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We provide a simple and straightforward procedure for defining a Virasoro algebra based on the

diffeomorphisms near a null surface in a space-time and obtain the entropy density of the null surface from

its central charge. We use the off-shell Noether current corresponding to the diffeomorphism invariance of

a gravitational Lagrangian Lðgab; RabcdÞ and define the Virasoro algebra from its variation. This allows us

to identify the central charge and the zero-mode eigenvalue with which we obtain the entropy density of

the Killing horizon. Our approach works for all Lanczos-Lovelock models and reproduces the correct

Wald entropy. The entire analysis is done off-shell without using the field equations and allows us to

define an entropy density for any null surface which acts as a local Rindler horizon for a particular class of

observers.
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I. INTRODUCTION AND MOTIVATION

Several recent results strongly indicate the possibility
that the field equations of gravity have the same status as
the equations of fluid mechanics or elasticity. (For a
recent review, see Ref. [1]). This approach has a long
history originating from the work of Sakharov [2] and
interpreted in many ways by different authors (for a
incomplete sample of references, see Ref. [3]). One
specific implementation of this idea considers the field
equations of the theory to be ‘‘emergent’’ in a well-
defined sense, rather than use that term in a more
speculative vein—like e.g., considering the space and
time themselves to be emergent, etc. The evidence for
such a specific interpretation comes from different
facts like the possibility of interpreting the field equation
in a wide class of theories as thermodynamic relations
[4], the nature of action functional in gravitational
theories and their thermodynamic interpretation [5], the
possibility of obtaining the field equations from a ther-
modynamic extremum principle [6], application of equi-
partition ideas to obtain the density of microscopic
degrees of freedom [7], the equivalence of Einstein’s
field equations to the Navier-Stokes equations near a
null surface [8], etc. Two key features of this paradigm
are the following.

(i) First, these results show that the connection between
gravitational dynamics and horizon thermodynamics
is quite deep and goes well beyond Einstein’s theory
of gravity. It seems to have its roots in general
covariance and principle of equivalence which
allows one to introduce the concept of local
Rindler observers and local Rindler horizons in the
neighborhood of any event in the space-time. (For a
conceptual description of this point of view, see

Ref. [9]). In fact, the strongest theoretical evidence
for such an emergent paradigm is the fact that the
results related to the thermodynamics of the horizons
in the context of GR generalizes in a natural fashion,
to a much wider class of theories like Lanczos-
Lovelock models.

(ii) Second, it appears to be possible and useful to
attribute an observer dependent entropy density to
any null surface rather than to horizons which arise
as solutions to the field equations. The entropy
density (in contrast to the temperature) knows the
underlying field equations and, in fact, the field
equations can be obtained by extremizing a suitably
defined entropy density of space-time.

The emergent paradigm, therefore, motivates us to study
all the conventional approaches to the derivation of horizon
entropy from a broader perspective. We know from the
pioneering works of Bekenstein [10] and Hawking [11]
that, in GR, one can attribute an entropy S ¼ ð1=4ÞA to a
black hole horizon where A is the horizon area. In the
decades following the original derivation, several alterna-
tive approaches have led to the same expression for black
hole entropy in GR; (see, for a nonrepresentative sample,
Refs. [12–14]). But we should keep in mind the fact that
area has a simple geometrical meaning which allows one to
obtain the horizon entropy in GR (once we know the
result!) in several different ways creating an impression
of ‘‘universality’’ for this result.
On the other hand, the proportionality between entropy

and area does not hold for a more general class of
gravitational theories in which the entropy is given by
a prescription due to Wald [15], which essentially iden-
tifies the horizon entropy with a suitably defined Noether
charge. Many of the approaches which correctly repro-
duce S / A in the context of GR cannot be generalized in
a natural fashion to more general class of theories like,
for example, Lanczos-Lovelock models. (One such ex-
ample, which does not generalize, is the entanglement
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entropy; see, for example, Ref. [16]). Therefore, the
possibility of generalization beyond GR acts as an acid
test in discriminating between the different approaches
for obtaining the horizon entropy. Further, in the context
of emergent paradigm, the entropy density of a null
surface is a primitive concept which should not require
one to use the field equations. In other words, one should
be able to derive the expression for entropy using only
off-shell constructs and in a manner applicable to any
local Rindler horizon. In summary, we expect valid pro-
cedures for obtaining the entropy of the horizon to satisfy
the following three criteria:

(i) It should be based on off-shell constructs which are
independent of the field equations.

(ii) One should be able to use the procedure to obtain
the entropy density of any null surface which can act
as a local Rindler horizon rather than be specific to
certain solutions to the field equations like black
holes.

(iii) The method should work for all Lanczos-Lovelock
models of gravity rather than be specific to
Einstein’s theory.

Past work has shown that many of the usual derivations
do satisfy these criteria which formed the basis for
the claim that the gravity-thermodynamics connection
transcends GR.

In this paper, we explore yet another approach to horizon
entropy explored in the literature, mainly in the context of
black hole horizons, using the existence of a Virasoro
algebra and central charge in these space-times. This is
based on an approach by Brown and Henneaux initiated
by [17], which was originally used in the context of the
(1þ 2) dimensional gravity with asymptotically AdS
space-time. They found that the Fourier modes Qj of the

charges corresponding to the asymptotic diffeomorphism
symmetry generators obey Virasoro algebra with central
extension:

i½Qm;Qn� ¼ ðm� nÞQmþn þ C

12
m3�mþn;0; (1)

where C is known as the central charge. The work by
Strominger [18] and others showed that if one uses the
above central charge in the Cardy formula [19,20], the
resulting entropy comes out to be the Bekenstein-
Hawking entropy for the (1þ 2) dimensional black hole.
This was further developed by Carlip [21,22] using the
diffeomophism symmetry generators near the horizon to
lead to the black hole entropy. In this approach, one begins
with the diffeomorphism generators �a

nðxÞwhich preserve a
set of boundary conditions near the horizon. The Fourier
modes of these generators obey one subalgebra isomorphic
to Diff S1 given by

if�m; �nga ¼ ðm� nÞ�a
mþn (2)

where f; g is the Lie bracket. One can then construct the
Fourier modesQn of the charges corresponding to each �

a
n,

either by Hamiltonian [23] or a covariant Lagrangian
formalism [15,24–27] and evaluate the Lie brackets among
them. A comparison between this algebra and (Eq. (1))
allows us to identify the central charge. Finally, one finds
the zero-mode eigenvalue Q0 and computes the entropy of
the black hole using Cardy formula. Several related ap-
proaches have been developed using these ideas with the
hope that diffeomorphism symmetry generators may shed
some light toward the microscopic degrees of freedom
responsible for entropy of the horizon [28–42]. All these
approaches developed in the literature have the following
ingredients:
(i) The Noether current used in the approaches is de-

fined on-shell, usually by ignoring a term which
vanishes when equations of motion are used.

