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A quantum-mechanical theory is PT -symmetric if it is described by a Hamiltonian that commutes

with PT , where the operator P performs space reflection and the operator T performs time reversal.

A PT -symmetric Hamiltonian often has a parametric region of unbroken PT symmetry in which the

energy eigenvalues are all real. There may also be a region of broken PT symmetry in which some of the

eigenvalues are complex. These regions are separated by a phase transition that has been repeatedly

observed in laboratory experiments. This paper focuses on the properties of a PT -symmetric ig�3

quantum field theory. This quantum field theory is the analog of the PT -symmetric quantum-mechanical

theory described by the Hamiltonian H ¼ p2 þ ix3, whose eigenvalues have been rigorously shown to be

all real. This paper compares the renormalization group properties of a conventional Hermitian g�3

quantum field theory with those of the PT -symmetric ig�3 quantum field theory. It is shown that while

the conventional g�3 theory in d ¼ 6 dimensions is asymptotically free, the ig�3 theory is like a g�4

theory in d ¼ 4 dimensions; it is energetically stable, perturbatively renormalizable, and trivial.
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I. INTRODUCTION

A PT -symmetric quantum theory is described by a
Hamiltonian that commutes with PT , where the operators
P and T perform space reflection and time reversal [1,2].
Even if a PT -symmetric Hamiltonian is not Dirac
Hermitian (that is, it is not invariant under combined
matrix transposition and complex conjugation), the eigen-
values of the Hamiltonian can still be entirely real.
PT -symmetric Hamiltonians are particularly interesting
because they often have a parametric region of unbroken
PT symmetry in which the eigenvalues are all real and a
region of broken PT symmetry in which some of the
eigenvalues are complex [1–4]. These regions are sepa-
rated by a phase transition that has been repeatedly
observed in laboratory experiments [5–14].

A heavily studied class of PT -symmetric Hamiltonians
is [1–4]

H ¼ p2 þ x2ðixÞ�; (1)

where � is a real parameter. The eigenvalues of this
Hamiltonian are all real when � � 0 and mostly complex
when �1< �< 0. Thus, the region of unbroken PT
symmetry is � � 0 and the region of broken PT sym-
metry is�1< �< 0. These two regions are separated by a
phase transition at � ¼ 0 [1–4].

A special example of a PT -symmetric Hamiltonian
whose eigenvalues are all real and positive is the cubic
Hamiltonian

H ¼ p2 þ ix3: (2)

The d-dimensional, Euclidean space, field-theoretic
equivalent of this quantum-mechanical theory is described
by the Lagrangian density

L ¼ 1

2
ð@�Þ2 þ 1

2
m2�2 þ i

g

6
�3: (3)

This Lagrangian is clearly not Hermitian, but if we assume
that the field � transforms as a pseudoscalar, then it is
PT -symmetric. This is because under this assumption, �
changes sign under space reflection P , and since i changes
sign under T , the interaction term is PT invariant.
While a conventional g�3 theory is interesting from a

theoretical point of view, it is, of course, a physically
unacceptable theory because the real cubic potential
1
2m

2�2 þ 1
6 g�

3 is not bounded below. As a consequence,

there cannot be a stable ground state.
Perturbation theory provides an easy intuitive explana-

tion for the absence of a stable ground state. The Feynman
graphical rules for a conventional g�3 quantum field
theory follow directly from the Lagrangian density

L ¼ 1

2
ð@�Þ2 þ 1

2
m2�2 þ g

6
�3: (4)

The momentum-space amplitudes for a vertex and a line
are

vertex: � g; line:
1

p2 þm2
: (5)

Using these Feynman rules, we can in principle calculate
the ground-state energy density E0ðgÞ by summing all
connected vacuum graphs. Because all such graphs have
even numbers of vertices, this sum takes the form of a
formal Taylor series in powers of g2:
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E0ðgÞ ¼
X1
n¼0

A2ng
2n; (6)

where A2n is the contribution of graphs having 2n vertices.
The key point here is that all graphs contributing to the
ground-state energy density have the same sign and add in
phase, and thus the coefficients in the series (6) all have the
same sign. This series is divergent because the number of
graphs having 2n vertices grows like n! [15,16], but unlike
the perturbation series for a g�4 field theory, it is not a
Stieltjes series [17] because it does not alternate in sign.
Consequently, the Borel sum [17] of the perturbation series
has a cut on the real-positive axis in the complex g2 plane.
This perturbative argument shows that the ground-state
energy density is complex; the imaginary part of the energy
density is the discontinuity across the cut. We conclude
that the ground state of the conventional g�3 theory is
unstable; that is, it decays (tunnels out to infinity through
the barrier in the potential) with a lifetime given by the
imaginary part of E0ðg2Þ.

