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I. INTRODUCTION

In Riemannian geometry symmetries of a metric are
conventionally described by Killing vectors, which gener-
ate infinitesimal coordinate transformations in spacetime.
When considering the geodesic equation, each Killing
vector field with components �nðxÞ gives rise to the first
integral �nðxÞgnmðxÞ dxmd� , where gnmðxÞ is a metric. In

general, a spacetime may also admit Killing tensors, i.e.
totally symmetric tensor fields obeying the equation
rði1Ki2...inþ1Þ ¼ 0, which underlie the first integrals

Ki1...inðxÞ dx
i1

d� . . . dx
in

d� of the geodesic equation. The existence

of the Killing tensors is usually attributed to hidden sym-
metries of spacetime as there is no coordinate transforma-
tion associated to them.

In some instances, the logic can be turned around and
symmetries of spacetime may be uncovered by studying
the first integrals of the geodesic equation describing a
particle propagating on a curved background. The cele-
brated example is the discovery of a quadratic first integral
for a massive particle moving in the Kerr spacetime [1],
which preceded the construction of the second rank Killing
tensor for the Kerr geometry [2].

A spacetime may also admit an antisymmetric analogue
of the Killing tensor, known in the literature as the Killing-
Yano tensor. In general, the Killing-Yano tensors may be
used to construct the Killing tensors, but not every Killing
tensor decomposes into a combination of the Killing-Yano
tensors (see e.g. [3]).

There are several reasons to be concerned about the
Killing tensors and their antisymmetric analogues. They
give a clue for establishing the complete integrability of the
geodesic equation and the complete separation of variables
for some important field equations in gravitational back-
ground [1,4] (a generalization of these results to higher
dimensional Kerr-NUT-AdS black hole was performed in a
series of recent works [5–8]). They allow one to identify
the spacetime in accord with the Petrov classification [2,9].
The Killing-Yano tensors underlie the exotic supersymme-
try [10]. It should also be mentioned that in the near
horizon limit the isometry group of the extremal Kerr
metric is enhanced to include the conformal group
SOð2; 1Þ [11] and the second rank Killing tensor becomes

reducible [12,13]. For a massive particle moving on this
background the Killing tensor governs the dynamics of the
angular sector and specifies a reduced integrable system
[14]. Other applications of the Killing tensors are discussed
in a recent work [15] where further references to the
original literature can be found.
Although spacetimes admitting Killing tensors have been

extensively investigated in the past, no examples of irre-
ducible Killing tensors of rank greater than four appear to
be known. In particular, in a recent work [16] the Eisenhart
lift [17] was applied to Goryachev-Chaplygin and
Kovalevskaya’s tops in order to construct new irreducible
rank-3 and rank-4 Killing tensors. In [18] the results were
extended to Goryachev-Chaplygin and Kovalevskaya’s
gyrostats and the Brdička-Eardley-Nappi-Witten plane-
fronted wave with parallel rays (the pp-wave).
The purpose of this work is to construct an (nþ 2)-

dimensional Lorentzian spacetime which admits irreduc-
ible Killing tensors of rank up to n. This is achieved by
applying the Eisenhart lift to the Calogero model [19].
The Eisenhart lift [17] is a specific embedding of a

dynamical system with n degrees of freedom into an
(nþ 2)-dimensional Lorentzian spacetime such that the
equations of motion of the original system are contained
within the null geodesic equation. It was originally intro-
duced as a recipe of geometrization ofNewtonianmechanics
but it has fallen into oblivion soon. After being rediscovered
in [20,21] (where it was called the Bargmann space) the
method proved to be very useful in studying the issue of
stability of mechanical systems and the description of non-
relativistic symmetries (see e.g. [22–24] and references
therein).
The Calogero model [19] describes a set of identical

particles on the real line interacting through an inverse-
square pair potential. It is one of only a few known many-
body models which are integrable in classical domain and
exactly solvable after quantization. The range of physical
applications of the Calogero model is impressive. It in-
cludes fractional statistics [25], gauge theory [26], black
hole physics [27], the Witten-Dijkgraaf-Verlinde-Verlinde
equation [28,29] and others.
The motivation for the present work is two-fold. On

the one hand, it is instructive to provide a description of
the Calogero model in purely geometric terms. On the
other hand, the Calogero model is known to be maximally*galajin@mph.phtd.tpu.ru
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superintegrable [30], i.e. possessing the maximum allowed
number of functionally independent integrals of motion.
When considered within the Eisenhart framework, it gives
rise to a Lorentzian spacetime with impressively large hid-
den symmetry.