(ii) The calculation of Lie brackets is somewhat com-
plicated and different approaches lead to slightly
different results and it is often not clear how to
interpret these differences in the calculations.

(iii) To obtain the correct result, one often has to impose
specific boundary conditions on the horizon in
order to set certain terms to zero. Again, the physi-
cal meaning of these boundary conditions is often
not clear.

(iv) Most of the analysis (except the one in [38]) is
confined to GR and it is not clear how to generalize
the results for a wider class of theories.

In this paper, we revisit this approach to horizon entropy
and show that there is a relatively simple way of obtain-
ing the central charge and the horizon entropy using the
off-shell Noether current in any generally covariant the-
ory of gravity. The procedure, for example, works in a
straightforward manner for any Lanczos-Lovelock model
and does not require us to impose any boundary con-
ditions to make unwanted terms to vanish. The essential
idea is to use the diffeomorphism invariance of the
Lagrangian under xi ! xi þ �i

1 to define a Noether cur-

rent Ja½�1� and then use its variation ��2
Ja½�1� under a

second diffeomorphism xi ! xi þ �i
2 to define the Lie

bracket structure. This can be done without using the
explicit form of the Noether current and thus works for a
wide class of gravitational theories. The calculation of
the resulting Lie bracket is quite simple algebraically and
leads to the standard results without us having to impose
any extra boundary conditions. One can then identify the
resulting Virasoro algebra, the central charge and the
zero-mode eigenvalue. Using these in the Cardy formula
leads to the entropy density of the null surface which
turns out to be the same as Wald entropy.
We summarize below the key new features of this paper:
(i) The current considered here is defined and conserved

off-shell, i.e., we do not use the equations of motion
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in its definition and it is conserved identically.1 This
is in contrast to—and an improvement on—the pre-
vious approaches which use equations of motion
extensively.

(ii) The definition of the bracket among the charges is
completely general in the sense that one does not
need the explicit expression for the Noether current
to obtain its structure.

(iii) We provide a discussion of the derivation of the
central term (and zero-mode energy) from the sur-
face term contribution �va in the Noether current.
This is completely new and does not seem to have
been noticed in the previous literature.

(iv) In the derivation of the bracket we do not use the
equations of motion or specific boundary condi-
tions (like Dirichlet or the Neumann boundary
condition) to make noncovariant terms vanish;
therefore our approach is general enough to include
any covariant theory of gravity. (This feature was
missing in the earlier literature which used the
equations of motion for the evaluation of the rele-
vant brackets as an on-shell construct.) As a direct
consequence of the above, the central term we
obtain is also an off-shell construct.

The last comment about boundary conditions requires
some clarifications. To begin with, for given Noether cur-
rent Ja, one can assign several Noether potentials Jab

differing by addition of divergence-free antisymmetric
tensors. In our approach, we can take Jab / Pabcdrc�d

as the fundamental quantity given to us and define the
charge as an integral over the stretched horizon of
Jabd�ab. This is well defined, when we start from a
specific Noether potential Jab (rather than Noether cur-
rent). We then only need to assume that the corresponding
integral in the outer boundary (say, at asymptotically large
distance) vanishes to relate integrals over Jabd�ab to in-
tegrals of Ja in the bulk. So we do need an asymptotic
boundary condition which is almost always assumed in
such discussions. But in the literature one often finds the
use of much less motivated and possibly more stringent
additional boundary conditions to throw away terms which
arise in the computation. For example, a derivation of the
bracket among theNoether charges for the �2 term in the
Einstein-Hilbert action has been discussed in [42]. Here
the Noether potential comes out to be the Katz potential
(see the derivation of [25] in Sec. 5.1), which is not in
covariant form. Hence the variation of the potential will
contain some terms which are not again covariant. To deal
this issue, one needs to impose some boundary condition
such that the noncovariant terms do not appear in the final

expression. (For instance, see the general discussion
around Eq. (4) of Ref. [27]). Here, the variation of the
potential is given by the general expression in Eq. (4)
which is ‘‘integrable’’ only under suitable boundary con-
dition. In particular, for �2 Lagrangian, the Dirichlet or
the Neumann boundary condition has been used [26]. A
similar situation arises in some other approaches like the
background metric method [24,44]. A comment in [26]
(see in the beginning paragraph of Sec. 2.2) says that the
use of the background metric is nothing but a covariant
way to impose the required boundary conditions. Thus all
these approaches require extra boundary conditions to get
the correct result. In our approach, on the other hand, since
our Noether current/potential is manifestly covariant, we
do not need any of the above-mentioned boundary con-
ditions. In this sense our method does not care about these
boundary conditions, described above.
The plan of the paper is as follows: We begin in Sec. II

by computing the variation of Noether current under dif-
feomorphism and use it in Sec. III to define a suitable
bracket of the charges. We also point out the differences
between our approach and the previous ones in the litera-
ture in Sec. III and in Sec. IV. Section V uses Carlip’s
procedure to evaluate the horizon entropy in a general
Lanczos-Lovelock model of gravity using the Cardy for-
mula. The details of the computation are given in
Appendix B since we could not find some of these explic-
itly done in published literature. The entire procedure is
illustrated using the local Rindler horizon around an event
in an arbitrary space-time in Sec. VI, and Sec. VII gives the
conclusions.

