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We studied different levels of resummations of the exactly solvable Bloch-Nordsieck model in order

to be able to compare the approximations with an exact result. We studied one-loop perturbation theory,

two-particle-irreducible resummation and Schwinger-Dyson equations truncated in a way to maintain

Ward identities. At all levels we carefully performed renormalization. We found that although the two-

particle-irreducible resummation does not exhibit infrared sensitivity at the mass shell, as the one-loop

perturbation theory does, it is still far from the exact solution. The method of truncated renormalized

Schwinger-Dyson equations, however, is exact in this model, so it provides a new way of solving the

Bloch-Nordsieck model. This method may also be generalized to other, more complicated theories.
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I. INTRODUCTION

In field theories we often encounter infrared (IR) diver-
gences of different kind. Some of them have physical
meaning while others are just artifacts of the perturbation
theory. A common feature, however, is that the IR diver-
gences appear at each order of perturbation theory, usually
being more and more severe at higher-loop orders. In order
to consistently define the theory, these IR divergences must
be summed up.

Two-particle-irreducible (2PI) resummations provide
a consistent resummation framework known for a long
time [1]. The basic idea is to replace the free propagator
in the perturbation theory with the exact one which is
approximated self-consistently with fixed-loop skeleton
diagrams. The so-defined perturbation theory is renorma-
lizable [2–12], and can be applied to study different physi-
cal questions from nonequilibrium [8,9], thermodynamics
[6,10,13,14], and different systems like O(N) model
[11,12] or gauge theories [15].

Although the 2PI approximation is constructed by
physical arguments, and we expect better results (i.e.,
closer to the exact one) after 2PI resummation, a priori
it is not sure that one really achieves this goal. Probably
the finite lifetime effects are well represented by 2PI
resummation both in equilibrium [6] as well in non-
equilibrium, where the 2PI is close to the Boltzmann
equation approximation [16]. But if the deep IR regime
is important, where multiparticle excitations also play
crucial role, the picture is not nearly so clear. To make
the case even worse, in most gauge theory models it is
hard to make exact statements about the IR behavior of
the model.

In this paper we aim to study the Bloch-Nordsieck
model, which is an exactly solvable 3þ 1 D gauge theory
[17]. It is the eikonal approximation model of the QED,

and one can argue [18] that in the deep IR regime it
describes QED correctly. Therefore it is used to estimate
IR properties of QED from this model, for example, the
soft photon creation processes [19] or finite temperature
electron damping [18].
This model is therefore a motivated case study where the

accuracy of the 2PI resummation can be assessed. We
therefore perform a series of approximations for the
Bloch-Nordsieck model: a one-loop perturbation theory,
a 2PI resummation and finally the solution of the
Schwinger-Dyson equations with an ansatz for the vertex
function. In this model, all levels of the approximations can
be treated analytically. We show that the last method is
exact in the model under consideration—although that is
not expected in general. This observation, however, leads
us to proposing how the 2PI resummation can be improved
in a generic model in order to catch the IR physics
correctly.
The structure of the paper is as follows. We first present

an overview of the standard solution of the Bloch-
Nordsieck propagator at zero temperature in Sec. II.
Then we compute the one-loop level fermion propagator
in Sec. III. Next, in Sec. IV, we write up the 2PI equations
for this model, perform renormalization on that, and give
the analytical solution as far it can be done. Then we study
the problem also numerically, determine the fermion
propagator, and compare the result with the exact one.
Finally, in Sec. V, we study the truncated Schwinger-
Dyson equations, renormalize it, and show that for the
Bloch-Nordsieck model the so-defined approximation
scheme is exact. In the conclusion (Sec. VI) we summarize
our approach again and speculate about the possible
generalizations.

II. THE MODEL AND THE EXACT SOLUTION

The Bloch-Nordsieck model is a simplification of the
QED Lagrangian where the Dirac matrices �� are replaced
by a four-vector u�
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L ¼ � 1

4
F��F

�� þ ��ðiu�D� �mÞ�;

iD� ¼ i@� � eA�; F�� ¼ @�A� � @�A�:

(1)

The singled-out four-vector u� represents the velocity of

the rest frame of the fermion. The fermion wave function

here has only one component and �� ¼ ��.
We are interested in the fermion propagator, which reads

in the path integral representation

iGðxÞ ¼ hT�ðxÞ ��ð0Þi

¼ 1

Z

Z
D ��D�DA�e

iS½ ��;�;A��ðxÞ ��ð0Þ: (2)

At the tree level it reads

G 0ðpÞ ¼ 1

u�p
� �mþ i"

: (3)

