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We consider entanglement entropy between regions of space in lattice gauge theory. The Hilbert space

corresponding to a region of space includes ‘‘edge states’’ that transform nontrivially under gauge

transformations. By decomposing the edge states in irreducible representations of the gauge group, the

entropy of an arbitrary state is expressed as the sum of three positive terms: a term associated with the

classical Shannon entropy of the distribution of boundary representations, a term that appears only for

non-Abelian gauge theories and depends on the dimension of the boundary representations, and a term

representing nonlocal correlations. The first two terms are the entropy of the edge states, and depend only

on observables measurable at the boundary. These results are applied to several examples of lattice gauge

theory states, including the ground state in the strong coupling expansion of Kogut and Susskind. In all

these examples we find that the entropy of the edge states is the dominant contribution to the entanglement

entropy.
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I. INTRODUCTION

In quantum field theory, regions of space are subsys-
tems, and the entropy of these subsystems, which for pure
states is the entanglement entropy, gives important infor-
mation about the quantum state. The entanglement entropy
plays an important role in black hole physics, where it
governs the one-loop corrections to the Bekenstein-
Hawking entropy, and may in fact be responsible for the
entire black hole entropy [1–4].

In addition to its role in black hole statistical mechanics,
entanglement entropy has been found to play a role in the
study of phase transitions. Entanglement entropy can be
used to test for the presence of long-range order, even when
an order parameter is not known [5,6] and can detect the
presence of topological phases [7,8]. In gauge theories,
entanglement entropy may be useful in studying the
deconfining phase transition [9,10].

In gauge theories, the entanglement entropy is compli-
cated by the fact that states are not precisely localizable
in space. The result is that the Hilbert space corresponding
to a region of space includes edge states that contribute
to the entanglement entropy [11,12]. These edge states are
similar to the ‘‘would-be pure gauge’’ degrees of freedom
in (2þ 1)-dimensional quantum gravity [13]. Recall that
in 2þ 1 gravity there are no local degrees of freedom in
the bulk, yet the usual thermodynamic arguments suggest
that black holes have an entropy proportional to
the length of the horizon. In the approach of Ref. [13],
the horizon has local degrees of freedom and it is these
degrees of freedom whose entropy is given by the
Bekenstein-Hawking area law. While the precise relation
between these two notions of boundary states is not
clear, their similarity suggests a relation between the

entanglement entropy and the boundary state counting
method of Ref. [13].
It is well-known that the entanglement entropy is ultra-

violet divergent, so a regulator is needed in its definition.
In the continuum, standard methods for calculating the
entanglement entropy at one-loop order fail for gauge
fields [14]. The Hamiltonian method does not work
because the eigenfunctions of the boost generator in
Rindler space are not square-integrable. The Euclidean
conical deficit angle method leads to a ‘‘contact term’’
that makes the result negative and therefore not identifiable
with entanglement entropy, which is a manifestly positive
quantity. In this paper we consider the entanglement
entropy for lattice gauge theories. This allows us to regu-
late the entanglement entropy while clearly exposing the
role of gauge invariance.
Entanglement entropy has been considered before for

certain classes of states in lattice gauge theory [12,15–18].
This paper adopts the Hamiltonian formulation of lattice
gauge theory, rather than the replica method [19] that has
typically been used in numerical calculations of the entan-
glement entropy. The replica method relates the entangle-
ment entropy of the ground state of a given theory to the
partition function computed on an n-sheeted cover of the
Euclidean spacetime. Our results do not use the replica
method, so they do not require the state to be expressed as a
Euclidean path integral, though we agree with results
obtained using the replica method where the latter is
applicable.
Closely related to lattice gauge theory is loop quantum

gravity, which is formulated as an SU(2) lattice gauge
theory on a superposition of lattices. Although this paper
will not discuss loop quantum gravity, entanglement
entropy in loop quantum gravity was discussed in
Refs. [20,21], and we expect the techniques of this paper
to generalize easily to a superposition of lattices. We note*wdonnell@umd.edu
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also that the Hilbert space of edge states in SU(2) lattice
gauge theory is closely related to the Hilbert space of the
SU(2) Chern-Simons theory whose states are counted in
the loop quantum gravity derivation of black hole entropy
[22,23].