II. VARIATION OF NOETHER CHARGE
UNDER DIFFEOMORPHISM

For a generally covariant Lagrangian, the conserved
Noether current Ja can be expressed as the covariant
derivative of an antisymmetric tensor Jab called the super-
potential with a corresponding current density Pa. These
quantities satisfy the standard conservation laws which are
valid off-shell:

Ja � rbJ
ab; Pa � ffiffiffi

g
p

Ja;

raJ
a ¼ 0; @aP

a ¼ 0: (3)

Let us now consider the variation of the current density
itself for an arbitrary diffeomorphism xa ! xa þ �a. We
have

��P
a � L�P

a ¼ ffiffiffi
g

p ½Jarb�
b þ �brbJ

a � Jbrb�
a�

¼ ffiffiffi
g

p ½rbð�bJa � �aJbÞ þ �arbJ
b�

¼ ffiffiffi
g

p ½rbð�bJa � �aJbÞ� (4)

because rbJ
b ¼ 0. The variation of the corresponding

Noether charge is defined as:

1A complete discussion on the derivation of the Noether
current and its conservation for the on-shell condition is given
in [43]. In this case a suitable boundary condition is required to
obtain the necessary results. But the present paper, as we shall
see, will deal with off-shell situation.
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��Q �
Z

d�a��P
a ¼

Z
d�ab

ffiffiffi
h

p
�bJa; (5)

where h is the determinant of the induced metric of
(d� 2)-dimensional boundary in a d-dimensional
space-time.

The same result can also be obtained from the variation

of the superpotential density Pab � ffiffiffi
h

p
Jab in the following

way:

��P
ab�L�P

ab

¼ ffiffiffi
h

p ½Jabrc�
cþ�crcJ

ab�Jcbrc�
a�Jacrc�

b�
¼ ffiffiffi

h
p ½rcð�cJabÞ�Jcbrc�

a�Jacrc�
b�

¼ ffiffiffi
h

p ½�bJa��aJb�þ ffiffiffi
h

p rc½�aJbcþ�bJca��cJba�:
(6)

The first term leads to Eq. (5) on integration while the
second term, after integrating over the (d� 2)-surface, can
be expressed as,Z

d�ab

ffiffiffi
h

p rc½�aJbcþ�bJcaþ�cJab�

¼2
Z
d�a

ffiffiffi
g

p rbrc½�aJbcþ�bJca��cJba�¼0 (7)

where the last equality follows from the fact that the
expression in square brackets is antisymmetric in b, c
and is equal in the cyclic permutation of all the three
indices. This shows that, although the variation of the
superpotential possesses an extra term, both the current
and the superpotential lead to same expression for the
variation of the charge.

III. VIRASORO ALGEBRA AND
THE CENTRALTERM

We will now define a (Lie) bracket structure for the
charges and show that it leads to the usual Virasoro algebra
with the central extension. The analysis will be done for a
general Lagrangian of the kind L ¼ Lðgab; RabcdÞ. Let us
define the relevant bracket among the charges as

½Q1; Q2� � ð��1
Q½�2� � ��2

Q½�1�Þ: (8)

Then using Eq. (5), we obtain the general expression,

½Q1; Q2� :¼
Z ffiffiffi

h
p

d�ab½�a
2J

b½�1� � �a
1J

b½�2��

�
Z ffiffiffi

h
p

d�ab½�a
2J

b
1 � �a

1J
b
2 � (9)

where we use the notation Jb1 ¼ Jb½�1�, etc. We note that:
(a) This definition is quite general and has not used any
field equations. (b) The derivation of Eq. (9) is simple and
straightforward. (c) If we use the form Ja ¼ rbðra�b �
rb�aÞ for GR one can easily obtain the result obtained
earlier in the literature, like e.g., in Ref. [22]. We will

hereafter concentrate on Lanczos-Lovelock gravity and
evaluate Eq. (9) on the (d� 2)-dimensional null surface
which is a Killing horizon.
A definition of the Lie bracket is also given in [42] using

similar ideas. The main differences between our definition
(9) and that given in [42] are the following: (i) In [42] the
Lagrangian considered was the ��� �� part of the
Einstein-Hilbert action [25,26,42] which is not covariant
and hence the Noether current is not an tensor. In our case
we start with a scalar action and the resulting expressions
are tensorial. (ii) In the previous work, while calculating
the variation, of the charge the variation of the diffeomor-
phism parameter � was set to zero, i.e. ��1

�2 ¼ 0 [42] and

only the variation of the metric was retained. This is ill
defined because ��1�2 � L�1

�a
2 ¼ f�1; �2ga ¼ 0 which

contradicts (2). In our approach, we use the usual definition
of the Lie derivative and hence this difficulty is automati-
cally avoided.
To evaluate Eq. (9) over the Killing horizon, we will

follow the ‘‘stretched horizon’’ approach of Carlip [22].
Let us first mention some of the key results needed for this
computation. The location of the horizon is defined by the
vanishing of the norm of a timelike (approximate) Killing
vector �a. Near the horizon, one can define a vector �a,
orthogonal to the orbits of the Killing vector �a, by the
following relation

ra�
2 ¼ �2��a; (10)

where � is the surface gravity at the horizon, with
�a�a ¼ 0. Consider a class of diffeomorphism generators
given by:

�a ¼ T�a þ R�a; (11)

where T and R are scalar functions chosen such that
the generators obey the (near-horizon) condition
½ð�a�bÞ=�2���gab ! 0 which preserves the horizon struc-
ture. This condition leads to a relation among R and T
given by

R ¼
�
�2

�2�

�
�araT � �2

��2
DT; (12)

where D � �ara. The diffeomorphism characterized by
Eq. (11) and (12) form a closed subalgebra if

�araT ¼ 0; (13)

near the horizon. Later in Sec. VI, we will demonstrate this
explicitly by using the Rindler metric in the Riemann
normal coordinates and show that the above condition is
exact up to Oð�2Þ.
For the Lanczos-Lovelock gravity the expressions for Ja

and Jab are given by (see, e.g.,[45]),

Ja¼ 1

8�G
Pabcdrbrc�d; Jab¼ 1

8�G
Pabcdrc�d (14)
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where Pabcd ¼ ð@L=@RabcdÞ is called the entropy tensor of
the Lanczos-Lovelock theory. This tensor has the same
algebraic symmetries of the curvature tensor, viz. it is
antisymmetric in a, b and c, d; symmetric in the inter-

change of the pairs (a, b) and (c, d) and PaðbcdÞ ¼ 0. Near
the Killing horizon, this expression for the Noether current
reduces to the following form:

Ja ¼ 1

8�G
Pabcd�b�c�d

1

�4

�
2�DT � 1

�
D3T

�
þOð�2Þ;

