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We study the possibility of constructing Lorentz-violating supersymmetric quantum field theories

under the assumption that these theories have to be described by Lagrangians which are renormalizable

by weighted power counting. Our investigation starts from the observation that at high energies

Lorentz-violation and the usual supersymmetry algebra are algebraically compatible. Demanding

linearity of the supercharges, we see that the requirement of renormalizability drastically restricts the

set of possible Lorentz-violating supersymmetric theories. In particular, in the case of supersymmetric

gauge theories the weighted power counting has to coincide with the usual one and the only Lorentz-

violating operators are introduced by some weighted constant c that explicitly appears in the

supersymmetry algebra. This parameter does not renormalize and has to be very close to the speed

of light at low energies in order to satisfy the strict experimental bounds on Lorentz violation. The only

possible models with nontrivial Lorentz-violating operators involve neutral chiral superfields and do not

have a gauge invariant extension. We conclude that, under the assumption that high-energy physics can

be described by a Lorentz-violating extension of the standard model which is renormalizable by

weighted power counting, the Lorentz fine tuning problem does not seem solvable by the requirement of

supersymmetry.
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I. INTRODUCTION

Lorentz symmetry is a basic ingredient of the standard
model and it has been verified with great precision by
different experiments [1]. However, from a theoretical
point of view it would be possible to violate Lorentz
invariance at very high energies requiring this symmetry
to be restored at low energies [2]. Moreover, it has been
shown that Lorentz violation could emerge as a preferred-
frame effect both in string theory [3,4] and in loop quantum
gravity [5].

In our approach, we want to preserve the requirement of
renormalizability as an a priori selection criterion for
physical theories at high energies and at the same time
enlarge the class of renormalizable theories relaxing the
hypothesis of Lorentz invariance but preserving both local-
ity and unitarity.

The issue of renormalizability in the context of Lorentz-
violating theories has been defined and widely studied for
both matter and gauge fields [6–11]. The basic idea is that
one can break Lorentz symmetry at high energies introduc-
ing a weighted power counting that weights differently
time and space coordinates. Thanks to this modified power
counting, we can improve the UV behavior of propagators
by introducing higher space derivatives terms in the
kinetic Lagrangian. The number of higher space deriva-
tives in a given theory is parametrized by some integer
n. This procedure preserves perturbatively the unitarity
of the theories because the weighted power counting
coincides with the usual one on the time coordinate.

Lorentz-violating theories become less divergent and con-
tain new interactions which are nonrenormalizable by the
usual power counting but renormalizable by the weighted
one. We assume that Lorentz-violating terms arise at en-
ergies greater than a breaking energy scale �L.
The implications of Lorentz violation on physics beyond

the standard model and, in particular, its consequences on
low-energy phenomenology has been widely explored in
the literature [12,13]. There are several purposes of pos-
sible Lorentz-violating extensions of the standard model
that answer some questions about neutrino physics such as
neutrino oscillations and neutrino masses [14] and give an
alternative framework which concerns the origin of the
mass of elementary particles [15–17].
The recovery of Lorentz invariance in the low-energy

limit is not automatic and depends mostly on the running of
the coupling constants associated to noncovariant opera-
tors that are renormalizable in the usual sense and for this
reason are not suppressed by any powers of�L. It has been
shown that these coupling constants go to zero in the IR
limit for CPT-preserving operators in the context of pure
Yang-Mills theories, but grow forCPT-violating ones [18].
However, even if we assume CPT invariance we need a
strong fine tuning on dimension 2 and dimension 3 opera-
tors at low energies to be in agreement with the strict
constraints on Lorentz violation [19,20]. This problem is
known in the literature as the Lorentz fine tuning problem
[21]. One of the best candidates for trying to solve this new
naturalness problem in the context of Lorentz-violating
theories seems to be supersymmetry [22,23].
On this basis, it can be interesting to study quantum field

theories that are exact representations of the SUSYalgebra*dredigol@ulb.ac.be
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and contain Lorentz-violating terms. The idea of combin-
ing supersymmetry and Lorentz violation arises from a
simple observation: even though the SUSY algebra is con-
structed as the graded extension of the Poincaré algebra,
Lorentz violation and the SUSYalgebra are not incompat-
ible. In fact, if we weight differently space and time we
have to eliminate from the Poincaré algebra the generators
of the boosts, but these generators do not appear in the
anticommutator of two supercharges. Hence, we can elimi-
nate all the relations that contain them obtaining again a
closed algebra [22].

From this algebraic compatibility we can start to con-
struct N ¼ 1 supersymmetric field theories with Lorentz
violation. The classification of Lorentz-violating effective
field theories that are exact representations of the SUSY
algebra and the study of their quantum corrections have
already been the subject of careful investigations in the
literature [24,25]. However, in this work we want to
focus our attention on the possibility of constructing
Lorentz-violating supersymmetric theories which are re-
normalizable by weighted power counting. If we require
the existence of superspace and the linearity of super-
charges in the momenta we find, using weighted power
counting, that the Kähler potential must have the same
form as in the Lorentz-invariant case and, in particular, it
cannot contain higher space derivatives. This happens
because the Grassmannian spinor variables associated
with the supercharges are not affected by the weighted
power counting. However, for theories with even n
we can introduce an even number of higher space deriva-
tives as ‘‘mass’’ terms in the superpotential, preserving
the rotational invariance in the spatial submanifold
�M �d. In this approach we can classify all the possible
theories for chiral superfields and derive the corresponding
Feynman rules. The structure of Feynman graphs in the
Grassmann variables is not modified so that the nonre-
normalization theorem works as in the Lorentz-invariant
case.

Using a result of [24], we show that it is not possible to
construct a gauged version of the terms with higher space
derivatives in the superpotential. Moreover, by looking at
the gauge sector we find that a generic Lorentz-violating
gauge theory, defined once we have assigned weights to the
fields, admits a supersymmetric extension if and only if the
weighted power counting coincides with the usual one.
Therefore, the requirement of supersymmetry rules out
the possibility of having high energy renormalizable ex-
tensions of the standard model with higher dimensional
operators. The only Lorentz-violating operators in the
theory have to be renormalizable in the usual sense and
their coupling constants need to fulfill the strict experi-
mental bounds on Lorentz violation. In the supersymmetric
case the Lorentz invariance recovery is regulated by the
constant c in the spatial part of the kinetic term that does
not renormalize if we assume that supersymmetry is softly

broken at a scale �s � �L. Therefore, the experimental
bounds at low energies determine the values of the
Lorentz-violating parameter also at high energies and the
Lorentz violation effects will be irrelevant. The only non-
trivial high-energy theories that we can construct involve
neutral superfields which are singlets with respect to the
standard model gauge group and interact through Landau-
Ginzburg vertices �N .
However, the problem of constructing Lorentz-violating

supersymmetric field theories remains an open field of
research because in principle we could consider various
modified supersymmetry algebras in which the anticom-
mutator of two conjugate supercharges is linear in the time
momentum but nonlinear in the space momenta. These
structures are still compatible with the weighted power
counting and the Coleman-Mandula theorem [26,27] and
in the limit �L ! 1 they approach the usual supersym-
metry algebra. It is straightforward to find free Lagrangians
that are invariant under the action of the new supercharges
but, however, the nonlinearity in the spatial momenta
makes the problem of constructing interacting theories a
very complicated one.
This paper is organized as follows. In Sec. II, we study

