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Unbroken continuous translational invariance is often taken as a basic assumption in discussions of

spontaneous symmetry breaking (SSB), which singles out SSB of translational invariance itself as an

exceptional case. We present a framework that allows us to treat translational invariance on the same

footing as other symmetries. It is shown that existing theorems on SSB can be straightforwardly extended

to this general case. As a concrete application, we analyze the Nambu-Goldstone modes in a (ferromag-

netic) supersolid. We prove on the ground of the general theorems that the Bogoliubov mode stemming

from a spontaneously broken internal U(1) symmetry and the longitudinal phonon due to a crystalline

order are distinct physical modes.
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I. INTRODUCTION

The low-energy physics of systems with spontaneous
symmetry breaking (SSB) is dominated by the associated
soft modes, the Nambu-Goldstone (NG) bosons. The ex-
istence of at least one such a soft mode is guaranteed by the
celebrated Goldstone theorem [1] (see also Ref. [2] for a
comprehensive early review). The question of how many
NG bosons there are given the symmetry-breaking pattern
is easy to answer in Lorentz-invariant systems. In the
general case, it is however difficult; several partial solu-
tions to the problem have been given over the years [3–5]
(see also Ref. [6] for a recent review).

What is common to the general results existing in lit-
erature is the separate treatment of internal and spacetime
symmetries. In particular, it is usually assumed that the
ground state of the system has a continuous translational
invariance. SSB of translational invariance itself is then
treated as an exceptional case (an analysis based on effec-
tive field theory was given in Ref. [7]). Since only a
discrete translational symmetry is needed to have well-
defined low-momentum quasiparticles, and thus to discuss
the NG bosons, such separation seems to be merely a
matter of convenience.

In the recent paper [8], we argued that the distinction
between internal and spacetime symmetries is somewhat
artificial, at least as long as SSB is considered. Instead, we
pointed out that the requirement necessary for standard
arguments concerning SSB to apply is that the symmetry
be uniform. This, roughly speaking, means that the infini-
tesimal symmetry transformation does not depend explic-
itly on the spacetime coordinates. Formally, it can be

encoded in the condition on the translational property of
the Noether charge density, Eq. (1).
The objective of the present paper is to complement our

previous study by a more detailed discussion of sponta-
neous breaking of translational invariance. Since transla-
tional invariance is the only uniform spacetime symmetry,
this completes our analysis and shows that all uniform
symmetries can be treated on the same footing. At the
same time, it provides a generalization of the other existing
results. What we do assume is an unbroken discrete trans-
lational invariance of the ground state though. This is a
minimal necessary requirement for the notion of NG
bosons as soft quasiparticles to be meaningful. One can
expect that even in the complete absence of translational
invariance, SSB will give rise to low-lying excited states in
the spectrum; such a generalization, however, goes beyond
the scope of this paper.
We would hasten to emphasize that the issue of sponta-

neous breaking of translational invariance is, of course, not
of merely academic interest. Systems where an inhomoge-
neous state develops spontaneously have been extensively
discussed in the literature. A classic example is the inho-
mogeneous pairing in superconductors in external mag-
netic field, predicted by Larkin, Ovchinnikov, Fulde, and
Ferrell [9]. Similar types of pairing can occur in many
other systems, ranging from ultracold atomic gases to cold
dense quark matter, see Ref. [10] for a review and further
references.
In Larkin-Ovchinnikov-Fulde-Ferrell–type supercon-

ductors, the order parameter is usually modulated in one
dimension. On the contrary, complete breaking of continu-
ous translational invariance is featured by another promi-
nent example, the supersolid [11]. A supersolid is a state
that has both a crystalline order (ordinary long-range or-
der) and a superfluid order (off-diagonal long-range order).
In the present paper, we will use it as an example to
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illustrate the general results concerning spontaneous
breaking of translational invariance. Other examples of
systems exhibiting spontaneous breaking of translational
invariance include stripe ordering in spinor Bose-Einstein
condensates [12] and numerous systems in high-energy
physics such as the charge or chiral density wave [13] or
the quarkyonic chiral spiral [14].

All in all, it is clearly desirable to have a systematic
framework that can be used to analyze the physics of NG
modes in systems where translational invariance is broken
to a (nontrivial) discrete subgroup. Let us remark that all
our general arguments, presented in Sec. II, are actually
valid regardless of whether this breaking is spontaneous or
explicit. As a byproduct of our interest in spontaneous
breaking of translational invariance, we therefore provide
a formalism for description of NG bosons of spontaneously
broken internal uniform symmetries in systems with a
discrete periodic structure such as crystalline solids or
optical lattices [15].

The plan of the paper is as follows. In Sec. II, we discuss
in detail the setup and generalize the existing theorems on
NG modes, in particular, the Goldstone theorem [1], the
theorem of Schäfer et al. [4], and the Nielsen-Chadha
theorem [3]. Readers not interested in general properties
of spontaneous symmetry breaking might prefer to skip
this section and proceed directly to Sec. III where we
analyze in detail a model for a two-dimensional (ferromag-
netic) supersolid. As another nontrivial example, we argue
how translational properties of the system get affected by
an external uniform magnetic field and discuss phonons in
a charged crystal under the magnetic field (Sec. IV). In
Sec. V, we summarize and conclude.

II. GENERAL THEOREMS

As a first step toward the generalization of the existing
results on NG bosons, we carefully formulate our assump-
tions. This will, in particular, clarify the scope of the
validity of our arguments presented in the later parts of
this section.

A. Assumptions

First of all, we should emphasize that when we speak of
breaking translational invariance, we always have in mind
spatial translations. Continuous time translation invariance,
which guarantees energy conservation, will be assumed
throughout this paper without further mentioning it. As to
the spatial translations, we assume discrete translational
invariance in d0 directions and continuous one in the remain-
ing d� d0 directions. This requirement is imposed on both
the Hamiltonian (or Lagrangian) of the theory and its ground

state. The translation symmetry group is thusGðd0Þ
D � Gðd�d0Þ

C

whereGðd0Þ
D ¼ fTR � eiP1�R=ℏjR ¼ Pd0

i¼1 niaiðni 2 ZÞg and
faigd0i¼1 are the primitive lattice vectors. Furthermore,

Gðd�d0Þ
C ¼ feiP2��x=ℏj�x 2 Rd�d0 g where P is the momen-

tum operator and P1, P2 its components in Rd0 and Rd�d0 ,
respectively. Likewise, the spatial coordinate vector x can

be decomposed as x ¼ ðx1; x2Þ where x1 2 Rd0 and x2 2
Rd�d0 . Moreover, the vector x1 can be uniquely represented
as x1 ¼ �x1 þ RwhereR is a lattice vector and �x1 belongs to

theWigner-Seitz unit cell inRd0 . Wewill sometimes for the
sake of brevity refer to the set of all spacetime coordinates,
ðt; xÞ, using the corresponding regular-weight letter, x.
Apart from translational invariance, the system may

possess other, internal symmetries at the Lagrangian level,
which can be spontaneously broken. Following the argu-
ment presented in Ref. [8], we always assume that such
symmetries are uniform, that is, their Noether charge den-
sity j0ðxÞ satisfies the following condition [16],

j0ðt; x1; x2Þ ¼ eiðHt�P2�x2Þ=ℏTy
Rj

0ð0; �x1; 0ÞTRe
�iðHt�P2�x2Þ=ℏ:

(1)

We also assume that the charge associated with a sponta-
neously broken symmetry (whether internal or transla-
tional) is time independent and is given by an integral of
a local charge density, Q ¼ R

ddxj0ðt; xÞ.
Finally, we assume that there is a complete set fj�; kig of

simultaneous eigenstates of the Hamiltonian (Hj�;ki ¼
"�ðkÞj�;ki), discrete translations in Rd0 (TRj�;ki ¼
eik1�Rj�;ki), and the remaining momentum operators
(P2j�;ki ¼ ℏk2j�; kiÞ. The normalization of the states is
chosen as h�;kj�0; k0i ¼ ð2�Þd���0�dðk� k0Þ so that the

completeness of the basis is expressed by the relation

X
�

Z
ðFBZÞ

ddk

ð2�Þd j�;kih�;kj ¼ 1: (2)

The integration over k1 is performed within the first
Brillouin zone (FBZ), that is, the Wigner-Seitz cell of the
reciprocal space, while the k2 integration is done over the

whole Rd�d0 space. The index � may include discrete as
well as continuous labels such as the band index, which
together with the momentum uniquely identify each
eigenstate.
It is customary to characterize SSB by the number of

spontaneously broken generators Qa, denoted here as nBS.
This can be usually determined as the difference of the
dimensions of the symmetry groups of the action and the
ground state of the theory. However, for the sake of general
arguments, it is more convenient to use the following
formal definition: nBS symmetries are said to be sponta-
neously broken if there is as set of (quasi)local operators
f�aðxÞgnBSa¼1 such that the matrix M given by iMab �
h0j½Qa;�bð0Þ�j0i is nonsingular.