We now briefly summarize our result. Consider a lattice
whose set of nodesN is divided into two disjoint sets A and
B whose union is all of N. In a lattice theory where the
degrees of freedom live on the nodes, the Hilbert space
associated with a set of nodes is simply the tensor product
of the Hilbert spaces of each individual node. This leads to
a tensor product decomposition of the whole Hilbert space
asH ¼ H A �H B. In a lattice gauge theory, the degrees
of freedom live on the links, so there is not such a
simple tensor product decomposition. However, following
Ref. [12] we can define a Hilbert spaceH A by splitting the
links that cross the boundary. Along each link l with one
end point in A and one end point in B, we insert a new
vertex on the boundary and divide the link into two smaller
links, one associated with region A and one associated with
region B. The Hilbert space H A then consists of func-
tionals of the connection on the links in A that are invariant
under gauge transformations that act on the nodes in the
interior of A, but not on the boundary nodes. In restricting
the gauge symmetry, degrees of freedom that were previ-
ously pure gauge are promoted to physical degrees of
freedom. The new degrees of freedom are edge states
that are associated with the boundary vertices and trans-
form nontrivially under gauge transformations acting on
the boundary. They are the lattice analogue of the contin-
uum edge states studied in Ref. [11].

The Hilbert space H is not equal to H A �H B, since
the former is invariant under all gauge transformations, and
the latter is invariant under only those gauge transforma-
tions that act trivially on the boundary. Thus instead of an
isomorphism of Hilbert spaces, we have the embedding

H ! H A �H B: (1)

The entanglement entropy of any state in H can be
defined by embedding the state into H A �H B. Letting
� denote a state, represented as a density matrix in H A �
H B, the reduced density matrix of system A is the partial
trace �A ¼ trBð�Þ, and the entanglement entropy is

Sentanglement ¼ Sð�AÞ; (2)

where the function Sð�Þ is the von Neumann entropy,

Sð�Þ ¼ �trð� ln�Þ: (3)

The states in H are invariant under all gauge trans-
formations, including those acting on the boundary. The
reduced density matrix �A associated with a gauge-
invariant state is then also invariant under the group of
boundary gauge transformations, which acts nontrivially
on H A. When decomposed into irreducible representa-
tions of the group of boundary gauge transformations, the

matrix �A takes the form of a direct sum of tensor products.
Using properties of the von Neumann entropy under direct
sum and tensor product, we decompose the entanglement
entropy of a generic state in lattice gauge theory as a sum
of three positive terms (32):
(i) the Shannon entropy of the distribution of boundary

link representations found in Ref. [12],
(ii) the weighted average of the logarithm of the dimen-

sion of the boundary representations found in
Ref. [21], and

(iii) a third term that captures nonlocal correlations of
the bulk field.

The first two terms are purely local to the boundary, and
together they capture the entropy of the edge states. Our
result directly generalizes the results of Refs. [12,21]. We
will derive the result in Sec. II and give several applications
to specific states of lattice gauge theory in Sec. III.

II. ENTANGLEMENT ENTROPY IN LATTICE
GAUGE THEORY

We first review the kinematics of Hamiltonian lattice
gauge theory [24] and spin network states [25]. Consider a
lattice consisting of a set N of nodes and a set L of oriented
links, and let G be a gauge group that is either a compact
Lie group, or a discrete group. A field configuration is an
assignment of group elements ul to links, and a gauge
transformation is an assignment of group elements gn to
nodes, which acts on ul as

ul ! gtðlÞ � ul � g�1
sðlÞ; (4)

where sðlÞ and tðlÞ are, respectively, the nodes at the source
and target of the link l. The Hilbert space H consists of
square-integrable functionals of the holonomies ul that are
invariant under gauge transformations. An orthonormal
basis for H is given by a generalization of the spin net-
work states [25–27]. A spin network consists of an assign-
ment of irreducible representations R ¼ frl: l 2 Lg to
each link, and intertwiners I ¼ fin: n 2 Ng to each node.
Each intertwiner in is a G-invariant linear map between
representation spaces

in:

� O
l: tðlÞ¼n

rl

�
!