the possible supersymmetry algebras in the Lorentz-
violating case and discuss the problem of constructing
interacting theories when the supercharges are nonlinear
in the momenta. In particular, we explain on which point
we disagree with the results of [28]. In Sec. III, assuming
linearity of supercharges in the momenta, we construct the
most general renormalizable Lorentz-violating theory for
chiral superfields in four dimensions. We study the renor-
malization properties of these theories and show that the
usual nonrenormalization theorem for supersymmetric
theories has a trivial extension to the Lorentz-violating
case. We also give a complete classification of the possible
supersymmetric Lorentz-violating theories for neutral chi-
ral superfields. In Sec. IV, we study the problem of con-
structing Lorentz-violating gauge theories. We apply a
result of [24] to show that the theories of Sec. III are not
generalizable to the case of charged chiral superfields.
Finally, we show that if we demand supersymmetry for
gauge theories the weighted power counting has to coin-
cide with the usual one. In Sec. V, we discuss the low-
energy limit of our theories and the recovery of Lorentz
invariance. In the superfield formalism, it is almost trivial
to show that the Lorentz-violating parameter c in the
kinetic Lagrangian does not renormalize to all orders of
perturbation theory. However, we will explicitly see in
components how the requirement of supersymmetry re-
markably changes the one-loop renormalization group
equations for Lorentz-violating theories at low energies.
Moreover, we discuss whether or not the deviation from the
speed of light is physically observable in the Lorentz-
violating supersymmetric theories. Section VI contains
our conclusions.
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II. SUSYALGEBRAVS LORENTZ
SYMMETRY BREAKING

A. Berger-Kosetelcký construction

We consider the spacetime manifold Md and we take
d ¼ 4. Defining the weighted power counting, we split Md

into the product of two submanifolds Md̂�M �d and so the

complete Lorentz symmetry SOð1;3Þ breaks into the resid-

ual symmetry SOð1;d̂�1Þ�SOð �dÞ. The weighted power
counting is defined once we assign the scaling laws, or
equivalently the weights of coordinates or momenta [9]:

x̂! x̂e��; �x!e��=n; ½p̂�¼1; ½ �p�¼ 1

n
: (1)

Sincewe are breakingLorentz symmetry, we have to discard
the boost generator J�̂�� between Md̂ and M �d from the

Poincaré algebra p. However, J�̂�� appears only on the left

of the SUSY algebra commutation relations, so we can
eliminate from the SUSYalgebra sp the relations that con-
tain J�̂�� obtaining again a closed superalgebra sp0. In gen-

eral, the anticommutator between the two conjugate
supercharges will be

fQ�; �Q _�g ¼ 2a�
�̂
� _�P�̂ þ 2b�

��
� _�P ��: (2)

Evaluating (2) on a generic physical state jc i and contract-
ing the spinor indices, we obtain

0< hc j��fQ�;Q _�g� _�jc i
¼ 2hc j��ða��̂

� _�P�̂ þ b� ��
� _�P ��Þ� _�jc i:

The operator��P� is positive definite on the physical states

and this implies that a > 08b for both massive and mass-
less particles. We can rescale the supercharges defining
Q0

� ¼ ffiffiffi
a

p
Q�, and dropping the primes we obtain

fQ�; �Q _�g ¼ 2�
�̂
� _�P�̂ þ 2c�

��
� _�P ��: (3)

To be consistent with the definition of weighted power
counting (1), the constant c has to be dimensionless and
to weight ½c�¼1�1=n. The weight of supercharges is fixed
by the commutation relations and is equal to their dimension:

½Q� ¼ ½ �Q� ¼ 1

2
:

We can reabsorb the modification of the SUSY algebra by
redefining the Minkowski metric ��� and the � matrices

[22]:

�0�̂¼��̂; �0 ��¼c� ��;

ð�0� ��0�þ�0� ��0�Þ��¼�2��
��

0��¼�2��
�ð��̂�̂þc2� �� ��Þ;

h0 ¼�0��@�@�¼@�̂@�̂þc2@ ��@ ��;

p02¼�0��p�p�¼p�̂p�̂þc2p ��p �� (4)

and after these redefinitions the algebra (3) looks like the
usual one. Therefore, the structure of the superspace is

identical to the Lorentz-invariant case as was observed in
[29]. In particular we can define, as usual, the covariant
derivatives so that fD;Qg ¼ fD; �Qg ¼ 0. In our construc-
tion, the crucial requirement is the linearity of the super-
charges in the space momenta P ��. This assumption makes

possible the usual definitions of the N ¼ 1 superspace as a
coset space defined by the set of variables z	 ¼ ðx̂; �x; �; ��Þ.
The operator Uðŷ; �y; �; ��Þ ¼ eiðŷ P̂þ �y �Pþi�Qþi �� �QÞ is a well-
defined translation in superspace and we can define a scalar

superfield Sðx̂; �x; �; ��Þ so that �US ¼ �iŷ P̂�i �y �Pþ�QS
þ �� �QS. From the Leibniz rule for the supercharges and
the definition of covariant derivatives it follows that every
polynomial in the superfields and its covariant derivatives
is still a superfield.

B. Higher-momenta superalgebras

The Lorentz-violating case admits a larger class of
superalgebras compatible with the Coleman-Mandula
theorem and the weighted power counting. The anticom-
mutator fQ�; �Q _�g is in the ð1=2; 1=2Þ representation of the
Poincaré algebra and has dimension 1. In the Lorentz-
invariant case this implies that it has to be proportional to
��P�, which is the only operator of dimension 1 in the

same representation. In the Lorentz-violating case, we can
construct new operators �O �� of weight ½ �O� ¼ 1 and dimen-
sion 1 in the vector representation of the soð �dÞ algebra.
These operators are simply weighted polynomials of odd
degree in the momentum �P

�O �� ¼ X
k

ak
�P2k �P ��

�2k
L

; with k �
�
n� 1

2

�
;

where the constants ak weight ½ak� ¼ 1� ð2kþ 1Þ=n and
½ak� � 0. The parameter n should be understood as the
highest power of �P that appears in the quadratic terms of
the Lagrangian, as explained in [9]. Therefore, we can
construct new superalgebras allowed by the Coleman-
Mandula theorem and by the weighted power counting:

fQ�; �Q _�g ¼ 2�0�
� _�P� þ 2� ��

� _�
�O ��;

fD�; �D _�g ¼ �2�
0�
� _�P� � 2�

��
� _�

�O ��:
(5)

The new operators �O �� have the same commutation rules as
�P� in the SUSY algebra because, removing J�̂ �� from the

original superalgebra sp, �P2 becomes a Casimir operator
for the new superalgebra sp0. If we take the low-energy
limit �L ! 1 in (5) we obtain again (3). In principle sp0
has the same superspace as sp because we have not intro-
duced new supercharges, but now our supercharges will be
nonlinear operators in �P:

Q� ¼ @

@��
� i�

0�
� _�

�� _�@� � i�
��
� _�

�� _� �O ��; (6)

so the operator Uðŷ; �y; �; ��Þ ¼ eiðŷ P̂þ �y �Pþi�Qþi �� �QÞ is not a
simple translation in superspace anymore. We can still
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define a superfield S so that �US ¼ �iŷ P̂�i �y �Pþ�QSþ
�� �QS, but now it is in general not true that every poly-
nomial in S is still a superfield because the supercharges (6)
do not respect Leibniz rule: �UðS1S2Þ � �US1S2 þ
S1�US2. For this reason the superfield formalism loses its
usefulness and it is not possible to promote directly the
usual supersymmetric Lagrangians for matter and gauge
fields to Lagrangians which are symmetric under the modi-
fied SUSY algebra (5). The construction of a recent pub-
lication [28] is completely invalidated by this observation.
Actually, that construction works only for free theories
because the Leibniz rule for the supercharges (6) is fulfilled
up to a total derivative if we consider only bilinears in the
superfields. As an example of our general argument we
consider the same theory as [28], namely for (1,3) splitting
we take the superalgebra (5) for n ¼ 3. For the chiral
supermultiplet we can write a kinetic Lagrangian:

L kin ¼ @̂
y@̂
þ
�
c1 �@þ �@2 �@

�2
L

�

y

�
c1 �@þ �@2 �@

�2
L

�



þ �y
�
i@̂þ c1i

�6@þ i �@3

�2
L

�
�þ FyF: (7)

The Lagrangian is invariant under the transformations

��
 ¼ ffiffiffi
2

p
��;

��� ¼ i
ffiffiffi
2

p �
��̂ ��@�̂ þ � �� ��

�
c1@ �� þ

�@2@ ��

�2
L

��

þ ffiffiffi

2
p

�F;

��F ¼ i
ffiffiffi
2

p
��

�
���̂@�̂ þ c1 ��

��

�
c1@ �� þ @2@ ��

�2
L

��
�; (8)

which are clearly generated by supercharges that satisfy
the superalgebra (5) for n ¼ 3. The author [28] claims that
if we want to add interactions invariant under (8) to this
theory, it is sufficient to rephrase the usual superfield
formalism for the new supercharges. Following his deriva-
tion, from the definition of the chiral superfield �D _�� ¼ 0
we obtain

�ðx;�Þ¼
ðxÞþi���̂ ��@�̂
ðxÞ�i�� �� ��

�
c1@ ��þ

�@2@ ��

�2
L

�

ðxÞ

þ1

4
�2 ��2

�
@̂2þ2c1

�@4

�2
L

þ �@6

�4
L

�

ðxÞþ ffiffiffi

2
p

��ðxÞ

þ iffiffiffi
2

p �2 ��

�
���̂@�̂þ �� ��

�
c1@ ��þ

�@2@ ��

�2
L

��
�ðxÞ

þ�2FðxÞ: (9)

If the superfield formalism worked, then each holomorphic
function of the superfield (9) would be invariant under (8).
As an example of a possible interaction Lagrangian, let us
consider the usual cubic interaction in the superfields:

L int ¼ g

3

Z
d2��3 þ H:c: ¼ gF
2 � g
c c þ H:c:

Now varying Lint with respect to (8), we obtain

�Lint¼ i
ffiffiffi
2

p
��

�
@�̂ð ���̂�


2Þþ@ ��ðc1 �� ���

2Þþ @ ��

�2
L

ð �@2�
2

�2 �� ��@ ���@ ��

þ2 �� ��ð@ ��@ ��

þ@ ��
@ ��
ÞÞ
�

þ i2
ffiffiffi
2

p
�� �� ���@ ��@ ��
@ ��
:

Because of the last term in the previous equation, �Lint �

@�̂A�̂ þ @ ��B �� and therefore the action is not invariant

under the transformations (8). This was expected, since
the supercharges are nonlinear in the spatial derivatives.
Clearly, the possibility of constructing interacting quan-

tum field theories which are invariant under the super-
algebra (5) is not ruled out by our observation and could
be an interesting open field of research which, however,
needs more involved constructions.
In the rest of this paper we will restrict ourselves to the

case in which the supercharges are assumed to be linear in
the spatial momenta and we will work with the supersym-
metric algebra (3).

III. RENORMALIZABLE LORENTZ-VIOLATING
THEORIES FOR CHIRAL SUPERFIELDS

A. General discussion

The integration measure in four dimensions for a general

splitting 4 ¼ d̂þ �d weights �‘ � �ðd̂þ �d
nÞ, so a renor-

malizable Lagrangian has to be a weighted polynomial in
the momenta of weight ½L� ¼ ‘ and dimension 4, as we
want to keep the action dimensionless and weightless.
Considering the superalgebra (3), we take a chiral super-

field �ðx̂; �x; �; ��Þ in the N ¼ 1 superspace defined by the
constraint �D� ¼ 0:

�ðx̂; �x; �; ��Þ ¼ 
þ i��0� ��@�
þ �2 ��2

4
h0
þ ffiffiffi

2
p

��

þ iffiffiffi
2

p �2 �� ��0�@��þ �2F:

The complex scalar field 
ðxÞ and the Weyl spinor �ðxÞ
are propagating quantum fields, and we can derive their
weights from their kinetic Lagrangian [9]. The chiral
superfield then weights

½�� ¼ ½
� ¼ ‘� 2

2
¼ ½�� þ ½�� ¼ ½�� þ ‘� 1

2
: (10)

The equation (10) fixes theweight of the spinor coordinates
to ½�� ¼ �1=28n, which is equal to the difference of
weight between scalars and fermions and is constant with
respect to n. The spinor coordinates in the superspace do
not rescale with n and their weights are equal to their
dimensions so that, as in the Lorentz-invariant case,
½d4�� ¼ 2 and ½d2�� ¼ ½d2 ��� ¼ 18n.
We want to construct the most general Lorentz-violating

Lagrangian for M different chiral superfields �i with
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i ¼ 1 . . .M. The Kähler potential K½�; ��� weights ½K� ¼
‘� 2 and the superpotential f½�� weights ½f� ¼ ‘� 1. If
we demand polynomiality of the Lagrangian, ½��> 0, we
obtain

Lðd̂; �dÞ ¼
Z

d4� ��i�i þ
X
�;N

Z
d2�

�N;�

N�Nðd�2Þ=2þp1þp2�3
L

� ½@̂p1 �@p2�N�� þ H:c:; (11)

where � labels possible different derivative structures and
a combinatorial factor can appear in the denominator if
there are identical superfields. The most general Kähler
potential which is renormalizable by weighted power
counting has the same form as the Lorentz-invariant one.
This observation severely restricts the possibility of con-
structing supersymmetric Lorentz-violating models and at
the same time will have important implications in the study
of the renormalization group flow at low energies of the c
parameter. In the superpotential, the derivative structure of
the vertex defines a monomial in the superfield momenta
of weight ��

N ¼ p1 þ p2=n. If we want to preserve CPT
invariance and symmetry under rotation in the submanifold
M �d we have to assume that p1 and p2 are even numbers.
The coupling constant ��;N associated to a vertex with N
superfields is a symmetric tensor with N internal indices
i1 . . . iN , where ik ¼ 1 . . .M8 k, and by power counting it
has to weight