The paper is organized as follows. In the next section we
briefly review the structure of the integrals of motion and
constants of the motion for the Calogero model. In Sec. III
the Eisenhart lift is considered and a relation between the
conserved quantities of an integrable system and symme-
tries of the spacetime is discussed. A criterion for the
resulting Killing vectors and the Killing tensors to be
conformal is formulated. In Sec. IV the Eisenhart lift is
applied to the Calogero model and an (nþ 2)-dimensional
Lorentzian spacetime is constructed which admits irreduc-
ible Killing tensors of rank 3 � r � n, where n is the
number of particles in the Calogero model. We summarize
our results and discuss possible further developments in the
concluding Sec. V.

II. THE CALOGERO MODEL

The Calogero model [19] describes a set of n identical
particles on the real line interacting through an inverse-
square pair potential. Its Hamiltonian reads

H ¼ 1

2

Xn

i¼1

p2
i þ

X

i<j

g2

ðxi � xjÞ2
; (1)

where g is a coupling constant. Throughout the paper
we use the canonical Poisson brackets fxi; pjg ¼ �ij,

fxi; xjg ¼ 0, fpi;pjg¼0. A passage from the Hamiltonian

formalism to the Lagrangian framework is established in
the conventional way piðtÞ ¼ _xiðtÞ. For simplicity we set
the particle mass to unity.
That the model is integrable was first demonstrated by

the method of isospectral deformation [31] (see also [32]).
The Lax matrix

L ¼
p1

ig
ðx1�x2Þ . . . ig

ðx1�xnÞ
ig

ðx2�x1Þ p2 . . . ig
ðx2�xnÞ

. . . . . . . . . . . .
ig

ðxn�x1Þ
ig

ðxn�x2Þ . . . pn

0
BBBB@

1
CCCCA

(2)

determines n independent integrals of motion

Il ¼ 1

l!
trLl; (3)

where l ¼ 1; . . . ; n, which are in involution [31,32]. For
our subsequent consideration it is important to stress that Il
is a polynomial of the l-th order in momenta. In particular,
two lowest values reproduce the total momentum and the
Hamiltonian, while the next few integrals of motion read

I3 ¼ 1

3!

�Xn

i¼1

p3
i þ 3g2

X

i<j

pi þ pj

ðxi � xjÞ2
�
;

I4 ¼ 1

4!

�Xn

i¼1

p4
i þ 4g2

X

i<j

p2
i þ p2

j þ pipj

ðxi � xjÞ2
þ 2g4

X

i<j

1

ðxi � xjÞ4
þ 4g4

X

i�j;i�k;j<k

1

ðxi � xjÞ2ðxi � xkÞ2
�
;

I5 ¼ 1

5!

�Xn

i¼1

p5
i þ 5g2

X

i<j

p3
i þ p3

j þ p2
i pj þ p2

jpi

ðxi � xjÞ2
þ 5g4

X

i<j

pi þ pj

ðxi � xjÞ4
þ 5g4

X

i�j;i�k;j<k

2pi þ pj þ pk

ðxi � xjÞ2ðxi � xkÞ2
�
:

(4)

A salient feature of the Calogero model is that Il can be
used to generate extra constants of the motion which, in
principle, allow one to solve the equations of motion by
purely algebraic means [30,32]. Consider the following
functions on the phase space:1

Ml ¼ 1

2l

�Xn

i¼1

x2i ; Il

�
; (5)

where l ¼ 1; . . . ; n. Taking into account the Jacobi identity
and the relations

1

2

�Xn

i¼1

x2i ; H

�
¼ Xn

i¼1

xipi;

�Xn

i¼1

xipi; Il

�
¼ lIl; (6)

one gets

fMl;Hg ¼ Il; (7)

which implies that

~I l ¼ Ml � tIl (8)

are constants of the motion. Note that ~IlIs � ~IsIl are
conserved quantities which do not depend on time explic-
itly. Together with Il they form 2n� 1 functionally inde-
pendent integrals of motion of the Calogero model [30].
For our subsequent consideration it proves convenient to
allow conserved quantities which explicitly depend on
time and to work in terms of a larger set which includes
Il and ~Il.