On the other hand, perturbation theory also gives a
simple intuitive argument that the non-Hermitian,
PT -symmetric Lagrangian density (3) defines a theory
with a stable ground state. Note that the cubic potential in
this theory is complex, and thus we cannot ask whether it is
unbounded below. The idea of a potential being bounded
below applies only if the potential is real; unlike the real
numbers, the complex numbers are not ordered, so the
notion of boundedness simply does not apply. We obtain
the PT -symmetric Lagrangian in (3) from the conven-
tional Lagrangian in (4) by replacing g by ig. When we do
so, the perturbation series in (6) now alternates in sign. As
a consequence, it is a series of Stieltjes and its Borel sum is
real [18–20]. We conclude from this argument that it is
likely that the ground-state for this theory is stable.

While this perturbative argument is only heuristic, there
is a rigorous proof [21,22] that the spectrum of the cubic,
quantum-mechanicalPT -symmetric Hamiltonian in (2) is
real and bounded below. It is not yet known at a rigorous
level whether the energy levels of the unconventional
quantum field theory in (3) are real and bounded below
because for this theory one can only rely on perturbative
calculations.

To show that thePT -symmetric quantum field theory in
(3) is a physically acceptable quantum theory one must
(in addition to proving that the spectrum of the theory is
bounded below) verify that there is a Hilbert space with a
positive inner product and that time evolution is unitary. To
demonstrate this, one would have to show that there exists
a linear operator C whose square is unity and that C
commutes with both the Hamiltonian and with the PT
operator [1,2]. In perturbation theory the C operator for the
ig�3 theory has been calculated to leading order [23], but
it is not known rigorously whether the Lagrangian (3)
defines a physically acceptable theory. (There may even
be a critical value of g at which a PT phase transition

from a physically acceptable theory having real energies to
an unphysical theory having complex eigenvalues occurs.)
However, we do know for certain that the conventional
g�3 Lagrangian in (4) defines a physically unacceptable
theory.
While the conventional Lagrangian in (4) is physically

unacceptable and the unconventional Lagrangian in (3)
may or may not be physically acceptable, it is certainly
interesting to study these Lagrangians from a mathematical
point of view. The purpose of this article is to examine and
contrast the renormalization group (RG) properties of these
two Lagrangians. We will show that while a conventional
g�3 theory in d ¼ 6 dimensions is asymptotically free, the
ig�3 theory is like a g�4 theory in d ¼ 4 dimensions; that
is, it is stable, perturbatively renormalizable, and trivial.
This paper is organized as follows: In Sec. II we review

the standard perturbative renormalization treatment of a
conventional g�3 theory. Then, in Sec. III we carry out
the renormalization group analysis for the g�3 theory.
In Sec. IV we repeat the analysis of Sec. III for a
PT -symmetric ig�3 theory. We give some concluding
remarks in Sec. V.

II. PERTURBATION THEORY FOR A
d-DIMENSIONAL g�3 THEORY

The vacuum persistence functional in the presence of an
external source J for a d-dimensional Euclidean-space
quantum field theory described by a Lagrangian L is

Z½J� ¼
Z

D�e
R

ddxð�LþJ�Þ: (7)

Let us consider the unrenormalized Lagrangian for a
conventional Hermitian g�3 quantum field theory in which
we include a linear self-interaction term:

L ¼ 1

2
ð@��Þ2 þ 1

2
m2�2 þ g

6
�3 þ h�: (8)

We can then rewrite Z½J� as
Z½J� ¼ N e�

R
Vð�=�JÞeð1=2Þ

RR
JDbJ; (9)

where N is a normalization constant, Db is the usual
bosonic propagator in coordinate space, and Vð�Þ ¼
h�þ g�3=6.
The one-loop one-particle-irreducible unrenormalized

vertex functions in momentum space are

�ð1Þ ¼ hþ g

2

Z ddp

ð2�Þd
1

p2 þm2
; (10)