½�N;�� ¼ ‘� 1� N½�� � ��
N: (12)

We will call a vertex weighted marginal when its coupling
constant weights ½�N;�� ¼ 0, weighted relevant when

½�N;��> 0 and weighted irrelevant when ½�N;��< 0. As
it has been shown in [9], the renormalization rules in the
Lorentz-violating case work as in the Lorentz invariant one
after the substitution d ! ‘, so that we can express the
renormalizability condition imposing that the weight of the
coupling constant has to be greater or equal to zero,
½�N;�� � 0. As we need ½��> 0 for polynomiality, taking

N ¼ 2 in this inequality we can derive an upper bound on
the weight of the monomial in the momenta ��

N � 1, that
ensures perturbative unitarity of the theory and forbids the
presence of terms with time derivatives in the superpoten-
tial. We write Lðd̂; �dÞ ¼ Lkin þLint, where the kinetic term

of the Lagrangian (11) is

Lkin¼
Z
d4� ��i�iþ

Z
d2�

� X
l�½n=2�

ðalÞij
2�2l�1

L

�@l�i
�@l�j

�
þH:c:

(13)

Only terms with an even number of space derivatives are
allowed and the index l in the sum is an integer that goes
from zero to the integer part of the ratio ½n=2�. The higher
space derivatives terms generalize the mass term in the
Wess-Zuminomodel [30] and are regulated by the coupling
constants ðalÞij, which are M�M symmetric matrix of

weight ½al� ¼ 1� 2l=n. The diagonal terms of al behave
as Majorana mass terms, whereas the off-diagonal terms
behave as Dirac mass terms. In order to simplify the nota-
tion, we omit the internal index structure and take the free
partition function of a theory with only one chiral super-
field, in which the coupling constant al becomes a coeffi-
cient and we can construct only Majorana mass terms.

Z0½J; �J�¼
Z
D�D ��exp�

�Z
d8z

�
1

2
� ��
� �

A
�

��

 !

� � ��
� � D2

40 J

�D2

40
�J

0
@

1
A�	

and A¼ A11
D2

40 1

1 A22
�D2

40

0
@

1
A

whereA11¼A22¼
� X
l�½n=2�

ð�Þlal
�2l�1

L

�@2l
�
:

From the partition function, we can derive the propagators
for the chiral superfield using the methods of [31]:

h�ð1Þ ��ð2ÞiJ¼0 ¼ �12

p02 þ ð P
l�½n=2�

al
2�2l�1

L

ð �p2ÞlÞ2 ; (14)

h�ð1Þ�ð2ÞiJ¼0¼D2

4

� X
l�½n=2�

alð �p2Þl
�2l�1

L

�

� �12

p02ðp02þð P
l�½n=2�

alð �p2Þl
�2l�1

L

Þ2Þ
; (15)

where we have reabsorbed the� D2

4 factors in the Feynman

rules for the vertices and p02 is defined in (4). If we differ-
entiate the propagators (14) and (15) with respect to any
coefficient al with l < ½n=2�, theweight of the denominator
increases by 1� 2l=n and differentiating with respect to c
increases by 1� 1=n. Hence, we can make any Feynman
graph convergent by differentiating it a suitable number of
times with respect to the coefficients al or c, and the
counterterms will be polynomials in al and c. We can
consider the super-renormalizable operators associated
with the coefficients al and c as vertices with two external
lines and treat them perturbatively. Doing that, we can study
the UV behavior of the Lorentz-violating theories keeping
in the propagators (14) and (15) only the terms with the
maximum number of spatial derivatives:

P � �� ¼ �12

p̂2 þ a2½n=2�
ð �p2Þ2½n=2�
�4½n=2��2

L

; (16)

P ��¼D2

4

a½n=2�ð �p2Þ½n=2�
�2½n=2��1

L

�12

p02ðp̂2þa2½n=2�
ð �p2Þ2½n=2�
�4½n=2��2

L

Þ
: (17)
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The weight of the coefficient a½n=2� is zero for even n
and strictly positive for odd n, and in fact the operators

ð �@½n=2��Þ2 in the free Lagrangian (13) are strictly renorma-
lizable for even n and super-renormalizable for odd n.
Therefore, for odd nwe cannot construct propagators which
are the inverse of homogeneous polynomials ofweight 2 and
this fact completely invalidates our construction. To under-
stand what does not work in the odd n case, we compare the
kinetic terms of the fermionic and the scalar Lagrangians in
the nonsupersymmetric case for an arbitrary n [9]:

L s ¼ 1

2
ð@̂
Þ2 � c2

2
ð �@
Þ2 �Xn

l¼2

a2l
2�2l�2

L

ð@l
Þ2 �m2

2

2;

(18)

Lf¼ �c

�
i ^6@þvi �6@þXn

lodd

b0l
�l�1

L

ði �6@Þlþ Xn
leven

bl
�l�1

L

ði �6@Þl�M

�
c :

(19)

From the equations of motion associated with the
Lagrangians (18) and (19), we derive the corresponding
dispersion relations1:

E2
sð �pÞ ¼ c2 �p2 þXn

l¼2

a2l
�p2l

�2l�2
L

þm2; (20)

E2
fð �pÞ ¼ �p2

�
vþ Xn

lodd

b0l
�l�1

L

�pl�1

�
2 þ

�
Mþ Xn

leven

bl
�l�1

L

�pl

�
2
:

(21)

In the Lorentz-invariant case, the dispersion relation among
energy and spatial momentum is universal for all particles
E2ð �pÞ ¼ c2 �p2 þm2. Conversely, we see from (21) that in
the Lorentz-violating case the dispersion relation for fermi-
ons contains two different kinds of contributions that are
related, respectively, to termswith an even or an odd number
of derivatives in the kinetic Lagrangian (19). This happens
because the termswith an even number of derivatives behave
like mass terms from the point of view of the spin 1=2
representation of the Lorentz group, while the terms with

an odd number of derivatives behave like �6p. A necessary
condition for the theory to be supersymmetric is that all the
dispersion relations of particles in the same supermultiplet
have to be the same. We have shown that all the higher
spatial derivatives terms that behave like masses can be
supersymmetrized by adding appropriate F-terms to the
superpotential. On the contrary, all terms with an odd num-
ber of higher spatial derivatives would correspond to mod-
ifications of the Kälher potential. However, a Kähler

potential which is renormalizable byweighted power count-
ing should have the same form as the Lorentz-invariant one
and thereforewe cannot construct a supersymmetric version
of a theory with an odd number of higher spatial derivatives
in the fermionic kinetic term. If n is odd this means that it is
not possible to construct a supersymmetric version of a free
theory with scalars and fermions. For even n we can con-
struct supersymmetric theories in which dispersion relations
for fermions will be of the form (21) with b0l ¼ 08 l.
The Feynman rules for the vertices remain unchanged

with respect to the Lorentz-invariant case [31] because the
Lorentz-violating terms do not modify the �-structure of
Feynman graphs. Therefore, the divergent contributions to
the effective energy are polynomials in the external mo-
menta of the form

�1 ¼
Z

d4xd4�Fð�; ��; D� . . . ; �@�; . . .Þ: (22)