� O
l: sðlÞ¼n

rl

�
: (5)

The spin network state jSi associated with a spin network
S is the functional obtained by taking the representation rl
of the group element on each link l, multiplying byffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðrÞp

, and contracting the free indices with the inter-
twiners in [25],

hSjUi ¼
�O
l2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðrlÞ

q
rlðulÞ

�
�
�O
n2N

in

�
: (6)

The intertwiners are chosen to be orthonormal in the inner
product,
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hi1; i2i ¼ trði1iy2 Þ; (7)

so that the resulting spin network states form an orthonor-
mal basis of H [28].

We now describe the tensor product decomposition of the
Hilbert space, which was described in Ref. [12] for Abelian
lattice gauge theories. Let A be a region of space, which on
the lattice will mean a subset of the nodes. The configura-
tion space of H consists of holonomies on all links of the
lattice. The links can be divided into three sets: LA is the set
of links with both end points in A, LB is the set of links with
both end points in B, and L@ is the set of links that cross the
boundary. In order to partition the degrees of freedom of the
boundary links betweenH A andH B, we split each bound-
ary link into two at the boundary, such for each link in L@

there is a new link in L@A and one in L@B. The Hilbert space
H A is then defined as the square-integrable functions of
the holonomies ful: l 2 LA [ L@Ag invariant under gauge
transformations acting at nodes in the interior of A (but not
under gauge transformations acting on the boundary). Then
for each link l 2 L@, the holonomy ul can be obtained as a
product of a holonomy inL@A and one inL@B, and we define
the product map

�: U@A �U@B ! U@: (8)

The pullback map �� then gives an embedding,

��: H ! HA �HB: (9)

For example, if there is just one boundary link l split into
links l1 and l2 such that tðl1Þ ¼ sðl2Þ, then the map � is
given by

�ðu1; u2Þ ¼ u2u1; (10)

and the pullback ��c of a function c : G ! C is given by

ð��c Þðu1; u2Þ ¼ c ðu1u2Þ: (11)

This embedding preserves the norm of the state, a fact
which follows from the G-invariance and normalization
of the Haar measure.

To specify a spin network S, we specify all its represen-
tations and intertwiners,

S ¼ ðRA; RB; R@; IA; IBÞ: (12)

Just as the spaceH is spanned by spin network states, the
spaceH A is spanned by open spin network states [29]. An
open spin network SA is specified by

SA ¼ ðRA; R@; IA;MÞ; (13)

whereM ¼ fml: l 2 L@g is a set of vectors in the boundary
representation spaces,ml 2 rl if the link l points inward at
the boundary, or in the dual representation ml 2 �rl if the
link l points outward (for unitary representations, the dual
representation �r and complex conjugate representation r�
coincide). The open spin network state jSAi is defined just
as in Eq. (6), except that the extra free indices associated

with the boundary vertices are contracted with the vectors
ml. The open spin network states form an orthonormal
basis of H A provided the vectors ml and intertwiners in
are chosen to be orthonormal.
As shown in Ref. [21], under the embedding��, the spin

network state jSi maps to

��jSi ¼ Y
l2L@A

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðrlÞ

p X
ml

jSAi � jSBi; (14)

where SA is given by (13), and SB ¼ ðRB; R@; IB;M
�Þ,

where the vectors M� are dual (complex conjugate) to the
vectors M. In Eq. (14), ml ranges over an orthonormal
basis of rl. This decomposition follows from inserting a
resolution of unity at each point where a link crosses the

boundary, and the factors of 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðrlÞ

p
arise to cancel the

extra factors of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðrlÞ

p
in Eq. (6) that come from splitting

the boundary links.
We now consider an arbitrary gauge-invariant state jc i

expressed in the spin network basis,

jc i ¼ X
S

c ðSÞjSi: (15)