B. Goldstone theorem

The Goldstone theorem [1] claims that whenever a
uniform symmetry is spontaneously broken, there should
be at least one massless bosonic state in the spectrum of the
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theory. The proof proceeds essentially by finding the spec-
tral representation of the commutator of the broken charge
density j0a and the interpolating field �b. Here, we adapt
the standard argument to account for the possibility of
discrete translational invariance and obtain the following
spectral representation,

iSabð!; kÞ �
Z

ddþ1xeið!t�k�xÞh0j½j0aðxÞ; �bð0Þ�j0i

¼ 2�
X
�

�
�

�
!� 1

ℏ
"�ðkÞ

�
h0j �jaðkÞj�;ki

� h�;kj�bð0Þj0i � �

�
!þ 1

ℏ
"�ð�kÞ

�

�h0j�bð0Þj�;�kih�;�kj �jaðkÞj0i
�
; (3)

which holds provided k1 lies in FBZ. This expression is
formally identical to one assuming full continuous trans-
lational invariance; all effects of only discrete translational

symmetry in Rd0 are hidden in the definition of the charge
density averaged over the unit cell,

�j aðkÞ � 1

�uc

Z
uc
dd

0
�x1j

0
að0; �x1; 0Þe�ik1� �x1 ; (4)

where�uc is the volume of the Wigner-Seitz unit cell, over
which the x1 integral is performed (this is indicated by the
subscript ‘‘uc’’). Note that in the limit of�uc ! 0, �jaðkÞ !
j0að0Þ, which leads to the usual spectral representation with
the full continuous translational invariance.

The proof of Eq. (3) is straightforward but somewhat
tedious, and we thus refer the reader to Appendix A for
details. Consider now the limit jkj ! 0 of the commutator
Fourier transformed only in the spatial coordinates,

lim
jkj!0

iSabðt;kÞ � lim
jkj!0

Z
ddxe�ik�xh0j½j0aðxÞ; �bð0Þ�j0i

¼ h0j½Qa;�bð0Þ�j0i ¼ iMab: (5)

Using the assumption that the charges Qa are time inde-
pendent (which is most naturally ensured when j0a satisfies
a continuity equation together with a spatial current ja, and
the corresponding surface term in the integration over
space vanishes), we deduce that limjkj!0iSabð!; kÞ /
�ð!Þ. Combining this with the spectral representation (3),
we find

Mab ¼ 2
X

�j"�ð0Þ¼0

Im½h0j �jaj�; 0ih�; 0j�bð0Þj0i�; (6)

where �ja � �jað0Þ.
The condition of SSB ( detM � 0) ensures that the right-

hand side of this equation is nonzero for some a, b. One
might at first think that this is due to the contribution of
degenerate ground states obtained by the action of broken
symmetry transformations on j0i. However, this contribu-
tion drops at large volume � asymptotically as 1=� since

such degenerate ground states only exist for isolated values
of momentum (for which k2 ¼ 0 and k1 is equal to some of
the vectors of the reciprocal lattice) [2,17]. It then follows
that there must be at least one intermediate excited state
jn; ki such that: (i) h0j �jaðkÞjn; ki � 0 and hn; kj�bð0Þj0i �
0 for some a, b in the vicinity of k ¼ 0, and (ii) "nð0Þ ¼ 0.
Such intermediate states are exactly the Nambu-Goldstone
modes associated with spontaneous breaking of the
charges Qa. Denoting jni � jn; 0i and the number of these
states as nNG, Eq. (6) becomes

Mab ¼ 2
XnNG
n¼1

Im½h0j �jajnihnj�bð0Þj0i�: (7)

Before concluding the discussion of the Goldstone theo-
rem, let us remark that in case there are long-range inter-
actions in the system, the surface term appearing in the
space integral of the continuity equation for the Noether
charge density and its current need not vanish. The integral
charge then depends on time and massive modes can
contribute to Eq. (6). This is why the longitudinal mode
in a Coulomb-interacting Wigner solid (in three spatial
dimensions) acquires an energy gap, equal to the plasma
frequency [18].
Finally, note that the above presented proof of the

Goldstone theorem relies essentially on the operator for-
malism and the translational property (1) of the charge
density as well as the time independence of the integral
charge. In concrete applications, it is often advantageous to
use an alternative proof based on the effective action
formalism [1,19], which provides a direct connection to
the symmetries of the corresponding classical Lagrangian
system. For the sake of completeness, we sketch a modi-
fication of this proof suitable for systems with only discrete
translational invariance in Appendix B.

C. Theorem of Schäfer et al.

In the preceding subsection, we carefully formulated the
Goldstone theorem as showing the existence of at least one
NG boson. The natural question to ask is, of course,
whether anything can be said in general about their actual
number, nNG. A common lore in textbooks on relativistic
field theory is that assuming Lorentz invariance, nNG
equals the number of spontaneously broken generators,
nBS. Nevertheless, there are numerous examples of
Lorentz-noninvariant (both relativistic many-body as well
as intrinsically nonrelativistic) systems where this simple
relation does not hold (see Ref. [6] and references therein).
We start our discussion with the result of Schäfer et al.

[4] who formulated the following theorem [20]: Provided
that h0j½Qa;Qb�j0i ¼ 0 for all a, b, the number of NG
modes nNG is equal to the number of broken symmetries
nBS. Here, we generalize this theorem by taking into
account the possibility of a discrete translational symmetry

in Rd0 (whether as a result of spontaneous breaking of
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continuous translational invariance or of the intrinsic setup
of the system). We follow essentially the argument of the
review [6].

Let us first show that nNG � nBS. Based on the
remaining translational symmetry of the ground state, we
infer that h0j½Qa;Qb�j0i / h0j½Qa; �jb�j0i and, additionally,
using Eq. (7),

h0j½Qa; �jb�j0i ¼ 2i
XnNG
n¼1

Im½h0j �jajnihnj �jbj0i�: (8)

Defining an nBS � nNG matrix A as Aan ¼ h0j �jajni, the
assumption that h0j½Qa;Qb�j0i ¼ 0 for all a, b together
with Eq. (8) implies that AAy is Hermitian as well as real. It
can thus be diagonalized by a real orthogonal matrix O
such that A0A0y � OAAyOT ¼ diagð�1; . . . ; �nBSÞ, assum-

ing without lack of generality 0 � �1 � � � � � �nBS . Now,

if the number of NG bosons were smaller than nBS, the rank
of A, and hence also the rank of AAy, being at most nNG,
would have to be smaller than nBS as well. The smallest
eigenvalue �1 would then necessarily vanish. However,
since the orthogonal transformation by O can be inter-
preted as a change of basis of the broken generators, Q0

a ¼
OabQb, this would lead to h0j �j01jni ¼ hnj �j01j0i ¼ 0 for all
n, in contradiction with the broken symmetry assumption,
detM � 0. (Note that M0 ¼ OM so that determinants of
M and M0 are equal up to a sign.) Thus, the inequality
nNG � nBS follows.

