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It is shown that the introduction of a suitable function in the higher-dimensional gauge field action may

be used in order to achieve gauge bosons localization on a thick brane. The model is constructed upon

analogies to the effective coupling of neutral scalar field to electromagnetic field and to the Friedberg-Lee

model for hadrons. After that we move forward studying the localization of the Kalb-Ramond field via this

procedure.
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I. INTRODUCTION

It is well known that in the braneworld paradigm four-
dimensional gravity may be localized on a singular brane
[1], i.e., a normalizable zero mode arising from the gravi-
tational field fluctuation exists on the brane. In Ref. [2], a
nonsingular brane performed by a thick domain wall is
considered. In this more realistic case, gravity is also
localized on the brane. In general, braneworld models are
inspired in string theory and it is expected that a considered
model makes contact with some string theory limit in the
consideration, for instance, of D-branes solutions. In this
vein, it is important to make effort in order to eliminate
some of the differences between the domain-wall approach
for braneworld models and the D-branes solutions.

As already noted, for example, in Ref. [3], an important
difference of D-branes when compared to the domain wall
is that while the former supports gauge fields living on it
(basically arising from the open strings ending on the
D-branes), it is not always possible to achieve gauge field
localization on the domain walls by means of only the
space-time curvature acting, i.e., the gauge field effective
action term is blind with respect to the warp factor. In other
words, as well known [4], the five-dimensional gauge field
action
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g

p
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simply blows up after the dimensional reduction. The sim-
plest approach to reach zero modes of gauge fields on the
brane is by assuming the existence of bulk gauge fieldswhich
could, in principle, to give rise to the four-dimensional gauge
sector on the domain wall. Unfortunately such an approach
indicates that the gauge fields cannot be localized [4–6].

In order to circumvent this difficulty, some models have
appeared in the literature. In the absence of gravity, gauge
field localization was extensively considered in, for

instance, Ref. [6] (see also references therein). In the
context of curved spaces this issue was also analyzed.
In Ref. [3], an additional scalar field—the dilaton—
introduced in the five-dimensional action is responsible
to drive the gauge field localization, by means of the
coupling between the dilaton and the kinetic term of gauge
fields. Similar procedure was also adopted in [7]. In
Ref. [8] gauge field localization obtained via kinetic terms
induced by localized fermions. After all, however, it is
relevant to note that there is not a complete mechanism
concerning gauge field localization on the brane.
In this paper we shall add one more possibility in order

to localize gauge fields in thick branes. From the pragmatic
point of view the idea is quite simple and it is based on the
same mechanism which provides the localization of spin
1=2 fermion fields in a brane in five-dimensional flat [9]
and warped [10] space-time. We just introduce a suitable
function in the five-dimensional gauge field Lagrangian,
which leads to a normalizable zero mode after the dimen-
sional reduction, namely:
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�C (2)

The Gð�Þ is a functional of the scalar field from which the
brane originates. To fix ideas one should think in the model
obtained in [2]. Therefore two questions are immediately
raised: first, since the inserted function depends on the
scalar field, it should enter in its field equations contribut-
ing to the background constituted by the metric and the
scalar field. Second, how to set up the form of such a
functional, since any normalizable function could, in prin-
ciple, act in the sameway in the gauge localization scheme.
To the first point we should assume that in this effective
model Gð�Þ is a function of the minimum energy solution,
��ðrÞ, which represents the brane (the domain-wall solu-
tion), such that there is no contribution of the gauge field
zero mode to the energy of the system, as it happens in the
localization of fermion zero mode in the brane. The second
question is a little more subtle. While it is true that the
procedure explained in the next Section may be success-
fully repeated with any normalizable function Gð ��ðrÞÞ, we
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shall give a physical motivation based upon analogies to
the Schwinger’s neutral scalar-gauge field coupling [11], to
the color dielectric model for the confinement of gluons
and quarks [12] and to the quantum mechanics associated
to the matter fields localization on branes. It must be
remarked that the analogy we shall explore here has
many limitations and the Gð�Þ function form shall be
regarded more appropriately as inspired on that models.

