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An explicit and detailed investigation about the two-dimensional single axial-vector (AVV) triangle is

performed. Such a perturbative amplitude is related to the anomalous axial-vector (AV) one through

contractions with external momenta. Given this fact, before considering such a triangle we must give a

clear point of view for the AV amplitude. Such a point of view is constructed within the context of an

alternative strategy to handle the divergences typical of perturbative solutions of quantum field theory. In

this procedure all amplitudes in all theories, formulated in odd and even space-time dimensions,

renormalizable or not, are treated in an absolutely identical way. The ambiguities are automatically

eliminated and the symmetry relations preserved. The well-known divergent anomalous amplitudes are

correctly described, in a predictive scenario. After performing, in a very detailed way, all the calculations

involved we conclude that the same phenomenon occurring in the AV amplitude is also present in the

finite AVV triangle. The conclusion gives support to the thesis that the phenomenon is present in all

pseudoamplitudes in a chain where the divergent AV one is only the most simple structure. The same must

occur in all even space-time dimensions. In particular, the single and triple four-dimensional box

amplitudes must exhibit anomalies too. A conclusive investigation is allowed due to the special features

of the adopted procedure where regularization is completely avoided and an adequate systematization for

the finite parts is introduced.
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I. INTRODUCTION

Quantum field theory (QFT) represents an undoubtedly
adequate tool to correctly describe the relativistic interac-
tion of fundamental particles and, consequently, all the
associated phenomenology. The construction of such for-
malism required the hard work of many people in the past
and in fact much remarkable work is presently underway
for this purpose. The result of such efforts is a very con-
sistent formalism capable of getting a description of a large
number of phenomenological aspects, from properties of
particles to effects of densities and temperature in matter,
among others. The QFT predictions, on the other hand,
required an adequate interpretation of perturbative solu-
tions of the theories, which means the construction of the
concept of renormalization whose present notion was es-
tablished long ago and practiced over many years in differ-
ent instances. More recently, such concepts received very
powerful and elegant treatments in axiomatic formulations
and algebraic procedures. Within this context Hepp [1] has
shown that renormalization can be viewed as a conse-
quence of the imposition of a set of axioms (Poincaré
invariance, unitarity, causality) for the S matrix, Green
functions, or any other basic instrument defining a relativ-
istic QFT. Becchi [2] has realized this concept in gauge
theories. Piguet and Sibold [3] have collected the analysis
of supersymmetry along these lines. Piguet and Sorela [4]
wrote a textbook where this general technique (algebraic
renormalization) has been applied. In particular the notion

of anomaly has been clarified in desirable precision: its
culmination being the proof of nonrenormalization theo-
rems for some of them. However, these elegant formula-
tions require additional tools when the momentum
dependence of certain physical processes is needed. This
implies explicitly evaluating Feynman diagrams and, con-
sequently, handling the mathematical indefiniteness in-
volved. Such indefiniteness or divergences may lead to
amplitudes which are dependent on the adopted prescrip-
tion as well as dependent on the choices involved in
intermediary steps of the calculations like the routing for
the internal lines momenta of a loop. There are two very
different attitudes relative to this problem. One of them
is to accept that the results for the perturbative amplitudes
are really dependent on the involved choices and that
the ambiguous pieces can be chosen conveniently at the
end. The second attitude is to search for universal proce-
dures which allow results independent of intermediary
choices in spite of the mathematical indefiniteness associ-
ated [5–7]. In some problems these two attitudes represent
very different points of view having distinct qualitative
implications.
Within this context there are many interesting and sur-

prising phenomena in the scope of quantum physics.
However, perhaps none is more intriguing and has become
so important for our present knowledge about the funda-
mental particle and its interaction than the anomalies in
QFT [8–10]. The structure of the standard model, having
six quarks and six leptons as fundamental constituents, can
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be viewed as a consequence of the anomalies. This is due to
the fact that it is required that fundamental theories must be
renormalizable. In order to be renormalizable, a theory
cannot have its symmetry relations or Ward identities
violated [11]. But the existence of anomalous amplitudes
in a theory implies precisely that for such amplitudes all
symmetry properties cannot be satisfied simultaneously
in an unavoidable way. Such symmetry properties are
invariable low-energy limits andWard identities associated
with the fermionic conserved vector current and with
the precise relation between the axial current and the
pseudoscalar one. At least one of such symmetry properties
needs to be assumed as violated. Since, in physical four-
dimensional space-time, the low-energy limit is required
for the phenomenology (the neutral pion decay), a Ward
identity is invariably lost. The consequence is that a theory
having only one species of fermion is nonrenormalizable.
Only a particular combination of 1=2-spin fermions can
eliminate the violations coming from different sectors of
the theory leading to a renormalizable theory. This is the
so-called anomaly cancellation mechanism [12] which is
consistent with the existence of six quarks and six leptons
in the standard model. The chosen violated Ward identity,
in the two-dimensional single axial-vector (AVV) ampli-
tude, is the one corresponding to the precise relation be-
tween the axial-vector current with the pseudoscalar one
while the conservation of the fermionic vector current is
maintained. This is a choice since the evaluation of the
anomalous amplitudes, in lowest order perturbative calcu-
lations, does not lead to these results in an automatic way
by using the usual tools [13]. Given the divergent character
of the involved amplitudes there is intrinsic mathematical
indefiniteness [13,14]. As a consequence the calculation is
not unique within the context of traditional methods to
handle the divergences in perturbative calculations. This
means that a calculation can lead to the violation of
the vector current conservation as well as to the violation
of the low-energy limit, given only the correct Ward
identity of the axial-vector current. This is in accordance
with the Sutherland-Veltman paradox [15]. But we must
have a theory having precisely the opposite symmetry
content. How can we conciliate this situation? The argu-
ment used to solve this puzzle is that the perturbative AVV
anomalous amplitude is an ambiguous quantity due to
the degree of divergence involved. It is assumed that we
cannot state a definite result for such a type of perturbative
amplitude since it is not invariant under a translation in
the loop unrestricted momentum. Following these argu-
ments the ambiguous pieces intrinsic to the amplitude
can be freely chosen such that the convenient choice is to
save the vector current and the low-energy limit. The
ambiguities, due to this problem, make part of the pertur-
bative QFT and we are forced to accept that the amplitudes
are ambiguous quantities [16]. This point of view seems to
be largely accepted since it can be found in almost all

popular QFT textbooks (see, for example, [17]). This
situation is very frustrating since the predictive power of
the theory is lost. In addition, which is worse, we are
assuming that the interpretation given for the perturbative
amplitudes may vioate the most fundamental symmetry:
the space-time homogeneity. It is frustrating and unaccept-
able. There are many arguments putting in doubt the
convenience of the use of ambiguities in the perturbative
treatment of anomalous amplitudes. However, a unique but
a strong one can be used in order to turn questionable in a
deeper way the use of the ambiguities in the perturbative
description of anomalies It is the existence of anomalies in
finite amplitudes. This question has not yet been clearly
solved.
It is well established that in all even space-time dimen-

sions there are anomalous amplitudes. They are the odd
tensors containing an odd number of axial-vector vertices
with the remaining vertices’ operators being vectors and
having a minor number of internal fermionic propagators.
In dimensionD ¼ 2 the anomalous amplitude is the AV, in
D ¼ 4 they are the AVV and the AAA triangles, in D ¼ 6
the boxes AVVV and AAAV, and so on. They are all
divergent amplitudes. The question we put above is: do
odd tensors similar to those mentioned above, having more
internal fermionic propagators, have anomalies too? In two
dimensions we are talking about the single and triple
triangles AVV and AAA, in four dimensions the boxes
AVVV and AAAV, and so on. There are no arguments
forbidding the existence of such anomalies. On the con-
trary, the structure of the general tensors gives support to
the existence of the phenomenon in a chain of amplitudes
in each space-time dimension being the divergent ampli-
tudes, only the less complex structures. We clearly advo-
cate this thesis supported in many investigations made
recently about this issue. First we investigate the well-
known anomalous amplitudes in two, four, and six dimen-
sions by using a strategy to handle the divergences of the
perturbative calculations that avoids the use of regulariza-
tions and eliminates automatically the potentially ambig-
uous terms. The amplitudes are nonambiguous quantities
but the anomalies appear automatically as desirable. The
axial Ward identity is violated and the low-energy limit is
satisfied, in all single axial anomalous amplitudes. The
procedure is universal. So we are convinced that the fun-
damental nature of the anomaly phenomenon has nothing
to do with divergences and the ambiguities cannot play any
role in such discussions. Following this line of reasoning,
finite amplitudes must be anomalous too as well as all
amplitudes in a chain related to the divergent ones through
relations among Green functions in all even space-time
dimensions. The understanding of this question in a more
deep way may contribute to a clarification of controversies
involving anomalies presently in the literature [18].
In the present work we consider the simplest case

of more complex structures which is a candidate to be
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anomalous: we present a detailed investigation involving
the (finite) single axial-vector two-dimensional triangle in
order to show that such an amplitude is really anomalous.
The mathematical mechanism which generates the anoma-
lous term is completely similar to that which generates the
anomaly in the well-known (divergent) anomalous AV
amplitude.

We organize the work as follows. In Sec. 2 we provide
the theoretical context of our investigation and in Sec. 3 we
construct the triangle amplitudes to be used later. In Sec. 4
we state relations among Green functions involving one-,
two-, and three-point ones in which we are interested. The
strategy adopted to handle Feynman integrals, as well as
some simple illustrations showing how such a technique
works, is presented in Sec. 5. The calculations of the
QED2 vacuum polarization tensor and the AV two-point
function and their symmetry relations verification are
performed in Secs. 6 and 7. The results of these two
sections are used in Sec. 8 to provide a clear point of
view about the perturbative nature of the phenomenon of
anomalies which gives the required background for our
investigation in finite amplitudes. In Sec. 9 the AVV tri-
angle is explicitly evaluated and in Sec. 11 its symmetry
relations are investigated by using the results established in
Sec. 10. Finally, in Sec. 12 we present our final remarks and
conclusions.