(15)

when we use Eq. (B43) of Appendix B. Since the later
analysis will be done near the null surface where �2 ! 0,
the terms from Oð�2Þ will be neglected and will not be
mentioned explicitly. (An illustration of this fact will be
provided in the case of Rindler geometry in Sec. VI). Now,
the surface element d�ab ¼ dd�2X�ab is given by
Eq. (A2) of Appendix A. Therefore,

d�ab�
a
2J

b
1 ¼ �ðdd�2XÞ 1

8�G

j�j
��4

� Pbecd�b�c�d�e

�
2�DT1 � 1

�
D3T1

�
T2:

(16)

But,

Pbecd�be�cd ¼ 4

�2�2
Pbecd�b�c�d�e: (17)

Substituting this in Eq. (16) we obtain,

d�ab�
a
2J

b
1 ¼ dd�2X

1

32�G

�

j�j
� Pabcd�ab�cd

�
2�DT1 � 1

�
D3T1

�
T2: (18)

Hence the bracket Eq. (9) evaluates near the horizon to

½Q1; Q2� :¼ 1

32�G

Z ffiffiffi
h

p
dd�2XPabcd�ab�cd

�
�
1

�
ðT1D

3T2 � T2D
3T1Þ

� 2�ðT1DT2 � T2DT1Þ
�
: (19)

We will next obtain an expression for the chargeQ½�� in
the near-horizon limit:

Q½�� ¼ 1

2

Z
d�ab

ffiffiffi
h

p
Jab: (20)

For Lanczos-Lovelock gravity the expression for Jab in
Eq. (14) becomes, on using Eq. B38 of Appendix B to the
following form:

Jab ¼ 1

8�G
Pabcd�c�d

�
2�

�2
T � 1

��2
D2T

�
: (21)

Next we will show for a Rindler metric in Riemann normal
coordinates that the above relation is exact up to order
Oð�2Þ. Since,

Pabcd�cd ¼ � 2j�j
��2

Pabcd�c�d; (22)

we get

Jab ¼ � 1

16�G

�

j�jP
abcd�cd

�
2�T � 1

�
D2T

�
(23)

leading to

Q½��¼� 1

32�G

Z ffiffiffi
h

p
dd�2X�ab

�

j�jP
abcd�cd

�
2�T�1

�
D2T

�

¼� 1

32�G

Z ffiffiffi
h

p
dd�2XPabcd�ab�cd

�
2�T�1

�
D2T

�
:

(24)

We can now compute the central term defined by the
relation,

K½�1; �2� ¼ ½Q1; Q2� �Q½f�1; �2g�; (25)

where ½Q1; Q2� is given by Eq. (19) andQ½f�1; �2g� will be
obtained by using Eq. (24). The Lie bracket f�1; �2ga, near
the horizon is

f�1; �2ga ¼ �b
1rb�

a
2 � �b

2rb�
a
1

¼ ðT1DT2 � T2DT1Þ�a

� 1

�
DðT1DT2 � T2DT1Þ�a � fT1; T2g�a þ fR1; R2g�a;

(26)

where fT1; T2g ¼ ðT1DT2 � T2DT1Þ, etc. Using this in
Eq. (24) we get

Q½f�1;�2g�
¼� 1

32�G

Z ffiffiffi
h

p
dd�2XPabcd�ab�cd

�
2�fT1;T2g

�1

�
D2ðfT1;T2gÞ

�

¼� 1

32�G

Z ffiffiffi
h

p
dd�2XPabcd�ab�cd

�
2�ðT1DT2�T2DT1Þ

�1

�
ðDT1D

2T2þT1D
3T2�DT2D

2T1�T2D
3T1Þ

�
(27)

Therefore, substituting Eq. (19) and (27) in Eq. (25), we
obtain the central term to be
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K½�1; �2� ¼ � 1

32�G

Z ffiffiffi
h

p
dd�2XPabcd�ab�cd

1

�

�½DT1D
2T2 �DT2D

2T1�: (28)

This was obtained earlier in [38] by symplectic current (or
potential) technique and using the on-shell expressions.
Here, we derived this using Eq. (9) without using the field
equations or any special boundary conditions thereby dem-
onstrating the generality of the result.

IV. ASIDE: CENTRAL TERM FROM THE
SURFACE TERM CONTRIBUTION
TO THE NOETHER CURRENT

We know that, the variation of a generally covariant
Lagrangian of the from Lðgab; RabcdÞ under the variation
gab ! gab þ �gab is given by the generic expression

�ðL ffiffiffi
g

p Þ ¼ ffiffiffi
g

p ½Eab�g
ab þra�v

a� (29)

where the first term leads to the equation of motion of the
form Eab ¼ ð1=2ÞTab while the second term is a surface
contribution. When �gab arises due to a diffeomorphism
xi ! xi þ �i, this leads to an off-shell conservation law for
the corresponding conserved Noether current (see e.g.,
[45]) given by:

Ja ¼ 1

16�G
ð2Ea

b�
b þ L�aÞ þ ��v

a

� 2

16�G
Ra

b�b þ ��v
a ¼ 1

8�G
Pabcdrbrc�d (30)

where the last equality holds for the Lanczos-Lovelock
models. The consistency of these expressions arises from
the fact that for Lanczos-Lovelock models:

R a
b ¼ PaijkRbijk;

�va ¼ � 2

16�G
Pabcdrdðrb�c þrc�bÞ:

(31)

So we can express the boundary term asffiffiffi
g

p
��v

a ¼ ffiffiffi
g

p
Ja � ffiffiffi

g
p

Ma;

Ma ¼ 2

16�G
Ra

b�
b ¼ 2

16�G
PaijkRbijk�

b:
(32)

Before proceeding further, we will point out a curious
result: We can obtain the same results for the charge,
central term, etc., obtained in the previous section by using
the contribution from the boundary term �va instead of Ja.
To show this, let us start, as before, with the current density
contributed only by the surface term

Pa
surf½�� ¼

ffiffiffi
g

p
��v

a ¼ ffiffiffi
g

p
Ja � ffiffiffi

g
p

Ma (33)

and compute its variation

��1
ð ffiffiffi

g
p

��2
vaÞ ¼ ffiffiffi

g
p rb½ð��2v

aÞ�b
1 � ð��2

vbÞ�a
1�

þ ffiffiffi
g

p
�a
1rbð��2

vbÞ; (34)

which yields,

��1
Pa
surf½�2� ¼ ��1

ð ffiffiffi
g

p
��2

vaÞ
¼ ffiffiffi

g
p rb½�b

1ðJa2 �Ma
2 Þ � �a

1ðJb2 �Mb
2 Þ�

þ ffiffiffi
g

p
�a
1rbðJb2 �Mb

2 Þ
¼ ffiffiffi

g
p rbð�b

1J
a
2 � �a

1J
b
2 Þ �

ffiffiffi
g

p rbð�b
1M

a
2 Þ

þ ffiffiffi
g

p
Mb

2rb�
a
1

¼ ��1
Pa½�2� � ffiffiffi

g
p rbð�b

1M
a
2 Þ þ

ffiffiffi
g

p
Mb

2rb�
a
1 :