Apart of that, it is also known that string theory presents
plenty of higher spin fields on its spectrum. Therefore it is
quite conceivable the study of such fields in the braneworld
context. In this vein it is important to analyze the possi-
bility of localize the Kalb-Ramond (K-R) field [13] on the
brane. In the context of infinitely thin branes the localized
zero mode of the K-R field (interpreted as torsion) is highly
suppressed by the size of the extra dimension [14]. Within
the framework of thick brane worlds the K-R field was also
investigated in [15] and in [16]. In fact, in [15] it was
demonstrated that there is no localized tensorial zero
mode with the usual thick brane background. It was shown
that, in order to localize the zero mode it is necessary a
background composed by a membrane described by two
real scalar fields with internal structures, or a dilatonic
gravitation. Part of this paper is devoted to the use of
appropriated smearing out functions in order to localize
the K-R zero mode field on the brane. The aforesaid
functions, as mentioned, are suitable constructed based
upon the same mechanism for the localization of spin
1=2 fermion fields on a 3-brane embedded in flat [9] and
warped [10] background.

The paper is structured as follows: in the next section we
show, in very simple grounds, that the introduction of the
Gð ��Þ function do localize normalizable zero mode gauge
fields on the brane, physically motivating the functional
form of Gð ��Þ. In Sec. III we take forward our analogy
applying, then, a similar procedure to localize the zero
mode of the K-R field and stressing an important point
concerning the integrability of the smearing out functions.
In the last section we conclude.

II. LOCALIZING GAUGE FIELDS

Before starting our analysis properly, let us briefly set
the background by recalling the standard model developed
in Ref. [2] for five-dimensional gravity coupled to a real
scalar field:

S ¼
Z

d5x
ffiffiffi
g

p �
�1

4Rþ 1
2ð@�Þ2 � Vð�Þ

�
; (3)

where the Poincare invariant line element is given by

ds2 ¼ e2AðrÞ
�
dt2 �X3

i¼1

dx2i

�
� dr2: (4)

By admitting that the scalar field is dependent on the extra
dimension only, the Einstein-Hilbert and scalar field

equations admit minimum energy solutions which are
also solutions of the first-order differential equations [2]

d�

dr
¼ @Wð�Þ

@�
¼ W� (5)

and

dA

dr
¼ � 2

3
Wð�Þ; (6)

whenever the potential Vð�Þ is written in terms of the
superpotential Wð�Þ as [17,18]

Vð�Þ ¼ 1
2W

2
� � 4

3Wð�Þ2: (7)

In [2] the superpotential is chosen to be given as

Wð�Þ ¼ 3bc sin

� ffiffiffiffiffiffi
2

3b

s
�

�
; (8)

which leads to

AðrÞ ¼ �b lnð2 coshð2crÞÞ (9)

and

��ðrÞ ¼ ffiffiffiffiffiffi
6b

p
arctanðtanhðcrÞÞ: (10)

The free parameters b and c in this model are related to the
thickness of the brane (c) and the anti-de Sitter curvature
(bc).
Having fixed the background, let us study the standard

protocol for gauge field localization, this time armed
with the smearing out Gð ��Þ function. The gauge field
Lagrangian is given by Eq. (2). As remarked before, we
shall neglect the Gð ��Þ contribution to the background in
this effective model. The field equation reads

@Cðe4AGð ��ÞgCEgDBFEBÞ ¼ 0: (11)

In the gauge @�A
� ¼ 0 and A4 ¼ 0, decomposing the

field as A� ¼ P
nA�ðxÞ�nðrÞ one arrives at

m2
n�nðrÞ þ e2A

�
�00
nðrÞ þ

�
G0ð ��Þ
Gð ��Þ þ 2A0

�
�0
nðrÞ

�
¼ 0;

(12)

where prime means derivative with respect to r. In order to
set a typical quantum mechanical problem, let us make the
following transformation:

�nðrÞ ¼ e��ðrÞgnðrÞ: (13)

By means of the identification 2�0 ¼ 2A0 þG0=G the first
derivative term disappear and the result is the Schrödinger
equation:

� g00nðrÞ þ ½�00 þ ð�0Þ2 �m2
ne

�2A�gnðrÞ ¼ 0: (14)