II. THE MODEL, NOTATION, AND DEFINITIONS

Let us consider a general model where a 1
2 -spin fermion

is coupled to boson fields having spin-0 (scalar and pseu-
doscalar) and spin-1 (vector and axial-vector) in a two-
dimensional space-time. A generic form for the interaction
Lagrangian can be represented as [19]

LI ¼ iGSð ���Þ�þ iGPð ���3�Þ�� eVð �����ÞA�

� eAð ���3�
��ÞWA

�; (1)

where �� and �3 are matrices obeying the Dirac algebra,
� is a massive 1

2 -fermion field,WA
� is an axial-vector field,

A� is a vector field, � is a scalar field, and � is a pseudo-

scalar one. The constants GS, GP, eV , and eA are undeter-
mined coupling constants. They are inputs of the theory
and their values must be stated experimentally. They can be
either independent or related depending on the symmetry
principle used to construct the Lagrangian. For simplicity,
from now on we will consider their values as equal to the
unity. An important aspect is the fermionic currents in-
volved. They obey

@�V
� ¼ @�ð �����Þ ¼ 0;

@�A
� ¼ @�ð ���3�

��Þ ¼ 2mið ���3�Þ ¼ 2miP:
(2)

These properties of the currents will imply in symmetry
relations or Ward identities to be satisfied by the corre-

sponding Green functions of the theory. Such symmetry
relations or identities are materialized through definite
properties for the Green functions (conserved vector cur-
rents) or in definite relations among them (proportionality
between the axial-vector and the pseudoscalar currents).
We know that, if the renormalizability is required as an

essential feature of a theory, we must verify the possibility
of anomalies which is the existence of amplitudes in the
theory that cannot have all their symmetry properties
satisfied in an unavoidable way. It is well-known that in
two dimensions the two-point axial-vector (AV) ampli-
tude is anomalous. Are the single axial (AVV) and triple
axial (AAA) triangles anomalous too? Similar questions
can be put for a chain of pseudoamplitudes in all even
space-time dimensions. When the more complex ampli-
tudes in the chain are contracted with their external
momenta the well-known divergent anomalous amplitudes
will invariably appear after some number of such contrac-
tions. This means that the anomalous (divergent) ampli-
tudes are in fact related to finite amplitudes. It is precisely
these questions that are the subject of the present
investigation.
In the present work we will restrict our attention to the

case of the two-dimensional AVV triangle. By using a very
general strategy to evaluate perturbative amplitudes we
will state clean and sound conclusions which are very
important in clarifying similar questions in higher space-
time dimensions, in particular, in the physical dimension
D ¼ 4.
In order to perform the investigation we first introduce

some definitions for the fermionic amplitudes involved in
the calculations. We define the one-loop amplitudes in two
steps. First we use the Feynman rules for the construction
of the amplitudes for one value of the loop momentum k, as
is usually done,

tij...k ¼ Trf�iSFðkþ ka;maÞ
� �jSFðkþ kb;mbÞ . . . �kSFðkþ kc;mcÞg:

The quantities �i are vertex operators belonging to the set

�i ¼ f�S;�P;�V;�Ag ¼ f1; �3; ��; ���3g;
appearing in the coupling of fermionic currents to the
bosonic fields in the Lagrangian. Such operators are re-
sponsible for the scalar, pseudoscalar, vector, and axial-
vector character of the fermionic currents. The quantities
SF are fermionic propagators carrying momentum kþ ka
and mass ma, which we write as

SFðkþ ka;maÞ ¼ ð6kþ 6kaÞ þma

Da

;

Da ¼ ½ðkþ kaÞ2 �m2
a�:

The corresponding one-loop amplitudes are obtained by
taking the integration of the structures above in the loop
momentum k, our second above referred step,
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Tij...k ¼
Z d2k

ð2�Þ2 t
ij...k:

After the choices for the operators �i in the amplitudes,
corresponding Lorentz indices (if it is the case) need to be
attached. The reasons for such systematization will be-
come clear in future sections. Following these definitions
we get the one-point functions

Ti ¼
Z d2k

ð2�Þ2 t
i; ti ¼ Trf�iSFðkþ k1;mÞg:

The above structure can be written also in the form

ti ¼ ðkþ k1Þ�
D1

Trf�i��g þm1

D1

Trf�ig: (3)

In an analogous way we get the two-point functions

Tij ¼
Z d2k

ð2�Þ2 t
ij;

tij ¼ Trf�iSFðkþ k1;mÞ�jSFðkþ k2;mÞg:

The above expression can be developed to the form

tij ¼ ðkþ k1Þ�ðkþ k2Þ�
D12

Trf�i���j��g

þm
ðkþ k2Þ�

D12

Trf�i�j��g

þm
ðkþ k1Þ�

D12

Trf�i���jg þ m2

D12

Trf�i�jg;

(4)

where we adopted Dij...k ¼ DiDj . . .Dk. Finally, the three-

point functions

Tijl ¼
Z d2k

ð2�Þ2 t
ijl;

tijl ¼ Trf�iSFðkþ k1;mÞ�jSFðkþ k2;mÞ�lSFðkþ k3;mÞg:

The expression for the tijl can be written in the form

tijl ¼ ðkþ k1Þ�ðkþ k2Þ�ðkþ k3Þ�
D123

Trf�i���j���l��g þm
ðkþ k2Þ�ðkþ k3Þ�

D123

Trf�i�j���l��g

þm
ðkþ k1Þ�ðkþ k3Þ�

D123

Trf�i���j�l��g þm
ðkþ k1Þ�ðkþ k2Þ�

D123

Trf�i���j���lg þm2 ðkþ k3Þ�
D123

Trf�i�j�l��g

þm2 ðkþ k2Þ�
D123

Trf�i�j���lg þm2 ðkþ k1Þ�
D123

Trf�i���j�lg þm3 1

D123

Trf�i�j�lg: (5)

From the definition above it is clear that we can extract all
the amplitudes involved in our present investigation.

III. TRIANGLE AMPLITUDES

Given the definition stated in the preceding section for
three-point functions we can construct the required ampli-
tudes. We then assume in the expression (5) the choices
�	�3, ��, and �
 for the vertices’ operators in order to get

the AVV triangle. Following our prescription we first con-
struct the amplitude for one value of the loop momentum.
After performing the Dirac traces we write

tAVV	�
 ¼ todd	�
 � "	�½tPPV
 � � "	
½tPVP� � � g�
"	�½tVPP� �:
(6)

Here we adopted the definition

todd	�
 ¼ �2"	�½tðþÞ123
��
 þ tð�Þ213

��
 þ tðþÞ312
��
 �; (7)

where

tð�Þijl
	�
 ¼ ðkþ kiÞ	½ðkþ kjÞ�ðkþ klÞ


� ðkþ kjÞ
ðkþ klÞ�� 1

D123

; (8)

in order to conveniently systematize future procedures.
The three-point function structures, written in the decom-
position above, appear naturally when the Dirac traces are
taken. They correspond to the expressions obtained in the
definition (5) by taking the corresponding choices for the
vertex operators �i, �j, and �l. Explicitly
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tPPV
 ¼ 2fðkþ k1Þ
½ðkþ k2Þ � ðkþ k3Þ �m2� � ðkþ k2Þ
½ðkþ k1Þ � ðkþ k3Þ �m2�
� ðkþ k3Þ
½ðkþ k1Þ � ðkþ k2Þ �m2�g 1

D123

;

tPVP� ¼ 2f�ðkþ k1Þ�½ðkþ k2Þ � ðkþ k3Þ �m2� � ðkþ k2Þ�½ðkþ k1Þ � ðkþ k3Þ �m2�
þ ðkþ k3Þ�½ðkþ k1Þ � ðkþ k2Þ �m2�g 1

D123

;

tVPP� ¼ 2f�ðkþ k1Þ�½ðkþ k2Þ � ðkþ k3Þ �m2� þ ðkþ k2Þ�½ðkþ k1Þ � ðkþ k3Þ �m2�
� ðkþ k3Þ�½ðkþ k1Þ � ðkþ k2Þ �m2�g 1

D123

:

This type of systematization, where some terms are
identified with other amplitudes, is very convenient in
perturbative calculations because it allows us to study
such terms in a separate way. When divergences are in-
volved we can consider consistency conditions for such
substructures individually. We then analyze all the ampli-
tudes from a universal point of view, treating the same
mathematical structure in the same way in all places of
occurrence. This is not only a convenient but a necessary
attitude if we want to treat the amplitudes in a consistent
way, which is a condition for getting useful conclusions
in this type of investigation. Before the calculations can
be performed we consider some properties which state
new and important relations among the involved Green
functions.

IV. RELATIONS AMONG GREEN FUNCTIONS

In the previous section we stated the expression for the
AVV triangle. We noted that some other amplitudes having
a one-vector Lorentz index naturally appeared as substruc-
tures. We must require that such substructures are in ac-
cordance with their symmetry properties. This means that
all vector currents involved must be conserved. These
properties need to be considered for each substructure after
this to analyze the most complex one. This analysis is made
by studying the contractions of the corresponding ampli-
tudes with the external momenta. Before the analysis of the
symmetry properties or Ward identities we have to con-
sider, as a consistency requirement, the analysis of the
relations among Green functions stated any time a pertur-
bative amplitude is contracted with the external momenta.
These types of relations are similar to those constructed in
the context of the current algebra [20]. In the perturbative
calculations, however, such relations play an important
role in the search for consistent techniques to handle
divergences typical of these types of solutions. This is
possible because, through such relations, we can state
definite properties for the corresponding integrated expres-
sions. Since in the context of the present investigation
many of such relations will play an important role we
now state all these relations and in future sections, after

we have integrated the one-loop amplitudes, we will
explicitly verify if these relations have been preserved in
the manipulations and calculations made.
In order to state the relevant relations among Green

functions we can note that anytime a vector Lorentz index
of a three-point function defined in (5) is contracted with
an external momenta, a relation among the contracted
amplitude with two other amplitudes having the number
of points decreased by one unity is stated. In practical
terms, it is possible to cancel an internal propagator in
this operation. As an example consider the two-vector two-
point function (proportional to the QED vacuum polariza-
tion tensor). We can identify the relation

ðk2 � k1Þ�tVV�
ðk1; k2Þ ¼ tV
 ðk1Þ � tV
 ðk2Þ: (9)

Our argument is that after the amplitudes appearing in the
above expression are evaluated, which means integrating in
the loop momentum k, the contraction of the obtained
result needs to exhibit this relation before any particular
assumption about the eventually involved undefined
mathematical quantities is made. This relation must be
preserved at any space-time dimension which implies ma-
nipulating and calculating divergent Feynman integrals
having an arbitrary degree of divergence. We use the
verification of the relations among Green functions as a
consistency requirement. In the present investigation
involving vector Lorentz indices we have the relations

ðk2 � k1Þ
tVV�
ðk1; k2Þ ¼ tV�ðk1Þ � tV�ðk2Þ;
ðk2 � k1Þ
tAV�
ðk1; k2Þ ¼ tA�ðk1Þ � tA�ðk2Þ;

(10)

ðk3� k1Þ	tVPP	 ðk1; k2; k3Þ ¼ tPPðk1; k2Þ� tPPðk2; k3Þ; (11)

ðk2�k1Þ�tPVP� ðk1;k2;k3Þ¼ tPPðk1;k3Þ� tPPðk2;k3Þ; (12)

ðk3� k2Þ
tPPV
 ðk1; k2; k3Þ ¼ tPPðk1; k2Þ� tPPðk1; k3Þ; (13)

ðk2�k1Þ�tAVV	�
 ðk1;k2;k3Þ¼ tAV	
 ðk1;k3Þ� tAV	
 ðk2;k3Þ; (14)

ðk3�k2Þ
tAVV	�
 ðk1;k2;k3Þ ¼ tAV	�ðk1; k2Þ� tAV	�ðk1;k3Þ: (15)
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In an analogous way, anytime we have an axial Lorentz
index we can generate a relation among amplitudes by
using an adequate identity. As an example we get

ðk2 � k1Þ�tAV�
ðk1; k2Þ ¼ tA
ðk1Þ � tA
ðk2Þ
þ 2m½tPV
 ðk1; k2Þ�: (16)

Following this procedure many others similar to that above
can be identified. That relevant for the present work is

ðk3 � k1Þ	tAVV	�
 ðk1; k2; k3Þ ¼ tAV
�ðk1; k2Þ � tAV�
ðk2; k3Þ
þ 2m½tPVV�
 ðk1; k2; k3Þ�: (17)

There are other types of identities which can be stated at
the traces level relating amplitudes having an odd number
of �3 with those having an even number of such matrices
(in two dimensions such relations are trivial and universal).
For the present purposes we note the relation

tA�ðk1Þ ¼ �"��g
��½tV�ðk1Þ�: (18)

It is reasonable to expect that, after the integration in the
loop momentum k, the above relations remain preserved
since they involve only the linearity of such a mathematical
operation. The crucial aspect is that the AVV triangle is
related to the AV anomalous amplitude. So before verify-
ing the properties of the mentioned triangles we must
establish a clear point of view for the AV amplitude and
its anomalous character. Given the divergent character of
the AV amplitude it becomes necessary to specify a pre-
scription to handle the divergences involved in such
calculations.