(35)

Integrating over the (d� 1) surface we obtain,

Z
d�a��1

Pa
surf½�2�

¼
Z

d�a��1
Pa½�2� �

Z
d�a

ffiffiffi
g

p rbð�b
1M

a
2 Þ

þ
Z

d�a

ffiffiffi
g

p
Mb

2rb�
a
1

¼
Z

d�a��1
Pa½�2� � 1

2

Z
d�ab

ffiffiffi
h

p
�b
1M

a
2

þ
Z

d�a

ffiffiffi
g

p
Mb

2rb�
a
1 : (36)

Near the horizon (B43) yields

PabcdRbdce�
e ¼ Pabcdðrbrd�c �rdrb�cÞ ¼ 0;

PabcdRbedc�
e ¼ 2Pabcdrdrc�b ¼ 0:

(37)

Therefore, Ma ¼ 0 and hence near the event horizon (33)
and (36) lead to the required forms (20) and (9) respec-
tively. The rest of the steps are identical to those in the
previous section and lead to the same central term (28).
The possible relevance of this result is as follows: In

obtaining the conserved Noether current, one usually uses
the diffeomorphism invariance of the Lagrangian which
allows one to write ��ðL ffiffiffiffiffiffiffi�g

p Þ as a four-divergence. The

fact that L is a scalar is sufficient condition for ��ðL ffiffiffiffiffiffiffi�g
p Þ

to be a total divergence but it is not a necessary condition.
There are Lagrangians (like the �2 in GR) which are not
generally covariant scalars but still lead to an expression
for ��ðL ffiffiffiffiffiffiffi�g

p Þwhich is a total divergence. Obviously, even
such Lagrangians will lead to currents Ka which satisfy
@að ffiffiffiffiffiffiffi�g

p
KaÞ ¼ 0 but the resulting Ka will not be a gen-

erally covariant four-vector. Given the fact that, in GR,
both the Einstein-Hilbert Lagrangian and the �2

Lagrangian lead to such conserved currents shows that
their difference—which is purely a surface term—will
also lead to a conserved current. Therefore, in the context
of GR, one can repeat the entire analysis using the current
obtained from the surface term of the Einstein-Hilbert
Lagrangian. Given the fact that the surface term in the
Einstein-Hilbert case is known to be closely related to
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horizon entropy, this fact demystifies the success of the
Virasoro algebra procedure to a limited extent.

V. CARDY FORMULA AND ENTROPY

Using a suitably defined Fourier decomposition of the T1

and T2 in Eqs. (28) and (24) we can find the central charge
and zero-mode eigenvalue, respectively. (The Fourier
modes will have to be chosen such that the modes of the
diffeomorphism generators satisfy Eq. (2)). The Cardy
formula [19,20] will then allow us to compute the entropy
associated to the Killing horizon from the central charge
and zero-mode eigenvalue. We start with a Fourier decom-
position of T1 and T2 given by

T1 ¼
X
m

AmTm; T2 ¼
X
n

BnTn; (38)

with A�
n ¼ A�n, B

�
m ¼ B�m and the Fourier modes Tm

must be chosen in such a way that the Fourier modes of
diffeomorphism generators �m satisfy Eq. (2). Substituting
Eq. (38) in Eq. (28) we obtain:

K½�1; �2� :¼ �X
m;n

Cm;n

32�G

Z ffiffiffi
h

p
dd�2XPabcd�ab�cd

1

�

� ðDTmD
2Tn �DTnD

2TmÞ; (39)

where Cm;n � AmBn and so C�
m;n ¼ C�m;�n. Defining the

corresponding Fourier decomposition of

K½�1; �2� ¼
X
m;n

Cm;nK½�m; �n� (40)

we find that:

K½�m; �n� :¼ � 1

32�G

Z ffiffiffi
h

p
dd�2XPabcd�ab�cd

1

�

�ðDTmD
2Tn �DTnD

2TmÞ: (41)

To proceed further we need to choose the explicit form
of Tm. For a stationary space-time the coordinates near the
horizon are chosen such that the (approximate) Killing
vector �a is given by �a ¼ ð1; 0; 0; . . . :Þ. (It is possible to
consider a more general case, suitable for stationary space-
times with rotation; this is mentioned in Appendix C.)
Then the usual ansatz for Tm is

Tm ¼ 1

�
exp½imð�tþ gðxÞ þ p:x?Þ� (42)

where � is a constant and gðxÞ is a function that is regular
at the Killing horizon. p is an integer and x? are the (d�
2) tangential coordinates. Here the t-x plane defines the
null surface. This choice of overall normalization auto-
matically satisfies Eq. (2) for any �. This can be easily
checked by expressing Eq. (26) in terms of the Fourier
decomposition,

f�1; �2ga ¼
X
m;n

Cm;nf�m; �nga

¼ X
m;n

Cm;n½fTm; Tng�a þ fRm;Rng�a�: (43)

A similar choice was made earlier in Ref. [42].
Interestingly, Eq. (42) is regular at the Killing horizon
while the Tm used in [22], is not. We can now compute
the resulting Virasoro algebra, identify the central charge,
and compute the entropy. Obviously, the result will depend
on the choice made for � and we need to fix this to get a
unique value for entropy. A natural choice, arising from the
fact that near-horizon Rindler geometry exhibits periodic-
ity in imaginary time with period 2�=�, is

� ¼ �: (44)

However, we will postpone imposing this condition to the
end and work with an arbitrary � in order to see the
dependence of the Cardy entropy on �.
Substituting Eq. (42) in Eq. (41) and defining a quantity

Â ¼ � 1

2

Z ffiffiffi
h

p
dd�2XPabcd�ab�cd; (45)

which is proportional to the Wald entropy, we obtain,

K½�m; �n� :¼ �im3 Â
8�G

�

�
�nþm;0: (46)