�ð2ÞðqÞ ¼ q2 þm2 � g2

2

Z ddp

ð2�Þd

� 1

ðp2 þm2Þ½ðpþ qÞ2 þm2� ; (11)
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�ð3Þðq1; q2Þ ¼ gþ g3
Z ddp

ð2�Þd
1

ðp2 þm2Þ½ðpþ q1Þ2 þm2�½ðpþ q1 þ q2Þ2 þm2� : (12)

To evaluate the above integrals we use the standard integral
identities

Z ddl

ð2�Þd
1

ðl2 þ�Þn ¼
1

ð4�Þd=2
�ðn� d=2Þ

�ðnÞ �ðd=2Þ�n; (13)

Z ddl

ð2�Þd
l2

ðl2 þ�Þn

¼ 1

ð4�Þd=2
d

2

�ðn� d=2� 1Þ
�ðnÞ �ðd=2Þþ1�n; (14)

Z ddl

ð2�Þd
l�l�

ðl2 þ�Þn ¼
Z ddl

ð2�Þd
l2���=trð�Þ
ðl2 þ�Þn ; (15)

Z ddl

ð2�Þd
l�

ðl2 þ�Þn ¼ 0; (16)

where ��� is the metric matrix.
The upper critical dimension for the Hermitian g�3

theory is d ¼ 6. At d ¼ 6 the cubic operator �3 is
marginal ( just as �4 is marginal at d ¼ 4). The theory
turns out to be asymptotically free, as we will see below.

Normally, in textbooks the �3 theory at or near d ¼ 6
dimensions is discussed for pedagogical reasons [24]. This
is because the perturbative results are easily established
and the theory provides a simple example of an asymptoti-
cally free theory. Furthermore, unlike the g�4 theory in
d ¼ 4 dimensions, a contribution to the wave function

renormalization constant Z is already present at the one-
loop level. However, no physical meaning is attached to the
conventional g�3 theory because, as noted earlier, it is
unstable (that is, the spectrum is unbounded below).
Let us now examine the behavior of this g�3 theory near

d ¼ 6. Let I1, I2, and I3 represent the three integrals that
appear in �1, �2, and �3 above. With the help of (13), at
d ¼ 6� � we get

I1 ¼
Z ddp

ð2�Þd
1

p2 þm2
¼ m4���

64�3�
þ Oð�0Þ; (17)

where here and in the following we introduce the ’t Hooft
scale � and give only the divergent parts of I1, I2, and I3.
Next, we consider the second integral

I2 ¼
Z ddp

ð2�Þd
1

ðp2 þm2Þ½ðpþ qÞ2 þm2� : (18)

To extract its divergent part, we take two derivatives:

@I2
@q�

¼�
Z ddp

ð2�Þd
2ðpþqÞ�

ðp2þm2Þ½ðpþqÞ2þm2�2 ;

@2I2
@q�@q�

¼
Z ddp

ð2�Þd
8ðpþqÞ�ðpþqÞ��2g��½ðpþqÞ2þm2�

ðp2þm2Þ½ðpþqÞ2þm2�3 :

(19)

We then expand I2ðqÞ around q ¼ 0:

I2ðqÞ ¼ I2jq¼0 þ q�
@I2
@q�

��������q¼0
þ 1

2
q�q�

@2I2
@q�@q�

��������q¼0
þI2ðqÞðfiniteÞ

¼
Z ddp

ð2�Þd
1

ðp2 þm2Þ2 �
Z ddp

ð2�Þd
2q � p

ðp2 þm2Þ3 þ
Z ddp

ð2�Þd
4ðp � qÞ2 � q2ðp2 þm2Þ

ðp2 þm2Þ4 þ I2ðqÞðfiniteÞ

¼
Z ddp

ð2�Þd
1

ðp2 þm2Þ2 �
Z ddp

ð2�Þd
1

ðp2 þm2Þ3 þ
4

tr�
q2

Z ddp

ð2�Þd
p2

ðp2 þm2Þ4 þ I2ðqÞðfiniteÞ; (20)

where we have used the identities (13) and (14). The result is

I2ðqÞ ¼ � q2���

192�3�
�m2���

32�3�
þ Oð�0Þ: (21)