Since it has a single pole, there are no antiparticles in the
model, and also the Feynman propagator is the same as the
retarded propagator. The lack of antiparticles also means
that all closed fermion loops are zero.1 As a consequence
the photon self-energy is zero, the free photon propagator
is the exact one. In Feynman gauge, therefore, the exact
photon propagator is

G��ðkÞ ¼
�g��

k2 þ i"
: (4)

Now we shortly review the exact solution for the fer-
mion propagator, cf. [17,20]. We first define the gauge-
field-dependent propagator

G ðx;AÞ ¼
Z

D ��D�eiS½ ��;�;A��ðxÞ ��ð0Þ: (5)

This satisfies the Schwinger-Dyson equation

ðiu�@� � eu�A
� �mÞGðx;AÞ ¼ ��ðxÞ: (6)

We will need the solution in an exponential form for A, and
this is achieved by introducing the auxiliary quantity
Uðx; �Þ which satisfies

i
@Uðx; �Þ

@�
¼ ðiu�@� � eu�A

� �mÞUðx; �Þ;
Uðx; 0Þ ¼ �ðxÞ:

(7)

By integration of the above equation by � and assuming
Uðx;1Þ ¼ 0 (for which we need a convergence factor i")
we see that

G ðxÞ ¼ �i
Z

d�Uðx; �Þ: (8)

We perform Fourier transformation and separate the free

time dependence Uðp; �Þ ¼ e�iðu�p��mÞ� �Uðp; �Þ, then we
obtain

@ �Uðp; �Þ
@�

¼ ieu�
Z d4k

ð2�Þ4 A
�ðp� kÞeiu�ðp��k�Þ �Uðk; �Þ;

�Uðp; 0Þ ¼ 1: (9)

The linear p� � k� behavior is the consequence of the

linearity in the kernel. If the kernel is nonlinear or it is not
scalar (has a matrix structure) then this form is not true any
more. From here an inverse Fourier transformation yields

@ �Uðx; �Þ
@�

¼ ieu�A
�ðxþ u�Þ �Uðx; �Þ �Uðx; �Þ

¼ eieu�
R

�

0
d�0A�ðu�0Þ�ðxÞ: (10)

Once we have an exponential representation for the
background-dependent propagator, we can perform the
Gaussian A-integration. As a result we obtain in the ex-
ponent the factor

ie2

2

Z d4k

ð2�Þ4 R
�ðk; �Þu�G��ðkÞu�Rðk; �Þ;

Rðk; �Þ ¼
Z �

0
d�0e�ik�u

��0
:

(11)

This integral is UV-divergent; in dimensional regulariza-
tion one finds the result

�

2�"
þ �

�
lni ���; (12)

where � ¼ e2=ð4�Þ and �� ¼ ffiffiffiffiffiffiffi
4�

p
e�E�. Then the fermion

propagator reads

G ðpÞ ¼ �ieð�=2�"Þ
Z 1

0
d�e�i�ðu�p��mÞþð�=�Þ lni ���

¼ Z

ðu�p� �mÞ1þð�=�Þ ; (13)

where Z ¼ �ð1þ �
�Þeð�=2�"Þ ��ð�=�Þ. This is UV-divergent,

which means that we need a wave-function renormaliza-
tion. The renormalized propagator reads

G renðpÞ ¼ �

ðu�p� �mÞ1þð�=�Þ ; (14)

where � is a finite quantity.
We can determine the discontinuity of this formula, for

simplicity choosing u� ¼ ð1; 0; 0; 0Þ,

%ðpÞ ¼ p0
Disc

GðpÞ ¼ �ðp0 �mÞ �ð1� e2i�Þ
ðp0 �mÞ1þð�=�Þ : (15)

With this spectral function the sum rule
R1
�1 dp0%ðp0Þ ¼

1, which is the consequence of the equal time anticommu-
tation relations, cannot be fulfilled, since the integral is
divergent. This divergence should be compensated with the

1This statement can be best seen in real-time representation.
There a chain of fermion propagators, because of the retardation,
is proportional to �ðt1 � t2Þ . . . �ðtn�1 � tnÞ. In a closed-loop
tn ¼ t1, therefore, the product of theta functions is zero almost
everywhere.
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choice � ¼ 0, but then we are faced with a 0�1 expres-
sion. Therefore one should always use a regularized ver-
sion of the spectral function (or propagator), maintaining
the sum rule, and only at the end of the calculation is one
allowed to release the regularization.