For the massless zero mode (g0 � g) we have simply

� g00ðrÞ þ ½�00 þ ð�0Þ2�gðrÞ ¼ 0; (15)
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which may be recast in the following operatorial form:�
d

dr
þ �0

��
� d

dr
þ �0

�
gðrÞ ¼ 0: (16)

Hence we have gðrÞ � e�ðrÞ and �0 ends up as a constant,
say ~�, by Eq. (13). Therefore, the dimensional reduction of
(2) leads straightforwardly to

S ¼ �1
4

Z þ1

�1
~�2Gð ��Þdr

Z
d4xf��f��: (17)

Obviously, if the Gð ��Þ function is constant the coupling
constant multiplying the usual four-dimensional Maxwell
Lagrangian blows up, rendering a delocalized gauge field,
that is, the gauge field zero mode permeates the whole
bulk.

Besides, it is quite easy to see that there is no negative
mass modes in the spectrum for the gauge field. This can be
seen by writing Eq. (12) in terms of a conformal-like

coordinate z ¼ R
r d�e�Að�Þ, such that one finds

� d2~gnðzÞ
dz2

þ ~VðzÞ~gnðzÞ ¼ m2
n~gnðzÞ;

where ~VðzÞ ¼ ððd~�=dzÞ2 � ðd2 ~�=dz2ÞÞ and we have

used the redefinition �nðzÞ ¼ e�~�ðzÞ~gnðzÞ with ðd~�=dzÞ ¼
ð1=2Þð½ð1=GÞðdG=dzÞ� þ ðdA=dzÞÞ. The differential equa-
tion for ~gnðzÞ can be factorized as DDy~gnðzÞ ¼ m2

n~gnðzÞ
with D ¼ ðd=dzÞ � ðd~�=dzÞ. Then for each one of the
normalized eigenstates one has 0 � R

dzjDy~gnðzÞj2 ¼
m2

n. Therefore the background with the G function is in-
deed stable.

A. Setting up the Gð ��Þ function
The idea that a neutral scalar field might be effectively

coupled to a gauge field dates back from the observations
of the anomalous decay �0 ! 2� mediated by virtual
fermions. Such an effective coupling was found by
Schwinger [11] together with an effective coupling term
of a scalar neutral field to the electromagnetic field. The
latter effective coupling would describe the decay of a
stationary meson into two parallel polarized photons
mediated by a virtual proton-antiproton pair, namely,
L ¼ ðe2=12�Þðg=MÞ�F��F�� (see Eq. (5.6) of [11]). In

trying to follow this clue it is important to stress that the
simple replacement Gð ��Þ / ��ðrÞ is not satisfactory to our
problem, since ��ðrÞ is not normalizable in the entire domain
of the extra dimension. This is a peculiar feature of domain-
wall solutions, as the one given by Eq. (10), whatever the
nonlinear model one uses to describe thick branes.

Friedberg and Lee proposed a phenomenological model
[12] to explain nonperturbative effects of QCD at low
energies. In that model, hadrons are nontopological soli-
tons of a nonlinear field theory potential involving a phe-
nomenological scalar field, 	, which couples to the quarks
by means of a Yukawa coupling and to the gluons by means
of a dielectric function, namelyL ¼ ð�1=4Þ
ð	ÞF��

c Fc
��.

Without going into detail, we just recall that in the
Friedberg-Lee model the functional dependence of 
ð	Þ
on 	 is not crucial, but it has to satisfy some conditions
such that the QCD vacuum works as dia-electric medium
for the chromo electric field and an antidiamagnetic
medium for the chromo magnetic field, in close analogy
to the Meissner effect in superconductors. Those condi-
tions are 
ð0Þ ¼ 1, 
ð �	Þ ¼ 0, and d
ð �	Þ=d	 ¼ 0, where
�	 is the expectation value of the scalar field on the QCD
vacuum. Such conditions might be suited to the Gð ��Þ func-
tion. Here we set Gð ��Þ ¼ 1 on the core of the brane, and ~�
can be conveniently chosen such that

Rþ1
�1 ~�2Gð ��Þdr ¼ 1.