Finally, for I3 we use the identity

I3 ¼
Z ddp

ð2�Þd
1

ðp2 þm2Þ½ðpþ q1Þ2 þm2�½ðpþ q1 þ q2Þ2� þm2
¼

Z 1

0
dxdydz�ðxþ yþ z� 1Þ

Z ddp

ð2�Þd
1

D3
; (22)

in which D is evaluated at k ¼ q1 þ q2:

D¼xðp2þm2Þþy½ðpþq1Þ2þm2�þz½ðpþkÞ2þm2�¼ ðxþyþzÞðp2þm2Þþ2p � ðyq1þzkÞþyq21þzk2: (23)

By performing the shift l ¼ pþ yq1 þ zk, D becomes
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D ¼ l2 þm2 þ yq21 þ zk2 � ðyq1 þ zkÞ2: (24)

We then obtain

I3 ¼
Z 1

0
dz

Z 1�z

0
dy

Z ddl

ð2�Þd
2

½l2 þm2 þ yq21 þ zk2 � ðyq1 þ zkÞ2�3 ¼
���

64�3�
þ Oð�0Þ: (25)

In terms of the standard definitions for the renormalized
quantities

�¼Z1=2�R; Z¼1þ�Z; h¼Z�1=2ðhRþ�hÞ;
m2¼Z�1ðm2

Rþ�m2Þ; g¼Z�3=2ð��=2gRþ�gÞ; (26)

where the �3 coupling constant gR is made dimensionless
by introducing the ’t Hooft scale �, the renormalized
vertex functions are

�ð1Þ
R ¼ hR þ �h� gRm

4
R�

��=2

128�3�
þ . . . ;

�ð2Þ
R ¼ p2 þm2

R þ �Zp2 þ �m2

þ g2R

�
p2

384�3�
þ m2

R

64�3�

�
þ . . . ;

�ð3Þ
R ¼ gR þ �gþ g3R�

�=2

64�3�
þ . . . ; (27)

where we have omitted the finite one-loop contributions.
Therefore, by adopting the MS-scheme [25], we get

�h ¼ gRm
4
R�

��=2

128�3�
; �Z ¼ � g2R

384�3�
;

�m2 ¼ � g2Rm
2
R

64�3�
; �g ¼ �g3R�

�=2

64�3�
: (28)

Finally, we define the dimensionless renormalized
couplings h, m2, and g, which should not be confused
with the bare parameters in (26):

hR ¼ �4��=2h; m2
R ¼ �2m2; gR ¼ g: (29)

The one-loop renormalization group functions for the
dimensionless renormalized couplings are then given by

� ¼ 1

2
�

@

@�
�Z ¼ g2

768�3
; (30)

	h ¼ �ð4� �=2Þh��h
@ð��=2�4�h=hÞ

@�
þ �h

¼ �ð4� �=2Þhþ gm4

128�3
þ g2h

768�3
; (31)

	m2 ¼ �2m2 ��m2 @ð��2�m2=m2Þ
@�

þ 2�m2

¼ �2m2 � g2m2

64�3
þ g2m2

384�3
¼ �2m2 � 5g2m2

384�3
; (32)

	g ¼ � �

2
g��g

@ð���=2�g=gÞ
@�

þ 3�g

¼ � �

2
g� g3

64�3
þ g3

256�3
¼ � �

2
g� 3g3

256�3
: (33)

III. RENORMALIZATION GROUP ANALYSIS OF
g�3 THEORY

From (31)–(33), we see that near d ¼ 6 the theory
possesses only a Gaussian fixed point (GFP): h� ¼ m2� ¼
g� ¼ 0. As is well known, the linearization of the RG
equations around the GFP shows that near this point the
couplings scale according to their scaling dimension. That
is, by defining t ¼ lnð�=�0Þ, we find that

hðtÞ�e�ð4��=2Þt; m2ðtÞ�e�2t; gðtÞ�e��t=2: (34)

Note that �ðg�Þ ¼ 0 at the GFP.
Finally, from 	g we see that at d ¼ 6 the theory is

asymptotically free. The explicit solution of the RG equa-

tion �dðg2Þ
d� ¼ 2g	g is

g2ð�Þ ¼ g20

1þ 3g2
0

128�3 lnð��0
Þ
; (35)

where �0 is an arbitrary scale and g0 ¼ gð�0Þ. In (35) we
immediately recognize the usual features of asymptotic
freedom and infrared slavery. However, we emphasize
that despite exhibiting these important physical properties,
the conventional g�3 theory is unstable.