V. THE STRATEGY TO HANDLE DIVERGENCES

When we use the Feynman rules to construct the pertur-
bative amplitudes there are two distinct steps. First with
propagators, vertex combinatorial factors, traces over
Dirac matrices, traces over internal symmetries operators,
and so on, we construct the amplitude for one value for the
loop momentum k. The next step is to take a summation
over all values for such a momentum, since it is not
restricted by the energy-momentum conservation at all
vertices of the corresponding diagram, which means inte-
grating over the loop momentum. It is possible to use these
two distinct steps of the calculation to formulate a strategy
to handle the divergences present in perturbative calcula-
tion of QFT which avoids the use of a regularization
[6,21,22]. The idea is very simple and does not involve
any kind of magic. Only an adequate interpretation of the
usual procedures is required. The first step is the same as
that described above: to construct the amplitude corre-
sponding to one value of the unrestricted momentum.
Then, before the integration, the last Feynman rule, we
calculate the power of the loop momentum in order to get
the superficial degree of divergence of the amplitude.

Having this at hand we adopt the following representation
for the involved propagators:

1

Di

¼ 1

½ðkþ kiÞ2 �m2
i �

¼ XN
j¼0

ð�1Þjðk2i þ 2ki � kþ 	2 �m2
i Þj

ðk2 � 	2Þjþ1

þ ð�1ÞNþ1ðk2i þ 2ki � kþ 	2 �m2
i ÞNþ1

ðk2 � 	2ÞNþ1½ðkþ kiÞ2 �m2
i �

;

(19)

taking N, in the summation, as equal to or greater than the
superficial degree of divergence. Here 	 is an arbitrary
parameter, having dimension of mass, which plays the role
of a common scale for both parts, finite and divergent, of a
Feynman integral. Through this parameter, a precise con-
nection between the finite and divergent parts is stated.
Note that, as must be required, the expression above is an
identity and the expression on the right-hand side is really
independent of the arbitrary parameter 	. After the adop-
tion of the adequate representation for the propagators we
take the integration over the loop momentum k. Then
we note that the internal momenta dependent parts of the
Feynman integrals are located in finite integrals. On
the other hand, the divergent parts will reside in standard
forms of divergent integrals where no physical parameter
is present. We can then perform the integration of the finite
integrals obtained and in the divergent ones we need not
make any operation. We only reorganize the obtained
divergent terms in standard objects conveniently defined
in order to make subsequent analyses, as we shall see in a
moment.
In two-dimensional space-time calculations the terms

which will be converted in divergent integrals can be
conveniently organized such that all the divergent content
is present in two basic standard objects (at the one-loop
level in two-dimensional renormalizable theories). They
are

�ð2Þ
�
ð	2Þ¼

Z d2k

ð2�Þ2
2k�k


ðk2�	2Þ2�
Z d2k

ð2�Þ2
g�


ðk2�	2Þ ; (20)

Ið2Þlogð	2Þ ¼
Z d2k

ð2�Þ2
1

ðk2 � 	2Þ : (21)

In nonrenormalizable theories more than one-loop calcu-
lations of new objects analogous to these can be defined.
The above described steps to implement the procedure

can be formulated within the context of the language of
regularizations. In such a formulation we take the integra-
tion over the loop momentum and consequently the diver-
gences are stated. We then adopt a regularization in an
implicit way in all Feynman integrals. Only very general
properties are required of such a regularization distribu-
tion. In addition, to make the integrand convergent, such a
distribution must be even in the loop momentum, in order

O. A. BATTISTEL, M.V. S. FONSECA, AND G. DALLABONA PHYSICAL REVIEW D 85, 085007 (2012)

085007-6



to be consistent with the Lorentz symmetry, and finally, we
require that a ‘‘connection limit’’ exists. Schematically

Z d2k

ð2�Þ2 fðkÞ !
Z d2k

ð2�Þ2 fðkÞf lim�2
i!1

Gð�2
i ; k

2Þg

¼
Z
�

d2k

ð2�Þ2 fðkÞ;

where the�0
is are parameters of the distribution Gð�2

i ; k
2Þ,

and the limit that allows removing the distribution in the
finite integrands, connecting the modified expression to the
original ones (coming from the Feynman rules),

lim
�2

i!1
Gð�2

i ; k
2Þ ¼ 1;

must be well-known. By assuming the presence of this very
general regularization we can manipulate the integrand
through algebraic identities since the integrals are now
finite. We then use the identity (19) to rewrite the propa-
gators in the Feynman integrals. In the so obtained finite
integrals we take the connection limit in order to eliminate
the regularization to then perform the integration over
the loop momentum. In the basic divergent integrals only
a convenient reorganization in the form of convenient
standard objects is promoted.

There are no practical differences in both procedures
described above. The only difference is the presence of the
subscript � in the divergent integrals indicating that a
regularization was assumed in an implicit way. The proce-
dure adopted here represents the evolution of such a for-
mulation denominated as implicit regularization, proposed
and developed by O.A. Battistel [21], just because it
allows us to perform all the necessary calculations without
mentioning regularization, as we shall see in what follows
when representative examples of amplitudes’ calculations
will be considered in detail.

In order to make clear the procedure we have described
above let us consider the evaluation of the fermionic
functions corresponding to the highest divergence degree:
the one-point functions. First consider the scalar one which
is obtained from the definition (3) by taking �i ¼ 1. We get
first

tS ¼ 2m

D1

:

Now if we integrate this expression in order to get the
amplitude TS we will have a logarithmic divergence. So
before the integration we adopt the representation

1

D1

¼ 1

ðk2 � 	2Þ �
ðk21 þ 2k � k1 þ 	2 �m2Þ
ðk2 � 	2Þ½ðkþ k1Þ2 �m2� ; (22)

which, after take the integration, becomes

TSðk1Þ ¼ 2m
Z d2k

ð2�Þ2
1

ðk2 � 	2Þ
� 2m

Z d2k

ð2�Þ2
ðk21 þ 2k � k1 þ 	2 �m2Þ
ðk2 � 	2Þ½ðkþ k1Þ2 �m2� :

The first term is the basic divergent object, defined in (21),
and the second term is a finite integral which can be solved
through standard techniques to give us the expression

TSðk1Þ ¼ 2m1

�
½Ið2Þlogð	2Þ� � i

4�
ln

�
m2

	2

��
:

The vector one-point function is constructed by assuming
�1 ¼ �� in (3). We get then

tV� ¼ 2ðkþ k1Þ�
D1

:

Given the fact that we will integrate in two dimensions in
the next step, we before assumed the representation

1

D1

¼ 1

ðk2 � 	2Þ �
ðk21 þ 	2 �m2 þ 2k � k1Þ

ðk2 � 	2Þ2

þ ðk21 þ 2k � k1 þ 	2 �m2Þ2
ðk2 � 	2Þ2½ðkþ k1Þ2 �m2� :

Reorganizing conveniently the terms, eliminating the odd
ones in the loop momentum, and solving the finite integrals
we get

TV
�ðk1Þ ¼ �2k�1 ½�ð2Þ

��ð	2Þ�: (23)

Note the arbitrary character of the result. The same steps
can be followed to state that

TA
�ðk1Þ ¼ 2"��g

�	k�1 ½�ð2Þ
�	ð	2Þ�: (24)

Two-point functions can be evaluated in a similar way.
As an example let us take the one corresponding to the
choices �i ¼ �j ¼ �3 which is the PP function. We first

write

tPP ¼ � 1

D1

� 1

D2

þ p2 1

D12

;

with p ¼ k2 � k1. Again we adopt the representation (22)
for both propagators and after the solution of the finite
integrals involved we get

TPP ¼ �2

�
Ið2Þlogð	2Þ � i

4�
ln

�
m2

	2

��

þ i

4�
p2½�ð�1Þ

0 ðp2; m2Þ�; (25)

where we introduced the general finite functions

�ð�1Þ
k ðm2

1;p
2; m2

2Þ ¼
Z 1

0
dx

xk

Qðm2
1;p

2; m2
2; xÞ

;

with k ¼ 0; 1; 2; . . . and the polynomial Q given by
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Qðm2
1;p

2; m2
2; xÞ ¼ p2xð1� xÞ þ ðm2

1 �m2
2Þx�m2

1;

adopting a simplified notation for the presently considered
equal masses case.

VI. CONSISTENCY IN TWO-DIMENSIONAL
PERTURBATIVE CALCULATIONS: THE QED

VACUUM POLARIZATION TENSOR

In the preceding section we wrote the divergent part of
the amplitudes as a combination of two objects. They
remain untouched but unspecified. Now we discuss, from
the point of view of the adopted procedure, a very repre-
sentative problem involving divergences in D ¼ 2 as well
as in all dimensions: the QED vacuum polarization tensor.
This amplitude is proportional to the VV two-point func-
tion defined in Eq. (4) (�i ¼ ��, �j ¼ �
). Before the

calculation, let us do a very simple but useful exercise in
order to state some general points about this amplitude.
First, it is a two-rank tensor constructed with one vector
(the external momentum p) and the metric tensor. This
means that we have to get the general form

TVV
�
 ¼ g�
½F1ðp2Þ� þ p�p
½F2ðp2Þ�:

Requiring the conservation of the vector currents,

p�TVV
�
 ¼ p
TVV

�
 ¼ 0; (26)

we state that

F1ðp2Þ ¼ �p2F2ðp2Þ;
and therefore

TVV
�
 ¼ ðp�p
 � p2g�
ÞF2ðp2Þ:

Given these arguments, it is expected that any consistent
calculation of the QED vacuum polarization tensor gives
the above general form. It is important to note also that a
low-energy limit can be extracted from the general analysis
made. Since F1ðp2Þ ¼ �p2F2ðp2Þ it is expected that
the term which is proportional to the metric tensor vanish
at p2 ¼ 0,

½F1ðp2Þ�p2¼0 ¼ 0;

since F2ðp2Þ may not have a pole at p2 ¼ 0. This is
necessary to maintain the photon massless. On the other
hand, from the identity (9) we have to get (see Fig. 1)

p�TVV
�
 ¼ TV


 ðk1Þ � TV

 ðk2Þ: (27)

We expect that after calculating the VV function explicitly,
the contraction with the external momentum also fulfills
this relation. So apparently it is not possible to satisfy both
expectations since the vector one-point functions do not
cancel each other.
Let us consider now the explicit calculation of the VV

function. First we write

tVV�
 ¼ tðþÞ12
�
 þ g�
t

PP;

tð�Þ12
�
 ¼ 2½ðkþ k1Þ�ðkþ k2Þ
 � ðkþ k2Þ�ðkþ k1Þ
�

D12

:

Following the adopted procedure we can state that

TðþÞ12
�
 ¼ 2½�ð2Þ

�
ð	2Þ� þ 2g�


�
Ið2Þlogð	2Þ � i

4�
ln

�
m2

	2

��

þ i

�
ðp�p
 � g�
p

2Þ½�ð�1Þ
2 ðp2; m2Þ

� �ð�1Þ
1 ðp2; m2Þ� � i

2�
g�
p

2½�ð�1Þ
1 ðp2; m2Þ�:

Then we get

TVV
�
 ¼ 2½�ð2Þ

�
ð	2Þ�

�
�
i

�

��
p�p
 � g�
p

2

p2

�
½1þm2�ð�1Þ

0 ðp2; m2Þ�:

Given the above result and Eq. (23) we can note that

p�TVV
�
 ¼ 2p�½�ð2Þ

�
ð	2Þ� ¼ TV

 ðk1Þ � TV


 ðk2Þ; (28)

which means that the relation among Green functions for
the VV function [see Eq. (9)] was preserved by the calcu-
lations and, apparently, the symmetry relations are violated
[see Eq. (26)]. The above equation, diagrammatically rep-
resented in Fig. 1, states the crucial role played by the
vector one-point function in the preservation of gauge
invariance, space-time homogeneity, and scale indepen-
dence. In fact, this violation in symmetry relations is
only apparent just because until now the object (20) was
maintained unspecified. So can we give a definite value for
the object (20)? In spite of the fact that the expression for
the vector one-point function is potentially ambiguous, in
the sense that it depends on the arbitrary internal momen-
tum, the combination of these two above functions leads to
a nonambiguous (concerning the internal momentum) vio-
lating term. There is another ambiguity in the expression
for the VV amplitude due to the dependence of the object

�ð2Þ
�
 on the arbitrary scale 	2. This implies that there are no

choices for the internal lines that allow us to eliminate the
symmetry violating term. Because of this there is only one
chance for the consistency in two-dimensional perturbative

calculations; the quantity �ð2Þ
�
 must be identically zero.