The fermionic part of the Lagrangian is Lorentz-
covariant, therefore we can relate the results with different
u� choice by Lorentz transformation. This makes it pos-
sible to work with u ¼ ðu0; 0; 0; 0Þ without loss of general-
ity. In fact, we can perform a Lorentz transformation
where �u ¼ ðu0; 0; 0; 0Þ. If u� is a 4-velocity then u0 ¼ 1;

if it is of the form u ¼ ð1; vÞ, then it is u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
. After

rescaling the field � ! �=
ffiffiffiffiffi
u0

p
and the mass as

m ! u0m, the Lagrangian reads

L ¼ � 1

4
F��F

�� þ ��ðiD0 �mÞ�: (16)

This Lagrangian will be used mostly in this work
later. If necessary, the complete u dependence is easily
recoverable.

III. ONE-LOOP PERTURBATION THEORY

In the present paper we perform three approximations on
the Bloch-Nordsieck model: a standard one-loop perturba-
tion theory, the 2PI improved perturbation theory, and a
Ward-identities-respecting truncature of Schwinger-Dyson
equations. The goal of our investigation is to see how
well these levels of resummations approximate the exact
solution.

Thus we start with the one-loop perturbation theory.
Here we need the renormalized Lagrangian; in Feynman
gauge it reads (using the fact that the photon self-energy is
zero):

L ¼ � 1

2
ð@�A�Þ2 þ ��ði@0 �mÞ�� e ��A0�

þ �Z ��i@0�� �Zmm ���� �e ��A0�: (17)

For the fermion self-energy the one-loop diagram is the
bubble with the contribution

� i�1loopðp;mÞ

¼ ð�ieÞ2
Z d4k

ð2�Þ4 iG00ðkÞiGðp� kÞ

¼ �e2u2
Z d4k

ð2�Þ4
1

k2 þ i"

1

p0 � k0 �mþ i"
: (18)

Moreover, we have wave-function and mass-
renormalization counterterms

�ctðpÞ ¼ ��Zp0 þ �Zmm: (19)

The complete one-loop self-energy is �1loop þ�ct. In the

calculation we have to take care of the nonstandard form of
the free fermion propagator. The details of the computation
can be found in the Appendix; as a result we obtain

�1loopðp;mÞ ¼ �

�
ðp0 �mÞ

�
� ln

m� p0

�
þD"

�
; (20)

where � ¼ e2=ð4�Þ and

D " ¼ 1

2"
þ 1þ 1

2
ðln�� �EÞ: (21)

For renormalization we have to subtract the divergences
with help of the counterterms, the finite parts are fixed by

the renormalization scheme. In the MS scheme we choose
the counterterms like

�Z1;MS ¼ �Zm;MS ¼
�

�
D"; (22)

which results in

�renðpÞ ¼ ��

�
ðp0 �mÞ lnm� p0

�
: (23)

The discontinuity of the renormalized self-energy reads

Disc
p0

�ðpÞ ¼ 2�ðp0 �mÞ�ðp0 �mÞ: (24)

For the one-loop propagator we obtain

G ðpÞ ¼ 1

p0 �m��ðpÞ ¼
1

p0 �m

1

1þ �
� lnm�p0

�

: (25)

This is consistent with the exact result (14) in the leading
order of e2.
The spectral function Disc

p0

iG reads

%ðpÞ ¼ �ðp0 �mÞ
p0 �m

2�

ð1þ �
� lnp0�m

� Þ2 þ �2
: (26)

This spectral function is normalizable, sinceZ 1

�1
dp0

2�
%ðpÞ ¼ �

�
: (27)

On the other hand, the one-loop result is not reliable
when j lnðp0 �mÞ=�j � �

� , i.e., in the vicinity of the mass

shell as well as in the large p0 regime. In order to have a
better description of these kinematical regimes, we need
resummation of certain class of diagrams.

IV. 2PI RESUMMATION

As discussed in the Introduction, the next level of our
approximations is the 2PI resummation. The idea is to use
the exact propagators in the perturbation theory; this
propagator is determined self-consistently using skeleton
diagrams as resummation patterns. The one-loop bubble
diagram in the present case generates the resummation of
all the ‘‘rainbow’’ diagrams. To obtain an expression for
the 2PI resummation we use the technique of [6]: we use
the one-loop formula (18), interpret the appearing propa-
gators as full propagators, and finally perform renormal-
ization with the same form of divergent parts of the
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counterterms as in the one-loop case (the actual values will
be different).

The tree-level photon propagator is exact, therefore we
can write

�ðpÞ ¼ �ie2
Z d4k

ð2�Þ4
Gðp� kÞ
k2 þ i"

: (28)

Using a spectral representation for the fermion propagator
[using that now the Feynman propagator is the retarded one
and that the fermion spectral function is %ð!< 0Þ ¼ 0] we
find

�ðpÞ ¼ �ie2
Z 1

0

d!