Using the decomposition (14), the reduced density matrix
for region A is

�A ¼ X
RA;R

0
A
;IA;I

0
A
;

R@;RB;IB;M

c ðSÞc ðS0Þ�Q
l2L@A

dimðrlÞ jSAihS
0
Aj; (16)

where S and SA are given by (12) and (13), and S0 and S0A
are given by

S0 ¼ ðR0
A; RB; R@; I

0
A; IBÞ; S0A ¼ ðR0

A; R@; I
0
A;MÞ: (17)

The sums over intertwiners in Eq. (16) are taken over an
orthonormal basis of the space of intertwiners compatible
with the representations incident on each node. In the case
where there is no such intertwiner, the sum is zero.
There are two features worthy of note about Eq. (16).

First, the set of representations R@ is always the same for
SA and S0A. This means that the matrix �A has no off-
diagonal terms that mix different boundary representa-
tions. Second, the coefficients in Eq. (16) are independent
of M, so within each representation the M degrees of
freedom are in a maximally mixed state.
This structure of the reduced density matrix can be seen

from group theory. The boundary gauge transformations
form a group Gn where n is the number of boundary links,
and is represented unitarily on H A. Such a representation
RðgÞ can always be written as a direct sum of irreducible
representations,

RðgÞ ¼ M
r

rðgÞ � 1nðrÞ; (18)

where g 2 Gn, r runs over all irreducible representations
of Gn, and nðrÞ is the multiplicity with which the irreduc-
ible representation r appears in the representation R.
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The reduced density matrix �A comes from a gauge-
invariant state, so it must commute with the representation
R. To commute with RðgÞ for all g, �A must take the form

�A ¼ M
r

1dimðrÞ
dimðrÞ � �AðrÞ; (19)

where �AðrÞ is a density matrix of dimension nðrÞ.
To see more explicitly how the density matrix decom-

poses into representations, it is useful to divide the Hilbert
space H A into an edge Hilbert space and a bulk Hilbert
space such that the states of the boundary Hilbert space are
labeled by ðR@;MÞ, and the bulk Hilbert space is labeled by
ðRA; IAÞ. This decomposition of the Hilbert space is

H A ¼ M
R@

��O
l2L@

rl

�
�H AðR@Þ

�
; (20)

where H AðR@Þ is spanned by states jRA; IAi that are com-
patible with the assignment of representations R@ to the
boundary.

In the decomposition (20) the open spin network states
jSAi and jS0Ai can be written as

jSAi ¼ jR@i � jMi � jRA; IAi; (21)

jS0Ai ¼ jR@i � jMi � jR0
A; I

0
Ai; (22)

so that their outer product takes the form

jSAihS0Aj ¼ jR@ihR@j � jMihMj � jRA; IAihR0
A; I

0
Aj: (23)

Substituting Eq. (23) into the reduced density matrix (16)
and rearranging terms yields

�A¼
X
R@

pðR@ÞjR@ihR@j�
�X

M

jMihMjQ
l2L@A

dimðrlÞ
�
��AðR@Þ; (24)

where pðR@Þ is the probability of distribution of represen-
tations on the boundary,

pðR@Þ ¼
X

RA;RB;IA;IB

jc ðSÞj2; (25)

and �AðR@Þ is the reduced density matrix,

�AðR@Þ ¼
X

RA;R
0
A
;RB;

IA;I
0
A
;IB

c ðSÞc ðS0Þ�
pðR@Þ jRA; IAihR0

A; I
0
Aj: (26)

The factor pðR@Þ is included in the definition of �AðR@Þ to
maintain the unit trace condition.