In order to prove the opposite inequality, nNG � nBS,
observe that AyA is positive semidefinite and Hermitian,
and can therefore be diagonalized by a unitary matrix U as
A00yA00 � UyAyAU ¼ diagð�1; . . . ; �nNGÞ, again assuming

without lack of generality that 0 � �1 � � � � � �nNG . The

transformation A ! A00 ¼ AU corresponds to a redefini-
tion of the basis of states, jm00i ¼ jniUnm, since A00

am ¼
AanUnm ¼ h0j �jajm00i (summations over repeated indices
are implied). Now, if the number of NG bosons were larger
than nBS, we would analogously deduce that h0j �jajm00i ¼ 0
for all a and for m ¼ 1; 2; . . . ; nNG � nBS. However, these
zero modes do not couple to any broken currents and thus
do not satisfy the very definition of a NG boson.

Putting both pieces together, we have proven that the
number of NG modes is equal to the number of broken
symmetries if h0j½Qa;Qb�j0i ¼ 0 for all a, b.

D. Nielsen-Chadha theorem

Nielsen and Chadha [3] discovered that the number of
NG bosons is tightly related to their dispersion relations.
Concretely, they showed that under certain technical
assumptions, the dispersion relation of a NG boson is
proportional to a positive integer power of momentum in
the long-wavelength limit. Classifying NG bosons with an
odd (even) power of momentum in the dispersion relation
as type I (type II) and denoting their numbers as nI and nII,
respectively, they proved the inequality nI þ 2nII � nBS.

In order to generalize their result to systems with only
discrete translational symmetry, we basically just need to
replace the spectral representation in their original paper
by Eq. (3). We shall nevertheless present some details of
the argument.
Let us define the vectors ðAnÞb ¼ h0j�bð0Þjni and va ¼

Anhnj �jaj0i. Let in addition p be the number of linearly
independent vectors among the va’s (obviously p � nNG),
and set �n ¼ nBS � p. By construction, there is a set of
coefficients C�

a (� ¼ 1; . . . ;�n) such that C�
ava ¼ 0 and

simultaneously rank C ¼ �n. Using Eq. (3), we obtain

iC�
aSabð!; kÞ ’ 2�

X
n

�

�
!� 1

ℏ
"nðkÞ

�

� h0jC�
a
�jaðkÞjn; kihn;kj�bð0Þj0i (9)

in the vicinity of k ¼ 0. Here, we dropped the contribution
from massive modes and the second term of Eq. (4), since
they both vanish at k ¼ 0. Assuming along with Nielsen
and Chadha the exponential decay of (expectation values
of) commutators of local operators separated by a large
spacelike interval, we infer that Sabðt;kÞ is an analytic
function of k. In other words, the support of Sabð!; kÞ
should be differentiable with respect to k. As a conse-
quence, for any jn; ki that appears in Eq. (9) for some �
and b, "nðkÞmust be an analytic function of k. We will call
such NG modes type C and denote their number as nC.
As the next step, we observe that the �n vectors

C��
a va ¼ AnhnjC��

a
�jaj0i must be linearly independent.

Indeed, if this were not true, there would be a set
of coefficients �� such that ��C

��
a va ¼ 0 and thus

��C
��
a Mab ¼ 0, implying that M has a zero eigenvalue,

in contradiction with the assumption detM � 0. From the
fact that the vectors C��

a va are linearly independent, we
can immediately conclude that the number of NG states jni
for which h0jC�

a
�jajni � 0 for some �, must be at least �n,

hence nC � �n.
The remaining NGmodes, for which h0jC�

a
�jajni ¼ 0 for

all �, will be called type N and their number denoted
accordingly as nN. The above argument does not constrain
in any way the dispersion relation of type-N NG bosons; in
particular, it is allowed to be linear, "ðkÞ / jkj. Using the
fact that, by construction, nN þ nC ¼ nNG, we obtain the
inequality

nNþ 2nC � nNGþ�n¼ nBSþðnNG�pÞ � nBS: (10)

Note that in Ref. [8], we actually proved the equality, nN þ
2nC ¼ nBS, using a slightly different definition of the two
types of the NG modes.
In fact, the derivation of the inequality (10) does not

make any use of rotational invariance, which was implic-
itly, and somewhat unnecessarily, assumed in Ref. [3].
Once this constraint is released, the classification of NG
bosons can no longer be based on a mere power of the
momentum jkj in the dispersion relation. A convenient
generalization is to define as type II those NG modes

HARUKI WATANABE AND TOMÁŠ BRAUNER PHYSICAL REVIEW D 85, 085010 (2012)

085010-4



whose dispersion is analytic around k ¼ 0, and as type I
the remaining ones; this classification reduces to that of
Nielsen and Chadha once rotational invariance is restored.
We have thus shown in other words that every type-C NG
boson is simultaneously type II. Using the inequality (10),
we then find nI þ 2nII � nN þ 2nC � nBS, which repro-
duces the Nielsen-Chadha inequality.

E. Implications for spontaneous breaking of
translational invariance

In the preceding subsections, we saw how the general
theorems known in literature can be extended to account
for the possibility that the ground state of the system has
only a discrete translational symmetry. We are particularly
interested in the situation when this arises as a result of a
spontaneous breakdown of a continuous translational in-
variance. We will therefore devote this subsection to some
discussion of systems with the symmetry-breaking pattern

G int �GðdÞ
C ! G0

int �Gðd0Þ
D � Gðd�d0Þ

C ; (11)

where Gint describes the internal symmetry group, which
can also be (partially) spontaneously broken.

First, note that the Noether charge of translational in-
variance, that is, the momentum operator, commutes with
all other broken chargesQa. If we for a moment assume, as
in the theorem of Schäfer et al., that h0j½Qa;Qb�j0i ¼ 0 for
all pairs of broken internal symmetry generators, we im-
mediately conclude that the number of NG bosons equals
the number of broken generators. Therefore, there is one
NG boson for each spontaneously broken translation gen-
erator as well as for each spontaneously broken generator
of an internal symmetry.

In the general case, it is convenient to define the anti-
symmetric matrix � by i�ab � lim�!1��1h0j½Qa;Qb�j0i
where a; b ¼ 1; . . . ; nBS. In the recent paper [8], we pro-
posed that the number of NG bosons is generally related to
the rank of the matrix � by

nBS � nNG ¼ 1
2rank�: (12)

The fact that translation generators commute with every-
thing else now implies that rank� ¼ rank�int, where �int is
the analogous matrix defined using the generators of bro-
ken internal symmetries only. We can thus infer that the
counting of NG bosons of spontaneously broken transla-
tional invariance is not affected by the presence of other
spontaneously broken, internal symmetries: each sponta-
neously broken translation generator gives rise to exactly
one NG boson. In Sec. III, wewill discuss examples of both
types of systems where rank� is zero and nonzero.

So far, we have tacitly assumed that the generators of
space translations commute with one another as well as
with other symmetry generators. Nevertheless, in presence
of external fields, this property can be violated while still
maintaining well-defined translational symmetry. Let us
consider, for instance, a system of (interacting) charged

particles in a uniform external magnetic field B. Because
of the explicit dependence of the vector potential on the
coordinates, the action is no longer invariant under the
usual translations. Instead, it is invariant under magnetic
translations, that is, translations combined with a gauge
transformation of the electromagnetic field. The momen-
tum operator P as a symmetry generator is then replaced by
the operator PB, which satisfies

½PB
i ; P

B
j � ¼ �iℏq	ijkBkQ0; ½PB

i ; Q0� ¼ 0; (13)

where q is the charge of the particles and Q0 the
U(1) Noether charge, that is, their total number. Note
that the rank of the matrix �B defined by i�B

ij �
lim�!1��1h0j½PB

i ; P
B
j �j0i equals two if the magnetic field

as well as the expectation value ofQ0 is nonzero (otherwise
the rank is zero). Equation (12) then suggests that in case
magnetic translational invariance is spontaneously broken,
there is one less NG boson than naively expected based on
the number of broken translation generators. Wewill see an
example of this in Sec. IV [21].

III. NG MODES IN A SUPERSOLID

In this section, we will illustrate the general results
obtained above on the example of NG modes in a (ferro-
magnetic) supersolid in d spatial dimensions. We will
employ the mean-field approximation at zero temperature.