Note that this quantity is a difference between two diver-
gent integrals having the same degree of divergence. The

FIG. 1. Expected relation among Green functions for the VV
amplitude.
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zero value comes from the particular relative factor 2
adopted in the definition. It is a property of these divergent
Feynman integrals which we need to impose in any pre-
scription if we want to get consistent results. We adopt the

zero value for �ð2Þ
�
 as a consistency relation (CR). In

dimensional regularization (DR) [23] the zero value may
be obtained as well as in the Pauli-Villars prescription [24].
The vanishing value for the vector one-point function, on
the other hand, reflects the space-time homogeneity and the
scale independence which are not automatically present in
the perturbative series. These ingredients can be equally

used to require that the quantity�ð2Þ
�
 be identically zero. In

addition, it can be shown that the zero value is the unique
acceptable one for any distribution in the integrand.

After this assumption we note that the vector one-point
amplitude vanishes and, consequently, the symmetries of
the vacuum polarization tensor ðp�TVV

�
 ¼ p
TVV
�
 ¼ 0Þ are

preserved. In addition we get the low-energy property

½F1ðp2Þ�p2¼0 ¼ 1þm2�ð�1Þ
0 ðp2; m2Þjp2¼0 ¼ 0;

automatically satisfied. The obtained expression has also a
very well-known property of the one-loop correction for
the photon propagator: the mass generation in the limit of
the massless electron. The corresponding photon mass is
e=

ffiffiffiffi
�

p
which is the correct value [25–27].

The conclusions stated in the present section may be
adopted as a guide for the analysis of other amplitudes in
the two-dimensional perturbative calculations. The point is
that we have learned what we need to do in order to get a
consistent treatment for the QED. We naturally postulate
that any procedure which destroys the QED is not accept-
able to treat amplitudes of any other theory. We will use
what we have stated in this section to get a point of view for
the axial anomaly in the AV amplitude.

VII. THE ANOMALOUS TWO-POINT AV
AMPLITUDE

Let us now consider the AV amplitude and its symmetry
properties. We can do the same exercise as in the preceding
section. Before the calculations, we can ask ourselves what
can be expected to be obtained. Such a quantity is a two-
rank pseudotensor to be constructed through one vector
(the external momentum p), the Levi-Civita pseudotensor
"��, and the metric tensor g��. The most general form for

the tensor AV can be written as

TAV
�
 ¼ "�
½F1ðp2Þ� þ "��p

�p
½F2ðp2Þ�
þ "
�p

�p�½F3ðp2Þ�: (29)

The tensor TAV
�
 carries one vector and one axial index

corresponding to a vector and axial currents such that we
must have the properties

p
TAV
�
 ¼ 0; (30)

p�TAV
�
 ¼ 2mTPV


 : (31)

Contracting the expression (29) with the vector external
momenta p
 we arrive at the result

p
TAV
�
 ¼ "��p

�½F1ðp2Þ þ p2F2ðp2Þ�:
The conservation of the vector current implies that

F1ðp2Þ ¼ �p2F2ðp2Þ:
Contracting now the amplitude with the axial vertex
momentum,

p�TAV
�
 ¼ "
�p

�½p2F3ðp2Þ � F1ðp2Þ�;
and using the condition stated by the vector current con-
servation, we write

p�TAV
�
 ¼ "
�p

�p2½F2ðp2Þ þ F3ðp2Þ�:
An interesting aspect of the above equation is the kine-
matical situation p2 ¼ 0, i.e., the divergence of the axial
current, according to the above result, needs to vanish:

p�TAV
�
ðp2 ¼ 0Þ ¼ 0:

However, since the divergence of the axial current must be
proportional to the pseudoscalar one [see Eq. (31)], we
have to identify

p�TAV
�


2m
¼ TPV


 ;

"
�p
� p

2½F2ðp2Þ þ F3ðp2Þ�
2m

¼ "
�p
��ðp2Þ:

So we have to get also

�ðp2Þp2¼0 ¼ 0;

which means that the PV amplitude must vanish at the
point p2 ¼ 0. The conservation of the vector current at all
values of the momentum p constrains the divergence of the
axial current to disappear at p2 ¼ 0 which forces the PV
amplitude to vanish at this limit too. The PV amplitude, on
the other hand, is finite and given by

TPV
� ¼

�
i

2�

�
m"��p

�½�ð�1Þ
0 ðp2; m2Þ�: (32)

Clearly �ðp2Þ does not vanish at the limit p2 ¼ 0 since

�ð�1Þ
0 ðp2; m2Þ ¼ � 1

m2

�
1þ p2

6m2
þOðp4Þ

�
;

which implies

�ðp2Þp2¼0 ¼
�
� i

2�

�
1

m
:

Therefore, if the Ward identity relative to the axial current
is satisfied [see Eq. (31)], the low-energy limit

lim
p�!0

p�TAV
�
 ¼ 0
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will be violated. The conclusion is simple: we cannot have
the three symmetry properties simultaneously present in
the expression for the AV if PV is given by Eq. (32). The
discussion above shows us that if the vector current is
conserved as well as the low-energy limit then the axial
Ward identity is violated. This is the two-dimensional AV
axial anomaly phenomenon.

The perturbative expression for the AV amplitude, on the
other hand, needs to satisfy two relations among Green
functions which are

p
TAV
�
 ¼ ½TA


 ðk1Þ� � ½TA

 ðk2Þ�; (33)

p�TAV
�
 ¼ ½TA


 ðk1Þ� � ½TA

 ðk2Þ� þ 2m½TPV


 �; (34)

obtained by integrating Eqs. (10) and (16) on both sides
(see Figs. 2 and 3). Let us then calculate the AV amplitude.
From the definition (4) we can write

tAV�
 ¼ "
�g
��½tð�Þ12

�� � � "��g
��½tðþÞ12

�
 �
þ g�
½tPS� þ "�
½tPP�:

Note that we have already calculated all the involved
terms. The amplitude TPP is given by Eq. (25) and both,

the amplitude TPS and Tð�Þ12
�
 , vanish identically. Given

these results we can note the relation

TAV
�
 ¼ �"��g

��½TVV
�
 �; (35)

which makes the analysis completely transparent. First of
all let us verify the contractions with the external momen-
tum. Contracting with the vector index we obtain

p
TAV
�
 ¼ �"��g

��½p
TVV
�
 �;

¼ �"��g
��½TV

�ðk1Þ � TV
�ðk2Þ�;

¼ TA
�ðk1Þ � TA

�ðk2Þ;
(36)

where we have used the relation (28). The equation above
is diagrammatically represented in Fig. 2. Again, note the

crucial role played by the axial one-point function, related
to the vector one, in the preservation of symmetries. The
relation among Green functions corresponding to the con-
traction with the vector index is satisfied. If we follow the
analysis made in the preceding section we must to require

�ð2Þ
�
 ¼ 0 for the consistency in perturbative calculations.

As a consequence the values for the axial one-point func-
tions above will become identically zero and the symmetry
relation is preserved.
Contracting now the axial index with the external mo-

mentum we get

p�TAV
�
 ¼ �2"��ðk2 � k1Þ�g��½�ð2Þ

�
ð	2Þ�
þ

�
i

�

�
"
�p

�½1þm2�ð�1Þ
0 ðp2; m2Þ�:

Assuming the consistency relation �ð2Þ
�
 ¼ 0 and using the

result (32) we obtain

p�TAV
�
 ¼ 2m½TPV


 � þ
�
i

�

�
"
�p

�: (37)

The result is diagrammatically represented in Fig. 4. The
violation in the vector Ward identity can only occur if the
axial one-point functions are admitted nonzero. Relative to
the axial Ward identity the situation is different. Even if the

�ð2Þ
�
 is required to be zero, the Ward identity cannot be

preserved due to the presence of an anomalous term.
However, this term guarantees that the low-energy limit
is satisfied since

1þm2�ð�1Þ
0 ðp2; m2Þjp2¼0 ¼ 0:

The results obtained for the AV amplitude, as a conse-

quence of the CR (�ð2Þ
�
 ¼ 0), are in complete agreement

with the expectations constructed from the general argu-
ments. The vector Ward identity is preserved as well as the
low-energy limit, relative to the vertex where the axial

FIG. 3. Axial-vector relation for the AV amplitude.

FIG. 2. Vector relation for the AV amplitude.
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index is present, and the axial Ward identity is violated
through the anomalous term.

It is important to emphasize that there are no possible
exercises of choices for the arbitrariness or the associated

ambiguities. In assuming a different value for the �ð2Þ
�
 than

the identically zero one, we are breaking very general
symmetries like space-time homogeneity, Lorentz, and
CPT as well as admitting that the axial one-point function
is a nonzero quantity. As a consequence we are also
destroying the QED2 since the vacuum polarization tensor
will have their Ward identities broken.

The interpretation for the phenomenon is in complete
accordance with that occurring in the four-dimensional
anomalies [6]. There, the anomalous term is necessary
for the adequate description of the neutral electromagnetic
pion decay stating the correct behavior at the low-energy
limit [28] and breaking the axial Ward identity. Here the
same occurs with the PV amplitude. Through the axial
Ward identity, the zero value is predicted for the PV
amplitude at the low-energy limit, since the PV function
must be proportional to the divergence of the axial current
in the AV amplitude. The evaluation of the PV reveals a
(finite) function which does not vanish. The calculation of
AV reveals a function whose divergence of the axial cur-
rent vanishes at the zero external momentum as is required.
Even if no phenomenology is associated to the PV ampli-
tude, as that of the pion decay in four dimensions to the
PVV amplitude, the universality of the arguments gives us
the feeling that the point of view stated for the anomalous
amplitudes, from the strategy we adopted to handle the
divergences in perturbative calculations, is correct. There
is no place for the choice of arbitrariness since the ambi-
guities are automatically removed.

Now we are ready to consider the evaluation of the
triangle AVV, because we know what we must identify
in the calculations with the AV amplitude; the nonambig-
uous expression

TAV
�
ðpÞ ¼

�
i

�

�
ð"��p

�p
 � "�
p
2Þ 1

p2

� ½1þm2�ð�1Þ
0 ðp2; m2Þ�; (38)

which satisfies the vector Ward identity and the low-energy
limit but violates the axial-vector Ward identity for the
vertex where the low-energy limit is preserved.