1Within the method of isospectral deformation Ml is linked to
1
l! trðQLl�1Þ with Qij ¼ xi�ij [30,32].
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It is instructive to display a few lowest values of Ml in explicit form

M1¼
Xn

i¼1

xi; M2¼1

2

Xn

i¼1

xipi; M3¼ 1

3!

�Xn

i¼1

p2
i xiþg2

X

i<j

xiþxj

ðxi�xjÞ2
�
;

M4¼ 1

4!

�Xn

i¼1

p3
i xiþg2

X

i<j

2pixiþ2pjxjþxipjþxjpi

ðxi�xjÞ2
�
;

M5¼ 1

5!

�Xn

i¼1

p4
i xiþg2

X

i<j

3p2
i xiþ3p2

jxjþp2
i xjþp2

jxiþ2pipjxiþ2pjpixj

ðxi�xjÞ2

þg4
X

i<j

xiþxj

ðxi�xjÞ4
þg4

X

i�j;i�k;j<k

2xiþxjþxk

ðxi�xjÞ2ðxi�xkÞ2
�
: (9)

It is straightforward to verify that the vectors @Il
@�A ,

@~Il
@�A ,

where �A ¼ ðx1; . . . ; xn; p1; . . . ; pn; tÞ, are linearly inde-
pendent which means that Il, ~Il are functionally indepen-
dent. Note that the algebra formed by Il and ~Il is nonlinear.
For sufficiently large values of l and s the brackets fIl; ~Isg,
f~Il; ~Isg yield rational functions, which nonlinearly depend
on Il and ~Il with l ¼ 1; . . . ; n.

The Calogero model is conformal invariant. From (6)
and (7) one deduces that

C ¼ 1

2

Xn

i¼1

x2i � t
Xn

i¼1

xipi þ t2H (10)

is a constant of the motion as well. The Poisson brackets of
the triple H, D ¼ �~I2, and C reproduce the structure
relations of soð2; 1Þ

fH;Dg ¼ H; fH;Cg ¼ 2D; fD;Cg ¼ C; (11)

which is the conformal algebra in one dimension. It should
be remembered, however, that C is not functionally inde-
pendent of the other constants of the motion. This can be

verified by demonstrating that @C
@�A and

@Il
@�A ,

@~Il
@�A are linearly

dependent. A simpler way is to notice that on shell

1

2

Xn

i¼1

x2i ¼
1

4H

�Xn

i¼1

xipi

�
2

(12)

up to an additive constant. The same conclusion is reached
by looking at the realization of the Casimir element
of soð2; 1Þ in the model (1) which implies that on shell
C ¼ D2=H.

For the discussion that follows it proves convenient to
regard n particles on the real line as one particle with n
degrees of freedom. Lagrangian symmetry transforma-
tions, which we consider in this work, are of the form

t0 ¼ tþ �tðtÞ; x0iðt0Þ ¼ xiðtÞ þ �xiðt; xðtÞÞ: (13)

If the action functional S ¼ R
dtLðx; _xÞ holds invariant

under the transformation up to a total derivative, i.e. �S ¼R
dtðdFdt Þ, then the conserved quantity is derived from the

expression

�xi
@L
@ _xi

� �t

�
_xi
@L
@ _xi

�L
�
� F (14)

by discarding the parameter of the transformation.
At the Lagrangian level the conserved charges Il, ~Il,

with l � 2, can be linked to coordinate transformations in
Rn �R1. Associated with I1 and I2 are translations of the
spatial and temporal coordinates

�xi ¼ �; �t ¼ �; (15)

while ~I1 and ~I2 correspond to the boost

�xi ¼ �t; (16)

and the dilatation

�t ¼ 2�t; �xi ¼ �xi: (17)