Since the same R@ appears in both the ket and the bra
in the first tensor factor in Eq. (24), the state does indeed lie
in the direct sum Hilbert space (20). Moreover, the second
tensor factor in Eq. (24) is proportional to the identity
matrix, so the density matrix �A can equivalently be
written

�A ¼ M
R@

pðR@Þ
��O

l2L@

1rl

dimðrlÞ
�
� �AðR@Þ

�
: (27)

The structure of the reduced density matrix (27) allows
us to simplify the entanglement entropy by using proper-
ties of the von Neumann entropy under direct sum and
direct product. Let pn be positive real numbers summing to
one, and �n density matrices on Hilbert space H n. The
von Neumann entropy of a weighted direct sum is

S

�M
n

pn�n

�
¼ HðpnÞ þ hSð�nÞi; (28)

where h�i denotes expectation value with respect to the
probability distribution pn, and HðpnÞ is the Shannon
entropy of this distribution (the classical analogue of the
von Neumann entropy),

HðpnÞ ¼ �X
n

pn lnpn: (29)

Under a tensor product, the von Neumann entropy is
additive,

Sð�1 � �2Þ ¼ Sð�1Þ þ Sð�2Þ: (30)

Finally, the maximally mixed state of dimension n has
entropy lnn,

Sð1n=nÞ ¼ lnn: (31)

Applying the properties of the von Neumann entropy
(28), (30), and (31) to the reduced density matrix �A (27)
gives the entropy as the sum of three positive terms,

Sð�AÞ¼HðpðR@ÞÞþ
X

l2L@A

hln dimðrlÞiþhSð�AðR@ÞÞi; (32)

where h�i denotes expectation value with respect to the
probability distribution pðR@Þ. Equation (32) is the main
result of this paper. Individual terms in this expression have
appeared before: the first term appeared in Ref. [12] where
it was derived for a specific class of states (see Sec. III A),
and the second term appeared in Ref. [21] as the entropy of
a single spin network state.
The first two terms of Eq. (32) depend only on the

distribution of the boundary representations, and in this
sense are purely local. The second term is a sum over
boundary links, and so is extensive on the boundary. The
first term is not extensive, but will be approximately
extensive as long as the correlations between different
representations are local. The effect of correlations is
always to decrease the entropy, so we can obtain an
extensive upper bound by neglecting these correlations.
If we assume that the statistics of each edge are the same
(which would be the case for states with a discrete trans-
lation and rotation symmetry, such as the ground state of a
translation- and rotation-invariant Hamiltonian) then the
upper bound depends only on the probability distribution
of representation on each edge pðrÞ and is given by

Sboundary � nðHðpÞ þ hln dimðrÞiÞ; (33)

with n the number of boundary links.
In principle either of the local terms can be larger. For

example, in a state sharply peaked on spin networks with
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high-dimension representations, the second term will
dominate. In a state that is a superposition of many spin
networks with low-dimension representations, the first
term will dominate. In particular, an Abelian theory has
only one-dimensional representations so the second term in
Eq. (32) vanishes.

The third term in Eq. (32) is the most difficult to charac-
terize. It includes the effects of correlations between dis-
tantly separated degrees of freedom, and in general it is not
bounded by the area of the boundary. However we will see
that, for the classes of states considered in Sec. III, this term
is either vanishing or much smaller than the local terms.

III. EXAMPLES

We now consider several examples of states whose
entanglement entropy can be calculated using our method.

A. Electric string states

Reference [12] considers a class of states in Z2 lattice
gauge theory. This theory has just two irreducible
representations: a trivial representation and an alternating
representation. The associated spin network states are
‘‘electric string states’’ where the two representations are
interpreted as the presence or absence of electric strings
along the edges. The states considered are of the form

j�i ¼ 1

N

X
S

e�ð�=2ÞLðSÞjSi; (34)

where � is a real parameter, LðSÞ is the total length of
electric string (i.e. the number of alternating representa-
tions), and N is a normalization factor.