IV. RENORMALIZATION GROUP ANALYSIS OF
PT -SYMMETRIC ig�3 THEORY

By making the substitutions h ! ih and g ! ig in
(31)–(33), we find that

� ¼ � g2

768�3
; (36)

	h ¼ �ð4� �=2Þhþ gm4

128�3
� g2h

768�3
; (37)

	m2 ¼ �2m2 þ 5g2m2

384�3
; (38)

	g ¼ � �

2
gþ 3g3

256�3
: (39)
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Unlike the conventional g�3 theory, we now have non-
trivial fixed points at

h� ¼ 0; m2� ¼ 0; g� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128�3�=3

q
; (40)

in addition to the usual GFP.
As in the conventional case, the flow near the GFP is

dictated by the canonical dimensions of the couplings.
Near the non-Gaussian fixed points, however, the lineari-
zation of the RG equations gives the following new scaling
behavior:

hðtÞ¼c1e
g1t; m2ðtÞ¼c2e

g2t; gðtÞ¼g�þc3e
g3t; (41)

where g1 ¼ ð�4þ 4�=9Þ, g2 ¼ ð�2þ 5�=9Þ and g3 ¼ �
are the eigenvalues of the 3� 3 Jacobian matrix that
defines the linearized RG flow around the non-Gaussian
fixed points, and c1, c2, and c3 are arbitrary coefficients.
This result comes from solving the linearized system of
differential RG equations around the non-Gaussian fixed
points (see Fig. 1). From these equations we see that h,m2,
and g are still eigendirections of the Jacobian matrix, as
was the case for the GFP. Finally, the anomalous dimension
of the field is

� ¼ � �

18
: (42)

It is worth noting that the hyperscaling relation that
connects the anomalous dimension of the field with the
eigenvalue g1, namely

� ¼ 2� ¼ 2þ dþ 2g1; (43)

is satisfied, as expected. Here, � is the exponent that gives
the anomalous scaling of the two-point function. Near the
critical region, the latter behaves as

�ð2Þ
R ðqÞ � 1

q2��
: (44)

V. CONCLUSIONS

We have shown that the PT -symmetric ig�3 quantum
field theory near d ¼ 6 dimensions possesses three fixed
points, the GFP and two nontrivial ones in (40). At d ¼ 6
(� ¼ 0) the three fixed points merge in a unique fixed
point, which is the Gaussian one. From the 	g function

(39), we can see that when � ¼ 0, the theory is trivial:

g2ð�Þ ¼ g20

1� 3g2
0

128�3 lnð��0
Þ
: (45)

This allows us to conclude that the ig�3 theory is ener-
getically stable, perturbatively renormalizable, and trivial.
This triviality property is the same as for the conventional
Hermitian g�4 theory in d ¼ 4 dimensions. If we consider
this ig�3 theory in d ¼ 6 dimensions from an effective
field theory standpoint (as is the case for the Higgs sector
of the standard model), it can be treated as a perfectly
sensible physical theory.
From the RG point of view, however, what seems to

us to be more interesting is what happens when d < 6
(d ¼ 6� �). In this case, if we consider the ðm2; g2Þ plane,
we have a situation that closely parallels the ferromagnetic
case as described in d ¼ 4� � dimensions, where we have
the Gaussian and the Wilson-Fisher fixed points. In Fig. 2
the ðM2; gÞ plane for the ordinary g�4 theory in d ¼ 4� �
dimensions is shown and the RG flows on this plane are
plotted. The GFP is at the origin, while the Wilson-Fisher
fixed point is on the left of the M2 ¼ 0 axis. The dashed

0.2 0.1 0.0 0.1 0.2

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

m2

g
2

FIG. 1. Four RG trajectories in the ðm2; g2Þ plane near the
non-Gaussian fixed point m2� ¼ 0, g2� ¼ 128�3�=3 obtained
from (38) and (39) for � ¼ 0:5. The four initial values
are m2ðt ¼ 0Þ ¼ �0:1, 0.1, �0:1, 0.1 and correspondingly
g2ðt ¼ 0Þ ¼ 0:2, 0.4, 0.4, 0.2. The eigendirections are the dashed
line and the g2 axis.