By power counting, we obtain ½F� ¼ ‘� 2, so that the
nonrenormalization theorem [32] for the divergent contri-
butions still works in the Lorentz-violating case and the
divergent contributions affect only the Kähler potential.
We can calculate the superficial divergence for a generic
Feynman graph G at L loops, with I propagators, V verti-
ces and E external lines2

!ðGÞ¼ ð‘�2ÞL�2I�EþX
N;�

vNðN�1þ��
NÞ

¼dðEÞ�2�X
N;�

v�
N½��;N�; where dðEÞ¼ ‘�E½��

(23)

and the weights of the chiral superfield � and of the
coupling constant are defined in (10) and (12). For renor-
malizable theories, taking E ¼ 2 yields an upper bound for
the superficial divergence, !ðGÞ � 0, that is in agreement
with the result of the nonrenormalization theorem (22).
Therefore, in a supersymmetric Lorentz-violating theory
the Kähler potential can receive radiative corrections with
logarithmic divergences if and only if there are strictly
renormalizable interactions. If the theory contains only
super-renormalizable interactions, then the theory is finite.
In the Lorentz-invariant Wess-Zumino model, the nonre-
normalization theorem ensures that the behavior of the
theory at different energies is regulated only by the wave
function renormalization constant. In our models this is not

1For simplicity, we write the dispersion relations in the case of
(1, 3) splitting, in which there is a natural identification of the
energy with the only component of the four momentum whose
weighted dimension coincides with the usual one. The extension
to different splittings is straightforward.

2The covariant derivatives algebra contains the positive
weighted constant c, so that their commutation rules generate
nonhomogeneous polynomials of degree 1 in the momenta. A
chiral vertex

R
d2��N yields N � 1 D2 factors to the numer-

ators, that correspond to a nonhomogeneous polynomial of
maximum degree N � 1 in the momenta. In the computation
of the superficial divergence, we consider the term of maximum
degree for every polynomial generated by the covariant deriva-
tives commutation rules. The other terms will have a better UV
behavior.
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true anymore. However, we can derive relations among
different renormalization constants. The most general re-
normalizable interaction Lagrangian contains two different
kinds of composite operators:

L int �
Z

d2�

�
�k

�k�3
L

�k þ �0
k;l;�

�kþ2l�3
L

½ �@2l�k��
	
þ H:c::

Demanding the renormalizability of the theory it is easy to
see that k is an integer number 2< k � �N, where �N is the
maximum number of legs for the chiral vertex in a Lorentz-
violating theory with fixed n,

�N ¼
�
2
‘� 1

‘� 2

�
; (24)

and we indicate with the squared brackets the integer part
of the enclosed ratio.

Consequently, n=2 � l < n, where in our case n=2 is
always an integer because our theories are defined for even
n only. Wewill classify all the possible models for different
splittings in section III C. The renormalization constant of
operators like �k is simply the product of k times the
renormalization constant of the superfield �, whereas
composite operators like Ok;l;� � ½ �@2l�k�� renormalize

in a nontrivial way because of the space derivatives in
the vertices. Rewriting the Lagrangian respect to the bare
quantities, we get

ð�kÞB¼�ðk=2�1ÞZ�k
�k; �B¼Z1=2

� �; ðalÞB¼Zalal;

cB¼cþ�c; ð�0
k;l;�ÞB¼�ðk=2�1ÞZ�0

k;l;�
�0
k;l;�;

ðOk;l;�ÞB¼ZOk;l;�
Ok;l;�; �LB¼Z�L

�L:

From the nonrenormalization of the superpotential we then
obtain

Zk=2
� Z�k

Zk�3
�L

¼ 1;
ZOk;l;�

Z�0
k;l;�

Zkþ2l�3
�L

¼ 1: (25)

On the other hand, the Kähler potential is renormalized
by a single superfield wave function renormalization

KB½ ��;�� ¼ Z�K½ ��;��, so that

�c ¼ 0;
Zal

Z�L

¼ 1: (26)

This last result implies that the deviation from the speed
of light of a supermultiplet does not renormalize in a
supersymmetric theory. We will discuss in more detail
the physical consequences of this result in Sec. V.

B. Homogeneous theories

We call homogeneous a theory whose vertices are all
marginal. This kind of theory is invariant at the classical
level under the weighted dilatations (1), while at the quan-
tum level the weighted scale invariance is anomalous and
related to the renormalization group [9]. Moreover, in the

nonsupersymmetric case homogeneous models for scalars
and spinors were classified in [9]. In this section, we want
to study the possibility of constructing homogeneous
Lorentz-violating supersymmetric theories. To analyze
this problem, it is important to emphasize that in the
supercharges algebra (3) Lorentz-violation is introduced
by means of the weighted constant c. Therefore, if ½c�> 0
and c � 0 the kinetic term in the Kähler potential always
introduces a nonhomogeneous term in the propagator,
which breaks the weighted scale invariance.
We can define Lorentz-violating homogeneous theories

if ½c� ¼ 0 and n ¼ 1. In this case, we obtain the model
proposed in [22], in which the interaction sector is equal to
the Wess-Zumino model. However, we can obtain another
class of homogeneous theories by taking c ¼ 0. In this
case, the super-algebra (3) becomes

fQ�; �Q _�g ¼ 2��̂
� _�P�̂: (27)

The resulting algebra (27) is the usual N ¼ 1 supersym-
metry algebra in d ¼ 4, but projected on the submanifold
Md̂. It is clear that the Kähler potential for the chiral

superfields associated with this algebra does not introduce
nonhomogeneous terms in the propagators. Therefore, we
can define a class of free homogeneous Lagrangians for
every even value of n, inserting in the superpotential (13)
only the bilinear with the maximum number of spatial
derivatives, regulated by the weightless constant an=2.
The propagators are the inverse of homogeneous polyno-
mials of weight 2:

h�ð1Þ ��ð2Þi ¼ �12

p̂2 þ a2n=2
�p2n

�2n�2
L

;

h�ð1Þ�ð2Þi ¼ D2

4

an=2ð �p2Þn=2
�n�1

L

�12

p̂2ðp̂2 þ a2n=2
ð �p2Þn
�2n�2

L

Þ
:

(28)

From these free theories, we can construct interacting
Lagrangians by adding all the renormalizable terms in
the superpotential. When c ¼ 0, if we consider only the
strictly renormalizable interactions in the superpotential,
we then obtain homogenous interacting theories. At the
quantum level, the fixed points of the renormalization
group for these theories are still invariant under weighted
scale transformations, but far from the fixed points the
symmetry is anomalous. In the low-energy limit we cannot
restore the usual N ¼ 1 supersymmetry algebra in d ¼ 4
and we cannot obtain a Lorentz-invariant theory with usual
propagators because of the weighted scale invariance; in
fact super-renormalizable terms cannot be produced by
renormalization because they would break the weighted
scale invariance. In the IR limit, the propagators (28)
become

lim
�L!1

h�ð1Þ ��ð2Þi¼�12

p̂2
; lim

�L!1
h�ð1Þ�ð2Þi¼0: (29)
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The propagators (29) do not depend on �p, so that all the
diagrams constructed with these propagators are not com-
putable, because they contain divergences that no counter-
terms can eliminate. Hence the IR limit is singular. From
homogenous theories, we can construct nonhomogeneous
theories invariant under the algebra (27), by adding to the
superpotential all the super-renormalizable terms. Doing
that, we are breaking the weighted scale invariance, but
terms fundamental for the Lorentz symmetry recovery
such as 
	@ ��@ ��
 or i@ ��

�c �� ��c are not generated by

renormalization because they break the symmetry of the
Lagrangian under supersymmetry transformations (27).
This means that for c ¼ 0 Lorentz symmetry cannot be
restored and the IR limit of these theories is still singular.

