a structure constant.
However the algebra (114) must be satisfied by the linea-
rization of the dualized theory at every perturbative order,
including the tree level theory. As shown earlier in
this paper, the renormalization of the level number
ðk ! ðkþ ð2� nÞcAÞÞ arises from a Jacobian and hence
the term proportional to cA in the renormalized level
number is to be regarded as OðℏÞ. It can be readily seen
that applying a dualization prescription A ¼ �@
 to the
tree levelN ¼ 4 Hamiltonian, obtained using the canoni-
cal quantization procedure reviewed in (IVA), produces
(114) as the symmetry algebra of the quadratic part of the
theory, but with the unrenormalized level number. Since
structure constants cannot undergo quantum corrections,
the only way to reconcile these statements, namely, the
consistent appearance of (114) as the symmetry algebra of
the linearized theory to all orders in perturbation theory
and the nonrenormalization of a structure constant is for n
to be 2 for N � 2 supersymmetry. We thus see that the
results obtained earlier on the effect of the fermions on the
measure can also justified on purely algebraic grounds.
Finally, we note that the appearance of the noncentral

extension in the algebra (114) is tied in with the parity
violating nature of the fermion mass terms. If one began
with the free, massive N ¼ 1 chiral multiplet in four
dimensions, its dimensional reduction (in our conventions)
would produce a parity conserving N ¼ 2 mass term

�Rð�y
1�1 � �y

2�2Þ in three dimensions. The closure of
the SUSY algebra with such masses would not result in
the extension we have above. It is precisely the parity

violating nature of the
R
�y
I �I mass term, which, in turn,

is dictated by the parity violating nature of the Chern-
Simons term that leads to the massive on-shell algebra.
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APPENDIX

Here we collect some useful formulae and commutation
relations that have been used throughout the paper. An
exhaustive list of the commutation relations between vari-
ous operators used in the gauge-invariant framework can
be found in [1]

½paðxÞ; HðyÞ� ¼ HðyÞð�itaÞ�ð2Þðx� yÞ;
½paðxÞ;MðyÞ� ¼ MðyÞð�itaÞ�ð2Þðx� yÞ

½paðxÞ; HbcðyÞ� ¼ facdHbdðyÞ�ð2Þðx� yÞ;
½psðxÞ; JbðyÞ� ¼ �i

cA
�

HbsðyÞ@y�ð2Þðy� xÞ:

(A1)

The definition of J used throughout the paper is

Ja ¼ 2cA
�

Trðta@HH�1Þ ¼ icA
�

ðMyÞabðA� aÞb: (A2)

This is related to the magnetic field as

Ba ¼ Fa
12 ¼ �2ið �DA� @ �AÞa ¼ � 2�

cA
ðMy�1Þabð �@JÞb:

(A3)

The regulated Green function for the �D operator is

ð �D�1Þabðx; yÞ ¼ ðMy�1ÞacðxÞ �Gcdðx; yÞðMyÞdbðyÞ
�Gabð ~x; ~yÞ ¼ 1

�ðx� yÞ ½�ab

� e�j ~x� ~yj2=�ðHðx; �yÞH�1ðy; �yÞÞab�;

(A4)

where � is a regulator parameter, to be taken to zero at the
end. The regulated value of �D�1 at coincident points is

ð �D�1Þabðx; xÞ ¼ � 1

�
fabcðA� aÞcðxÞ

¼ þ i

cA
fabcðMy�1ÞclðxÞJlðxÞ: (A5)

In establishing the supersymmetry invariance of the gauge-
invariant forms of the Hamiltonians, we have repeatedly
used the identity

fgakðMÞckðM�1Þgm ¼ �fmclMla: (A6)

A similar identity holds forMy. We have also used the fact
that MT ¼ M�1 for the adjoint version of M.
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