The other condition overGð ��Þ isGð ��Þ ! 0 asymptotically
(r ! �1), that is, when ��ðr ! �1Þ goes to the two
respective neighbors minima of the potential Vð�Þ.
We have found that some functionals satisfy those con-

ditions. At this point we would like to recall that the warp
factor itself, which keeps a connection to ��ðrÞ, plays the
role of a smearing out weight function to localize gravitons
on branes [10], and it would also satisfies the above con-
ditions imposed over Gð ��Þ. Nevertheless, since we want to
localize gauge field on branes embedded in flat space-time
too, as in the Rubakov-Shaposhnikov scenario [9], we keep
looking for a functional of ��ðrÞ. Particularly, in flat space-
time Eq. (14) reduces to

� g00nðrÞ þ ½�00 þ ð�0Þ2�gnðrÞ ¼ m2
ngnðrÞ; (18)

where �0 ¼ G0=2G is the quantum mechanics superpoten-
tial. Such an equation is very similar to the equation for the
excitations of the brane (branons) around the domain-wall
solution. In this last case the quantum mechanics super-
potential is given by [19]

�0 ¼ W��ð ��ðrÞÞ: (19)

Furthermore, Eqs. (18) and (19) also appear in the case of
fermion fields localization on branes in flat space-time
when the coupling of fermions to the scalar field is inspired

on supersymmetry, that is, W��
���. As mentioned in the

Sec. I, we shall introduce theG function functional form—
as far as possible—resembling the quantum mechanics
associated to the matter fields localization on branes.
Hence, by keeping the above recurrence also in the case
of localization of gauge fields on branes, we set

�0 ¼ G0=2G ¼ 
W��ð ��ðrÞÞ; (20)


 being a positive constant, which leads to

Gð ��ðrÞÞ / W2

� ð ��ðrÞÞ: (21)

It is important to have in mind at least two central aspects
of differences regarding the analogy to be proposed: in the
QCD case, the color electric flux is sustained to one
dimension exactly by the dia-electric vacuum quality. In
our model, by means of the Gð�Þ function with suitable
boundary conditions (as previously discussed), the flux is
concentrated on the brane leading to the localization.
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Besides, as it iswell known, the aforementioned confinement
is accomplished for non-Abelian gauge fields. This is an
important difference which highlights the fact that the
analogy should not be taken literally. Instead, as we will
see, if the conditions on the smearing out function are
similar to those for the dia-electric function, the localization
(in the braneworld sense) of the gauge field is accomplished.

Now we are in position to set up the smearing out
functions for both flat and warped space-time. In Ref. [9]

one has Vð�Þ ¼ W2
�=2 ¼ ð�=4Þð�2 �m2=�Þ2 and ��ðrÞ ¼

ðm=
ffiffiffiffi
�

p Þ tanhðmr=
ffiffiffi
2

p Þ; therefore, one obtains
Gð ��ðrÞÞ ¼ sech4
ðmr=

ffiffiffi
2

p Þ: (22)

Equation (22) is the appropriated Gð ��Þ function to the flat
space, according to our analogy and to the conditions
imposed over Gð ��ðrÞÞ. Such a superpotential, however, is
not adequate for the brane worlds scenario in warped
space-time, because it implies into a unbound from below
potential Vð�Þ as given by Eq. (7). Nevertheless, by taking
Wð�Þ as in Eq. (8) together with the domain-wall solution
(10), one finds

Gð ��ðrÞÞ ¼ sech2
ð2crÞ: (23)

Both these smearing out functions, (22) and (23), are
sharp on the core of the brane and exhibit a narrow bell-
shape profile, in such a way that they are normalizable in
the entire domain of the extra coordinate.

III. LOCALIZING THE KALB-RAMOND FIELD

We start with the K-R Lagrangian suitable modified by
the multiplication of the smearing out function

S ¼ � 1

12

Z
d5x

ffiffiffi
g

p
Gð ��ÞHMNLH

MNL; (24)

where

HMNL ¼ @MBNL þ @NBLM þ @LBMN; (25)

is the field strength for the K-R field.
The equation of motion for the field BMN is given by

@Qð ffiffiffi
g

p
Gð ��ÞgMQgNRgLSHMNLÞ ¼ 0; (26)

which with the aid of Eq. (4) can be expressed as

e2AGð ��Þ@�H��� � @yðGð ��ÞHy��Þ ¼ 0: (27)