A. Formalism

1. Definition of the model and its symmetry

Let us consider the class of theories, defined by the
following Lagrangian,

L½�� ¼
Z

ddx�y
i ðxÞ

�
iℏ@t þ ℏ2r2

2m
þ


�
�iðxÞ

� 1

2

Z
ddxddy�y

i ðxÞ�iðxÞVðx� yÞ�y
j ðyÞ�jðyÞ;

(14)

where � ¼ ð�1; . . . ;�NÞ is an N-component complex
scalar field, and the potential VðxÞ ¼ Vð�xÞ represents a
finite-range interaction. The symmetry of the Lagrangian is

obviously UðNÞ �GðdÞ
C . The simplest case N ¼ 1 corre-

sponds to the usual Bose-Einstein condensate (BEC) with-
out internal degrees of freedom, while the widely discussed
N ¼ 2 case can be understood as a spin-1=2 BEC (see, for
instance, Ref. [22]).
It is convenient to analyze the model using dimension-

less variables; this makes the results universally applicable
to different physical systems, as long as they share the
same set of symmetries and degrees of freedom. We first
introduce a characteristic length scale of the potential,
a, in terms of which the strength of the interaction can
be measured by the parameter V0, defined by adV0 ¼R
ddxVðxÞ. Next, we rescale the spacetime coordinates as
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t ! tℏ=
 and x ! xa. (For conventional reasons, we use
the same symbols for the new, dimensionless coordinates;
as we do so systematically from now on, no confusion can
arise.) Finally, we introduce the dimensionless potential,

vðxÞ ¼ VðxÞ=V0, and the field c ðxÞ ¼ �ðxÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0a

d=

p

.
The dimensionless Lagrangian, L½c � ¼ L½��V0=


2,
thus becomes

L½c � ¼
Z

ddxc y
i ðxÞ

�
i@t þ r2

2g
þ 1

�
c iðxÞ

� 1

2

Z
ddxddyc y

i ðxÞc iðxÞvðx� yÞc y
j ðyÞc jðyÞ;

(15)

where g is a dimensionless coupling parameter defined as
g ¼ 
ðℏ2=ma2Þ�1.

2. Classical field

The first step in the mean-field analysis is to find the
ground state, that is, the static classical field configuration
c 0ðxÞ, which minimizes the energy,

E½c � ¼
Z

ddx

�
1

2g
rc �

i ðxÞ � rc iðxÞ � c �
i ðxÞc iðxÞ

�

þ 1

2

Z
ddxddyc �

i ðxÞc iðxÞvðx� yÞc �
j ðyÞc jðyÞ:

(16)

To that end, we exploit the symmetry of the problem and
cast the spinor c 0ðxÞ in a ‘‘canonical’’ form. One should
nevertheless be careful since the field in general depends
on the coordinates. Note that it can always be written as
c ðxÞ ¼ UðxÞc 0ðxÞ, where UðxÞ is a unitary matrix
and c 0

iðxÞ ¼ �i1
�c ðxÞ with real �c ðxÞ. As long as the field

c ðxÞ does not contain any vortices, bothUðxÞ and �c ðxÞ are
differentiable. It then follows that

E½c � � E½c 0� ¼ XN
i¼1

Z
ddx

�c ðxÞ2jrUi1ðxÞj2
2g

� 0: (17)

The equality occurs only if Ui1 is coordinate independent.
Thus, by a global UðNÞ rotation, c 0ðxÞ can always be
chosen as c 0iðxÞ ¼ �i1

�c 0ðxÞ with a real field �c 0ðxÞ.
Field configurations with vortices tend to have a higher
energy and we therefore assume we can discard this
possibility.

One (nontrivial) stationary point of the energy func-
tional (16) is always given by a uniform field. Because of
our normalization,

R
ddxvðxÞ ¼ 1, this corresponds to

�c 0ðxÞ ¼ 1 with the energy density �1=2. The uniform
solution indeed minimizes energy for small g. However,
when g becomes large, the energy cost of creating spatial
modulation of c ðxÞ is suppressed. Depending on the
detailed structure of the potential vðxÞ, this cost can then
be overwhelmed by the energy gain from the nonlocal

interaction. As a result, inhomogeneous field configura-
tions may become energetically favorable.

3. Spontaneous symmetry breaking

As soon as the classical field c 0ðxÞ assumes a nonzero
value, the symmetry of the Lagrangian is spontaneously
broken. Owing to the fact that the spinor c 0ðxÞ points in
the same direction everywhere in space, c 0iðxÞ ¼
�i1

�c 0ðxÞ, the internal UðNÞ symmetry is broken down to
its UðN � 1Þ subgroup; 2N � 1 of its generators are thus
broken. Therefore, when c 0ðxÞ is homogeneous the resid-

ual symmetry is UðN � 1Þ �GðdÞ
C and nBS ¼ 2N � 1. We

will call this solution the superfluid phase. On the other
hand, if c 0ðxÞ is inhomogeneous and periodically modu-
lated in all spatial directions (the supersolid phase), the

symmetry of the ground state is merely UðN � 1Þ �GðdÞ
D

and nBS ¼ 2N � 1þ d.
To predict the number of NGmodes, we have to evaluate

the rank of the matrix � in Eq. (12). To that end, note that
the 2N � 1 broken internal symmetry generators fall into
three classes: the generator of phase transformations of
the first component of the spinor, ðT1Þjk ¼ �j1�k1=2; the

N � 1 real generators ðTR
‘ Þjk ¼ ð�k1�j‘ þ �j1�k‘Þ=2; the

N � 1 pure imaginary generators ðTI
‘Þjk ¼ ið�k1�j‘ �

�j1�k‘Þ=2, where ‘ ¼ 2; 3; . . . ; N. Using these matrices,

the broken generators can be represented on the Hilbert

space of the system by the operators Qa ¼ R
ddxc y

i ðxÞ�
ðTaÞijc jðxÞ. Within the mean-field approximation, the fluc-

tuations are neglected and one easily derives

1

�
h0j½QR

‘ ; Q
I
‘0 �j0i ¼

i�‘‘0

�
h0jQ1j0i

¼ i�‘‘0

2�uc

Z
uc
ddx �c 0ðxÞ2 (18)

for ‘; ‘0 ¼ 2; . . . ; N and h0j½Qa;Qb�j0i ¼ 0 for other com-
binations. We thus conclude that ð1=2Þrank� ¼ N � 1.
In the case N ¼ 1 (usual BEC), we can now use the

theorem of Schäfer et al. to assert that nNG ¼ nBS ¼ 1 in
the superfluid phase and nNG ¼ nBS ¼ 1þ d in the super-
solid phase. For N � 2, Eq. (12) implies that nNG ¼ N in
the superfluid phase and nNG ¼ N þ d in the supersolid
phase. To be consistent with the Nielsen-Chadha theorem,
at least N � 1 of the NG modes must be type II. This is in
agreement with the result of Ref. [23], which analyzed the
relativistic version of the model with a local interaction,
VðxÞ / �dðxÞ. The detailed nature of the NG modes in our
model will be investigated in the following subsection.

4. Elementary excitations

In the mean-field approximation, the excitation spec-
trum is found simply by expanding the Lagrangian to
second order in fluctuations around the classical field. We
parametrize the field as c ðxÞ ¼ c 0ðxÞ þ�ðxÞ þ i’ðxÞ
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and plug this back into Eq. (15). Up to second order in the
fluctuation fields �, ’, the Lagrangian reads L½c � ¼
L½c 0� þ L2½�;’; c 0� þ � � � , where

L2½�;’; c 0� ¼
Z

ddxf�iðxÞKx�iðxÞ þ ’iðxÞKx’iðxÞ
þ ½’iðxÞ@t�iðxÞ ��iðxÞ@t’iðxÞ�g
� 2

Z
ddxddy�1ðxÞwðx; yÞ�1ðyÞ (19)

up to a term that is a total time derivative. In the above
equation, Kx ¼ ðr2=2gÞ þ 1� uðxÞ is the kinetic term,
uðxÞ ¼ R

ddyvðx� yÞj �c 0ðyÞj2 is the effective periodic

mean-field potential due to the background c 0ðxÞ, and
wðx; yÞ ¼ �c 0ðxÞvðx� yÞ �c 0ðyÞ captures the effects of the
nonlocal interaction.