VIII. FROM RELATIONS AMONG GREEN
FUNCTIONS TOACONCEPTUAL POINTOF VIEW

FOR ANOMALIES

The results obtained in the two preceding sections can be
used to state a simple but general and consistent point of
view for anomalies in perturbative calculations. This is
allowed by the existence of relations among Green func-
tions every time we contract an amplitude having a Lorentz
index with the corresponding external momentum, as we
have shown in Sec. 4. These relations are similar to those
produced within the context of the current algebra formal-
ism. In the perturbative calculations they represent only
the maintenance of identities after the integration of the
Feynman integrals involved. The particular aspect of the
anomalous amplitudes, not restricted to the presently con-
sidered case but general, is the fact that only for such
amplitudes it is not possible to maintain all relations
among Green functions preserved.
By using our strategy to handle perturbative amplitudes,

in spite of being divergent quantities, we can verify that
(i) All amplitudes of a theory can have their relations

among Green functions preserved by the calculated
forms, even in the presence of potentially ambiguous
and symmetry violating terms, except for the anoma-
lous amplitudes.

(ii) All the symmetries (Ward identities) are recovered
after the imposition of the CR’s and the ambiguous
terms are automatically eliminated for all nonanom-
alous amplitudes.

(iii) For the anomalous amplitudes, the ambiguous
terms are also eliminated but at least one relation
among Green functions will be violated.

(iv) The violated relation among Green functions will
be precisely that involving the contraction of the
external momentum with the axial vertex where
the low-energy limit is fulfilled.

Obviously, in the language of relations among Green
functions, if there is no violation there is no anomaly. On
the other hand, if there exists a violation in a relation
among Green functions, then there will exist an anomaly
in an Abelian theory or in the corresponding non-Abelian
one. This is due to the fact that, in more complex than two-
point functions, the Bose final state symmetrization for the
symmetry implications is required.
These statements can be clearly shown in a diagram-

matic representation. In Fig. 1 we represent the expected

FIG. 4. Violation in the relation among Green functions for the AV amplitude.
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relation among Green functions for the VV amplitude (the
vacuum polarization tensor), Eq. (9), in a diagrammatic
form.

Note that in the diagram of Fig. 1 the internal momenta
k1 and k2 of the two-point functions are arbitrary
quantities. Their difference represents a physical quantity
k1 � k2 ¼ p (the external momentum) while their summa-
tion is an unspecified quantity. This aspect becomes clear if
we adopt the parametrization k1 ¼ ð1� �Þp and k2 ¼
��p as we have done in Ref. [22]. The same can be
done in three-point functions where the arbitrariness can
be parametrized by using two arbitrary parameters as we
have done in Ref. [6], and so on for diagrams involving
more external momenta. In the present work, given the
divergence degrees involved, no relevant role is played by
such a type of arbitrariness in the discussions.

Figure 2 illustrates the vector relation for the AV ampli-
tude, Eq. (10), and Fig. 3 the axial relation for the AV
amplitude, Eq. (16).

All symmetry properties are obtained as a consequence
of the adopted CR which implies TV

� and TA
� be identically

zero. This condition makes the amplitudes VV and AV free
from ambiguities but cannot eliminate the violation in the
relation among Green functions for the axial index in the
AV. The obtained result for the AV amplitude, represented
in Fig. 4, exhibits the particular aspect of the anomalous
amplitudes, an unavoidable violating term.

The consequence is correct low-energy behavior but
violation in the axial Ward identity. This observation ap-
plies for all divergent anomalous amplitudes in all (even)
space-time dimensions such that we can state a clear point
of view for the anomalies: Anomalies manifest in pertur-
bative calculations through violations of relations among
Green functions. No regularization technique or equivalent
philosophy can avoid these violations.

In the axial vertices while the low-energy limits are
preserved the violation in the relations among Green func-
tions automatically occurs. The relations among Green
functions will be obtained and satisfied without any as-
sumption for the potentially ambiguous and symmetry
violating terms but the Ward identities will only be ob-
tained after the imposition of CR’s or equivalent properties
for a consistent regularization scheme. The CR’s will lead
us to preserve all relations among Green functions for all
amplitudes as well as all Ward identities except for the
anomalous amplitudes. Note that if the violation occurs in
amplitudes having more than two external fields, the sym-
metrization can eliminate eventually the violating term
depending on its symmetry property, but this will be pos-
sible only for one type of theory, Abelian or non-Abelian.
If the relation among Green functions is violated the
existence of an anomaly is guaranteed.
Given the above argumentation we know, in a clear way,

what we have to search for in the single axial-vector
amplitude: a violation in the corresponding relations
among Green functions. This is the signature of the exis-
tence of an anomaly in spite of the finite character of the
involved amplitude.

IX. THE EVALUATION OF TRIANGLE
AMPLITUDES

In order to perform the calculations for the single
axial-vector triangle we have to evaluate the Feynman
integrals involved. Given the fact that all such amplitudes
are finite quantities the calculation of the Feynman integral
can be made by assuming the value N ¼ 0 in the expres-
sion for the propagators. The results for the three-point
amplitudes appearing as substructures of the AVV triangle
are given by

½�ið4�Þ�TVPP
	 ¼ p	f½�ð�1Þ

0 ððp� qÞ2; m2Þ þ �ð�1Þ
0 ðp2; m2Þ� � 2ðp2 � p � qÞ�ð�2Þ

10

� q2�ð�2Þ
00 g þ q	f�½�ð�1Þ

0 ððp� qÞ2; m2Þ� � 2ðp2 � p � qÞ�ð�2Þ
01 þ p2�ð�2Þ

00 g; (39)

½�ið4�Þ�TPPV

 ¼p
f�½�ð�1Þ

0 ðp2;m2Þ��2ðp �qÞ�ð�2Þ
10 þq2�ð�2Þ

00 gþq
f�½�ð�1Þ
0 ðq2;m2Þ��2ðp �qÞ�ð�2Þ

01 þp2�ð�2Þ
00 g; (40)

½�ið4�Þ�TPVP
� ¼ p�f�½�ð�1Þ

0 ððp� qÞ2; m2Þ� � 2ðq2 � p � qÞ�ð�2Þ
10 þ q2�ð�2Þ

00 g þ q�f½�ð�1Þ
0 ððp� qÞ2; m2Þ

þ �ð�1Þ
0 ðq2; m2Þ� � 2ðq2 � p � qÞ�ð�2Þ

01 � p2�ð�2Þ
00 g; (41)

where p ¼ k2 � k1 and q ¼ k3 � k1. In writing the above
expressions (and the subsequent ones), we introduced the
general definitions of the finite functions

�ð�1Þ
nm ðm2

1;p;m
2
2;q;m

2
3Þ ¼

Z 1

0
dx

Z 1�x

0
dy

xnym

½Qðp; x;q; yÞ� ;

�ð�2Þ
nm ðm2

1;p;m
2
2;q;m

2
3Þ ¼

Z 1

0
dx

Z 1�x

0
dy

xnym

½Qðp; x;q; yÞ�2 ;

where

Qðp; x;q; yÞ ¼ p2xð1� xÞ � 2ðp � qÞxyþ q2yð1� yÞ
þ ðm2

1 �m2
2Þxþ ðm2

1 �m2
3Þy�m2

1;

and, by simplicity, the arguments have been omitted. The
triangle amplitude which appears in the relations among
Green functions for the AVV triangle may be written as
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½�ið4�Þ�TPVV
�
 ¼ 2m"��fp�q
�

ð�2Þ
00 þ q�p
½�2�ð�2Þ

10 þ �ð�2Þ
00 � þ q�q
½�2�ð�2Þ

01 �g
� 2m"�
f½�ð�1Þ

0 ðp2; m2Þ� � ðq2 � p � qÞ�ð�2Þ
00 g: (42)

On the other hand, in order to write the expressions for the more complex triangle, we first make explicit the tensor Todd
	�


[see Eq. (7)]. We get

½�ið4�Þ�Todd
	�
 ¼ �"	�f�4ðg��p
 þ g�
p� þ g�
p�Þ�ð�1Þ

10 � 4ðg��q
 þ g�
q� þ g�
q�Þ�ð�1Þ
01 þ 2½g��ðp
 þ q
Þ

þ g�
q� þ g�
p���ð�1Þ
00 þ 8p�p�p
½��ð�2Þ

30 þ �ð�2Þ
20 � þ 8q�q�q
½��ð�2Þ

03 þ �ð�2Þ
02 �

þ 4p�q�p
½�2�ð�2Þ
21 þ �ð�2Þ

11 � þ 4p�q�q
½�2�ð�2Þ
12 þ �ð�2Þ

11 �
þ 4p�p�q
½�2�ð�2Þ

21 þ �ð�2Þ
20 þ �ð�2Þ

11 � �ð�2Þ
10 � þ 4q�q�p
½�2�ð�2Þ

12 þ �ð�2Þ
02 þ �ð�2Þ

11 � �ð�2Þ
01 �

þ 4q�p�p
½�2�ð�2Þ
21 þ 2�ð�2Þ

11 þ �ð�2Þ
20 � �ð�2Þ

10 � þ 4q�p�q
½�2�ð�2Þ
12 þ 2�ð�2Þ

11 þ �ð�2Þ
02 � �ð�2Þ

01 �g:

(43)

So the AVV triangle can be written as

½�ið4�Þ�TAVV
	�
 ¼"	�fp
½�ð�1Þ

0 ðp2;m2Þ�þq
½�ð�1Þ
0 ðq2;m2Þ�þ2½2p
�

ð�1Þ
10 þ2q
�

ð�1Þ
01 �ðp
þq
Þ�ð�1Þ

00 �
�p
½q2�ð�2Þ

00 �2ðp �qÞ�ð�2Þ
10 ��q
½p2�ð�2Þ

00 �2ðp �qÞ�ð�2Þ
01 �gþ"	
fp�½�ð�1Þ

0 ððp�qÞ2;m2Þ�
�q�½�ð�1Þ

0 ððp�qÞ2;m2Þþ�ð�1Þ
0 ðq2;m2Þ�þ2½2p��

ð�1Þ
10 þ2q��

ð�1Þ
01 �p��

ð�1Þ
00 �

�p�½�2q2�ð�2Þ
10 þ2ðp �qÞ�ð�2Þ

10 þq2�ð�2Þ
00 ��q�½�2q2�ð�2Þ

01 þ2ðp �qÞ�ð�2Þ
01 �p2�ð�2Þ

00 �g
�"	�f�g�
q

�½�ð�1Þ
0 ððp�qÞ2;m2Þ�þg�
p

�½�ð�1Þ
0 ððp�qÞ2;m2Þþ�ð�1Þ

0 ðp2;m2Þ�
�g�
p

�½2p2�ð�2Þ
10 �2ðp �qÞ�ð�2Þ

10 þq2�ð�2Þ
00 ��g�
q

�½2p2�ð�2Þ
01 �2ðp �qÞ�ð�2Þ

01 �p2�ð�2Þ
00 �

þ2g�
½�2p��ð�1Þ
10 �2q��ð�1Þ

01 þq��ð�1Þ
00 �þ8p�p�p
½��ð�2Þ

30 þ�ð�2Þ
20 �þ4p�q�p
½�2�ð�2Þ

21 þ�ð�2Þ
11 �

þ8q�q�q
½��ð�2Þ
03 þ�ð�2Þ

02 �þ4p�q�q
½�2�ð�2Þ
12 þ�ð�2Þ

11 �þ4p�p�q
½�2�ð�2Þ
21 þ�ð�2Þ

20 þ�ð�2Þ
11 ��ð�2Þ

10 �
þ4q�q�p
½�2�ð�2Þ

12 þ�ð�2Þ
02 þ�ð�2Þ

11 ��ð�2Þ
01 �þ4q�p�p
½�2�ð�2Þ

21 þ2�ð�2Þ
11 þ�ð�2Þ

20 ��ð�2Þ
10 �

þ4q�p�q
½�2�ð�2Þ
12 þ2�ð�2Þ

11 þ�ð�2Þ
02 ��ð�2Þ

01 �g: (44)

Let us now consider the contractions with external mo-
menta in order to verify the relations among Green func-
tions introduced in Sec. 4.