(Note that Â reduces to the horizon area in the case of
GR.) Similarly, using the Fourier decomposition, Q½�� ¼P

mAmQ½�m� in Eq. (24), we obtain,

Q½�m� ¼ Â
8�G

�

�
�m;0: (47)

Further, from Eq. (27), on using Q½f�1; �2g� ¼P
m;nCm;nQ½f�m; �ng�, we can obtain the relation

Q½f�m; �ng� ¼ �iðm� nÞQ½�mþn� where Q½�mþn� is
given by Eq. (47). Hence, Eq. (25) leads to

i½Qm;Qn� ¼ ðm� nÞQ½�mþn� þm3 Â
8�G

�

�
�nþm;0:

(48)

This is the standard form of the Virasoro algebra Eq. (1)
with Q½�mþn� � Qmþn. We can identify the central charge
and the zero-mode eigenvalue as

C

12
¼ Â

8�G

�

�
; Q½�0� ¼ Â

8�G

�

�
: (49)

The standard Cardy formula for the entropy is given by
[19,20]

S ¼ 2�

ffiffiffiffiffiffiffiffi
C�

6

s
; � � Q0 � C

24
(50)

which leads to
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S ¼ Â
4G

�
2� �2

�2

�ð1=2Þ ! Â
4G

: (51)

This exactly matches with the Wald entropy if we take
� ¼ �. In the case of GR, we reproduce the Bekenstein-
Hawking entropy. The motivation for the choice of � ¼ �
may be understood by introducing the Euclidean time,
which will briefly discussed in the next section.

VI. ILLUSTRATION: RINDLER APPROXIMATION
IN RIEMANN NORMAL COORDINATES

We will illustrate the analysis in the previous sections as
well as some mathematical details of Appendix B in the
simple context in this section. We consider an arbitrary
event in a space-time and introduce the Riemann normal
coordinates around that event. We next boost to a local
Rindler frame with acceleration parameter � in the
x-direction which will introduce a local Rindler horizon
as perceived by the accelerated observers. The form of the
metric near the horizon, in the (x� t) plane, is given by

ds2 ¼ �ð2�xþ Bx2Þdt2 þ 1

2�x
dx2: (52)

For this metric

�a ¼ ð1; 0Þ; �a ¼ gab�
b ¼ ð�ð2�xþ Bx2Þ; 0Þ;

�2 ¼ gab�
a�b ¼ �ð2�xþ Bx2Þ (53)

showing that x ¼ Oð�2Þ near the horizon. Further from
Eq. (10),

�a ¼
�
0;
1

�
ð�þ BxÞ

�
;

�a ¼ gab�b ¼ ð0; 2ð�xþ Bx2ÞÞ;

�2 ¼ gab�
a�b ¼ 2x

�
ð�þ BxÞ2:

(54)

The Killing horizon is given by (�2 ¼ 0)

x ¼ 0; (55)

and the nonzero Christoffer connections are

�t
tx ¼ �þ Bx

2�xþ Bx2
; �x

tt ¼ 2�xð�þ BxÞ;

�x
xx ¼ � 1

2x
:

(56)

Now using the above values one can easily check that the
left-hand side of Eq. (13) is

�araT ¼ 2ð�xþ Bx2Þ@xT; (57)

which is by Eq. (53) is of Oð�2Þ. To illustrate the relation
Eq. (21) we need to calculate left-hand side and right-hand
side component by component. This leads to

Pabcdrc�d ¼ Pabcd�c�d

1

�2

�
2�T � 1

�
D2T

�

þ Pabtx

�
� 2�þ Bx

2�ð�þ BxÞ@
2
t T

þ 1

�2
ð�þ BxÞ@2t T

�
(58)

in which the last term is of the Oð�2Þ. Similarly Eq. (15)
shows that it is exact up to Oð�2Þ.
Also, let us briefly discuss the assumptions and relations

which are used in the main analysis to get the final ex-

pression. We first calculate �2

�2 for the above metric which

up to order x2 is given by

�2

�2
¼ �1� 2B

�2

�
2�xþ 1

3
Bx2

�
(59)

near the null surface, which has been used several times,
automatically satisfied (see Eq. (53) and (54)). Therefore
�2

�2 ¼ �1þOð�2Þ and hence near the Killing horizon one

can neglect the terms from Oð�2Þ. A component
wise verification will show that another assumption
	abrbT ¼ 0 for deriving the relation 2 in Appendix B is
exactly satisfied for the above metric.
Finally, consider the Euclideanized version (t ! �i
)

of the metric near the horizon. In the Euclidean space our
analysis still goes through with an ansatz for Tm taken as

Tm ¼ 1

�
eimð�
þgðrÞþp:x?Þ: (60)

In this case, near the horizon �2

�2 ¼ 1þOð�2Þ. Following
all the earlier steps one again obtains the same central term
and the zero-mode eigenvalue Eq. (49). So the entropy will
be Eq. (51). However, the Euclidean time 
 must have the
periodicity 2�

� , to avoid the conical singularity. Hence in

Eq. (60) we need to choose � ¼ � to maintain this
periodicity in 
.

VII. CONCLUSIONS

The idea of obtaining horizon entropy from diffeomor-
phism generators near the horizon has a long history and
has been attempted by several people using different tech-
niques following the pioneering work by Carlip [22]. All
these approaches which we have referred to earlier do not
always agree in the details or in the conceptual basis. All of
them (as far as we know) were done on-shell with the
equations of motion being used at one stage or the other.
They also involve imposing certain boundary conditions or
ignoring variations of certain terms in order to obtain the
final result. Finally, all but the work in Ref. [38] deals with
Einstein’s theory which, as we pointed out in Sec. I, is a
bad discriminator of approaches to identify the entropy.
In Einstein’s theory horizon entropy happens to be
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proportional to horizon area but not in more general
Lanczos-Lovelock models.

In this paper we have attempted to overcome some of
the limitations mentioned above. We have introduced a
simple and physically meaningful definition for the varia-
tion of the current and the resultant bracket for the con-
served charges. We did not require any specific boundary
conditions in order to work out the central charge. More
important, our entire analysis is off-shell and works for
Lanczos-Lovelock models of gravity reproducing the cor-
rect Wald entropy for these models. We have also indicated
how these ideas can work for any local Rindler horizon
thereby connecting up with concepts in emergent gravity
paradigm. We believe this approach can possibly be further
simplified and the mathematical details can be made more
transparent. We are now in the process of investigating
these issues further.