�0.4 �0.2 0.0 0.2 0.4
�0.5

0.0

0.5

1.0

1.5

2.0

M 2

g

FIG. 2. Four RG trajectories in the ðM2; gÞ plane for the scalar
g�4 theory in d ¼ 3 dimensions near the Wilson-Fisher fixed
point. The initial values are: M2ðt ¼ 0Þ ¼ �0:25, 0.1, �0:4, 0
and correspondingly g ¼ 0:5, 0.75, 1.1, 1.5. The eigendirections
are indicated by the two dashed lines.
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lines are the eigendirections and the Wilson-Fisher fixed
point is at the crossing of the two eigendirections (one of
which is the relevant direction, the other the irrelevant
one). The two fixed points, the GFP, and the Wilson-
Fisher fixed point determine the RG flows on this plane.
In the case of a PT -symmetric ig�3 theory in d ¼ 6� �
dimensions the situation in the ðm2; g2Þ plane is essentially
the same. However, the role of the M2 term of the ferro-
magnetic model is played bym2, while the role of g (in the
g�4 term) is played by g2 (compare Figs. 1 and 2). In the
ðm2; g2Þ plane the two eigendirections are the m2 ¼ 0 axis
and the dashed line of Fig. 1. The non-Gaussian fixed point
is at the crossing of the two eigendirections.

It is evident from Figs. 1 and 2 that the RG flow in
the ðm2; g2Þ plane is the same as the RG flow in the
ferromagnetic case; that is, it is the same as the flow in
the ðM2; gÞ plane. In both cases these flows are governed by
the two fixed points (the Gaussian one and the non-
Gaussian one). As is clear from Figs. 1 and 2, the
Gaussian fixed point of the ferromagnetic case corresponds
to the Gaussian fixed point of the ig�3 theory; the Wilson-
Fisher fixed point of the ferromagnetic case corresponds
to our non-Gaussian fixed point: m2 ¼ 0, g2 ¼ 128�3�=3.

Regarding the two fixed points in (40), g ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128�3�=3

p
,

it should be noted that in establishing this parallel, we refer
to the square of the coupling constant g2 rather than to
the coupling constant g itself. We do this because it is
convenient to treat the two fixed points in a unified
manner because the physics around either fixed point is
the same.

We note that the additional non-Gaussian fixed points
of the PT -symmetric theory are also present in the
conventional g�3 theory although they are purely imagi-
nary [see 	g in (33)]. Therefore, by considering also the

purely imaginary solutions to the equation 	g ¼ 0 in the

conventional g�3 theory, in a sense we recover the results
obtained by stating from the beginning that the g�3 cou-
pling in the Lagrangian is purely imaginary (which is the
case for the PT -symmetric theory). In summary, while
the equation 	g ¼ 0 in the conventional g�3 theory has

one real and two imaginary conjugate solutions, in the
PT -symmetric theory all of the three solutions are real.
Finally, we point out that in both the conventional and

thePT -symmetric theories the RG equations for g andm2

with 	m2 and 	g given by (32), (33), (38), and (39),

respectively, can be solved exactly. Having defined t ¼
ln�

�0
as before, for the conventional theory we get

g2ðtÞ ¼ g20e
��t

1þ 3g2
0

128�3 ð1�e��t

� Þ
; (46)

m2ðtÞ ¼ m2
0e

�2t

�
1þ 3g20

128�3

�
1� e��t

�

���5=9
; (47)

and for the PT -symmetric theory we get

g2ðtÞ ¼ g20e
��t

1� 3g2
0

128�3 ð1�e��t

� Þ
; (48)

m2ðtÞ ¼ m2
0e

�2t

�
1� 3g20

128�3

�
1� e��t

�

���5=9
: (49)
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