Here �, �, � and � are infinitesimal parameters. It is
instructive to display also the special conformal transfor-
mation

�t ¼ �t2; �xi ¼ �txi; (18)

which is related to C in (10). Note that (16) and (18) leave
the action functional of the Calogero model invariant up to
a total derivative. Symmetry transformations correspond-
ing to Il, ~Il, with l > 2, involve velocities _xiðtÞ (see e.g.
[15]). Because it is problematic to link them to coordinate
transformations in spacetime, within the geometric frame-
work they are treated as hidden symmetries.
Note that at this stage the geometry is that of the con-

ventional Newtonian mechanics, i.e. Rn �R1, with the
Euclidean metric defined on Rn. In the next section, fol-
lowing Eisenhart, we shall introduce an extra coordinate
and consider an (nþ 2)-dimensional Lorentzian spacetime
a specific projection of which yields the configuration
space of a particle with n degrees of freedom extended
by the temporal coordinate.
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III. THE EISENHART LIFT

The Eisenhart lift [17] (see also [20,21]) is an embed-
ding of a dynamical system with n degrees of freedom
x1; . . . ; xn which is governed by a potential UðxÞ2 into an
(nþ 2)-dimensional Lorentzian spacetime parameterized
by the coordinates yA ¼ ðx1; . . . ; xn; t; sÞ. It is defined such
that the equations of motion of the original system are
contained within the null geodesic equations

d2yA

d�2
þ�A

BCðyÞ
dyB

d�

dyC

d�
¼0; gABðyÞdy

A

d�

dyB

d�
¼0; (19)

specified by the metric

d�2 ¼ gABðyÞdyAdyB ¼ �2UðxÞdt2 þ 2dtdsþXn

i¼1

ðdxiÞ2:

(20)

If the original particle was coupled to an external vector
potential Aiðx; tÞ, then the metric would involve an extra
contribution 2Aiðx; tÞdtdxi. In what follows we use the
notation in which the coordinates t and s are designated
explicitly, while i ¼ 1; . . . ; n. Unless explicitly indicated
otherwise, no summation over repeated indices is
understood.

Taking into account the nonvanishing components of the
Christoffel symbol

�i
tt ¼ ��s

ti ¼ @iUðxÞ; (21)

one can rewrite the geodesic equation in the form

d2xi
dt2

þ@iUðxÞ¼0;
dt

d�
¼c1;

ds

dt
�2UðxÞ¼c2; (22)

where c1 and c2 are arbitrary constants. The condition that
the geodesic is null reads

1

2

Xn

i¼1

�
dxi
dt

�
2 þ ds

dt
�UðxÞ ¼ 0: (23)

The original dynamics is thus recovered by implementing a
null reduction along s [17]. The relations above imply that
t can be interpreted as the temporal coordinate, while s is
closely related to the action.

A salient feature of the Eisenhart framework is
that the Killing vector � ¼ @

@s corresponding to the isome-

try s0 ¼ sþ 	 of the metric (20) is null and covariantly
constant. The Lorentzian spacetime (20) thus admits
a geodesic null congruence with vanishing expansion,

shear and vorticity and belongs to the class of Kundt
spacetimes.
Further specification occurs for harmonic functions

UðxÞ. Given the Christoffel symbols (21), one can readily
verify that the only nonvanishing component of the Ricci
tensor reads

Rtt ¼
Xn

i¼1

@i@iUðxÞ (24)

and the scalar curvature vanishes. Thus, any harmonic
function gives rise to the metric (20), which solves the
vacuum Einstein equations. Such solutions are known as
the pp waves. Note that the Calogero potential which
we consider in this work does not belong to this special
class.
Let us now discuss how conserved charges of the origi-

nal dynamical system are mapped into symmetries of the
spacetime. Recall that a totally symmetric tensor field
KA1...An