Physically, the fluctuations f�igNi¼2 and f’igNi¼1 corre-

spond to NG fields of the spontaneously broken internal
symmetry. Namely, the f�igNi¼2 are obtained from the
classical field c 0ðxÞ by real rotations, generated by the
matrices TI

i , while the f’igNi¼1 are induced by symmetric

unitary transformations, generated by the matrices TR
i (or

T1 in case of i ¼ 1). On the other hand, the �1ðxÞ mode
corresponds to displacements of the classical field configu-
ration, c 0ðxþ �ðxÞÞ � c 0ðxÞ ’ �ðxÞ � rc 0ðxÞ, as well as
to density fluctuations. This can be seen by noting the role
of �1ðxÞ in the density-density correlation function,

h0jTf�nðxÞ�nðyÞgj0i ’ 4 �c 0ðxÞ �c 0ðyÞh0jTf�1ðxÞ�1ðyÞgj0i
þ � � � ; (20)

where �nðxÞ ¼ c y
i ðxÞc iðxÞ � h0jc y

i ðxÞc iðxÞj0i, and the
ellipsis stands for terms of higher order in the fluctuation
fields.

The dispersion relations of the various excitation
branches are determined formally by a diagonalization of
the Lagrangian (19). In practice, we accomplish this task
by solving the Euler-Lagrange equations for the fluctuation
fields,

@t’iðxÞ ¼ Kx�iðxÞ � 2�i1

Z
ddywðx; yÞ�1ðyÞ;

@t�iðxÞ ¼ �Kx’iðxÞ: (21)

Note that the equations of motion for �i and ’i are
coupled; we will see the importance of this coupling later.

Based on the residual discrete symmetry, GðdÞ
D , we can

assume the normal modes of �i, ’i to have the Bloch
form, that is,

�i;nðk; xÞ ¼
X
G

�i;n;GðkÞeiðkþGÞ�x�i!nðkÞt; (22)

(analogously for ’i) with a band index n and a crystal
momentum k 2 FBZ. The solution !nðkÞ represents the
allowed excitation spectrum. In particular, those modes
that satisfy !nð0Þ ¼ 0 are NG modes, assuming they
couple to the spontaneously broken currents.

B. Numerical results

As a concrete illustration of the general setup, we choose
the simplest model for a supersolid, defined by the step-
function potential VðxÞ ¼ ðV0=�Þ�ða� jxjÞ in two spatial
dimensions [24]. Below, we summarize the results of
our numerical computations. In order not to obscure the
physics with technicalities, we describe some details of
the methods we used in Appendix C. In particular, in
Appendix C 1 we explain how the classical field �c 0ðxÞ
was found, and in Appendix C 2 how the band structures
presented in Figs. 2(a) and 2(b) were obtained.

1. Superfluid phase

For g < g0 	 38:4, the energy (16) is minimized by the
homogeneous solution �c 0ðxÞ ¼ 1 [25]. In this superfluid
phase, the Schrödinger equations (21) are solved straight-
forwardly by going to the energy-momentum space,
taking the form AiðkÞð�iðkÞ; ’iðkÞÞT ¼ 0 (separately for
i ¼ 1; . . . ; N), where

AiðkÞ ¼ ðk2=2gÞ þ 2�i1vðkÞ �i!ðkÞ
i!ðkÞ k2=2g

� �
: (23)

Here, �iðkÞ ¼
R
d2x�ið0; xÞe�ik�xþi!ðkÞt [analogously for

’iðkÞ] and vðkÞ ¼ R
d2xvðxÞe�ik�x ¼ 2J1ðjkjÞ=jkj [JnðxÞ

is the Bessel function]. From the condition detAiðkÞ ¼ 0,

we find the quasiparticle dispersion relation, !iðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk2=2gÞ½ðk2=2gÞ þ 2�i1vðkÞ�
p

. Around k ¼ 0, the disper-
sions and eigenvectors corresponding to the individual
modes are expanded as

!1ðkÞ ’ jkj= ffiffiffi
g

p
; ð�1; ’1Þ ’ ð0; 1Þ;

!jðkÞ ’ k2=2g; ð�j; ’jÞ ’ 1ffiffiffi
2

p ð1;�iÞ; ðj � 2Þ;
(24)

to leading order in momentum. We illustrate these dis-
persion relations in Fig. 1(a) for the coupling set to the
transition point, g ¼ g0 � 0. In summary, there is one
type-I Bogoliubov mode and N � 1 type-II modes with a
quadratic dispersion and a circular polarization, which can
be interpreted as ferromagnetic magnons (precession
modes) [27]. This conclusion is in exact agreement with
the prediction we made in Sec. III A 3.
It is worth emphasizing that while at k ¼ 0 the

Bogoliubov mode corresponds to a pure phase fluctuation,
’1, at nonzero momentum it is given by a mixture of ’1

and�1. In other words, the Bogoliubov mode generates not
only a phase modulation but also a density modulation of
the condensate c 0. This is why we can associate it with a
density wave and detect it in Bragg spectroscopy experi-
ments [28]. However, this very fact has also caused some
confusion regarding the independence of the Bogoliubov
mode and the longitudinal phonon originating from the

SPONTANEOUS BREAKING OF CONTINUOUS . . . PHYSICAL REVIEW D 85, 085010 (2012)

085010-7



crystalline order in the supersolid phase. We will shortly
see that these two are, indeed, distinct modes.

Finally, let us remark that the above discussed mixing
can be traced back to the term c y@tc in the Lagrangian
(15). A similar term also arises in the analogous relativistic
model where it is induced by the chemical potential [23].
On the other hand, in a Lorentz-invariant model where SSB
is triggered by a ‘‘wrong sign’’ of the mass term of the
field, no such mixing would arise, and the�i and’i modes
would be completely decoupled.

2. Supersolid phase

For g > g0, periodic spatial modulation of the order
parameter �c 0ðxÞ is energetically favored. The transition
at g ¼ g0 is of first order within the mean-field approxi-
mation [24], and can be roughly understood as Bose-
Einstein condensation of field modes with momentum
determined by the reciprocal lattice vectors. This interpre-
tation is supported by the rotonlike minimum in the disper-
sion relation of the Bogoliubov mode shown in Fig. 1(a).
Numerical computation, following the strategy outlined in
AppendixC 1, shows that the solutionwith the lowest energy
has the form of a hexagonal lattice, plotted in Fig. 1(b).

By solving the coupled Schrödinger equations (21) us-
ing the method explained in Appendix C 2, we found the
band structures in the supersolid phase at g ¼ g0 þ 0,
shown in Figs. 2(a) and 2(b). This result was obtained
using the first 73 G vectors around the origin of the
reciprocal lattice. The convergence of the result was
checked by a comparison with one using only 61G vectors.

In the i ¼ 1 sector, three of the excitation branches are
linear around the � point (the origin of the k space),
corresponding to a longitudinal phonon, a transverse pho-

non, and a Bogoliubov mode. On the other hand, each
i � 2 sector contains just one massless mode with a qua-
dratic dispersion relation—the magnon. In summary, there
are in total N þ d NG modes, N � 1 of which are type II,
exactly as predicted in Sec. III A 3.
In addition, we have checked numerically that the dis-

persion relations of all the gapless modes are isotropic at
the � point; the NG modes of the model will thus be
described by a rotationally invariant low-energy effective
field theory. Our findings are consistent with previous
works for the case N ¼ 1, based on the effective
Lagrangian method [29]. A low-energy effective field the-
ory describing simultaneously the Bogoliubov mode and
the phonons has recently also been worked out, in a differ-
ent context, in Ref. [30].
We would like to emphasize that while the specific

results presented in Figs. 2(a) and 2(b) rely on the mean-
field approximation, the qualitative conclusion that the
Bogoliubov mode and the longitudinal phonon are distinct
physical excitations is exact. Following the general argu-
ment of Sec. II E, in the case of N ¼ 1 it is based on the

2 4 6 8 10 12
k

0.5

1.0

1.5

k

(a) (b)

FIG. 1 (color online). (a) The dispersion relations of NG
bosons in the superfluid phase at g ¼ g0 � 0. The linear branch
is the usual Bogoliubov mode, while the quadratic branch (with
N � 1 fold degeneracy) can be interpreted as a ferromagnetic
magnon. The dispersion of the Bogoliubov mode has a rotonlike
minimum around jkj 	 4:80, which corresponds to the magni-
tude of the reciprocal lattice vector at g ¼ g0 þ 0. (b) Three-
dimensional plot of the classical field �c 0ðxÞ in the supersolid
phase. The energy functional is minimized by a hexagonal
(triangular) lattice with the lattice constant approximately 1.50
at g ¼ g0 þ 0. Note that �c 0ðxÞ does not have any nodes.