Finally, it may be noted that our results add a different
perspective to the Virasoro algebra program, which is
possibly more in tune with gravity being an emergent
phenomenon, in the following sense: In the more conven-
tional approaches—which use charges defined on-shell and
the field equations in the computations—one thinks of the
black hole horizon, say, as arising from a specific theory as
a solution to the field equations and we obtain its entropy in
the given theory. (We stress that the entropy of a black hole
depends on the theory and is not simply proportional to
horizon area in e.g., Lanczos-Lovelock models.). But in
our approach, we only need the tensor Pabcd (which has the
symmetries of the curvature tensor and is divergence-free)
to perform our computations and we get the entropy of the
horizon to be theWald entropy calculated using Pabcd. This
is more in tune with the emergent, thermodynamic, per-
spective of gravity in which the entropy tensor Pabcd is
more fundamental. Just as thermodynamics of matter can
be studied by extremizing an entropy function SðE; VÞ, the
dynamics of space-time can be studied if the entropy
tensor Pabcd is given. Mathematically, this arises because,
once Pabcd is given, one can associate a gravitational
entropy Pab

cdran
crbn

d with the null vectors in space-

time; it can be shown that [1,6] extremizing the total
entropy functional for all null vectors now leads to the
field equations of Lanczos-Lovelock models. Therefore, in
this perspective, we start with Pabcd which is fundamental;
we then determine the entropy density of space-time and
by extremizing it we obtain the field equations. The en-
tropy, in this sense, is an off-shell construct and can be
defined for any geometry if we are given a Pabcd. The fact
that we can obtain the same entropy from the Virasoro
program working entirely off-shell, once Pabcd is specified,
seems to be consistent with this picture.
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APPENDIX A: (d� 2)-DIMENSIONAL
SURFACE ELEMENT

In this Appendix we will give the expression for the
surface element�ab. The (d� 2)-dimensional null surface
we are interested in is defined by �2 ¼ 0 where �a is the
(approximate) Killing vector. If we introduce another aux-
iliary null vector Na such that �aNa ¼ �1 then d�ab ¼
dd�2X�ab where �ab ¼ �ð�aNb � �bNaÞ. A convenient
choice for Na can be obtained as follows: Let ta be the
tangent to the (d� 2)-surface and ka be a null vector
satisfying ka�

a ¼ �1, defined by

ka ¼ � 1

�2

�
�a � j�j

�
�a

�
: (A1)

Then we defineNa byNa ¼ ka � ��a � ta. The condition
N2 ¼ 0 requires t2 ¼ �2�� �2�2. So, to the leading
order in �2 we have

�ab ¼ � j�j
��2

ð�a�b � �b�aÞ: (A2)

APPENDIX B: SOME IMPORTANT RELATIONS

In this Appendix we will derive some important rela-
tions which are useful in the main calculation. The rela-
tions will be derived based on the relations given by Carlip
(see Appendix A of [22]). These are valid up to the leading
order in �2.

1. Relation 1

For a Killing vector �a, which is null at the horizon, the
rotation is given by

wab ¼ 1

2
ðhcbrc�a � hcarc�bÞ (B1)

where the transverse metric hab is

hab ¼ �a
b þ �akb þ ka�b: (B2)

Now substituting (B2) in (B1) we obtain

wab ¼ 1

2
½�2ra�b � �ckbra�c þ kc�brc�a

þ �ckarb�c � kc�arc�b�: (B3)

Since,

�ckbra�c ¼ ��kb�a; (B4)

the above reduces to

NOETHER CURRENT, HORIZON VIRASORO ALGEBRA, . . . PHYSICAL REVIEW D 85, 084040 (2012)

084040-9



wab ¼ 1

2
½�2ra�b þ �ðkb�a � ka�bÞ þ kc�brc�a

� kc�arc�b�: (B5)

Using the expression for ka (A1) we obtain,

kb�a ¼ � 1

�2

�
�b�a � j�j

�
�a�b

�
(B6)

and

kc�brc�a ¼ 1

�2

�
���b�a þ j�j

�
�c�brc�a

�
: (B7)

Substitution of these in (B5) yields

wab ¼ 1

2

�
�2ra�b þ 2�

�2
ð�a�b � �b�aÞ þ j�j

�2�

�ð�c�brc�a � �c�arc�bÞ
�
: (B8)

Near the horizon, where wab ! 0, we have,

ra�b ¼ �

�2
ð�a�b � �b�aÞ þ j�j

2�2�
ð�c�brc�a

� �c�arc�bÞ: (B9)

A solution for ra�b can be taken as

ra�b ¼ �

�2
ð�a�b � �b�aÞ: (B10)

This can be verified by substituting this in Eq. (B9). In this
case �c�brc�a � �c�arc�b ¼ 0. Furthermore, it can be
verified component wise that the above is exact for the
metric (52). Of course, if the metric coefficients contain the
next leading order in x, then the relation Eq. (B10) will
have corrections to the order Oð�2Þ which in the near-
horizon limit can be neglected.

2. Relation 2

Let us define a projection tensor

	ab ¼ gab � �a�b

�2
� �a�b

�2
; (B11)

and assume that T satisfies the condition 	abrbT ¼ 0 near
the horizon. This tells that the projection ofraT along 	 is
of Oð�2Þ. Then

�a�b

�2
rbT ¼ raT � �a�b

�2
rbT: (B12)

The last term vanishes due to the boundary condition
Eq. (13). Hence

raT ¼ �a

�2
DT (B13)

where D ¼ �ara. We can ow obtain several further rela-
tions from these. From (B13) we get,

DðraTÞ ¼ D

�
�a

�2
DT

�
¼ 1

�2
½�aD

2T þ ��aDT�: (B14)

Now use of (B10) and the condition (13) yield,

raðDTÞ ¼ rað�brbTÞ ¼ � �

�2
�aDT þDðraTÞ:

(B15)

Substituting (B14) in the above we obtain,

raðDTÞ ¼ 1

�2
�aD

2T: (B16)

Taking the covariant derivative of (B13) and then using
(B10) and (B16) we have

rbraT ¼ �

�4
ð�b�a � �a�bÞDT þ 2�

�4
�b�aDT

þ 1

�4
�a�bD

2T

¼ �

�4
ð�b�a þ �a�bÞDT þ 1

�4
�a�bD

2T: (B17)

3. Relation 6

Consider the following linear combination form for
ra�b:

ra�b ¼ A1�a�b þ A2�a�b þ A3�a�b þ A4�b�a

þ A5gab þ A6ra�b: (B18)