For such a state, we now show that the entanglement
entropy is given entirely by the Shannon entropy of the
representations on the boundary [the first term in Eq. (32)].
Since the gauge group is Abelian, the second term in
Eq. (32) vanishes. Now consider fixing the set of represen-
tations on the boundary, R@. The total length of electric
strings is the sum of the strings in A, the strings in B, and
those crossing the boundary: LðSÞ ¼ LðSAÞ þ LðSBÞ þ
Lð@AÞ. For a fixed set of boundary representations, the
reduced density matrix is

�AðR@Þ /
X
SA;S

0
A

e�ð�=2ÞLðSAÞ�ð�=2ÞLðS0
A
ÞjSAihS0Aj (35)

¼ jc ihc j; (36)

where

jc i ¼ X
SA

e�ð�=2ÞLðSAÞjSAi: (37)

This is a pure state, so Sð�AðR@ÞÞ ¼ 0.
Here we rederive the result that for the states in Eq. (34)

the entropy is just the Shannon entropy of the string end
points. The entropy for this special class of states was
originally derived in Ref. [12], and on that basis it was

conjectured that the Shannon entropy of the string end
points is a good approximation to the full entanglement
entropy of the ground state in lattice gauge theory. The
advantage of the Shannon entropy over the full entropy is
that it depends only on the probability distribution of
representations on the boundary, and is more easily com-
puted in computer simulations.
Here we have proven that the Shannon entropy is a lower

bound to the entropy that appears generically for all states,
and not just states of the special form (34). Moreover we
have characterized precisely the difference between the
Shannon entropy and the full entanglement entropy.
The fact that Ref. [12] finds good agreement between the
Shannon entropy and the full entropy for the true ground
state indicates that the third term in Eq. (32) is subleading
for this state.
For a non-Abelian gauge theory we can improve on the

Shannon entropy as an approximation of the full entropy
by including the log-dimension term [the second term of
Eq. (32)]. This term also depends only on the distribution
of boundary representations and should therefore also be
easy to compute in computer simulations. Reference [12]
also noted the similarity of the Shannon entropy to the
log-dimension term that appeared in Ref. [21]. Here we
have shown that these two terms are distinct contributions
to the entanglement entropy.

B. Topological phase ground state

In Ref. [8], the limit � ! 0was considered, in which the
state approaches a superposition of spin network states in
which every spin network has an equal amplitude. Every
configuration of string end points on the boundary of a
region is equally probable, but gauge invariance requires
the total number of string end points crossing each con-
nected component to be even. For a region with n boundary
edges and whose boundary has k connected components,
the entropy is

S ¼ ðn� kÞ ln2: (38)

For a macroscopic region, n becomes large while k stays
constant so the entropy is approximately extensive on the
boundary, with small nonextensive corrections.
The deviation from extensivity of the entanglement

entropy is captured by the topological entanglement
entropy. Given a pair of regions A and B,1 the topological
entanglement entropy is (following Ref. [8], but closely
related to the definition in Ref. [7])

Stop ¼ SðAÞ þ SðBÞ � SðA [ BÞ � SðA \ BÞ: (39)

Note that terms proportional to the volume or to the surface
area [such as the term proportional to n in Eq. (38)] do not
contribute to the topological entanglement entropy. This is

1We are now allowing B to be an arbitrary region, not
necessarily the complement of A.
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because the volume and surface area obey the inclusion-
exclusion principle,

fðAÞ þ fðBÞ ¼ fðA [ BÞ þ fðA \ BÞ; (40)

where f is a function measuring either the volume or the
surface area.2 However the k-dependent term does contrib-
ute to the topological entanglement entropy. If one consid-
ers a set of regions A, B as in Ref. [8] such that A and B are
each topologically disks, A \ B has two connected compo-
nents, and A [ B is topologically an annulus, we find a
topological entanglement entropy of

Stop ¼ 2 ln2; (41)

in agreement with the result of Ref. [8].