(a)

(b)

FIG. 2. The numerical result for dispersion relations in the
supersolid phase at g ¼ g0 þ 0. Panel (a) displays the excitation
branches in the�1, ’1 sector. We can see three linear dispersions
around the � point, which correspond to the Bogoliubov mode
and two phonons. The inset shows the irreducible part of FBZ.
Panel (b) displays the excitation branches in the �i, ’i (i � 2)
sector. The dispersion relation of the gapless mode is quadratic at
low momentum, as can be seen in the inset, which zooms in the
vertical axis.
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theorem of Schäfer et al. and thus can be considered
rigorously proven. For N � 2, it is strongly supported by
the conjectured equality (12).

IV. PHONONS IN A CHARGED CRYSTAL IN
EXTERNAL MAGNETIC FIELD

As anticipated in the discussion in Sec. II E, the spec-
trum of NG modes can become more complicated once the
generators of space translations do not commute with each
other as well as with generators of other, internal symme-
tries. To illustrate this subtlety, we shall in this section
discuss briefly a simple quantum-mechanical model for a
charged crystal.

A. Quantum-mechanical model

The Hamiltonian for N particles with the common
charge q in nonrelativistic quantum mechanics is given by

H ¼ XN
i¼1

½pi � qAðxiÞ�2
2m

þ 1

2

X
i�j

vðxi � xjÞ; (25)

where AðxiÞ is a vector potential that determines the
external magnetic field BðxÞ via r�AðxÞ ¼ BðxÞ, and
vðxÞ is a repulsive interaction potential that is assumed to
be invariant under space inversion, vðxÞ ¼ vð�xÞ. This
model, with the Coulomb potential vðxÞ ¼ e2=jxj, has
been used in the context of the Wigner solid [31].
Nevertheless, since our goal here is to discuss the conse-
quences of SSB in the presence of a magnetic field, we will
assume that the potential vðxÞ has a finite range.

The canonical coordinate and momentum xi�, pj� are

required to satisfy the usual commutation relation.
(Within this section, we use Greek letters to denote spatial
indices.) Because of the vector potential, the operator of
total momentum

PN
i¼1 pi no longer commutes with the

Hamiltonian. When the magnetic field is uniform, we can
instead define the operator �i � pi � q½AðxiÞ �B� xi�.
The sum, PB

� ¼ P
N
i¼1 �i�, is conserved and plays the role

of the generator of spatial translations (½iPB
�; xi�� ¼

ℏ���). At the same time, it satisfies the commutation

relation (13) with Q0 ¼ N.

B. Phonon spectrum

Suppose that we have found a stable crystal configura-
tion where the ith particle is localized around the lattice
node, xi ¼ Ri. The spectrum of oscillations of the crystal
lattice can be determined by resorting to the harmonic
approximation, in which the Hamiltonian takes the form

H ¼ P
N
i¼1½pi � qAðxiÞ�2=ð2mÞ þ ðm=2Þ�P

N
i;j¼1 W

��
ij ui�uj�, where ui � xi �Ri and

mW��
ij ¼

��@�@�vjx¼Rij
; ði � jÞ;P

N
‘¼1;‘�i @�@�vjx¼Ri‘

; ði ¼ jÞ: (26)

(We have also introduced the notationRij ¼ Ri � Rj.) Let

us now assume that the total particle number N extends to

infinity or that periodic boundary conditions are imposed.
Then, the Heisenberg equations of motion—unlike the
Hamiltonian itself—have the lattice translational symme-
try, since only the magnetic field B appears in them. Thus,

by using the Fourier components, W��
k ¼ P

iW
��
ij e�ik�Rij

for any fixed j, and uk�ðtÞ ¼
P

iui�e
i!ðkÞt�ik�Ri , we sim-

plify the equations to the form M��ðkÞuk� ¼ 0 with

M��ðkÞ ¼ ���!ðkÞ2 � i	���!ðkÞb� �W��
k and b� ¼

qB�=m. As before, the condition detMðkÞ ¼ 0 determines
the dispersion relations of the normal modes of the crystal
lattice.
For the sake of brevity, we shall consider the simplest,

albeit unrealistic, model—the isotropic crystal in three
spatial dimensions, where

W��
k ¼

�
��� � k�k�

k2

�
!tðjkjÞ2 þ k�k�

k2
!‘ðjkjÞ2: (27)

In the absence of the magnetic field, the functions !tðjkjÞ
and !‘ðjkjÞ give the dispersion relations of transverse and
longitudinal phonons, respectively, and it is therefore natu-
ral to assume both of them to be linear at low momentum.
The determinant of MðkÞ is easily found,

detM ¼ ð!2 �!2
t Þ2ð!2 �!2

‘Þ �!2ð!2 �!2
t Þb2sin2�

�!2ð!2 �!2
‘Þb2cos2�; (28)

where � is the angle between the vectors k and b, and we
have for simplicity omitted the argument k where neces-
sary. At low momentum, the dispersion relations of the
three normal modes can be evaluated analytically,

! ’ jbj; gapped mode;

! ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

t sin
2�þ!2

‘cos
2�

q
; type-I NG mode;

! ’ !2
t !‘

jbj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

t sin
2�þ!2

‘cos
2�

q ; type-II NG mode:

(29)

In order to determine the polarization of the modes, that is,
the orientation of the vector uk, it is convenient to rewrite
the equation of motion in a vector form

!2u� i!u� b� ð!2
t Ptuþ!2

‘P‘uÞ ¼ 0; (30)

where Pt;‘ are projectors to transverse/longitudinal direc-

tions with respect to momentum k, defined by the respec-
tive terms in Eq. (27). For the gapped mode, the terms in
Eq. (30) proportional to !2

t;‘ can be neglected, which leads

to the condition u ¼ iu� b=jbj. In words, this mode is
circularly polarized in the plane perpendicular to the mag-
netic field, in the opposite direction than the usual cyclo-
tron motion. For the type-I NG mode, we likewise neglect
terms in Eq. (30) proportional to!2 as well as!2

t;‘ to arrive

at the constraint u� b ¼ 0, which simply means that this
mode is always polarized along the direction of the mag-
netic field. Finally, for the type-II NG mode we neglect the
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term in Eq. (30) proportional to !2 and obtain the condi-
tion u� b ¼ ði=!Þð!2

t Ptuþ!2
‘P‘uÞ.

Let us for illustration consider some special cases. When
the momentum is parallel to the magnetic field (� ¼ 0), the
energies of the modes given in Eq. (29) reduce to jbj, !‘,
and !2

t =jbj, respectively. The type-II NG excitation is
circularly polarized in the plane perpendicular to b, in
the opposite direction than the gapped mode. This is in a
nice analogy to the type-II NG boson in ferromagnets—the
magnon—where the circular polarization corresponds to
the Larmor precession of the electron spin. Note that in the
limit when !t ¼ !‘, the same conclusions hold regardless
of the orientation of the momentum.

Second, when the momentum is perpendicular to the
magnetic field (� ¼ �=2), the dispersion relations in
Eq. (29) become jbj, !t, and !t!‘=jbj, respectively. The
type-II NG mode is now polarized elliptically in the plane
transverse to the magnetic field. The ratio of the principal
axes of the ellipse, oriented along and perpendicularly to
the momentum, is given by !t=!‘.