X. USEFUL PROPERTIES OF THE FINITE
STRUCTURE FUNCTIONS

In order to write explicitly the amplitudes we have
adopted a systematization for the solution of the Feynman

integrals involved. We introduced the functions �ð�2Þ
nm and

�ð�1Þ
nm which, in addition to the functions�ð�1Þ

k , allowed us to

write all the expressions for the considered amplitudes.
We have now to study the contractions of the obtained

amplitudes, with their external momenta, in order to verify
the relations among Green functions. This can be a very
tedious task due to the algebraic effort involved. This job can
be made easy if the systematization introduced is conven-
iently used. For this purpose it is necessary to state or
identify some properties for the structure functions.
Having this in mind we first note that all components of

the set corresponding to a certain value of the summation
nþm, for positive values of both n and m, can be reduced
to a combination of other elements of the set corresponding

to values of nþm decreased by one unity and �ð�1Þ
k

functions. For the case nþm ¼ 1 we have

�ð�2Þ
01 ¼ 1

2

�
q2

p2q2 � ðp � qÞ2
��ðq2 � p � qÞ

q2
½�ð�1Þ

0 ðp� q;mÞ� þ ðp � qÞ
q2

½�ð�1Þ
0 ðp;mÞ� � ½�ð�1Þ

0 ðq;mÞ� þ ðp2 � p � qÞ�ð�2Þ
00

�
;

�ð�2Þ
10 ¼ 1

2

�
p2

p2q2 � ðp � qÞ2
��ðp2 � p � qÞ

p2
½�ð�1Þ

0 ðp� q;mÞ� þ ðp � qÞ
p2

½�ð�1Þ
0 ðq;mÞ� � ½�ð�1Þ

0 ðp;mÞ� þ ðq2 � p � qÞ�ð�2Þ
00

�
:
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For the case nþm ¼ 2 we get

�ð�2Þ
02 ¼ 1

2

�
q2

p2q2 � ðp � qÞ2
��ðq2 � p � qÞ

q2
½�ð�1Þ

1 ðp� q;mÞ� þ ðp � qÞ
q2

½�ð�1Þ
1 ðp;mÞ� � �ð�1Þ

00 þ ðp2 � p � qÞ�ð�2Þ
01

�
;

�ð�2Þ
20 ¼ 1

2

�
p2

p2q2 � ðp � qÞ2
��ðp2 � p � qÞ

p2
½�ð�1Þ

1 ðp� q;mÞ� þ ðp � qÞ
p2

½�ð�1Þ
1 ðq;mÞ� � �ð�1Þ

00 þ ðq2 � p � qÞ�ð�2Þ
10

�
;

�ð�2Þ
11 ¼ 1

2

�
p2

p2q2 � ðp � qÞ2
��ðp2 � p � qÞ

p2
½�ð�1Þ

1 ðp� q;mÞ� � ½�ð�1Þ
1 ðp;mÞ� þ ðp � qÞ

p2
�ð�1Þ
00 þ ðq2 � p � qÞ�ð�2Þ

01

�
;

�ð�2Þ
11 ¼ 1

2

�
q2

p2q2 � ðp � qÞ2
��ðq2 � p � qÞ

q2
½�ð�1Þ

1 ðp� q;mÞ� � ½�ð�1Þ
1 ðq;mÞ� þ ðp � qÞ

q2
�ð�1Þ
00 þ ðp2 � p � qÞ�ð�2Þ

10

�
;

and for the case nþm ¼ 3 we have

�ð�2Þ
30 ¼ 1

2

�
p2

p2q2 � ðp � qÞ2
��ðp2 � p � qÞ

p2
½�ð�1Þ

2 ðp� q;mÞ� þ ðp � qÞ
p2

½�ð�1Þ
2 ðq;mÞ� � 2�ð�1Þ

10 þ ðq2 � p � qÞ�ð�2Þ
20

�
;

�ð�2Þ
03 ¼ 1

2

�
q2

p2q2 � ðp � qÞ2
��ðq2 � p � qÞ

q2
½�ð�1Þ

2 ðp� q;mÞ� þ ðp � qÞ
q2

½�ð�1Þ
2 ðp;mÞ� � 2�ð�1Þ

01 þ ðp2 � p � qÞ�ð�2Þ
02

�
;

�ð�2Þ
21 ¼ 1

2

�
p2

p2q2 � ðp � qÞ2
��ðp2 � p � qÞ

p2
½�ð�1Þ

1 ðp� q;mÞ ��ð�1Þ
2 ðp� q;mÞ� þ ðp � qÞ

p2
�ð�1Þ
10 � �ð�1Þ

01 þ ðq2 � p � qÞ�ð�2Þ
11

�
;

�ð�2Þ
12 ¼ 1

2

�
q2

p2q2 � ðp � qÞ2
��ðq2 � p � qÞ

q2
½�ð�1Þ

1 ðp� q;mÞ ��ð�1Þ
2 ðp� q;mÞ� þ ðp � qÞ

q2
�ð�1Þ
01 � �ð�1Þ

10 þ ðp2 � p � qÞ�ð�2Þ
11

�
:

These reductions allow us to identify a set of useful properties which are special combinations of the above reductions.
They are shown below. nþm ¼ 3:

p2�ð�2Þ
30 þ ðp � qÞ�ð�2Þ

21 ¼ 1
2½�ð�1Þ

2 ððp� qÞ2; m2Þ� � �ð�1Þ
10 þ 1

2p
2�ð�2Þ

20 ; (45)

q2�ð�2Þ
03 þ ðp � qÞ�ð�2Þ

12 ¼ 1
2½�ð�1Þ

2 ððp� qÞ2; m2Þ� � �ð�1Þ
01 þ 1

2q
2�ð�2Þ

02 ; (46)

q2�ð�2Þ
12 þ ðp � qÞ�ð�2Þ

21 ¼ 1
2½�ð�1Þ

1 ððp� qÞ2; m2Þ � �ð�1Þ
2 ððp� qÞ2; m2Þ� � 1

2�
ð�1Þ
10 þ 1

2q
2�ð�2Þ

11 ; (47)

p2�ð�2Þ
21 þ ðp � qÞ�ð�2Þ

12 ¼ 1
2½�ð�1Þ

1 ððp� qÞ2; m2Þ � �ð�1Þ
2 ððp� qÞ2; m2Þ� � 1

2�
ð�1Þ
01 þ 1

2p
2�ð�2Þ

11 ; (48)

q2½�ð�2Þ
21 � þ ðp � qÞ½�ð�2Þ

30 � ¼ 1
2½�ð�1Þ

2 ððp� qÞ2; m2Þ � �ð�1Þ
2 ðp2; m2Þ� þ 1

2q
2�ð�2Þ

20 : (49)

nþm ¼ 2:

p2�ð�2Þ
20 þ ðp � qÞ�ð�2Þ

11 ¼ 1

2
½�ð�1Þ

1 ððp� qÞ2; m2Þ� � 1

2
�ð�1Þ
00 þ p2

2
�ð�2Þ
10 ; (50)

q2�ð�2Þ
02 þ ðp � qÞ�ð�2Þ

11 ¼ 1

2
½�ð�1Þ

1 ððp� qÞ2; m2Þ� � 1

2
�ð�1Þ
00 þ q2

2
�ð�2Þ
01 ; (51)

p2�ð�2Þ
11 þ ðp � qÞ�ð�2Þ

02 ¼ 1

2
½�ð�1Þ

1 ððp� qÞ2; m2Þ � �ð�1Þ
1 ðq2; m2Þ� þ p2

2
�ð�2Þ
01 ; (52)

q2�ð�2Þ
11 þ ðp � qÞ�ð�2Þ

20 ¼ 1

2
½�ð�1Þ

1 ððp� qÞ2; m2Þ � �ð�1Þ
1 ðp2; m2Þ� þ q2

2
�ð�2Þ
10 : (53)
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nþm ¼ 1:

q2�ð�2Þ
01 þðp �qÞ�ð�2Þ

10 ¼ 1
2½�ð�1Þ

0 ððp�qÞ2;m2Þ
��ð�1Þ

0 ðp2;m2Þ�þ 1
2q

2�ð�2Þ
00 ; (54)

p2�ð�2Þ
10 þðp �qÞ�ð�2Þ

01 ¼ 1
2½�ð�1Þ

0 ððp�qÞ2;m2Þ
��ð�1Þ

0 ðq2;m2Þ�þ 1
2p

2�ð�2Þ
00 ; (55)

q2�ð�1Þ
01 þ ðp � qÞ�ð�1Þ

10

¼ 1
2ðp� qÞ2½�ð�1Þ

1 ððp� qÞ2; m2Þ
� 2�ð�1Þ

2 ððp� qÞ2; m2Þ� � 1
2p

2½�ð�1Þ
1 ðp2; m2Þ

� 2�ð�1Þ
2 ðp2; m2Þ� þ 1

2q
2�ð�1Þ

00 :

(56)

After this we are ready to perform the contractions with the
external momenta in the AVV triangle.

XI. RELATIONS AMONG GREEN FUNCTIONS
FOR THREE-POINT FUNCTIONS

Now we can finalize our investigation by verifying the
expected properties of the calculated amplitudes which
means to verify their relations among Green functions
stated in Sec. 4. We start by studying the triangles which
are substructures of the main one. The operations, required
to complete the investigation for the single axial triangle,
are useful also to illustrate the conceptual point of view
adopted.