C. Strong coupling limit

We now consider the entanglement entropy of the
ground state of the SU(2) Kogut-Susskind Hamiltonian
[24] in the limit of strong coupling, g � 1. Consider a
hypercubic lattice in dimension d 	 2. The Kogut-
Susskind Hamiltonian is a sum of electric and magnetic
parts,

H ¼ HE þHB: (42)

We will work with a rescaled version of this Hamiltonian,
but the ground state and therefore its entanglement entropy
are not sensitive to this rescaling. The electric part is
diagonal in the spin network basis, and is given by

HEjSi ¼
X
l2L

jlðjl þ 1ÞjSi; (43)

where jl is the spin of the representation rl. The state of
lowest energy for HE is the spin network state in which all
edges are in the j ¼ 0 representation. We will denote this
state by j0i.

The magnetic part of the Hamiltonian is not diagonal in
the spin network basis, but can be expressed as a functional
of the holonomies,

HB ¼ 3�
X
h

½trðuhÞ þ H:c:
; (44)

where h is the set of all plaquettes (closed loops contain-
ing exactly four links), and trðuhÞ is the associated Wilson
loop operator in the fundamental representation j ¼ 1

2 . The

parameter � is related to the gauge coupling g by �� g�4.
The operator trðuhÞ acts on the trivial spin network as

tr ðuhÞj0i ¼ jhi; (45)

where jhi is the spin network state in which each
edge around the plaquette h is assigned the j ¼ 1

2

representation, and all other edges are assigned the trivial
representation.
For strong coupling g � 1, so � � 1 and we can use

perturbation theory to calculate the ground state, treating
HB as a perturbation of HE. We will be interested in
computing the entropy to order �2, so we compute the
ground state to order �2,

j�i ¼
�
1� 1

2
Nh�

2

�
j0i þ �

X
h

jhi þ �2

�X
h;h0

jhh0i

þX
◫

c◫j◫i þX
▭

c▭j▭i
�
þOð�3Þ: (46)

Here Nh is the total number of plaquettes in the lattice,
ensuring that the state is normalized to order �2. The state
jhh0i denotes the spin network state of two nonintersect-
ing single-plaquette Wilson loops around the plaquettes h
and h0. The state j◫i denotes a spin network state with
support on two intersecting plaquettes with outer links in
the j ¼ 1

2 and an intermediate link with j ¼ 1, and the state

j▭i is a spin network of a single loop encircling two
plaquettes in the j ¼ 1

2 representation. The numbers c◫
and c▭ are constants of order unity that are irrelevant for
the entanglement entropy.
To describe the way different spin networks intersect the

region A, we will write h 2 A, ◫ 2 A to indicate spin
networks that lie entirely in region A. We can divide the
single-plaquette spin networks into those within A, those
within B, and those intersecting the boundary. The num-
bers of plaquettes of each type are given by NhðAÞ, NhðBÞ,
and Nhð@Þ, respectively, with

Nh ¼ NhðAÞ þ NhðBÞ þ Nhð@Þ: (47)

To calculate Nhð@Þ, we note that a single-plaquette loop, if
it intersects the boundary at all must intersect an even
number of times. We will assume that the region A is
chosen so that single-plaquette loops can intersect either
twice or not at all. Let n be the number of boundary links of
region A. To count the number of ways a single plaquette
can intersect the boundary, we fix one of the links inter-
secting the boundary, and after doing so there are 2ðd� 1Þ
different orientations the plaquette can take. This over-
counts by a factor of 2, since the loop intersects the
boundary twice, and so there are

Nhð@Þ ¼ nðd� 1Þ (48)

ways a single plaquette can intersect the boundary.
We now compute the entanglement entropy of the state

(46) by calculating each term of Eq. (32) in turn. To find the
probability distribution of representations on the boundary
we note that the probability of a two-plaquette state is
Oð�4Þ and therefore negligible. Thus the only states con-
tributing to this distribution are the trivial spin network and
the single-plaquette spin networks. The number of differ-
ent possible sets of representations R@ is Nhð@Þ and each