In the general case, as already mentioned above, the
polarization of the gapped mode is circular and transverse
to the magnetic field, while that of the type-I NG mode is
linear and aligned with the magnetic field, irrespective to
the orientation of the momentum. Only the polarization of
the type-II NG excitation is affected by the momentum.

In any case, there are only two (that is, d� 1) gapless
phonons, and one of them has a quadratic dispersion
relation. This can be explained by the combination of the
conjecture (12) and the Nielsen-Chadha theorem. The
noncommutativity of the components of the generator of
magnetic translations suggests that there is one less phonon
than one would naively expect. Then, to satisfy the
Nielsen-Chadha theorem, at least one of the phonons
must be type II.

C. Possible application

The second-quantized version of the above model can be
used to describe the rapidly rotating BEC of cold atoms.
When viewed from the corotating frame, the Hamiltonian
of the system picks an additional term, equal to �L ��
(coupling of the angular momentum L to the angular
velocity �). It then has formally the same form as the
Hamiltonian of charged particles in the external magnetic
field, provided the symmetric gauge is used and the
replacement � ! qB=ð2mÞ made [32]. Therefore, the
Hamiltonian of the rotating Bose gas has a two-
dimensional continuous magnetic translational symmetry,
in addition to the U(1) global symmetry corresponding to
the conservation of particle number, as long as the trapping
potential (modified by �) can be neglected.

The formation of a triangular vortex lattice has been
experimentally observed [33], which implies spontaneous
breaking of the continuous magnetic translational invari-
ance. The collective mode due to the lattice distortion,

called the Tkachenko mode, has also been experimentally
observed [34]. Similarly to our toy model, there is one
gapless excitation with a quadratic dispersion relation and
one gapped mode with the cyclotron gap, qB=m ¼ 2�
[35]. The discussion in Sec. II E, although strictly speaking
only applicable to uniform symmetries, suggests that there
might still be an independent Bogoliubov mode stemming
from spontaneous breaking of the U(1) symmetry. We
believe that our general arguments based solely on sym-
metry properties may lead to a new understanding of NG
modes in the vortex lattice.

V. SUMMARYAND CONCLUSIONS

In the present paper, we have developed a framework
for the analysis of spontaneous symmetry breaking in the
case that there is only a discrete translational invariance.
While our prime motivation was to study spontaneous
breaking of continuous translational invariance, our results
apply equally well to systems where this is broken explic-
itly by construction.
We generalized existing theorems on NG bosons in

quantum many-body systems, thus completing the pro-
gram initiated in our recent paper [8]. Our main message
is that as long as SSB is concerned, the usual division of
symmetries into internal and spacetime ones is artificial.
Instead, we propose that all symmetries that are uniform in
the sense defined in Sec. II can, and should, be treated on
the same footing. This naturally includes (uniform) inter-
nal symmetries as well as translational invariance.
To illustrate our general arguments, we analyzed a

model for a (ferromagnetic) supersolid in two spatial
dimensions using the mean-field approximation at zero
temperature. Using numerical computations, we examined
the regime of weak coupling where the model features a
homogeneous superfluid state, as well as the strong-
coupling one where a supersolid crystalline order emerges.
The properties of the spectrum of NGmodes agree with our
general conclusions in both phases. In particular, we have
demonstrated that the Bogoliubov mode and the longitu-
dinal phonon in the supersolid state are distinct physical
modes.
Finally, we discussed the effect of an external magnetic

field on the translational properties of the system. Using a
simple quantum-mechanical toy model, we argued that this
changes the spectrum of NG modes qualitatively by mak-
ing the dispersion relation of some of them quadratic at low
momentum, and giving a gap to others. This issue would
certainly deserve a more detailed investigation in a
quantum-field-theoretic setting, with respect to its intrinsic
interest as well as the potential application to the physics of
rotating Bose gases.
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APPENDIX A: DERIVATION OF EQ. (3)

The derivation of Eq. (3) is straightforward, if somewhat
tedious. It bases solely on the partition of unity (2), trans-
lational property (1), definition of the averaged charge
density in Eq. (4), and some elementary integrals. We

would also like to first remind the reader of the Poisson

identity for the periodic � function in Rd0 ,

�uc

ð2�Þd0
X
R

eik1�R ¼ X
G

�d0 ðk1 � GÞ; (A1)

where G are vectors from the reciprocal lattice, G ¼Pd0
i¼1 nibi (ni 2 Z and ai � bj ¼ 2��ij). Taking now the

first term in the commutator in Eq. (3), we obtain by a
series of manipulations,

Z
ddþ1xh0jj0aðxÞ�bð0Þj0ieið!t�k�xÞ

¼
Z

dt
Z

dd
0
x1

Z
dd�d0x2

X
�

Z
ðFBZÞ

ddq

ð2�Þd h0jj
0
aðt; x1; x2Þj�; qih�; qj�bð0Þj0ieið!t�k�xÞ

¼
Z

dt
X
R

Z
uc
dd

0
�x1
X
�

Z
ðFBZÞ

ddq

ð2�Þd h0jj
0
aðt; �x1 þ R; 0Þj�; qih�; qj�bð0Þj0ieið!t�k1�x1Þ

�Z
dd�d0x2e

iðq2�k2Þ�x2
�

¼
Z

dt
X
R

Z
uc
dd

0
�x1
X
�

Z
FBZ

dd
0
q1

ð2�Þd0 h0jj
0
að0; �x1; 0Þj�; q0ih�; q0j�bð0Þj0ieiðq1�k1Þ�R�ik1� �x1�i½1ℏ"�ðq0Þ�!�t

¼ X
�

Z
FBZ

dd
0
q1h0j

�Z
uc

dd
0
�x1

�uc

j0að0; �x1; 0Þe�ik1� �x1
�
j�; q0ih�; q0j�bð0Þj0i2��ð!� 1

ℏ
"�ðq0ÞÞ

�
�uc

ð2�Þd0
X
R

eiðq1�k1Þ�R
�

¼ X
�

Z
FBZ

dd
0
q1h0j �jaðkÞj�; q0ih�; q0j�bð0Þj0i2��ð!� 1

ℏ
"�ðq0ÞÞ

X
G

�d0 ðq1 � k1 � GÞ

¼ 2�
X
�

h0j �jaðkÞj�;kih�;kj�bð0Þj0i�ð!� 1

ℏ
"�ðkÞÞ; (A2)

where we denoted q0 ¼ ðq1; k2Þ. In the last step, we used
the fact that, similarly to the coordinate decomposition
x1 ¼ �x1 þ R, any vector k1 from the reciprocal space
can be uniquely expressed as a sum of a vector from
FBZ and a vector G from the reciprocal lattice. As long
as k1 already lies in FBZ, the only solution to the con-
dition q1 � k1 �G ¼ 0 is q1 ¼ k1 and G ¼ 0. The
second contribution to the commutator in Eq. (3),R
ddþ1xh0j�bð0Þj0aðxÞj0ieið!t�k�xÞ, can be calculated in

the same way and we therefore skip the details.

APPENDIX B: GOLDSTONE THEOREM IN THE
EFFECTIVE ACTION FORMALISM

In Appendix B of the paper [8], we provided a proof of
the Goldstone theorem based on the quantum effective
action in a form applicable to nonuniform symmetries.
However, we for the sake of simplicity assumed continuous
translational invariance of the ground state. Our aim here is
to relax this constraint. Like in the rest of this paper, we
will assume that the spontaneously broken symmetry is
uniform; the extension of our argument to the fully general
case is straightforward though.

Consider a theory of a set of (not necessarily scalar)
fields, �iðxÞ, whose classical action is invariant under the

infinitesimal transformation ��iðxÞ ¼ �Fi½�ðxÞ�. Here, �
is a parameter of the transformation and Fi is a local
functional of the fields that does not depend explicitly on
the coordinate x. (This is equivalent to the requirement that
the symmetry be uniform.) Provided that Fi is linear in the
fields, the quantum effective action, �½��, shares the sym-
metry of the classical theory [19]. We then obtain the
invariance condition

Z
ddþ1y

�2�½�0�
��iðxÞ��jðyÞFj½�0ðyÞ� ¼ 0; (B1)

where the integration measure involves time as well as
d spatial coordinates and �0iðxÞ denotes the vacuum ex-
pectation value of the field in accord with the notation
introduced in Sec. III A 2. The second functional derivative
of the effective action here represents the exact inverse
propagator of the theory,G�1

ij ðx; yÞ. Assuming as in the rest

of the paper a discrete translational invariance in Rd0 and

continuous one in Rd�d0 as well as in time, this can be
Fourier transformed as
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G�1
ij ðx; yÞ ¼

Z þ1

�1
d!