ðyÞ is called a conformal Killing tensor if it obeys

the condition

rðA1
KA2...Anþ1Þ ¼ gðA1A2

~KA3...Anþ1Þ; (25)

where the explicit form of the tensor ~KA1...An�1
ðyÞ is found

by taking the trace of the both sides of (25). If the compo-
nents ~KA1...An�1

ðyÞ happen to vanish, one has the usual

Killing tensor. Because within the Eisenhart framework
the geodesic is null, in general, a conserved charge of a
dynamical systems yields a conformal Killing tensor. To be
more specific, in view of (22), a multiplication of a con-

served charge which is a polynomial in momenta pi ¼ dxi
dt

of degree l by ðdtd�Þl yields an expression of the form

KA1...Al
ðyÞ dyA1d� . . . dy

Al

d� from which the Killing tensor

KA1...Al
ðyÞ is derived. A criterion for the resulting Killing

tensor to be conformal is prompted by the dynamical
system itself. If the derivative of the integral of motion
with respect to time leads to the expression which appears
in the left hand side of (23) (the condition that the geodesic
is null) then the resulting Killing tensor will be conformal.
In particular, for the Calogero model which we consider in
the next section none of the Killing tensors proves to be
conformal, while among six Killing vectors only two are
conformal.

IV. HIGHER RANK KILLING TENSORS AND THE
CALOGERO MODEL

Let us see in more detail how the method outlined in the
preceding section works for the Calogero model. Putting
into the left column the first integrals of the geodesic
equation and into the right column the corresponding
Killing vectors, one finds

2In general, the potential U is allowed to depend on time
explicitly. In this work we discuss only closed systems.
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dt

d�
;

@

@s
ds

d�
� 2UðxÞ dt

d�
;

@

@t
Xn

i¼1

dxi
d�

;
Xn

i¼1

@

@xi

Xn

i¼1

xi
dt

d�
� t

Xn

i¼1

dxi
d�

; t
Xn

i¼1

@

@xi
�Xn

i¼1

xi
@

@s

1

2

Xn

i¼1

xi
dxi
d�

þ t

�
ds

d�
� 2UðxÞ dt

d�

�
; 2t

@

@t
þXn

i¼1

xi
@

@xi

1

2

Xn

i¼1

x2i
dt

d�
� t

Xn

i¼1

xi
dxi
d�

� t2
�
ds

d�
� 2UðxÞ dt

d�

�
; t2

@

@t
� 1

2

Xn

i¼1

x2i
@

@s
þ t

Xn

i¼1

xi
@

@xi
: (26)

Here we used the fact that the Calogero potential UðxÞ ¼P
i<j

g2

ðxi�xjÞ2 is translation and conformal invariant

Xn

i¼1

@iUðxÞ ¼ 0;
Xn

i¼1

xi@iUðxÞ ¼ �2UðxÞ: (27)

Taking into account (23), one can readily verify that the
left column in (26) reproduces I1, ~I1, I2, ~I2 in the previous
section. Besides, t can be identified with the temporal
coordinate and the dynamics of s is fixed provided the
evolution of xi is known. Note that within the geometric
framework the boost (16) and the special conformal trans-
formation (18) are extended by a transformation of the
variable s. This is a manifestation of the fact that the action
functional of the Calogero model holds invariant under
(16) and (18) up to a total derivative. In accord with the
criterion we formulated at the end of the preceding section,
the first four lines entering the right column in (26) give the

Killing vector fields, while the last two determine the
conformal Killing vectors.
Hidden symmetries of the metric (20) are derived from

Il, ~Il, with l > 2. For example, I3, ~I3 yield a couple of the

third rank Killing tensors Kð3Þ
ABC and ~Kð3Þ

ABC

Kð3Þ
iii ¼ 1; Kð3Þ

tti ¼ Xn

j¼1;j�i

g2

ðxi � xjÞ2
; ~Kð3Þ

iii ¼ �t;

~Kð3Þ
tti ¼ �t

Xn

j¼1;j�i

g2

ðxi � xjÞ2
; ~Kð3Þ

tii ¼
1

3
xi;

~Kð3Þ
ttt ¼ g2

X

i<j

xi þ xj

ðxi � xjÞ2
;

(28)

I4, ~I4 give rise to the fourth rank Killing tensorsK
ð4Þ
ABCD and

~Kð4Þ
ABCD

Kð4Þ
iiii ¼ 1; Kð4Þ

tttt ¼ 2
X

i<j

g4

ðxi � xjÞ4
þ 4

X

i�j;i�k;j<k

g4

ðxi � xjÞ2ðxi � xkÞ2
;