With the gauge choice B�r ¼ 0, @�B
�� ¼ 0, and decom-

posing the field as B�� ¼ P
n
i¼1 h

��ðxÞUnðrÞ we have

m2
nUnðrÞ þ e2A

�
U00

nðrÞ þG0ð ��Þ
Gð ��Þ U

0
nðrÞ

�
¼ 0: (28)

Just as in the gauge field case, in order to set a typical
quantum mechanical problem, it is convenient to perform
the following transformation:

UnðrÞ ¼ e�!ðrÞhnðrÞ: (29)

Now, by means of the identification

!0 ¼ Gð ��Þ0=2Gð ��Þ; (30)

we obtain a Schrödinger-like equation

� h00nðrÞ þ ð!00 þ!02ÞhnðrÞ ¼ m2
ne

�2AhnðrÞ: (31)

For the massless zero mode (h0 � h) we simply have

� h00ðrÞ þ ð!00 þ!02ÞhðrÞ ¼ 0; (32)

which may be rewritten in the operatorial form�
d

dr
þ!0

��
� d

dr
þ!0

�
hðrÞ ¼ 0: (33)

Hence we have hðrÞ � e!ðrÞ and by means of Eq. (29),
U0ðrÞ ends up as a constant, say �. Therefore, the dimen-
sional reduction of (24) leads directly to

S ¼ � 1

12

Z þ1

�1
dr�2e�2AGð ��Þ

Z
d4xh�
�h

�
�: (34)

In order to reproduce an asymptotic anti-de Sitter bulk,
the warp factor e2A have a Gaussian-like shape peaked at

the core of the brane, then e�2AðrÞ ! 1 as r ! �1, for all
models used to describe thick branes, and that is the reason
for not a having a localized zero mode. Hence, if Gð ��Þ is
again a convenient smearing out function of r, it would be
possible to localize the K-R zero mode on the brane. Such a
smearing out function would also work for flat space

(e�2AðrÞ ¼ 1), rendering a localized tensorial field.

A. Identifying the smearing out function

The first clue we shall follow in order to set a suitable G
function is the fact that by means of Eqs. (30) and (32); a
givenGmodify the quantummechanics potential acting on
the modes for the K-R field.
Following this reasoning and the recurrence mentioned

in the previous section, we shall identify the G as in
Eq. (21) and check what would be the constraints over 


which make
Rþ1
�1 dr�2e�2AðrÞGð ��Þ convergent. We have

noted that the conditions over 
 are very dependent on the
model we are using to describe thick branes. We illustrate
that by resorting to the same models we have used in the
previous section.

For the caseW2
� ¼ ð�=2Þð�2 �m2=�Þ2 we have ��ðrÞ ¼

ðm=
ffiffiffiffi
�

p Þ tanhðmr=
ffiffiffi
2

p Þ and

e�2AW2k
� / sech4
þð8=9Þðm2=�Þ

�
mrffiffiffi
2

p
�

� eð2m2=9�Þtanh2ððmrÞ=ð ffiffi
2

p ÞÞ: (35)

Hence, upon integration over the extra dimension the
Eq. (35) is convergent for 
 	 ð�2=9Þm2=�. Since 
 is
positive, it is always convergent in this case and the local-
ization of the zero mode for the K-R field is accomplished
without any restriction.
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Now, keeping in mind the background given in Ref. [2] it
is easy to see that the integration along the extra dimension

Z þ1

�1
dre�2AW2k

� /
Z þ1

�1
dr sech2ð
�bÞð2crÞ (36)

is convergent whenever 
 > b. Therefore, differently from
the (35) case, here we have a nontrivial constraint over 

which must be fulfilled in order to localize the zero mode
for the K-R field. One can note that there will be no
restriction over 
 if one works in flat geometry, since there
is no warp factor.

IV. FINAL REMARKS AND OUTLOOK

We have proposed a mechanism that leads to gauge field
zero mode localization on thick branes by means of an
effective model obtained via the introduction of a smearing
out Gð�Þ function in the gauge field Lagrangian. Gð�Þ is a
functional of the classical scalar-gravitational field equa-
tions solution which originates the brane in a warped
space-time, but the procedure can be applied to the case
of flat space-time as well.