2�

Z d4k

ð2�Þ4
1

k2 þ i"

� %ð!Þ
p0 � k0 �!þ i"

: (29)

From this form it is clear that we obtain the weighted one-
loop result, i.e.,

�ðpÞ ¼
Z 1

0

d!

2�
%ð!Þ�1loopðp;!Þ: (30)

In particular, if %ð!Þ ¼ 2��ð!�mÞ, then we get back the
one-loop result.

At this point it is worthwhile examining the UV-
divergence structure of the 2PI approximation. UV diver-
gences may occur in (30) for large values of !: using (20)
we find that the large ! behavior of the one-loop self-
energy reads

�1loopðp;!Þ ¼ �

�
!

�
ln
!

�
�D"

�

þ �

�

�
� ln

!

�
þD"

�
p0 þO

�
p2
0

!

�
: (31)

Since % is integrable for large ! values, therefore the
Oð!�1Þ is already finite. Therefore, the divergence struc-
ture of the self-energy is Aþ Bp0, just like for the free
case, and so the same type of counterterms are needed
(although the values are different). This is a manifestation
of the general case of counterterm renormalizability of 2PI
resummations [6].

A. Analytic study of the 2PI equations

First we try to analyze (30) with analytic methods. We
differentiate it with respect to p0 to find

@�1loop

@p0

¼ �

�

�
� ln

!� p0 � i"

�
� 1

�
;

@2�1loop

@p2
0

¼ ��

�

1

p0 �!þ i"
;

@2�

@p2
0

¼ ��

�
G:

(32)

Since G�1 ¼ p0 �m� �, we find for G�1

d2G�1

dp2
0

G�1 ¼ �

�
: (33)

To solve the equation, we first should realize that the
� ¼ 0 and � � 0 cases are very different. If � ¼ 0 then
ðG�1Þ00 ¼0 and the propagator behaves as G¼Z=ðp0� ~mÞ
with some wave-function renormalization constant Z
and mass ~m. This agrees with the free case. We also
see that the integration constants correspond to the renor-
malization scheme (here the wave-function and mass
renormalization).
If � � 0, then we can redefine the variables with an

arbitrary G0 scale as

E ¼ G0

ffiffiffiffiffiffi
2�

�

s
ðm� p0Þ; � ¼ �G0G�1; (34)

then we find

2
d2�

dE2
� ¼ 1: (35)

This equation does not depend on the coupling any more.
The coupling constant dependence shows up in the inte-
gration constants which are the manifestation of the renor-
malization scheme. We shall also note that the equation
does not give information about the sign of E and �,
because for E ! �E or � ! �� the equation remains
the same. The chosen signs in (34) turn out later to be the
physical choice.
We introduce

y ¼ d�

dE
) dy

dE
¼ dy

d�

d�

dE
¼ E

dy

d�
: (36)

This means that we can write for y:

2y�
dy

d�
¼ 1 ) y ¼ d�

dE
¼

ffiffiffiffiffiffiffiffiffi
ln�

p
þ y0; (37)

with an integration constant y0. ThereforeZ �

1

d�0ffiffiffiffiffiffiffiffiffiffi
ln�0p þ y0

¼ E: (38)

There could appear an integration constant also here on the
right-hand side: E� E0. But recalling that E� p0 �m,
we see that E0 corresponds to a mass shift: if the mass
remains the tree-level m, then E0 ¼ 0.
This is the (implicit) solution of the 2PI equations. We

see that for real � the left-hand side is real and positive,
moreover for �ðE ¼ 0Þ ¼ 1. The E< 0 part corresponds
to imaginary values of�. Since the equation itself is real, if
� is a solution, it is��, too. This means that the imaginary
part is in fact the (half) discontinuity of the solution.
We see that irrespective of the value of y0, at E ¼ 0, i.e.,

on the mass shell � ¼ 1 and so G ¼ �G0 finite. This
yields difficulties when we try to apply renormalization
conditions on the self-energy. Namely, if we keep the mass
shell unchanged (this would correspond to the choice of E0

above), then the renormalization of the self-energy would
mean �ðp0 ¼ mÞ ¼ 0 and �0ðp0 ¼ mÞ ¼ finite. Then,
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however, near the mass shell the propagator should always
behave as�1=ðp0 �mÞ, i.e., infinite at the mass shell. This
means that the physical renormalization process requires
G0 ! 1. In this case the propagator behaves near the mass
shell as

G ¼ �G0

1þ G0y0

ffiffiffiffiffi
2�
�

q
ðm� p0Þ

!
G0!1

y0¼
ffiffiffiffiffiffiffiffi
�=ð2�Þ

p
1

p0 �m
; (39)

because if � is close to 1 then the log term can be
neglected in (38), and we find � ¼ 1þ y0E.