For the VPP amplitude we stated the result (39).
Contracting with the external momentum q	 we get

½�ið4�Þ�q	TVPP
	

¼ðp�qÞ½�ð�1Þ
0 ðp2;m2Þ��ðp2�p�qÞ½�ð�1Þ

0 ððp�qÞ2;m2Þ�
þ2ðp2�p�qÞ½q2�ð�2Þ

01 þðp�qÞ�ð�2Þ
10 �

þðp2�p�qÞq2�ð�2Þ
00 :

By using the property (54) we arrive at the result

½�ið4�Þ�q	TVPP
	 ¼ p2½�ð�1Þ

0 ðp2; m2Þ�
� ðp� qÞ2½�ð�1Þ

0 ððp� qÞ2; m2Þ�;

or, conveniently organized,

½�ið4�Þ�q	TVPP
	

¼
�
�2½Ið2Þlogðm2Þ�þ i

ð4�Þp
2½�ð�1Þ

0 ðp2;m2Þ�
�

�
�
�2½Ið2Þlogðm2Þ� þ i

ð4�Þ ðp� qÞ2½�ð�1Þ
0 ððp� qÞ2;m2Þ�

�
:

Given the expression for the PP two-point functions,
Eq. (25), we can identify this result as

q	TVPP
	 ¼ ½TPPðk1; k2Þ� � ½TPPðk2; k3Þ�;

which is expected by Eq. (11).
Now consider the PPV amplitude, expression (40). We

get first

½�ið4�Þ�ðq�pÞ
TPPV



¼ðp2�p�qÞ½�ð�1Þ
0 ðp2;m2Þ��ðq2�p�qÞ½�ð�1Þ

0 ðq2;m2Þ�
þ2ðp�qÞ½p2�ð�2Þ

10 þðp�qÞ�ð�2Þ
01 ��2ðp�qÞ½q2�ð�2Þ

01

þðp�qÞ�ð�2Þ
10 ��ðp2�q2Þðp�qÞ�ð�2Þ

00 :

By using the properties (54) and (55) we get

½�ið4�Þ�ðq� pÞ
TPPV

 ¼ p2½�ð�1Þ

0 ðp2; m2Þ�
� q2½�ð�1Þ

0 ðq2; m2Þ�;

which means

ðq� pÞ
TPPV

 ¼ ½TPPðk1; k2Þ� � ½TPPðk1; k3Þ�;

in agreement with the relations among Green functions (13).
The PVP amplitude, given in Eq. (41), contracted with

p�, gives

½�ið4�Þ�p�TPVP
�

¼ �ðp2 � p � qÞ½�ð�1Þ
0 ððp� qÞ2; m2Þ�

þ ðp � qÞ½�ð�1Þ
0 ðq2; m2Þ� � ½ðp� qÞ2 � p2 þ q2�

� ½p2�ð�2Þ
10 þ ðp � qÞ�ð�2Þ

01 � þ p2ðq2 � p � qÞ�ð�2Þ
00 :

Through the property (55) we obtain

½�ið4�Þ�p�TPVP
� ¼ �ðp� qÞ2½�ð�1Þ

0 ððp� qÞ2; m2Þ�
þ q2½�ð�1Þ

0 ðq2; m2Þ�;

which means that the relation (12) is preserved by the
calculated amplitude.
Now, given the decomposition (6), in order to obtain the

contractions for the AVV triangle it is convenient to state
the contractions of the tensor Todd

	�
 with the external mo-

menta. We get
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½�ið4�Þ�q	Todd
	�
¼4"��f�p�p
½�ð�1Þ

2 ðp2;m2Þ��ð�1Þ
1 ðp2;m2Þ�þðp�qÞ�ðp�qÞ
½�ð�1Þ

2 ððp�qÞ2;m2Þ
��ð�1Þ

1 ððp�qÞ2;m2Þ�gþ2"��q�q
f�½�ð�1Þ
1 ððp�qÞ2;m2Þ�þq2�ð�2Þ

01 �4m2�ð�2Þ
01 g

þ2"��q�p
f�½�ð�1Þ
1 ððp�qÞ2;m2Þ��ð�1Þ

1 ðp2;m2Þ�þ2½p2�ð�2Þ
10 þq2�ð�2Þ

01 ��2½�ð�1Þ
1 ððp�qÞ2;m2Þ�

þðq2�4m2Þ�ð�2Þ
10 �q2�ð�2Þ

00 gþ4"�
fðp�qÞ2½�ð�1Þ
1 ððp�qÞ2;m2Þ��ð�1Þ

2 ððp�qÞ2;m2Þ�
�p2½�ð�1Þ

1 ðp2;m2Þ��ð�1Þ
2 ðp2;m2Þ�þq2½�ð�1Þ

1 ðq2;m2Þ�� 1
2ðp �qÞ½�ð�1Þ

1 ðp2;m2Þ�
þ 1

2q
2½p2�ð�2Þ

10 þðp �qÞ�ð�2Þ
01 �� 1

2q
2½q2�ð�2Þ

01 þðp �qÞ�ð�2Þ
10 �� 1

2ðp2�p �qÞq2�ð�2Þ
00 þm2ðq2�p �qÞ�ð�2Þ

00 g;

½�ið4�Þ�p�Todd
	�
 ¼ 2"	
fðp�qÞ2½�ð�1Þ

1 ððp�qÞ2;m2Þ� 2�ð�1Þ
2 ððp�qÞ2;m2Þ��q2½�ð�1Þ

1 ðq2;m2Þ� 2�ð�1Þ
2 ðq2;m2Þ�g

�"	�f�4p�p
½�ð�1Þ
2 ððp�qÞ2;m2Þ��ð�1Þ

1 ððp� qÞ2;m2Þ�� 2p�p
½�ð�1Þ
1 ððp� qÞ2;m2Þ�

þ 2p�p
½p2�ð�2Þ
10 �� 4q�q
½�ð�1Þ

2 ððp� qÞ2;m2Þ��ð�1Þ
1 ððp�qÞ2;m2Þ�

þ 4q�q
½�ð�1Þ
2 ðq2;m2Þ��ð�1Þ

1 ðq2;m2Þ�þ 4p�q
½�ð�1Þ
2 ððp�qÞ2;m2Þ��ð�1Þ

1 ððp�qÞ2;m2Þ�
þ 2p�q
½�ð�1Þ

1 ððp� qÞ2;m2Þ�� 2p�q
p
2½�ð�2Þ

10 �þ 4q�p
½�ð�1Þ
2 ððp�qÞ2;m2Þ��ð�1Þ

1 ððp�qÞ2;m2Þ�
þ 2q�p
½�ð�1Þ

1 ðq2;m2Þ�þ 2q�p
p
2½�ð�2Þ

01 þ�ð�2Þ
10 ��ð�2Þ

00 �g;

½�ið4�Þ�ðq� pÞ
Todd
	�
 ¼ 2"	�fq2½�ð�1Þ

1 ðq2; m2Þ � 2�ð�1Þ
2 ðq2; m2Þ� � p2½�ð�1Þ

1 ðp2; m2Þ � 2�ð�1Þ
2 ðp2; m2Þ�g

� "	�f2p�p�½2�ð�1Þ
2 ðp2; m2Þ � �ð�1Þ

1 ðp2; m2Þ� � 2p�p�ðp� qÞ2½�ð�2Þ
10 �

� 2q�q�½2�ð�1Þ
2 ðq2; m2Þ � �ð�1Þ

1 ðq2; m2Þ� þ 2q�q�ðp� qÞ2½�ð�2Þ
01 �

� 2q�p�½�ð�1Þ
1 ðq2; m2Þ � �ð�1Þ

1 ðp2; m2Þ� � 2q�p�p
2½�ð�2Þ

01 þ �ð�2Þ
10 � �ð�2Þ

00 �
þ 2q�p�q

2½�ð�2Þ
01 þ �ð�2Þ

10 � �ð�2Þ
00 �g:

In order to achieve these results we have used the identity

"�
p	 þ "
	p� þ "	�p
 ¼ 0;

in the expression (43) for the tensor Todd
	�
, the properties (45)–(56), and the reductions

�ð�1Þ
10 ¼ ½�ð�1Þ

1 ððp� qÞ2; m2Þ� þ 2m2�ð�2Þ
10 � q2�ð�2Þ

11 � p2�ð�2Þ
20 ;

�ð�1Þ
01 ¼ ½�ð�1Þ

1 ððp� qÞ2; m2Þ� þ 2m2�ð�2Þ
01 � p2�ð�2Þ

11 � q2�ð�2Þ
02 :

Having at hand these results we can obtain for the AVV triangle

q	TAVV
	�
 ¼

�
i

�

�
"
�ðp� qÞ2½�ð�1Þ

2 ððp� qÞ2; m2Þ � �ð�1Þ
1 ððp� qÞ2; m2Þ�

þ
�
i

�

�
"��ðp� qÞ�ðp� qÞ
½�ð�1Þ

2 ððp� qÞ2; m2Þ � �ð�1Þ
1 ððp� qÞ2; m2Þ� �

�
i

�

�
"��p

�p
½�ð�1Þ
2 ðp2; m2Þ

� �ð�1Þ
1 ðp2; m2Þ� þ

�
i

�

�
m2"
�f½�ð�1Þ

0 ðp2; m2Þ� � ðq2 � p � qÞ�ð�2Þ
00 g

þ
�
i

�

�
m2"��fp�q
�

ð�2Þ
00 þ q�q
½�2�ð�2Þ

01 � þ q�p
½�2�ð�2Þ
10 þ �ð�2Þ

00 �g þ
�
i

�

�
"
�; (57)

p�TAVV
	�
 ¼

�
i

�

�
"	
q

2½�ð�1Þ
2 ðq2; m2Þ � �ð�1Þ

1 ðq2; m2Þ� �
�
i

�

�
"	
ðp� qÞ2½�ð�1Þ

2 ððp� qÞ2; m2Þ � �ð�1Þ
1 ððp� qÞ2; m2Þ�

þ
�
i

�

�
"	�ðp� qÞ�ðp� qÞ
½�ð�1Þ

2 ððp� qÞ2; m2Þ � �ð�1Þ
1 ððp� qÞ2; m2Þ�

�
�
i

�

�
"	�q

�q
½�ð�1Þ
2 ðq2; m2Þ � �ð�1Þ

1 ðq2; m2Þ�; (58)
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and

ðq� pÞ
TAVV
	�
 ¼

�
i

�

�
"	�p

2½�ð�1Þ
2 ðp2; m2Þ � �ð�1Þ

1 ðp2; m2Þ� �
�
i

�

�
"	�q

2½�ð�1Þ
2 ðq2; m2Þ � �ð�1Þ

1 ðq2; m2Þ�

�
�
i

�

�
"	�p

�p�½�ð�1Þ
2 ðp2; m2Þ � �ð�1Þ

1 ðp2; m2Þ� þ
�
i

�

�
"	�q

�q�2
½�ð�1Þ

2 ðq2; m2Þ � �ð�1Þ
1 ðq2; m2Þ�: (59)

Let us now analyze the obtained results.

XII. FINAL REMARKS AND CONCLUSIONS

In the present investigation we considered the finite
single axial-vector triangle in two space-time dimensions.
More precisely, we investigate if such an amplitude is
anomalous. The investigation was made in light of a re-
cently developed strategy to handle perturbative calcula-
tions. Within the context of such a procedure, the
amplitudes are not modified as they come from the
Feynman rules. No expansions or limits are required as
well as no divergent integral is really solved. This is
possible after an adequate and convenient interpretation
of the Feynman rules is assumed. All the usual operations
are taken in the construction of the perturbative ampli-
tudes, except the summation over all unrestricted (loop)
momenta. This operation is taken only after a convenient
representation for the involved propagators is constructed,
such that, when the integration is taken, all the physical
content is located in finite integrals which are then solved
through standard procedures. In the divergent objects so
obtained, no physical quantity is involved and such objects
are not modified. Only very general properties are even-
tually considered in Ward identities’ verification or in
renormalization procedures. Within the context of the re-
ferred strategy no regularization is used and all the (non-
anomalous) amplitudes are obtained ambiguity free and
symmetry preserving in an automatic way. Precisely due to
this reason, we denominate this strategy as predictive
perturbative calculations in substitution to the implicit
regularization scheme used in early works. The first is a
formal evolution of the second.

The strategy referred to above gives us a consistent
framework to promote investigations in perturbative cal-
culations in situations where the traditional methods are
not consistent or not applicable. In particular, in all situ-
ations where the DR applies the results can be put in a
precise correspondence. But the advantages are obvious.
The mentioned strategy does not have limitations of appli-
cability because it applies equally in even and odd
space-time dimensions, in the treatment of tensors and
pseudotensors amplitudes in even dimensions, and in the
context of renormalizable and nonrenormalizable theories.
In addition, the well-known divergent anomalous ampli-
tudes are consistently treated, given the correct description
of the phenomenon without assuming an ambiguous char-
acter to them, since the ambiguities are eliminated.