C. Classification of neutral chiral superfield’s models

We want to classify all the possible theories invariant
under the superalgebra (3) for all possible splittings of the
four dimensional spacetime manifold. The basic ingredient
of such classification will be the maximum number of legs
for a chiral vertex defined in (24).

(1) For splitting (0, 4) we have �N ¼ ½2 4�n
4�2n�. The only

solution is the n ¼ 1 and �N ¼ 3 and we thus recover
the Wess-Zumino model.

(2) For (1, 3) splitting we obtain �N ¼ ½2 3
3�n�. For n ¼ 1

we find again the Lorentz-violating Wess-Zumino
model proposed in [22,29]. Taking n ¼ 2 we find

�N ¼ 6, which is the only nontrivial solution of the
condition (24). Hence, for (1, 3) splitting the only
theory with strictly renormalizable interactions has
n ¼ 2 and ‘ ¼ 5=2. The Lagrangian, requiring sym-
metry under the transformation � ! ��, will be

L ¼
Z
d4� ���þ

Z
d2�

�ð �@�Þ2
2�L

þm�2

2

�

þ
Z
d2�

�
�4

�4

4!�L

þ�6

�6

6!�3
L

�
þH:c:: (30)

We can derive the propagators for the superfields
and expand them for high momenta in order to study
the UV behavior of the theory:

P� ��¼ �12

p̂2þðc2þ 2m
�L
Þ �p2þ �p4

�2
L

þm2
’ �12

p̂2þ �p4

�2
L

; (31)

P ��¼D2

4

�p2

�L

�12

p̂2þðc2þ 2m
�L
Þ �p2þ �p4

�2
L

þm2

’D2

4

�p2

�L

�12

p02ðp̂2þ �p4

�2
L

Þ
: (32)

The first divergent radiative correction to the Kähler
potential is at 4 loops:

The covariant derivatives algebra is easy to compute if we
recall the usual identities

D ¼ �12

D2 �D2

16
�12

�D2D2

16
�12

D2 �D2

16
�12

D2 �D2

16
�12 ¼ �12:

Therefore, the superfields computation is reduced to the
computation of the bosonic integral B, which is not easily
computable because of the modified form of the propaga-
tors (31) and (32).

(3) For (2, 2) splitting �N ¼ nþ 2 and we can construct
theories with strictly renormalizable interactions for
any even n. For example, we can choose n ¼ 2 and

write the complete theory:

L ¼
Z

d4� ���þ
Z

d2�

�ð �@�Þ2
2�L

þm

2
�2

�

þ
Z

d2�

�
�3

3!
�3 þ �4

4!�L

�4

�
:

The kinetic term is the same of the theory n ¼ 2 for
(1, 3) splitting and the propagators are (31) and (32).
The first divergent radiative correction to the Kähler
potential is at 2 loops:
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Again, for this graphD ¼ �12 but the bosonic integralB is
again very hard to compute.

(4) In the (3, 1) case, we obtain �N ¼ ½2 2nþ1
nþ1 � that has

only one integer solution for n ¼ 1 that is the trivial
one. Therefore we can construct only super-
renormalizable theories.

(5) For splitting (4, 0), we obtain the Lorentz-invariant
Wess-Zumino model.

IV. GAUGE INVARIANT THEORIES

We want to study the problem of finding a gauge invari-
ant version of the Lorentz-violating supersymmetric theo-
ries that we have found in Sec. III. First of all, we apply a
result of [24] to show that it is not possible to generalize the
theories of Sec. III to the case of charged chiral superfields.
The basic observation in our construction was that it is
possible to insert higher space derivatives as mass terms in
the superpotential in (13) because they preserve the chi-
rality of �, which is clear recalling that ½D�; @ ��� ¼ 0.

Charged chiral superfields transform with a phase under
the action of a general SUðNÞ gauge group

�i ! e��i;

where � is a chiral superfield. We can define a gauge
invariant version of the supersymmetric covariant deriva-
tive:

D ��i ¼ e�VD�ðeV�iÞ;
where Vðx̂; �x; �; ��Þ is the vector superfield with its usual

gauge transformation law: eV ! e
��eVe��. It is clear that

explicit spatial derivatives in the action break gauge in-
variance. In principle, as was observed in [24], we could
still introduce higher spatial derivatives in the superpoten-
tial promoting @ �� to a covariant derivative:

D ��� ¼ � i �� _��
��

4
�D _�D��: (33)

The problem, however, is that D �� does not preserve the

chirality condition. In fact, as it was checked in [24]:

�D _�
�D _�ðe�VD�e

V�iÞ ¼ 2" _� _�W�� � 0: (34)

This argument shows that the theories that we have con-
structed are not generalizable to the case of charged chiral
superfields.

Now we will see directly in the gauge sector that,
requiring gauge invariance and supersymmetry, the
weighted power counting has to coincide with the usual
one. We briefly review the derivation of the weights for the
gauge fields referring to [7,8] for a complete study of
Lorentz-violating gauge theories. In the Lorentz-violating
case, the gauge field A� has to be decomposed as all the

other vectors into time and space components A ¼ ðÂ; �AÞ.
Therefore the covariant derivative is decomposed as

D ¼ ðD̂; �DÞ ¼ ð@̂þ eÂ; �@þ e �AÞ; (35)

where e is the gauge coupling constant. To be consistent
with the definition of covariant derivative (35) we have to

weight ½eÂ0� ¼ ½@̂� ¼ 1 and ½e �A� ¼ ½ �@� ¼ 1=n. The field
strength is split into three parts:

F̂ �� � F�̂ �̂; ~F�� � F�̂ ��; �F�� � F �� ��:

The kinetic Lagrangian has to contain ð@̂ ÂÞ2, so we can

obtain the weight of Â, that is equal to the weight of the
scalar field, and from the definition of covariant derivatives
we derive the weights for �A and ½e� ¼ 2� ‘=2.
Summarizing, we have

½Â� ¼ ‘� 2

2
; ½ �A� ¼ ‘

2
� 2þ 1

n
; ½F̂� ¼ ‘

2
;

½ ~F� ¼ ‘

2
� 1þ 1

n
; ½ �F� ¼ ‘

2
� 2þ 2

n
:

(36)

The requirement of absence of spurious subdivergences [7]
implies that

d̂ ¼ 1; ‘< 2þ 2

n
; d ¼ even; n ¼ odd;

and the only acceptable splitting is (1, 3). In this case, we

have F̂ ¼ 0 so it is possible to rearrange the weights of the
gauge field and the gauge coupling so that the product eA
maintains the sameweight and at the same time ½ ~F� ¼ ‘=2:

½Â� ¼ ‘

2
� 1

n
; ½ �A� ¼ ‘

2
� 1; ½ ~F� ¼ ‘

2
;

½ �F� ¼ ‘

2
� 1þ 1

n
; ½e� ¼ 1þ 1

n
� ‘

2
:

(37)

In the supersymmetric case, both weight assignments (36)
and (37) have to be consistent with the relations among
the weights of the fields imposed by the supersymmetric
transformations generated by the supercharges (3). For the
vector multiplet the supersymmetric transformations are

��A
� ¼ �� ���0�þ �� ���0�;

��� ¼ i

2
��0 ���0�F�� þ �D;

��D ¼ �� ���0@��� @� �� ���0�;

(38)

where the gaugino � is a propagating Majorana fermion,D
is an auxiliary field and � is the spinorial parameter of the
supersymmetry transformation. Since we know the weights
of �, � and of the weighted constant c, we can obtain the
weights of the other fields of the supermultiplet, applying
the weighted power counting to the relations (38) yields

½Â�¼‘�2

2
; ½ �A�¼‘

2
�1

n
; ½D�¼‘

2
; ½F̂�¼‘

2
;

½ ~F�¼‘

2
�
�
1�1

n

�
; ½ �F�¼‘

2
�2

�
1�1

n

�
:

(39)
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Any gauge theory that has a supersymmetric extension
invariant under the supersymmetry algebra (3) has to sat-
isfy the constraint on the weight of the fields (39).
Therefore, we can take the two possible weight assign-
ments for Lorentz-violating gauge field theories (36) and
(37) and check for which value of n these theories can
admit a supersymmetric extension. Doing that we found
that the only possible value is n ¼ 1 in both cases and
hence, as long as we require supersymmetry and gauge
invariance, we have to weight time and space in the same
way, regardless of the condition of absence of spurious
divergences. The only Lorentz-violating operators are in-
troduced by the weighted constant c. These operators are
renormalizable in the usual sense and correspond to the
CPT preserving operator in the gauge sector of the SME
[13]. In particular, they can be expressed introducing a
twisted derivative ~@� ¼ @� þ k��@� [33], where in our

case k�� ¼ ðc� 1Þ� �� ��. We will show in the next section

that the constant c does not renormalize in the supersym-
metric case. As we need to fine tune c in order to recover
Lorentz symmetry at low energies, the Lorentz-violating
parameters will be extremely small also at high energies.
This argument shows that demanding renormalizability
under weighted power counting and gauge invariance for
supersymmetric theories, the Lorentz invariance follows as
a consequence.

V. LOW-ENERGY LIMIT AND LORENTZ
SYMMETRY RECOVERY

If we consider Lorentz-violating theories as candidates
to describe high-energy physics, then Lorentz-invariant
theories are effective field theories which describe physics
at low energies with respect to �L. In the framework of
renormalizable Lorentz-violating theories it is still true
that the renormalization procedure commutes with the
low-energy limit. Therefore, it is a general result that a
Lorentz-violating high-energy theory renormalizable by
weighted power counting tend to a low-energy theory
which is renormalizable by usual power counting and
contains Lorentz-violating parameters. The low-energy
theory is then obtained from the high-energy one simply
by taking the limit �L ! 1. The recovery of Lorentz
invariance at low energies is regulated by the renormaliza-
tion group behavior of the Lorentz-violating parameters at
low energies that correspond to operators of dimension less
than or equal to four, which are not suppressed by any
power of �L.

In this section, we want to study how the Lorentz recov-
ery problem at low energies is modified in the presence of
supersymmetry. If supersymmetry is an exact symmetry of
nature at high energies, then in the low-energy limit super-
symmetry has to be broken for several phenomenological
reasons [34]. Ignoring the exact mechanism of SUSY
breaking, we can parametrize the supersymmetry breaking
at low energies by adding explicit breaking terms to the

supersymmetric Lagrangian. We require the breaking to be
soft, in the sense that the supersymmetry breaking terms
should not generate quadratic divergences. It has been
pointed out in [35] that the natural setting for studying
the low-energy limit of supersymmetric theories in the
presence of soft-breaking terms is the superfield formal-
ism. The soft-breaking terms are parametrized as couplings
among dynamical superfields and external spurion super-
fields. The possible types of spurion superfields which
break supersymmetry softly for Lorentz-invariant theories
are classified in [35].
On this basis, we can compute the low-energy limit for

the general supersymmetric Lorentz-violating Lagrangian
(11). Assuming that the supersymmetry breaking soft
terms are generated at energy �s � �L we obtain the
standard Lorentz-invariant soft terms:

L ¼
Z

d4� ��i�
i þ

Z
d2�

�
mij

2
�i�j þ �ijk

3
�i�j�k

�

þ H:c:þ
Z

d4�Uij
��i�j þ

Z
d2�ð�ij�

i�j

þ �ijk�
i�j�kÞ þ H:c:; (40)

where Uij ¼ �2
suij�

2 ��2, �ij ¼ �2
sxij�

2 and �ijk ¼
�snijk�

2 are the soft-breaking spurion superfields and u,

x, n are dimensionless matrices in the generations indices.
We can write the resulting soft-breaking terms in compo-
nents:

L break ¼ �2ððuþ xÞijAiAj þ ðu� xÞijBiBjÞ
þ�nijkðAiAjAk � 3AiBjBkÞ: (41)

All the terms in (41) are super-renormalizable and they
introduce new divergences in addition to the usual wave
function renormalization of the Wess-Zumino model,
which are studied in [35,36]. Since they all are super-
renormalizable, these terms do not affect the divergent
part of the wave function renormalization. Therefore,
even for softly broken supersymmetry, it is easy to see
that the Lorentz-violating parameter c does not renormal-
ize, because it does not appear explicitly in the superfield
Lagrangian. In the IR limit, we need to fine tune c accord-
ing to the experimental bounds on Lorentz-violation, but
the low-energy value of c will be also the value of the
constant c at high-energy, because c does not renormalize.
Hence the deviation from the speed of light of the limiting
speed of elementary particle is negligible for Lorentz-
violating supersymmetric models.
We will consider an explicit model in components in

order to understand how the behavior of the renormaliza-
tion group equations is modified by the fact that the effec-
tive theory at low energies is the low-energy limit of a
supersymmetric Lorentz-violating theory with soft break-
ing. For this specific model, we will explicitly show at one
loop how the renormalization properties of a softly broken
supersymmetric theory imply the nonrenormalization of c.
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Let us consider the most general low-energy limit of a
renormalizable supersymmetric Lorentz-violating theory
for an interacting chiral multiplet. Since supersymmetry
is softly broken at low-energy, from the previous discus-
sion it is clear that we can parametrize this breaking
considering as independent the dimensionful parameters
of the Lagrangian. Therefore, the low-energy Lagrangian
will be described by six independent parameters:

L ¼ ð@̂AÞ2
2

þ c2ð �@AÞ2
2

þ ð@̂BÞ2
2

þ c2ð �@BÞ2
2

þm2A2

2

þm02B2

2
þ 1

2
�c ð ^6@þ v �6@þMÞc þ �3

3!
A3 þ �3

0

2
AB2

þ g2

4!
ðA4 þ B4 þ 6A2B2Þ þ gA �c c þ igB �c�5c :