Kð4Þ
ttii ¼

2

3

Xn

j¼1;j�i

g2

ðxi � xjÞ2
; Kð4Þ

ttij ¼
1

3

g2

ðxi � xjÞ2
;

~Kð4Þ
iiii ¼ �t; ~Kð4Þ

tttt ¼ �2t
X

i<j

g4

ðxi � xjÞ4
� 4t

X

i�j;i�k;j<k

g4

ðxi � xjÞ2ðxi � xkÞ2
;

~Kð4Þ
ttii ¼ � 2

3
t

Xn

j¼1;j�i

g2

ðxi � xjÞ2
; ~Kð4Þ

ttij ¼ � 1

3
t

g2

ðxi � xjÞ2
; ~Kð4Þ

tiii ¼
1

4
xi;

~Kð4Þ
ttti ¼

1

4
g2

Xn

j¼1;j�i

2xi þ xj

ðxi � xjÞ2
; (29)

while I5, ~I5 produce Killing tensors Kð5Þ
ABCDE and ~Kð5Þ

ABCDE of the fifth rank
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Kð5Þ
iiiii ¼ 1; Kð5Þ

ttiii ¼
1

2

Xn

j¼1;j�i

g2

ðxi � xjÞ2
; Kð5Þ

ttiij ¼
1

6

g2

ðxi � xjÞ2
;

Kð5Þ
tttti ¼

Xn

j¼1;j�i

g4

ðxi � xjÞ4
þ 2

Xn

j;k¼1;j<k

g4

ðxi � xjÞ2ðxi � xkÞ2
þ Xn

j;k¼1;i�k

g4

ðxi � xjÞ2ðxk � xjÞ2
; ~Kð5Þ

iiiii ¼ �t;

~Kð5Þ
ttiii ¼ � 1

2
t

Xn

j¼1;j�i

g2

ðxi � xjÞ2
; ~Kð5Þ

ttiij ¼ � 1

6
t

g2

ðxi � xjÞ2
;

~Kð5Þ
tttti ¼ � Xn

j¼1;j�i

tg4

ðxi � xjÞ4
� Xn

j;k¼1;j<k

2tg4

ðxi � xjÞ2ðxi � xkÞ2
� Xn

j;k¼1;i�k

tg4

ðxi � xjÞ2ðxk � xjÞ2
; ~Kð5Þ

tiiii ¼
1

5
xi;

~Kð5Þ
tttij ¼

g2

10

ðxi þ xjÞ
ðxi � xjÞ2

; ~Kð5Þ
tttii ¼

g2

10

Xn

j¼1;j�i

3xi þ xj

ðxi � xjÞ2
;

~Kð5Þ
ttttt ¼

Xn

i<j

g4ðxi þ xjÞ
ðxi � xjÞ4

þ Xn

i;j;k¼1;i<k

g4ðxi þ xkÞ
ðxi � xjÞ2ðxk � xjÞ2

þ Xn

i;j;k¼1;j<k

2g4xi
ðxi � xjÞ2ðxi � xkÞ2

:

(30)

Other Killing tensors are built likewise. By construction,
they are irreducible. None of them proves to be conformal.

V. CONCLUSION

To summarize, in this work we have constructed an
(nþ 2)-dimensional Lorentzian spacetime, which admits
irreducible Killing tensors of rank 3 � r � n. This was
achieved by applying the Eisenhart lift to the Calogero
model. Because within the Eisenhart framework the equa-
tions of motion of a dynamical system are embedded into
the null geodesic equation, the Killing vectors and the
Killing tensors associated to the integrals of motion and
constants of the motion of the original dynamical system
are allowed to be conformal. In particular, the spacetime

constructed in this work admits conformal Killing vectors
but no conformal Killing tensor. It would be interesting to
construct a spacetimewith irreducible higher rank conformal
Killing tensors in a similar fashion. Spacetimes correspond-
ing to integrable generalizations of the Calogeromodel, such
as the Calogero model in a harmonic trap or its extension by
spin degrees of freedom, are also worthy of study.
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