For large values of �, on the other hand, y0 can be
neglected. Then the integral can be evaluated asffiffiffiffi

�
p

erfið ffiffiffiffiffiffiffiffiffi
ln�

p Þ ¼ E: (40)

For large � values it behaves as

�ffiffiffiffiffiffiffiffiffi
ln�

p ¼ E; for large E;�: (41)

B. Numerical solution

Now let us turn to the numerical study of the system,
based on [6,21]: we determine the discontinuity of the self-
energy self-consistently. The discontinuity of (30) now
reads

Disc
p0

�ðpÞ ¼ �

�

Z p0

0
d!ðp0 �!Þ%ð!Þ: (42)

Knowing the discontinuity of the self-energy, we can use
the Kramers-Kronig relation to restore the complete self-
energy

�ðp0;pÞ ¼
Z 1

�1
d!

2�

Disc!i�ð!;pÞ
p0 �!þ i"

: (43)

While (42) is a completely finite expression, in the
Kramers-Kronig relation we will find divergences. This
corresponds to the divergences of the self-energies which
must be made finite by applying the appropriate counter-
terms. Technically, one can regularize the integral in (43)
and then make it finite with counterterms, or use the (twice)
subtracted form of the Kramers-Kronig relation. To see
how it works, we determine the one-loop result from the
tree-level spectral function and the dimensional regulari-
zation of the Kramers-Kronig equations (interpreting

! !
ffiffiffiffiffiffi
!2

p
)

� 2��2"
Z d1�2"!

ð2�Þ1�2"
!ðp0 �m�!Þ�1

¼ �

2�
ðp0 �mÞ

�
1

"
� 2 ln

m� p0

�
þ ln�þ 1

�
: (44)

The divergence structure is the same, and also the MS
scheme result is the same as in (20) (the different finite
parts are due to the different regularization method).

Now we can set up an algorithm to solve (42). We
choose an arbitrary spectral function as a starting one
(practically the free spectral function), then follow the
following steps:
step 1: compute the discontinuity of the self-energy

using (42).
step 2: compute the complete self-energy using the

Kramers-Kronig relation (43).
step 3: renormalize the self-energy with local counter-

terms. To fix the counterterms we used on-mass-shell (OM)
renormalization scheme, i.e., the real part of the self-
energy at the mass shell is zero and its derivative is also
zero

Re�ðp0 ¼ mÞ ¼ 0;
dRe�ðp0Þ

dp0

��������p0¼m
¼ 0: (45)

We note here that releasing the first condition yields a
mass shift, releasing the second condition yields a finite
wave-function renormalization. But in all renormalization
schemes it will remain true that near the (renormalized)
mass shell the propagator behaves as Gðp0 � mÞ ¼
�=ðp0 �mÞ.
step 4: construct the new spectral function from the

discontinuity of the propagator knowing the real and
imaginary part of the self-energy as

%ðpÞ ¼ 2 Im�ðpÞ
ðp0 �m� Re�ðpÞÞ2 þ ðIm�ðpÞÞ2 : (46)

step 5: continue with step 1 until the process converges.
Integrations in the above algorithm are performed nu-

merically. This strategy was applied successfully for the
�4 model in [6].
The direct application of this strategy, however, this time

fails. Numerically, what we can observe is that the spectral
function becomes more and more shallow, and pointwise it
goes to zero limn%nðpÞ ¼ 0. In order to see a convergence,
we had to use a supplementary step in the iteration after
step 4: step 4’: use a rescaling of the generated spectral
function:

%ðpÞ ! A%ðBpÞ (47)

with appropriate A and B, which can ensure convergence.
The appropriate values can be found by inspection, but the
actual values are not too important (we used A ¼ 73 and
B ¼ 11 in our numerics). In this way, finally we succeeded
in seeing convergence in the spectral function.
The numerical reason for this behavior is that the exact

spectral function has a discontinuity at the mass shell,
and—apart from this single point—it always has a negative
derivative. Numerically, however, we cannot have a jump,
since in all regularizations Eq. (42) yields %ðp0 � mÞ �
ðp0 �mÞn where n � 2. Since the exact curve starts to
bend downwards, the recursion tries to lower the spectral
function in order to have smaller derivative near the mass
shell. Since the spectral function has to be positive, these
requirements can be satisfied only with % ¼ 0. With the
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continuous rescaling we can achieve that the numerically
badly conditioned part, the vicinity of the mass shell,
becomes smaller and smaller.