2Note that the Euler characteristic also obeys the inclusion-
exclusion principle. This means that (counterintuitively) terms in
the entanglement entropy proportional to the Euler characteristic
do not contribute to the topological entanglement entropy.
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has probability �2, with the probability of having no
intersections given by 1� Nhð@Þ�2. The entropy of this
probability distribution is

HðpðR@ÞÞ ¼ nðd� 1Þ�2ð� ln�2 þ 1Þ þOð�3Þ (49)

and since each single-plaquette spin network intersects in
two j ¼ 1

2 links, the second term of Eq. (32) is

X
l2L@

hlnð2jl þ 1Þi ¼ nðd� 1Þ�22 ln2: (50)

We now consider the entropy of the density matrices
�AðR@Þ. Since we are taking an expectation value, we only
need to consider sets of boundary representations with
probability of order �2 or larger. This means either there
is no intersection with the boundary, or a single plaquette
h intersecting the boundary. In the latter case, the only
matrix element of �A compatible with the assignment of
representations to the boundary and probability at least
order �2 is �2jhihhj. Thus �AðR@Þ is a pure state to order
�2 and so contributes no entropy.

In the case where there is no plaquette intersecting the
boundary, we need to know the state �AðR@Þ to order �2.
A short calculation shows that

�AðR@Þ ¼ jc ihc j þOð�3Þ; (51)

where

jc i¼
�
1�1

2
NhðAÞ�2

�
j0iþ�

X
h2A

jhiþ�2

� X
h;h02A

jhh0i

þ X
◫2A

c◫j◫iþ X
▭2A

c▭j▭i
�
: (52)

Since this is a pure state, its entropy is zero to order �2.
Combining the terms in the previous paragraphs the

entanglement entropy at first nonvanishing order in the
strong coupling expansion is

S ¼ nðd� 1Þ�2ð� ln�2 þ 1þ 2 ln2Þ þOð�3Þ: (53)

It is extensive in the boundary area (proportional to n).
The entropy is also proportional to (d� 1), which is the
number of polarizations of the gauge field. This factor is to
be expected for weak coupling, where free field theory is a
good approximation. It is not clear why this factor should
appear also at strong coupling.

IV. CONCLUSION

We have given a formula for the entanglement
entropy of an arbitrary state in lattice gauge theory as

a sum of three terms [Eq. (32)]. Two of these terms are
local to the boundary and have appeared before in the
literature [12,21]; the other captures nonlocal correla-
tions between bulk degrees of freedom. Our result
extends the result of Ref. [12], which proposed that
the Shannon entropy of the boundary representations
[the first term of Eq. (32)] is an approximation to the
entanglement entropy that depends only on the statistics
of boundary observables. Our results prove that the
Shannon entropy is a lower bound, and we give an
improvement of this lower bound for non-Abelian
gauge theories [the second term of Eq. (32)] that also
depends only on the statistics of boundary observables.
Moreover, a precise expression is given for the differ-
ence between the local part of the entropy and the full
entropy [the third term of Eq. (32)].
We have verified several results for entanglement

entropy of specific states that appeared already in the
literature, and considered also the entanglement entropy
of the ground state of the Kogut-Susskind Hamiltonian
for SU(2) lattice gauge theory to first nonvanishing
order in the strong coupling expansion. While at this
leading order only the local terms contribute to the
entropy, at higher order all terms will contribute. This
agrees with field theory calculations of the entropy,
where the entropy density is found to diverge as the
horizon is approached. While we expect the dominant
contribution to entanglement entropy to come from
states localized near the boundary, there should be a
finite contribution from correlations at a distance of
more than one lattice spacing.
It is tempting to speculate on the relation between the

local terms in the entanglement entropy and the contact
term found in Ref. [14], since both appear to be unique to
gauge theories and both are associated with observables
localized on the boundary. However our result cannot
explain the negative coefficient associated with the contact
term, as the local part of the entanglement entropy is
manifestly positive. There remains the intriguing possibil-
ity that the calculation of Ref. [14] corresponds to a differ-
ent definition of the entropy associated with a region of
space than the one considered here, a possibility we leave
for future work.
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