2�

Z
ðFBZÞ

ddk

ð2�Þd
� e�i!ðtx�tyÞei½k1�ðRx�RyÞþk2�ðx2�y2Þ�

�G�1
ij ð!; k; �x1; �y1Þ; (B2)

where k1 lies in FBZ. Note that the Fourier transform of
the propagator still depends on the coordinates within
the Wigner-Seitz unit cell as a result of the lack of full
continuous translational invariance. Thanks to the assumed
periodicity of the ground state, �0iðyÞ ¼ �0ið �y1Þ, Eq. (B1)
becomes

Z
uc

dd
0
�y1

�uc

G�1
ij ð0; 0; �x1; �y1ÞFj½�0ð �y1Þ� ¼ 0: (B3)

For a translationally invariant ground state, Fj½�0ð �y1Þ� is
a constant and it follows immediately that the inverse
propagator must have a gapless pole at zero momentum
once the symmetry is spontaneously broken, that is, Fj½�0�
is nonzero. However, in presence of a spatially varying
order parameter, the implications of Eq. (B3) for the exci-
tation spectrum are less straightforward.

It is useful to first recall the spectral representation of the
propagator. Using the definition of the propagator in the
operator formalism, iGijðx; yÞ ¼ h0jTf�iðxÞ�jðyÞgj0i, and
inserting the partition of unity (2), one arrives at the
following expression for the Fourier transformed propaga-
tor, defined analogously to Eq. (B2),

Gijð!;k; �x1; �y1Þ

¼X
�

�h0j�ið0; �x1;0Þj�;kih�;kj�jð0; �y1;0Þj0i
!� 1

ℏ"�ðkÞþ i0

�h0j�jð0; �y1;0Þj�;�kih�;�kj�ið0; �x1;0Þj0i
!þ 1

ℏ"�ð�kÞ� i0

�
: (B4)

This ensures that even with just a discrete translational
invariance, one can still extract the quasiparticle spectrum
from the poles of a conveniently defined propagator.
To conclude our argument, we note that the condition of
G�1 being inverse to G reads

R
ddþ1zGikðx; zÞG�1

kj ðz; yÞ ¼
�ij�

dþ1ðx� yÞ, which takes the following form in the

frequency-momentum space,

Z
uc

dd
0
�z1

�uc

Gikð!; k; �x1; �z1ÞG�1
kj ð!; k; �z1; �y1Þ

¼ �ij�uc�
d0 ð �x1 � �y1Þ: (B5)

Multiplying this equation by Fj½�0ð �y1Þ� and integrating

over �y1, we obtain the identity

Z
uc

dd
0
�z1

�uc

Gikð!;k; �x1; �z1Þ

�
�Z

uc

dd
0
�y1

�uc

G�1
kj ð!;k; �z1; �y1ÞFj½�0ð �y1Þ�

�
¼Fi½�0ð �x1Þ�:

(B6)

As long as Fi½�0ð �x1Þ� is nonzero at least at some point in
space, we conclude with the help of Eq. (B3) that the
propagator must be singular in the limit of zero frequency
and momentum (at least for some �z1). By means of the
spectral representation (B4), this asserts the existence of a
pole such that "�ð0Þ ¼ 0.
Finally, let us remark that the proof would have been

technically much simpler had we considered the effective
action (and in turn the propagator) as a functional of fields
spatially averaged over the Wigner-Seitz unit cell,

�� iðt;R; x2Þ �
Z
uc

dd
0
�x1

�uc

�iðt; �x1 þR; x2Þ: (B7)

The order parameter ��0i would then be completely time
and coordinate independent and the left-hand sides of
Eqs. (B3) and (B5) would become mere products in
momentum space. The price for this simplification would
be that we could make no conclusions about the spectrum
in the cases that the symmetry is spontaneously broken but
the spatial average of the order parameter vanishes. The
above given proof is more general since it only assumes
that the order parameter is nonzero at some point.

APPENDIX C: CALCULATIONAL METHODS

In this Appendix, we collect some details of the tech-
niques used in the numerical computations in Sec. III.

1. Minimization of the energy

To minimize the energy functional (16), we exploit
the assumed periodicity of the classical field and
perform the Fourier decomposition of the field, c G ¼
��1

uc

R
uc d

dxc ðxÞe�iG�x. The total energy divided by the

space volume is then equal to the energy density averaged
over the unit cell, which is given by

�E½c � ¼ X
G

�
G2

2g
� 1

�
c �

iGc iG

þ 1

2

X
G;G0q

c �
iGc iG�qvðqÞc �

jG0c jG0þq: (C1)

Thanks to the parity invariance of the Lagrangian, which
is naturally assumed to be shared by the ground state, we
can restrict our attention to even-parity classical fields,
c 0ðxÞ ¼ c 0ð�xÞ. This, together with the reality of the
classical field, implies the relation c G ¼ c�G ¼ c �

G,

which significantly reduces the number of variables in
the minimization procedure.
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The minimization of the averaged energy density is
accomplished by first fixing the primitive lattice vectors

faigdi¼1 and minimizing �E½c � with respect to the Fourier

components fc Gg. This determines the function �EðfaigÞ �
�E½c 0ðfaigÞ�, which is subsequently minimized with respect
to faig. The actual crystal form of the classical field c 0ðxÞ
is thus found.

2. Calculation of the band structures

The Schrödinger equation (21) can be rewritten in
Fourier space as

T�
G1G2

’iG2
¼ �ðKG1G2

þ 2�i1WG1G2
Þ�iG2

;

TG1G2
�iG2

¼ �KG1G2
’iG2

;
(C2)

where the (infinite-dimensional) matrices K, T, and W are
defined by

KG1G2
¼

�ðkþ G1Þ2
2g

� 1

�
�G1G2

þ uG1�G2
;

TG1G2
¼ i!ðkÞ�G1G2

;

WG1G2
¼ X

G0
�c 0G1�G0 �c 0G0�G2

vðkþ G0Þ;
(C3)

and uG ¼ vðGÞPG0 �c 0G�G0 �c 0G0 . Because Eq. (C2) repre-
sents a set of homogeneous linear equations for the Fourier
components �iG and ’iG (for each fixed i), the band struc-
ture can be found from the condition that the determinant of
the matrix of coefficients in these equations be zero.
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HARUKI WATANABE AND TOMÁŠ BRAUNER PHYSICAL REVIEW D 85, 085010 (2012)

085010-14

http://dx.doi.org/10.1140/epjb/e2010-10176-y
http://dx.doi.org/10.1140/epjb/e2010-10176-y
http://dx.doi.org/10.1103/PhysRevLett.81.742
http://dx.doi.org/10.1143/JPSJ.67.1822
http://dx.doi.org/10.1103/PhysRevLett.88.120407
http://dx.doi.org/10.1103/PhysRevLett.88.120407
http://dx.doi.org/10.1103/PhysRevLett.94.175301
http://dx.doi.org/10.1103/PhysRevLett.98.195301
http://dx.doi.org/10.1103/PhysRevLett.98.195301
http://dx.doi.org/10.1209/0295-5075/82/16001
http://dx.doi.org/10.1103/PhysRevC.84.045809
http://dx.doi.org/10.1103/PhysRevC.84.045809
http://dx.doi.org/10.1016/0038-1098(75)90696-1
http://dx.doi.org/10.1126/science.1060182
http://dx.doi.org/10.1103/PhysRevLett.91.100402
http://dx.doi.org/10.1103/RevModPhys.59.87
http://dx.doi.org/10.1103/PhysRevLett.91.110402