The numerical results can be seen on Fig. 1. The ex-
pected asymptotics can be nicely identified on the calcu-
lation (cf. Figure 2). This also proves implicitly that the
strategy to resolve the aforementioned numerical problem
with the 2PI equation was correct.

If we compare the one-loop, the 2PI, and the exact
results we see that there is not too much improvement.
The IR problem near the mass shell which made the one-
loop calculation unreliable, seems to be cured, but in fact
the result is not closer to the exact one than the one-loop
result. The physics of the deep infrared photons cannot be
described by the 2PI approximation.

V. SCHWINGER-DYSON EQUATIONS
AND WARD IDENTITIES

The next level of the approximations is based on the
Schwinger-Dyson equations. For the Bloch-Nordsieck
model in Feynman gauge it, can be written as

�ðpÞ ¼ �ie2
Z d4k

ð2�Þ4 GðkÞGðp� kÞu���ðk;p� k; pÞ;
(48)

where �� is the vertex function.

For the vertex function there is another exact equation,
coming from the current conservation. This results in the
Ward identity analogous to the QED case [22]

k��
�ðk;p� k; pÞ ¼ G�1ðpÞ �G�1ðp� kÞ: (49)

In this model, however, the vertex function is pro-
portional to u�. In principle, the Lorentz index in this
model can come from u� or from any of the momenta.
But, since the fermion propagator depends on the 4-
momentum in the form u�p

�, the fermion-photon vertex

does not depend on the momentum components which
are orthogonal to u�. Therefore the Lorentz index which

comes from k� in fact comes from the longitudinal
part of k�, i,e., proportional to u�. So we can write
��ðk;p� k; pÞ ¼ u��ðk;p� k; pÞ.
This gives us the possibility that from theWard identities

we exactly determine the vertex function [23]. The Ward
identity for the current conservation yields then, in the case
where u ¼ ð1; 0; 0; 0Þ,
k��

�ðk;p� k; pÞ ¼ k0�ðk;p� k; pÞ
¼ G�1ðpÞ �G�1ðp� kÞ�ðk;p� k; pÞ

¼ G�1ðpÞ �G�1ðp� kÞ
k0

: (50)

Therefore, we find

�ðpÞ¼�ie2
Z d4k

ð2�Þ4
GðkÞ
k0

Gðp�kÞðG�1ðpÞ�G�1ðp�kÞÞ:
(51)

This is an exact equation in the Bloch-Nordsieck model.
Now we will solve this equation in the renormalized
theory, and demonstrate that the solution is indeed iden-
tical with the Bloch-Nordsieck solution presented in
Sec. II.
In the second term, G�1ðp� kÞ drops out, resulting in

an integral

� ie2
Z d4k

ð2�Þ4
GðkÞ
k0

¼ 0; (52)

because of k0 ! �k0 symmetry. What remains is

�ðpÞ ¼ G�1ðpÞð�ie2Þ
Z d4k

ð2�Þ4
GðkÞ
k0

Gðp� kÞ: (53)

This form is true in the original model, we shall now find
the renormalized form. First we adapt the wave-function
renormalization for the fermionic fields which changes
the bare propagator to 1=ðZp0 � ðmþ �mÞÞ where Z ¼
1þ �Z. We will assume that the mass shell remains the
same, thenmþ�m¼Zm. The free propagator 1=ðp0 �mÞ
gets a wave-function renormalization correction factor
1=Z. We will use also the notation eb ¼ eþ �e. The full
propagator then reads
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FIG. 1 (color online). The real part and discontinuity of the 2PI
propagator.
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the data.
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G �1ðpÞ ¼ Zðp0 �mÞ ��ðpÞ; (54)

Using (53) we find the equation

G ðpÞ ¼ �ðp0Þ
p0 �mþ i"

; (55)

where

�ðp0Þ ¼ 1þ Jðp0Þ
Z

and

Jðp0Þ ¼ �ie2b

Z d4k

ð2�Þ4
GðkÞ
k0

Gðp� kÞ:
(56)

�ðp0Þ can be interpreted as a running wave-function renor-
malization constant.

With a spectral representation

Jðp0Þ ¼
Z 1

0

d!

2�
%ð!ÞI1ð!� p0 þ i"Þ;

where I1ðaÞ ¼ ie2
Z d4k

ð2�Þ4
1

k20 � k2 þ i"

1

k0

1

aþ k0
:

(57)

In the Appendix we evaluate I1ðp0Þ, and we find

Jðp0Þ ¼ e2b
4�2

Z 1

�1
d!