In order to set up a physically motivated Gð�Þ function,
we rely on the Friedberg-Lee phenomenological model
proposed to explain nonperturbative effects of QCD at
low energies. This model involves a scalar field coupling
(via a Yukawa term) to the quarks and also coupling to the
gluons by means of a dielectric function. Translating to our
problem, the analog Gð�Þ function plays the role of a
smearing out dieletric function.

The case of flat geometry is more manageable in the
determination of Gð�Þ and we are guided by the problem

of matter fields localization on branes. By leading this
recurrence a little further we were able to identify the
smearing out function as Gð ��ðrÞÞ / W2


� ð ��ðrÞÞ, where 


is a positive constant. Such functional form to the G
function is suitable for gauge field localization for both,
flat and warped geometries.
One crucial aspect of gauge field localization is that of a

universal coupling to matter. For example, introducing
charged five-dimensional fermions, one requires that the
zero modes of all independent fermion fields couple with
equal strength to the zero mode gauge field. In particular,
the extra-dimensional profile of the zero mode fermion
should not affect its coupling to the gauge field. To show
that in the setting we have been working with, we start with
the five-dimensional interaction action for the fermions
with the gauge field, namely

Z
d5x

ffiffiffiffiffiffiffi�g
p

Q ���aAa�;

where Q is the coupling constant and �a ¼ e�AðrÞ���a
�.

We have been using the gauge choice A5 ¼ 0 and by
following the 3rd section of Ref. [19] one sees that the

normalized fermion zero mode is given by �fðrÞ ¼
Ne�2AðrÞfðrÞ, with N the normalization constant to be
found under the normalization condition N2

Rþ1
�1 dr,

e�Af2 ¼ 1, and fðrÞ is a function that depends on the
functional form of the Yukawa-like interaction of the scalar
field �ðrÞ with the fermions. Then, if one considers only
the fermion zero mode on the above action one has

Z
d4xQ �c ðxÞ��A�ðr; xÞc ðxÞ

�Z þ1

�1
dre3AðrÞ½Ne�2AðrÞfðrÞ�2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼1

: (37)

Then, one can see that the fermion zero mode does
not affect the charge. The four-dimensional coupling
q is related to Q as q ¼ ~�Q, where ~� is the constant
extra-dimensional zero mode for the gauge field, and we
obtain the following interaction action involving only the
localized modes on the brane

R
d4xq �c ðxÞ��A�ðxÞc ðxÞ.

It is worthwhile to mention that this simple effective
model, based upon phenomenological quantum field the-
ory scenarios, might also be applied to the localization of
Yang-Mills fields on branes. In fact, we believe that, giving
the root of the Friedberg-Lee model itself, the extension of
this analogy to the non-Abelian gauge fields localization
follows straightforwardly.

The very same procedure is adopted to get the localiza-
tion of Kalb-Ramond fields on a thick brane. In that case
we have found that more restrictive conditions over 
 are
necessary in order to accomplish the localization and also

that such restrictions depend on the model one has in hands
to describe thick branes.
We also have found that there is a mapping from the

quantum mechanics resulting from our approach, namely,
Eqs. (14) and (28), into the quantum mechanics for the
localized and resonant modes for the vector and tensor
gauge fields in dilatonic branes, which were carried out
in Refs. [7,15,16]. In the latter, the quantum mechanics
potentials for the excitations associated to the vector and
tensor gauge fields depend on the warp factor and on A0ðrÞ,
�0ðrÞ / A0ðrÞ, and B0ðrÞ / A0ðrÞ, where �ðrÞ is the dilaton
field and e2BðrÞ is an extra warp factor from the metric used
in the models for dilatonic thick branes. We have noted that
the dependence on those terms is such that their resulting
quantum mechanics potential is proportional to the quan-
tum mechanics potential found in our approach, provided
that the same nonlinear field theory model is used to
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describe the thick branes in both cases. Such a mathemati-
cal mapping is much clear when one deals with the model
defined by the superpotential (8), because in this case the
term Gð ��Þ0=Gð ��Þ is proportional to A0ðrÞ. Such a relation
can be used to develop a straightforward analysis of the
resonant modes for the vector and tensor gauge fields in our
case by resorting to the results found in [7,15,16]. We think

that our results concerning resonant modes will not differ
appreciably from theirs.
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