This is justified because the calculation is near the null
surface in the (t, x) plane. Since, ra�b ¼ rb�a, we have
A3 ¼ A4 and A6 ¼ 0. Hence,

ra�b ¼ A1�a�b þ A2�a�b þ A3ð�a�b þ �b�aÞ
þ A5gab: (B19)

Then use of the relation �a�b

�2 ra�b ¼ � ��2

�2 (see

Appendix A of [22]) leads to

A1�
2 þ A5 ¼ ���2

�2
: (B20)

Relation: �ara�
b � �ara�

b ¼ 0 [(A2) of [22]] yields

A1�
2�b þ A3�

2�b þ A5�b þ ��2

�2
�b ¼ 0; (B21)

where �ara�
b is computed by using (B10). Use of (B20)

leads to A3 ¼ 0 ¼ A4 and therefore,

ra�b ¼ A1�a�b þ A2�a�b þ A5gab: (B22)

Now using �a�b

�2 ra�b ¼ � ��2

�2 þOð�2Þ (Eq. A.8 of [22])

we get,
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A2�
2 þ A5 ¼ ���2

�2
þOð�2Þ: (B23)

Again, ra�
a ¼ � 2��2

�2 þOð�2Þ (Eq. A.7 of [22]) implies

A1�
2 þ A2�

2 þ dA5 ¼ � 2��2

�2
þOð�2Þ; (B24)

where d is the space-time dimension. Substituting (B20)
and (B23) in the above and neglecting the �2 order term,
we obtain A5 ¼ 0. Therefore, (B20) and (B23) yield

A1 ¼ � ��2

�4 and A2 ¼ � �
�2 , respectively. Hence (B22)

reduces to

ra�b ¼ � �

�2

�
�2

�2
�a�b þ �a�b

�
: (B25)

Since our analysis is near the event horizon where �2

�2 ¼
�1, the above reduces to the following form,

ra�b ¼ �

�2
ð�a�b � �a�bÞ: (B26)

The above relation has corrections terms which are in
Oð�2Þ. This may be explicitly verified for the metric
Eq. (52). Finally using (B10) and (B26) we have,

rdra�b ¼ 0: (B27)

4. Relation 7

Here, R ¼ �2

��2 DT. Therefore,

raR ¼ 1

�
ra

�
�2

�2

�
DT þ �2

��2
raðDTÞ: (B28)

Use of (B25) gives rað�
2

�2Þ ¼ 0 and hence (B16) leads to

raR ¼ 1

��2
�aD

2T ’ � 1

��2
�aD

2T: (B29)

5. Relation 8

From (B29) we obtain

rdraR ¼ � 1

�

�
rd

�
1

�2

�
�aD

2T þ 1

�2
ðrd�aÞD2T

þ 1

�2
�ardðD2TÞ

�

¼ � 1

�

�
�

�4
ð�d�a þ �a�dÞD2T

þ 1

�2
�ardðD2TÞ

�
; (B30)

where (B10) have been used. Now,

raðD2TÞ ¼ ðra�
bÞrbðDTÞ þD½raðDTÞ�: (B31)

Using (B10) and (B16), the first term in the above
reduces to

ðra�
bÞrbðDTÞ ¼ � �

�2
�aD

2T; (B32)

while the last term gives

D½raðDTÞ� ¼ �

�2
�aD

2T þ 1

�2
�aD

3T: (B33)

Substituting these in (B31), we obtain

raðD2TÞ ¼ 1

�2
�aD

3T: (B34)

Therefore,

rdraR ¼ � 1

�4
ð�d�a þ �a�dÞD2T � 1

��4
�a�dD

3T:

(B35)

6. Relation 9

Here, �a ¼ T�a þ R�a. Hence

ra�b ¼ �braT þ Tra�b þ �braRþ Rra�b: (B36)

Substitution of respective values in the above yields,

ra�b ¼ �a�b

�2
DT þ �

�2
ð�a�b � �b�aÞT

� 1

��2
�a�bD

2T þ Rra�b: (B37)

Hence,

Pabcdrc�d ¼ Pabcd

�
2�

�2
T � 1

��2
D2T

�
�c�d: (B38)

7. Relation 10

From (B10),

rcra�b¼�2

�4
ð�a�b��b�aÞ�cþ �

�2
ð�arc�b��brc�aÞ:

(B39)

Using (B26) we have

�arc�b � �brc�a ¼ �

�2
ð��a�b þ �b�aÞ�c: (B40)

Hence, (B39) reduces to

rcra�b ¼ 0: (B41)

NOETHER CURRENT, HORIZON VIRASORO ALGEBRA, . . . PHYSICAL REVIEW D 85, 084040 (2012)

084040-11



8. Relation 11

From (B36),

rdra�b ¼ ðrd�bÞðraTÞ þ �brdraT þ ðrdTÞðra�bÞ
þ Trdra�b þ ðrd�bÞðraRÞ þ �brdraR

þ ðrdRÞðra�bÞ þ Rrdra�b: (B42)

Substituting the respective values we obtain,

rdra�b ¼ 2�

�4
�a�b�dDT � 1

��4
�a�b�dD

3T

� 1

�4
�a�b�dD

2T: (B43)

This final expression was given in [38] without the details
of the derivation. Here we gave the details for the shake of
completeness and we belief that it will help to the reader
for the future purpose.

APPENDIX C: INCLUSION OF ROTATIONAL
TERMS

For a stationary space-times with rotation, the coordi-
nates near the horizon can be chosen such that the
(approximate) Killing vector �a is given by �a ¼
ð1; 0; 0;�1;�2; . . . :Þ, �j are the rotational parameters.

Let � � P
�j. Then the ansatz for Tm generalizes to

Tm ¼ 1

N
exp

�
imð�tþX

�j þ gðx; �ÞÞ
�

� 1

N
exp½imð�tþ�þ gðx; �ÞÞ�; (C1)

where � is a constant, �j’s are the coordinates on which

the metric does not depend on,� � P
�j, and gðx; �Þ is a

function that is regular at the Killing horizon. This choice
satisfies Eq. (2) with N ¼ ð�þ�Þ. A similar choice was
made earlier in Ref. [42]. The limits of the integration are
chosen such that Tn has periodicity 2� and � on�j and �,

respectively. The rest of the analysis proceeds exactly as in
the main text.
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