2�
%ð!Þ

�
D" � ln

!� p0 þ i"

�

�
:

(58)

We rewrite it into (56), then, assuming normalizable spec-
tral function, after some algebraic manipulation we find

�ðp0Þ ¼
1
�b

þ 1
�D" � 1

�

R1
�1

d!
2� %ð!Þ ln!�p0þi"

�

Z=�b

: (59)

We may assume that the explicit integral is not UV-
divergent (it can be checked a posteriori, or, as in the
present case, knowing the exact solution). Then the above
equation can be made finite by requiring

1

�b

þ 1

�
D" ¼ 1

�r

;
Z

�b

¼ zr
�r

: (60)

where �r and zr are finite. This form can be interpreted
physically as the appearance of the renormalized coupling
�r and the finite wave-function renormalization zr. We
note that the coupling constant renormalization equation
agrees with the nonperturbative coupling constant renor-
malization in the O(N) models [24].

Now we find

�ðp0Þ ¼ 1

zr

�
1� �r

�

Z 1

�1
d!

2�
%ð!Þ ln!� p0 � i"

�

�
: (61)

This function depends on the arbitrary scale �, but the
physics, of course, must be �-independent. This can be
achieved by appropriately changing the zr and �r constant
when we change�. The�-independence of �ðp0Þ requires
(using the sum rule for %)

d�ðp0Þ
d ln�

¼ � 1

z2r

dzr
d ln�

�
1� �r

�

Z 1

�1
d!

2�
%ð!Þ ln!� p0 � i"

�

�

� 1

zr�

d�r

d ln�

Z 1

�1
d!

2�
%ð!Þ ln!� p0 � i"

�
þ 1

zr

�r

�

¼ 0: (62)

This can be satisfied if

� 1

z2r

dzr
d ln�

þ 1

zr

�r

�
¼ 0;

1

z2r

dzr
d ln�

�r

�
� 1

zr�

d�r

d ln�
¼ 0:

(63)

The second equation means zr ¼ �r=�0 where �0 is a
constant; the first equation then reads

d lnzr
d ln�

¼ �r

�
) d�r

d ln�
¼ �2

r

�
) � 1

�rð�Þ þ
1

�rð�0Þ
¼ 1

�
ln
�

�0

) �rð�Þ ¼ �rð�0Þ
1þ �rð�0Þ

� ln�0

�

(64)

Using the normalizability of %, we finally find

�ðp0Þ ¼ �0

�

Z 1

�1
d!

2�
%ð!Þ ln �

!� p0 � i"
;

� ¼ �eð�=�rÞ:
(65)

The �0 and the scale � are renormalization-group-
independent quantities (i.e., independent of the scale �),
these characterize the renormalization scheme. The ap-
pearance of a scale � is the manifestation of dimensional
transmutation. Now, instead of that scale �, it is worth-
while to use M, for which Re�ðMÞ ¼ 0. Clearly M � � if
� � m. Then with differentiating � with respect to p0

we find

d�ðp0Þ
dp0

¼ ��0

�

Z 1

�1
d!

2�

%ð!Þ
p0 �!þ i"

¼ �Gðp0Þ

) �ðp0Þ ¼ �0

�

Z M

p0

d!Gð!Þ: (66)

This gives finally

ðp0 �mÞGðpÞ ¼ �0

�

Z M

p0

d!Gð!Þ: (67)

By differentiation with respect to p0 we find

ðp0 �mÞG0 þ G ¼ ��0

�
GGðpÞ ¼ g0ðp0 �mÞ�1�ð�0=�Þ;

(68)

where g0 is an arbitrary constant. This is indeed the solu-
tion of Bloch and Nordsieck (14), now in terms of the
renormalized quantities.
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But we also see that the condition Gðp0 ¼ MÞ ¼ 0 can
be satisfied only with g0 ¼ 0. This is in close relation with
the fact that at the mass shell p0 � m, the propagator (and
its discontinuity) is not integrable.

The lesson of this analysis is that the deep IR physics is
well describable by the Schwinger-Dyson equation, trun-
cated in a way which respects the Ward identities. As we
have seen, this strategy is renormalizable and exact in case
of the Bloch-Nordsieck model. We expect that, in QED, the
Schwinger-Dyson equations, truncated in the way we have
done it in the Bloch-Nordsieck theory, will represent the
exact result well in the problematic deep IR regime.