In the approximation of small deviations from the speed of
light, we can put c2 ’ 1þ �c2 and v ’ 1þ �v. The bare
quantities are defined as

Ab ¼ Z1=2
A A; Bb ¼ Z1=2

B B; c b ¼ Z1=2
c c ;

�c2b ¼ �c2 þ ��
c2
; �c2b ¼ �v þ��v

;

m2
b ¼ m2 þ �m2; m02

b ¼ m02 þ�m02
B ;

Mb ¼ Mþ �M; �3b ¼ �=2ð�3 þ ��3
Þ;

�0
3b ¼ �=2ð�0

3 þ ��0
3
Þ; gb ¼ �ðgþ �gÞ:

Recalling the Feynman rules for Majorana fermions [37],
we obtain at one loop

ZA¼ZB¼1� g2

2	2
ð1� �d�vÞ;

Zc ¼1� g2

2	2

�
1�

�d

3
�c2 �

�d

3
�v

�
;

��
c2
¼ g2

2	2

�
�c2

2
��v

�
;

��v
¼ g2

2	2
ð2�v��c2Þ:

If supersymmetry is softly broken, the divergent part of the
wave function renormalization has to be the same for all
particles in the same supermultiplet. Therefore, imposing
Zc ¼ ZA we obtain 2�v ¼ �c2 , which implies ��

c2
¼

��v
¼ 0. We thus conclude that the Lorentz-violating

parameter does not renormalize. The only renormalization
constant left is a common renormalization for the wave

functions ZA ¼ ZB ¼ Zc ¼ 1� g2

2	2
ð1� �d�vÞ, that at the

zeroth order in �v is in agreement with the well known
result for the Wess-Zumino model.

An interesting problem to address concerns the nature of
the constant which parametrizes the deviation from the
speed of light in supersymmetric Lorentz-violating
theories. In particular, we want to understand whether or
not the weighted constant c is physically observable. As

was already noted in [24], if we consider a supersymmetric
Lorentz-violating theory with one single sector the pa-
rameter c appears both in the kinetic Lagrangian (13)
and in the supersymmetry transformations (3) and can
therefore be reabsorbed by a rescaling of the spatial coor-
dinates x0�� ¼ cx ��. Now, as far as supersymmetry is an

exact symmetry of our theory, all interacting supermultip-
lets have the same limiting speed c, because this parameter
explicitly appears in the supersymmetry transformations.
In this type of theory, the parameter c is physically unob-
servable because we can always set it to one by suitably
choosing the length units. However, as was suggested in
[38], we can construct more complicated situations with
two or more sectors which are separately invariant under
supersymmetry transformations (3) with different limiting
speeds ci, where the lower index labels the number of
sectors. For example let us consider two different sectors
S1 and S2, separately invariant under the supersymmetry
transformations

fQ�; �Q _�g ¼ 2�
�̂
� _�P�̂ þ 2c1�

��
� _�P ��; (42)

fQ�; �Q _�g ¼ 2�
�̂
� _�P�̂ þ 2c2�

��
� _�P ��: (43)

If S1 and S2 are completely decoupled, the supersymmetry
algebras (42) and (43) are exactly realized in their respec-
tive sectors.3 Taking c1 � c2, we can still rescale the
spatial coordinates in order to reabsorb c1 or c2 but, after
the rescaling, we will have a Lorentz-invariant sector S1
with c1 ¼ 1 and a Lorentz-violating hidden sector S2
completely decoupled with c2 � 1. Moreover, we can
make S1 and S2 interacting by adding super-renormalizable
interactions which will softly break supersymmetry in both
sectors. The deviation from the speed of light in S2 then
becomes experimentally observable because any rescaling
performed in order to remove the c2 factor will produce
Lorentz-violating effects in S1, as was already pointed out
in [38].
In conclusion, there is always the possibility to set one

limiting speed to one by rescaling the spatial coordinates.
This fact can make the Lorentz-violating supersymmetric
models presented in [22,38] physically equivalent to the
Lorentz-invariant ones if we restrict our attention to mod-
els with a single sector. Besides that we have shown that
the parameter c does not renormalize in any softly broken
supersymmetric theory, so that even if the deviation from
the speed of light is indeed observable it would be ex-
tremely small at any energy scale.

3The Lorentz-violating theories that we are considering are
rigid supersymmetric theories with very good approximation.
Indeed the scale �L has to be around 1014 GeV in order to
explain the neutrino masses [14]. Therefore we can neglect
gravitational effects and consider the two sectors S1 and S2
completely decoupled.
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VI. CONCLUSION

In this paper, we have investigated the possibility of
constructing supersymmetric Lorentz-violating theories
that can be renormalized by a weighted power counting.
Our analysis starts from the observation that supersymme-
try and Lorentz violation are compatible at the level of the
algebra [22].

Moreover, we have shown that in the Lorentz-violating
case it is possible to construct new superalgebras with
supercharges nonlinear in the spatial momenta. However,
the nonlinearity of the supercharges makes the problem of
finding interacting theories invariant under the new super-
algebras very involved, because the superfield formalism
looses its usefulness. As an example of this general diffi-
culty, we have shown that the interacting theory constructed
in [28] is not invariant under this new class of superalgebras.

Assuming linearity of the supercharges in the spatial
momenta we find weighted power counting renormalizable
supersymmetric Lorentz-violating models for even n and
classify them. It is straightforward to verify in the super-
space formalism that the nonrenormalization theorem is
still valid in the Lorentz-violating case and as a conse-
quence our models exhibit the improved ultraviolet behav-
ior typical of supersymmetric theories. Moreover, the
weighted constant c appearing in the supercharges algebra
which parametrizes the limiting speed of the multiplet does
not renormalize at high energies because the Kähler po-
tential of a Lorentz-violating theory renormalizable by
weighted power counting has the same form as in the
Lorentz-invariant case. Furthermore, the low-energy re-
covery of Lorentz symmetry is parametrized only by this
parameter c, which does not renormalize even at low
energies if we assume supersymmetry to be broken softly.

In the case of gauge theories, we show that demanding
supersymmetry implies that the weighted power counting

has to coincide with the usual one. The only Lorentz-
violating operators are then introduced by the weighted
constant c, which does not renormalize and has to be very
close to 1 at low energies in order to satisfy the experi-
mental bounds on Lorentz-violation [1]. Therefore, if we
demand renormalizability by weighted power counting,
gauge invariance and supersymmetry, the Lorentz invari-
ance follows as a consequence.
Our analysis agrees with the conjecture that supersym-

metry can solve the Lorentz fine tuning problem for
Lorentz-violating theories, but at the same time it reveals
that the requirement of supersymmetry restricts drastically
the possibility of constructing Lorentz-violating theories at
high energies are renormalizable by weighted power
counting. Indeed, the final picture which emerges from
our investigation is that the only possible models with
nontrivial Lorentz-violating operators involve neutral chi-
ral superfields and do not have a gauge invariant extension.
Therefore, if we want to construct Lorentz-violating ex-
tensions of the standard model which are renormalizable
by weighted power counting and have new interesting
phenomenological consequences, the Lorentz fine tuning
problem [21,23] does not seem solvable by the requirement
of supersymmetry.
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