Previously made investigations revealed the general and
consistent character of the procedure [7,28–33].
The present investigation is in the context of not com-

pletely clarified aspects of anomalies in QFT—the exis-
tence or not of anomalies in finite amplitudes. The first
step, in order to make such a conclusive investigation, is to
state a clear point of a view for the axial AV anomaly, since
the contractions of the triangle amplitude AVV, with their
external momenta, generate relations among Green func-
tions which involve the AV amplitude. Because of this
reason our first providence was precisely to state such a
clear point of view for the AV anomaly. We then stated the
calculated expression for the AV amplitude, which violates
a relation among Green functions in an unavoidable way
(see Sec. 7). The low-energy limit, associated to the axial
vertex, is satisfied as well as the vector Ward identity but
the axial one is violated precisely by the term which
violates the relation among Green functions (the anoma-
lous term). Completely analogous results are obtained in
all (even) space-time dimensions for other divergent
anomalous amplitudes by applying the same procedure.
Given this point of view at hand, we investigate the single
axial-vector triangle. The results of the calculations can be
analyzed as follows.
For the single AVV the complete expression is shown in

Eq. (44). The contractions with the external momenta are
placed in Eqs. (57)–(59). These results can be put in a more
convenient and transparent form if we consider the expres-
sion for the AV anomalous amplitude, written in Eq. (38),
after the imposition of the CR, and the expression for the
PVV triangle, Eq. (42). We write

p�TAVV
	�
 ðp; qÞ ¼ TAV

	
 ðqÞ � TAV
	
 ðpþ qÞ; (60)

ðq� pÞ
TAVV
	�
 ðp; qÞ ¼ TAV

	�ðpÞ � TAV
	�ðpþ qÞ; (61)

q	TAVV
	�
 ðp; qÞ ¼ TAV


�ðpÞ � TAV
�
ðpþ qÞ

þ 2m½TPVV
�
 ðp; qÞ� þ

�
i

�

�
"
�: (62)

The above equations are diagrammatically represented in
Figs. 5–7.
Now it becomes simple to analyze the results. In spite of

being finite, and therefore nonambiguous, the behavior is
absolutely the same as the divergent anomalous ampli-
tudes; the contractions with the axial external momentum
violate the expected relation among Green functions which
will lead to symmetry violations in the corresponding
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physical process. This is unavoidable. Because of this we
are facing a genuine anomaly. The term which violates the
relation among Green functions will be converted to an
anomalous term when the triangle amplitude is symme-
trized in its final states according to the Bose symmetry.
The presence of such a violating term implies the existence
of an anomaly. In addition the axial vertex, where the
violation occurs, will have a corresponding low-energy
limit preserved as happens in all anomalous amplitudes.

We can take the four-dimensional anomalous AVV tri-
angle to explicitly show such similarity. By using the same
procedure we can calculate such a (divergent) triangle
writing the results in terms of four-dimensional basic di-
vergent objects and finite functions, analogous to those
used here, and then contracting the results with the external
momenta. The results can be put in a mathematical form
absolutely similar to Eqs. (57)–(59). The four-dimensional
AV amplitudes are divergent and potentially ambiguous
quantities analogous to the axial two-dimensional one-

point function found in the relations among Green func-
tions of the (D ¼ 2) AV anomalous amplitude. They are
identically zero due to a four-dimensional CR [6,28]. The
final results for the triangle are that relations among Green
functions involving vector vertices are preserved and that
those associated to the axial vertex are violated. At the
vertex where the violation occurs the low-energy limit is
preserved. Both situations are completely similar. This
similarity goes beyond to these two problems. In the six-
dimensional AVVV box, calculated within the context of
the adopted strategy, as well as the same four-dimensional
box, the final results may also be put in a completely
similar way. These conclusions clearly indicate that, in
fact, the phenomenon of anomalies is not restricted to the
more simple (divergent) amplitudes at each even space-
time dimension but it is a property of the involved tensors
and occurs in all amplitudes in a chain, related through
relations among Green functions. Only the simplest ones
are divergent in perturbative solutions.

FIG. 5. Diagrammatic representation of Eq. (60).

FIG. 6. Diagrammatic representation of Eq. (61).

FIG. 7. Diagrammatic representation of Eq. (62).
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The axial anomaly in the two-dimensional AVV triangle,
verified through the preceding calculations, can be stated
by using very general arguments, in a similar way as we
have done in the case of the AV anomalous amplitude, in

Sec. 7. For this purpose we consider the most general
structure for a pseudotensor constructed with two vectors,
the Levi-Civita and the metric tensors. Such an expression
can be written as

T	�
ðp; qÞ ¼ "	�½q
F1ðp; qÞ þ p
F2ðp; qÞ� þ "�
½q	F3ðp; qÞ þ p	F4ðp; qÞ� þ "	
½q�F5ðp; qÞ þ p�F6ðp; qÞ�
þ g	
"��½q�F7ðp; qÞ þ p�F8ðp; qÞ� þ g
�"	�½q�F9ðp; qÞ þ p�F10ðp; qÞ�
þ g	�"
�½q�F11ðp; qÞ þ p�F12ðp; qÞ� þ "	�½p�p�p
F13ðp; qÞ þ p�p�q
F14ðp; qÞ þ p�q�p
F15ðp; qÞ
þ p�q�q
F16ðp; qÞ þ q�q�q
F17ðp; qÞ þ q�q�p
F18ðp; qÞ þ q�p�q
F19ðp; qÞ þ q�p�p
F20ðp; qÞ�
þ "
�½p�p�p	F21ðp; qÞ þ p�p�q	F22ðp; qÞ þ p�q�p	F23ðp; qÞ þ p�q�q	F24ðp; qÞ þ q�q�q	F25ðp; qÞ
þ q�q�p	F26ðp; qÞ þ q�p�q	F27ðp; qÞ þ q�p�p	F28ðp; qÞ� þ "��½p�p	p
F28ðp; qÞ þ p�p	q
F30ðp; qÞ
þ p�q	p
F31ðp; qÞ þ p�q	q
F32ðp; qÞ þ q�q	q
F33ðp; qÞ þ q�q	p
F34ðp; qÞ
þ q�p	q
F35ðp; qÞ þ q�p	p
F36ðp; qÞ�:

Contracting the expression with the external momenta of the axial vertex we must obtain a tensor with the general form

T�
ðp; qÞ ¼ "�
½G1ðp; qÞ� þ "��½q�p
G2ðp; qÞ þ p�q
G3ðp; qÞ þ q�q
G4ðp; qÞ þ p�p
G5ðp; qÞ�
þ "
�½q�p�G6ðp; qÞ þ p�q�G7ðp; qÞ þ q�q�G8ðp; qÞ þ p�p�G9ðp; qÞ� þ g�
"��q

�p�G10ðp; qÞ:

In the above expressions Fi and Gi are invariant functions
of the indicated momenta.

The contraction of the T	�
 tensor generates four rela-

tions among the Fi and Gi functions. One of such relations
is deeply related to the found anomaly. We are referring to
the "�
 term. We have

q	T	�
ðp; qÞj"�

¼ q2F3ðp; qÞ þ ðp � qÞF4ðp; qÞ:

Given the presence of bilinear in the external momenta as
coefficients of the functions, we expect that the contraction
vanishes at the kinematical situation p � q ¼ p2 ¼ q2 ¼ 0.
However, the contracted expression must be proportional
to the tensor T�
. This means that the "�
 term of the

tensor

T�
ðp; qÞj"�

¼ G1ðp; qÞ

must vanish too at the indicated kinematical situation
which implies that the function G1 must vanish.

If we now identify the tensor T	�
 with the AVV am-

plitude and the tensor T�
 with the PVV one, the general

properties stated above will imply very clear consequen-
ces. We have to get

½q	TAVV
	�
 ðp; qÞj"�


�p�q¼p2¼q2¼0 ¼ 0;

½TPVV
�
 ðp; qÞj"�


�p�q¼p2¼q2¼0 ¼ 0:

Looking for this term in the perturbative one-loop PVV
amplitude, Eq. (42), we find

TPVV
�
 ðp; qÞj"�


¼ � i

2�
mf½�ð�1Þ

0 ðp2; m2Þ�
� ðq2 � p � qÞ�ð�2Þ

00 g:
In the indicated kinematical situation we get a nonvanish-

ing value since the function �ð�1Þ
0 is not zero at p2 ¼ 0, or

2m½TPVV
�
 ðp; qÞj"�


�p�q¼p2¼q2¼0 ¼
i

�
;

precisely the same as occurs for the AV anomalous
amplitude.
On the other hand, looking at the expression obtained for

the contraction of the AVV amplitude with the momentum
of the axial vertex, the same mechanism which determines
the above result also states

q	TAVV
	�
 ðp; qÞjp�q¼p2¼q2¼0

¼
�
TAV

�ðpÞ � TAV

�
ðpþ qÞ þ 2m½TPVV
�
 ðp; qÞ�

þ
�
i

�

�
"
�

�
p�q¼p2¼q2¼0

¼ 0;

satisfying the expected property. The presence of the
anomalous term implies that the low-energy limit is sat-
isfied but is the same one which generates the result above
that indicates a violation in the relation of Green functions
relating the AVV and the PVV triangles. The conclusion is
simple: if the contraction of the axial current with the
external momentum cannot be identified as the pseudosca-
lar one, since these two quantities do not have the same
low-energy behavior, the relation among Green functions
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is violated and it is characterized by the existence of an
anomaly.

The situation is completely analogous to the (divergent)
single axial triangle in four dimensions. The explicit evalu-
ation of the AVV triangle within the context of the strategy
we have applied here reveals

q	TAVV
	�
 ðp; qÞ ¼ 2m½TPVV

�
 ðp; qÞ� � i

4�2
"�
��p

�q�;

p�TAVV
	�
 ðp; qÞ ¼ 0; ðq� pÞ
TAVV

	�
 ðp; qÞ ¼ 0:

Since

TPVV
�
 ðp; qÞ ¼ i

4�2
m"�
��q

�p�½�ð�1Þ
00 �;

and

½�ð�1Þ
00 �p�q¼p2¼q2¼0 ¼ � 1

2m2
;

we get

½q	TAVV
	�
 ðp; qÞ�p�q¼p2¼q2¼0 ¼ 0:

From these results we can see that the two conserved vector
currents and the low-energy limit are preserved but the
axial Ward identity is not fulfilled. A detailed discussion
about such an investigation will be presented elsewhere.
These results are the desired ones since they are precisely
those which are stated after the choice of ambiguities in the
traditional approach. In our procedure, the amplitudes are
nonambiguous, no regularization is used, and such results
emerge in a natural way. The important fact here is the
complete similarity between the divergent amplitude and
the finite ones. The ambiguities cannot play any role in the

amplitude considered in the present contribution but it is
anomalous too in a completely similar way.
Undoubtedly the consequences of the conclusions ex-

tracted here need to be considered for the construction of
renormalizable QFT’s. Anomalies are properties of a class
of tensors emerging when they are identified with physical
amplitudes. The phenomenon does not have anything to do
with divergences in the perturbative solution of QFT since
it occurs for finite amplitudes. In eventual exact solutions it
is expected that they are present too.
The present investigation is only one example of con-

clusive ones allowed by the predictive perturbative calcu-
lations. In the presence of regularizations the obtained
results are not unique, which means they are compromised
with ambiguities. In such a scenario the final results rep-
resent only a particular case of many other possibilities, as
a consequence of arbitrary choices involved in intermedi-
ary steps of the required calculations.
New anomalies can be stated if the coupling of fermions is

done through tensor operators as well as if a clarification of
recent controversies involving anomalies is possible [18].
Works along these lines are presently under way. The
previous results point to the direction of the conclusions
stated in the present contribution.
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