VI. CONCLUSIONS

In this paper we examined the exactly solvable Bloch-
Nordsieck model from the point of view of different per-
turbative methods. We first reviewed the known method to
obtain the exact solution [17]. Then the different levels of
approximations, like the one-loop level perturbation the-
ory, the 2PI resummation and the truncated Schwinger-
Dyson equations were studied. The one-loop result exhibits
an IR sensitivity when we approach the mass shell, which
renders the theory ill-defined. The self-energy (2PI) resum-
mation reorganizes the perturbative series in a way that this
IR problem disappears. Although the IR sensitivity cannot
be seen any more, but still the 2PI method fails to repro-
duce the correct result. On the other hand, the Schwinger-
Dyson equations, truncated in a way that the Ward identi-
ties are satisfied, yield the exact result in the Bloch-
Nordsieck model. And, while the original solution method
is very hard to generalize to other theories, there is a
hope to generalize the ideas of the specially truncated
Schwinger-Dyson equations method.
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APPENDIX A: DETAILS OF THE
ONE-LOOP CALCULATION

The one-loop contribution to the self-energy reads, with
a generic u vector in Feynman gauge,

� ¼ �ie2u2
Z d4k

ð2�Þ4
1

k2 þ i"

1

u�ðp� � k�Þ �mþ i"
:

(A1)

This is Lorentz-invariant, if we perform a Lorentz trans-
formation both on u and p. So we may choose a special
frame where �u ¼ ðu0; 0; 0; 0Þ. If u is a proper 4-velocity,

then u0 ¼ 1; if it is u ¼ ð1; vÞ, then u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
, but still

constant, since � is a parameter of the theory. We find then

� ¼ e2u0I0

�
m

u0
� p0 � i"

�
;

I0ðaÞ ¼ i
Z d4k

ð2�Þ4
1

k2 þ i"

1

aþ k0
:

(A2)

Thus it is enough to consider I0 only. There we transform to
positive frequency integrals

I0ðaÞ ¼ i
Z d4k

ð2�Þ4
1

k2 þ i"

1

aþ k0

¼ ia

�

Z 1

0
dk0

Z d3k

ð2�Þ3
1

k20 � k2 þ i"

1

a2 � k20

¼ a

�

Z 1

0
dk0

Z d3k

ð2�Þ3
1

k20 þ k2

1

a2 þ k20
; (A3)

where in the last step we performed Wick rotation (the
choice of the imaginary part of a is crucial for the direction
of the rotation on the complex plane).
Now we can write up the integral in k0 and k space, in

the latter using 3� 2" dimensions,

I0 ¼ a�2"
Z 1

0

dk0
�

Z d3�2"k

ð2�Þ3�2"

1

k20 þ k2

1

a2 þ k20
: (A4)

We use the relation

�2"
Z dd�2"k

ð2�Þd�2"
fðk2Þ ¼ 2ð4��2Þ"

ð4�Þd=2�ðd=2� "Þ
Z 1

0
dkkd�1þ2"fðk2Þ ¼ ð4��2Þ"

ð4�Þd=2�ðd=2� "Þ
Z 1

0
dzzðd=2Þ�1�"fðzÞ (A5)

to proceed as

I0 ¼ a

�

Z 1

0
dk0

1

a2 þ k20

ð4��2Þ"
ð4�Þ3=2�ð32 � "Þ

Z 1

0
dzzð3=2Þ�1�"ðk20 þ zÞ�1 ¼ að4��2Þ"�ð� 1

2 þ "Þ
8�2

ffiffiffiffi
�

p
Z 1

0
dk0

k1�2"
0

a2 þ k20

¼ a�ð� 1
2 þ "Þ�ð1� "Þ
16�2

ffiffiffiffi
�

p
�
4��2

a2

�
"
�ð"Þ ¼ �a

8�2

�
1

"
� 2 ln

a

�
þ 2þ ln�� �E

�
: (A6)

We write it as
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I0 ¼ �a

4�2

�
D" � ln

a

�

�
; (A7)

where

D " ¼ 1

2"
þ 1þ ln�� �E

2
: (A8)

Therefore

� ¼ ðu0p0 �mÞ e2

8�2

�
1

"
� 2 ln

u0p0 �m

u0�
þ 2þ ln�� �E

�
: (A9)

We also need to compute

I1ðaÞ ¼ i
Z d4k

ð2�Þ4
1

k2 þ i"

1

k0

1

aþ k0
¼ �i

�

Z 1

0
dk0

Z d3k

ð2�Þ3
1

k20 � k2 þ i"

1

a2 � k20
¼ � 1

a
I0ðaÞ ¼ 1

4�2

�
D" � ln

a

�

�
:

(A10)
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